1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/set.h"
77 #include "util/string_to_uint_map.h"
78 #include "linker.h"
79 #include "link_varyings.h"
80 #include "ir_optimization.h"
81 #include "ir_rvalue_visitor.h"
82 #include "ir_uniform.h"
83
84 #include "main/shaderobj.h"
85 #include "main/enums.h"
86
87
88 namespace {
89
90 /**
91 * Visitor that determines whether or not a variable is ever written.
92 */
93 class find_assignment_visitor : public ir_hierarchical_visitor {
94 public:
find_assignment_visitor(const char * name)95 find_assignment_visitor(const char *name)
96 : name(name), found(false)
97 {
98 /* empty */
99 }
100
visit_enter(ir_assignment * ir)101 virtual ir_visitor_status visit_enter(ir_assignment *ir)
102 {
103 ir_variable *const var = ir->lhs->variable_referenced();
104
105 if (strcmp(name, var->name) == 0) {
106 found = true;
107 return visit_stop;
108 }
109
110 return visit_continue_with_parent;
111 }
112
visit_enter(ir_call * ir)113 virtual ir_visitor_status visit_enter(ir_call *ir)
114 {
115 foreach_two_lists(formal_node, &ir->callee->parameters,
116 actual_node, &ir->actual_parameters) {
117 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
118 ir_variable *sig_param = (ir_variable *) formal_node;
119
120 if (sig_param->data.mode == ir_var_function_out ||
121 sig_param->data.mode == ir_var_function_inout) {
122 ir_variable *var = param_rval->variable_referenced();
123 if (var && strcmp(name, var->name) == 0) {
124 found = true;
125 return visit_stop;
126 }
127 }
128 }
129
130 if (ir->return_deref != NULL) {
131 ir_variable *const var = ir->return_deref->variable_referenced();
132
133 if (strcmp(name, var->name) == 0) {
134 found = true;
135 return visit_stop;
136 }
137 }
138
139 return visit_continue_with_parent;
140 }
141
variable_found()142 bool variable_found()
143 {
144 return found;
145 }
146
147 private:
148 const char *name; /**< Find writes to a variable with this name. */
149 bool found; /**< Was a write to the variable found? */
150 };
151
152
153 /**
154 * Visitor that determines whether or not a variable is ever read.
155 */
156 class find_deref_visitor : public ir_hierarchical_visitor {
157 public:
find_deref_visitor(const char * name)158 find_deref_visitor(const char *name)
159 : name(name), found(false)
160 {
161 /* empty */
162 }
163
visit(ir_dereference_variable * ir)164 virtual ir_visitor_status visit(ir_dereference_variable *ir)
165 {
166 if (strcmp(this->name, ir->var->name) == 0) {
167 this->found = true;
168 return visit_stop;
169 }
170
171 return visit_continue;
172 }
173
variable_found() const174 bool variable_found() const
175 {
176 return this->found;
177 }
178
179 private:
180 const char *name; /**< Find writes to a variable with this name. */
181 bool found; /**< Was a write to the variable found? */
182 };
183
184
185 /**
186 * A visitor helper that provides methods for updating the types of
187 * ir_dereferences. Classes that update variable types (say, updating
188 * array sizes) will want to use this so that dereference types stay in sync.
189 */
190 class deref_type_updater : public ir_hierarchical_visitor {
191 public:
visit(ir_dereference_variable * ir)192 virtual ir_visitor_status visit(ir_dereference_variable *ir)
193 {
194 ir->type = ir->var->type;
195 return visit_continue;
196 }
197
visit_leave(ir_dereference_array * ir)198 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
199 {
200 const glsl_type *const vt = ir->array->type;
201 if (vt->is_array())
202 ir->type = vt->fields.array;
203 return visit_continue;
204 }
205
visit_leave(ir_dereference_record * ir)206 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
207 {
208 for (unsigned i = 0; i < ir->record->type->length; i++) {
209 const struct glsl_struct_field *field =
210 &ir->record->type->fields.structure[i];
211 if (strcmp(field->name, ir->field) == 0) {
212 ir->type = field->type;
213 break;
214 }
215 }
216 return visit_continue;
217 }
218 };
219
220
221 class array_resize_visitor : public deref_type_updater {
222 public:
223 unsigned num_vertices;
224 gl_shader_program *prog;
225 gl_shader_stage stage;
226
array_resize_visitor(unsigned num_vertices,gl_shader_program * prog,gl_shader_stage stage)227 array_resize_visitor(unsigned num_vertices,
228 gl_shader_program *prog,
229 gl_shader_stage stage)
230 {
231 this->num_vertices = num_vertices;
232 this->prog = prog;
233 this->stage = stage;
234 }
235
~array_resize_visitor()236 virtual ~array_resize_visitor()
237 {
238 /* empty */
239 }
240
visit(ir_variable * var)241 virtual ir_visitor_status visit(ir_variable *var)
242 {
243 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
244 var->data.patch)
245 return visit_continue;
246
247 unsigned size = var->type->length;
248
249 if (stage == MESA_SHADER_GEOMETRY) {
250 /* Generate a link error if the shader has declared this array with
251 * an incorrect size.
252 */
253 if (!var->data.implicit_sized_array &&
254 size && size != this->num_vertices) {
255 linker_error(this->prog, "size of array %s declared as %u, "
256 "but number of input vertices is %u\n",
257 var->name, size, this->num_vertices);
258 return visit_continue;
259 }
260
261 /* Generate a link error if the shader attempts to access an input
262 * array using an index too large for its actual size assigned at
263 * link time.
264 */
265 if (var->data.max_array_access >= (int)this->num_vertices) {
266 linker_error(this->prog, "%s shader accesses element %i of "
267 "%s, but only %i input vertices\n",
268 _mesa_shader_stage_to_string(this->stage),
269 var->data.max_array_access, var->name, this->num_vertices);
270 return visit_continue;
271 }
272 }
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280 };
281
282 /**
283 * Visitor that determines the highest stream id to which a (geometry) shader
284 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
285 */
286 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
287 public:
find_emit_vertex_visitor(int max_allowed)288 find_emit_vertex_visitor(int max_allowed)
289 : max_stream_allowed(max_allowed),
290 invalid_stream_id(0),
291 invalid_stream_id_from_emit_vertex(false),
292 end_primitive_found(false),
293 uses_non_zero_stream(false)
294 {
295 /* empty */
296 }
297
visit_leave(ir_emit_vertex * ir)298 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
299 {
300 int stream_id = ir->stream_id();
301
302 if (stream_id < 0) {
303 invalid_stream_id = stream_id;
304 invalid_stream_id_from_emit_vertex = true;
305 return visit_stop;
306 }
307
308 if (stream_id > max_stream_allowed) {
309 invalid_stream_id = stream_id;
310 invalid_stream_id_from_emit_vertex = true;
311 return visit_stop;
312 }
313
314 if (stream_id != 0)
315 uses_non_zero_stream = true;
316
317 return visit_continue;
318 }
319
visit_leave(ir_end_primitive * ir)320 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
321 {
322 end_primitive_found = true;
323
324 int stream_id = ir->stream_id();
325
326 if (stream_id < 0) {
327 invalid_stream_id = stream_id;
328 invalid_stream_id_from_emit_vertex = false;
329 return visit_stop;
330 }
331
332 if (stream_id > max_stream_allowed) {
333 invalid_stream_id = stream_id;
334 invalid_stream_id_from_emit_vertex = false;
335 return visit_stop;
336 }
337
338 if (stream_id != 0)
339 uses_non_zero_stream = true;
340
341 return visit_continue;
342 }
343
error()344 bool error()
345 {
346 return invalid_stream_id != 0;
347 }
348
error_func()349 const char *error_func()
350 {
351 return invalid_stream_id_from_emit_vertex ?
352 "EmitStreamVertex" : "EndStreamPrimitive";
353 }
354
error_stream()355 int error_stream()
356 {
357 return invalid_stream_id;
358 }
359
uses_streams()360 bool uses_streams()
361 {
362 return uses_non_zero_stream;
363 }
364
uses_end_primitive()365 bool uses_end_primitive()
366 {
367 return end_primitive_found;
368 }
369
370 private:
371 int max_stream_allowed;
372 int invalid_stream_id;
373 bool invalid_stream_id_from_emit_vertex;
374 bool end_primitive_found;
375 bool uses_non_zero_stream;
376 };
377
378 /* Class that finds array derefs and check if indexes are dynamic. */
379 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
380 {
381 public:
dynamic_sampler_array_indexing_visitor()382 dynamic_sampler_array_indexing_visitor() :
383 dynamic_sampler_array_indexing(false)
384 {
385 }
386
visit_enter(ir_dereference_array * ir)387 ir_visitor_status visit_enter(ir_dereference_array *ir)
388 {
389 if (!ir->variable_referenced())
390 return visit_continue;
391
392 if (!ir->variable_referenced()->type->contains_sampler())
393 return visit_continue;
394
395 if (!ir->array_index->constant_expression_value()) {
396 dynamic_sampler_array_indexing = true;
397 return visit_stop;
398 }
399 return visit_continue;
400 }
401
uses_dynamic_sampler_array_indexing()402 bool uses_dynamic_sampler_array_indexing()
403 {
404 return dynamic_sampler_array_indexing;
405 }
406
407 private:
408 bool dynamic_sampler_array_indexing;
409 };
410
411 } /* anonymous namespace */
412
413 void
linker_error(gl_shader_program * prog,const char * fmt,...)414 linker_error(gl_shader_program *prog, const char *fmt, ...)
415 {
416 va_list ap;
417
418 ralloc_strcat(&prog->data->InfoLog, "error: ");
419 va_start(ap, fmt);
420 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
421 va_end(ap);
422
423 prog->data->LinkStatus = false;
424 }
425
426
427 void
linker_warning(gl_shader_program * prog,const char * fmt,...)428 linker_warning(gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list ap;
431
432 ralloc_strcat(&prog->data->InfoLog, "warning: ");
433 va_start(ap, fmt);
434 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
435 va_end(ap);
436
437 }
438
439
440 /**
441 * Given a string identifying a program resource, break it into a base name
442 * and an optional array index in square brackets.
443 *
444 * If an array index is present, \c out_base_name_end is set to point to the
445 * "[" that precedes the array index, and the array index itself is returned
446 * as a long.
447 *
448 * If no array index is present (or if the array index is negative or
449 * mal-formed), \c out_base_name_end, is set to point to the null terminator
450 * at the end of the input string, and -1 is returned.
451 *
452 * Only the final array index is parsed; if the string contains other array
453 * indices (or structure field accesses), they are left in the base name.
454 *
455 * No attempt is made to check that the base name is properly formed;
456 * typically the caller will look up the base name in a hash table, so
457 * ill-formed base names simply turn into hash table lookup failures.
458 */
459 long
parse_program_resource_name(const GLchar * name,const GLchar ** out_base_name_end)460 parse_program_resource_name(const GLchar *name,
461 const GLchar **out_base_name_end)
462 {
463 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
464 *
465 * "When an integer array element or block instance number is part of
466 * the name string, it will be specified in decimal form without a "+"
467 * or "-" sign or any extra leading zeroes. Additionally, the name
468 * string will not include white space anywhere in the string."
469 */
470
471 const size_t len = strlen(name);
472 *out_base_name_end = name + len;
473
474 if (len == 0 || name[len-1] != ']')
475 return -1;
476
477 /* Walk backwards over the string looking for a non-digit character. This
478 * had better be the opening bracket for an array index.
479 *
480 * Initially, i specifies the location of the ']'. Since the string may
481 * contain only the ']' charcater, walk backwards very carefully.
482 */
483 unsigned i;
484 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
485 /* empty */ ;
486
487 if ((i == 0) || name[i-1] != '[')
488 return -1;
489
490 long array_index = strtol(&name[i], NULL, 10);
491 if (array_index < 0)
492 return -1;
493
494 /* Check for leading zero */
495 if (name[i] == '0' && name[i+1] != ']')
496 return -1;
497
498 *out_base_name_end = name + (i - 1);
499 return array_index;
500 }
501
502
503 void
link_invalidate_variable_locations(exec_list * ir)504 link_invalidate_variable_locations(exec_list *ir)
505 {
506 foreach_in_list(ir_instruction, node, ir) {
507 ir_variable *const var = node->as_variable();
508
509 if (var == NULL)
510 continue;
511
512 /* Only assign locations for variables that lack an explicit location.
513 * Explicit locations are set for all built-in variables, generic vertex
514 * shader inputs (via layout(location=...)), and generic fragment shader
515 * outputs (also via layout(location=...)).
516 */
517 if (!var->data.explicit_location) {
518 var->data.location = -1;
519 var->data.location_frac = 0;
520 }
521
522 /* ir_variable::is_unmatched_generic_inout is used by the linker while
523 * connecting outputs from one stage to inputs of the next stage.
524 */
525 if (var->data.explicit_location &&
526 var->data.location < VARYING_SLOT_VAR0) {
527 var->data.is_unmatched_generic_inout = 0;
528 } else {
529 var->data.is_unmatched_generic_inout = 1;
530 }
531 }
532 }
533
534
535 /**
536 * Set clip_distance_array_size based and cull_distance_array_size on the given
537 * shader.
538 *
539 * Also check for errors based on incorrect usage of gl_ClipVertex and
540 * gl_ClipDistance and gl_CullDistance.
541 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
542 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
543 *
544 * Return false if an error was reported.
545 */
546 static void
analyze_clip_cull_usage(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx,GLuint * clip_distance_array_size,GLuint * cull_distance_array_size)547 analyze_clip_cull_usage(struct gl_shader_program *prog,
548 struct gl_linked_shader *shader,
549 struct gl_context *ctx,
550 GLuint *clip_distance_array_size,
551 GLuint *cull_distance_array_size)
552 {
553 *clip_distance_array_size = 0;
554 *cull_distance_array_size = 0;
555
556 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
557 /* From section 7.1 (Vertex Shader Special Variables) of the
558 * GLSL 1.30 spec:
559 *
560 * "It is an error for a shader to statically write both
561 * gl_ClipVertex and gl_ClipDistance."
562 *
563 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
564 * gl_ClipVertex nor gl_ClipDistance. However with
565 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
566 */
567 find_assignment_visitor clip_distance("gl_ClipDistance");
568 find_assignment_visitor cull_distance("gl_CullDistance");
569
570 clip_distance.run(shader->ir);
571 cull_distance.run(shader->ir);
572
573 /* From the ARB_cull_distance spec:
574 *
575 * It is a compile-time or link-time error for the set of shaders forming
576 * a program to statically read or write both gl_ClipVertex and either
577 * gl_ClipDistance or gl_CullDistance.
578 *
579 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
580 * gl_ClipVertex.
581 */
582 if (!prog->IsES) {
583 find_assignment_visitor clip_vertex("gl_ClipVertex");
584
585 clip_vertex.run(shader->ir);
586
587 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
588 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
589 "and `gl_ClipDistance'\n",
590 _mesa_shader_stage_to_string(shader->Stage));
591 return;
592 }
593 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
594 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
595 "and `gl_CullDistance'\n",
596 _mesa_shader_stage_to_string(shader->Stage));
597 return;
598 }
599 }
600
601 if (clip_distance.variable_found()) {
602 ir_variable *clip_distance_var =
603 shader->symbols->get_variable("gl_ClipDistance");
604 assert(clip_distance_var);
605 *clip_distance_array_size = clip_distance_var->type->length;
606 }
607 if (cull_distance.variable_found()) {
608 ir_variable *cull_distance_var =
609 shader->symbols->get_variable("gl_CullDistance");
610 assert(cull_distance_var);
611 *cull_distance_array_size = cull_distance_var->type->length;
612 }
613 /* From the ARB_cull_distance spec:
614 *
615 * It is a compile-time or link-time error for the set of shaders forming
616 * a program to have the sum of the sizes of the gl_ClipDistance and
617 * gl_CullDistance arrays to be larger than
618 * gl_MaxCombinedClipAndCullDistances.
619 */
620 if ((*clip_distance_array_size + *cull_distance_array_size) >
621 ctx->Const.MaxClipPlanes) {
622 linker_error(prog, "%s shader: the combined size of "
623 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
624 "be larger than "
625 "gl_MaxCombinedClipAndCullDistances (%u)",
626 _mesa_shader_stage_to_string(shader->Stage),
627 ctx->Const.MaxClipPlanes);
628 }
629 }
630 }
631
632
633 /**
634 * Verify that a vertex shader executable meets all semantic requirements.
635 *
636 * Also sets prog->Vert.ClipDistanceArraySize and
637 * prog->Vert.CullDistanceArraySize as a side effect.
638 *
639 * \param shader Vertex shader executable to be verified
640 */
641 void
validate_vertex_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)642 validate_vertex_shader_executable(struct gl_shader_program *prog,
643 struct gl_linked_shader *shader,
644 struct gl_context *ctx)
645 {
646 if (shader == NULL)
647 return;
648
649 /* From the GLSL 1.10 spec, page 48:
650 *
651 * "The variable gl_Position is available only in the vertex
652 * language and is intended for writing the homogeneous vertex
653 * position. All executions of a well-formed vertex shader
654 * executable must write a value into this variable. [...] The
655 * variable gl_Position is available only in the vertex
656 * language and is intended for writing the homogeneous vertex
657 * position. All executions of a well-formed vertex shader
658 * executable must write a value into this variable."
659 *
660 * while in GLSL 1.40 this text is changed to:
661 *
662 * "The variable gl_Position is available only in the vertex
663 * language and is intended for writing the homogeneous vertex
664 * position. It can be written at any time during shader
665 * execution. It may also be read back by a vertex shader
666 * after being written. This value will be used by primitive
667 * assembly, clipping, culling, and other fixed functionality
668 * operations, if present, that operate on primitives after
669 * vertex processing has occurred. Its value is undefined if
670 * the vertex shader executable does not write gl_Position."
671 *
672 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
673 * gl_Position is not an error.
674 */
675 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
676 find_assignment_visitor find("gl_Position");
677 find.run(shader->ir);
678 if (!find.variable_found()) {
679 if (prog->IsES) {
680 linker_warning(prog,
681 "vertex shader does not write to `gl_Position'. "
682 "Its value is undefined. \n");
683 } else {
684 linker_error(prog,
685 "vertex shader does not write to `gl_Position'. \n");
686 }
687 return;
688 }
689 }
690
691 analyze_clip_cull_usage(prog, shader, ctx,
692 &prog->Vert.ClipDistanceArraySize,
693 &prog->Vert.CullDistanceArraySize);
694 }
695
696 void
validate_tess_eval_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)697 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
698 struct gl_linked_shader *shader,
699 struct gl_context *ctx)
700 {
701 if (shader == NULL)
702 return;
703
704 analyze_clip_cull_usage(prog, shader, ctx,
705 &prog->TessEval.ClipDistanceArraySize,
706 &prog->TessEval.CullDistanceArraySize);
707 }
708
709
710 /**
711 * Verify that a fragment shader executable meets all semantic requirements
712 *
713 * \param shader Fragment shader executable to be verified
714 */
715 void
validate_fragment_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader)716 validate_fragment_shader_executable(struct gl_shader_program *prog,
717 struct gl_linked_shader *shader)
718 {
719 if (shader == NULL)
720 return;
721
722 find_assignment_visitor frag_color("gl_FragColor");
723 find_assignment_visitor frag_data("gl_FragData");
724
725 frag_color.run(shader->ir);
726 frag_data.run(shader->ir);
727
728 if (frag_color.variable_found() && frag_data.variable_found()) {
729 linker_error(prog, "fragment shader writes to both "
730 "`gl_FragColor' and `gl_FragData'\n");
731 }
732 }
733
734 /**
735 * Verify that a geometry shader executable meets all semantic requirements
736 *
737 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
738 * prog->Geom.CullDistanceArraySize as a side effect.
739 *
740 * \param shader Geometry shader executable to be verified
741 */
742 void
validate_geometry_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)743 validate_geometry_shader_executable(struct gl_shader_program *prog,
744 struct gl_linked_shader *shader,
745 struct gl_context *ctx)
746 {
747 if (shader == NULL)
748 return;
749
750 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
751 prog->Geom.VerticesIn = num_vertices;
752
753 analyze_clip_cull_usage(prog, shader, ctx,
754 &prog->Geom.ClipDistanceArraySize,
755 &prog->Geom.CullDistanceArraySize);
756 }
757
758 /**
759 * Check if geometry shaders emit to non-zero streams and do corresponding
760 * validations.
761 */
762 static void
validate_geometry_shader_emissions(struct gl_context * ctx,struct gl_shader_program * prog)763 validate_geometry_shader_emissions(struct gl_context *ctx,
764 struct gl_shader_program *prog)
765 {
766 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
767
768 if (sh != NULL) {
769 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
770 emit_vertex.run(sh->ir);
771 if (emit_vertex.error()) {
772 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
773 "stream parameter are in the range [0, %d].\n",
774 emit_vertex.error_func(),
775 emit_vertex.error_stream(),
776 ctx->Const.MaxVertexStreams - 1);
777 }
778 prog->Geom.UsesStreams = emit_vertex.uses_streams();
779 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
780
781 /* From the ARB_gpu_shader5 spec:
782 *
783 * "Multiple vertex streams are supported only if the output primitive
784 * type is declared to be "points". A program will fail to link if it
785 * contains a geometry shader calling EmitStreamVertex() or
786 * EndStreamPrimitive() if its output primitive type is not "points".
787 *
788 * However, in the same spec:
789 *
790 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
791 * with <stream> set to zero."
792 *
793 * And:
794 *
795 * "The function EndPrimitive() is equivalent to calling
796 * EndStreamPrimitive() with <stream> set to zero."
797 *
798 * Since we can call EmitVertex() and EndPrimitive() when we output
799 * primitives other than points, calling EmitStreamVertex(0) or
800 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
801 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
802 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
803 * stream.
804 */
805 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
806 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
807 "with n>0 requires point output\n");
808 }
809 }
810 }
811
812 bool
validate_intrastage_arrays(struct gl_shader_program * prog,ir_variable * const var,ir_variable * const existing)813 validate_intrastage_arrays(struct gl_shader_program *prog,
814 ir_variable *const var,
815 ir_variable *const existing)
816 {
817 /* Consider the types to be "the same" if both types are arrays
818 * of the same type and one of the arrays is implicitly sized.
819 * In addition, set the type of the linked variable to the
820 * explicitly sized array.
821 */
822 if (var->type->is_array() && existing->type->is_array()) {
823 if ((var->type->fields.array == existing->type->fields.array) &&
824 ((var->type->length == 0)|| (existing->type->length == 0))) {
825 if (var->type->length != 0) {
826 if ((int)var->type->length <= existing->data.max_array_access) {
827 linker_error(prog, "%s `%s' declared as type "
828 "`%s' but outermost dimension has an index"
829 " of `%i'\n",
830 mode_string(var),
831 var->name, var->type->name,
832 existing->data.max_array_access);
833 }
834 existing->type = var->type;
835 return true;
836 } else if (existing->type->length != 0) {
837 if((int)existing->type->length <= var->data.max_array_access &&
838 !existing->data.from_ssbo_unsized_array) {
839 linker_error(prog, "%s `%s' declared as type "
840 "`%s' but outermost dimension has an index"
841 " of `%i'\n",
842 mode_string(var),
843 var->name, existing->type->name,
844 var->data.max_array_access);
845 }
846 return true;
847 }
848 } else {
849 /* The arrays of structs could have different glsl_type pointers but
850 * they are actually the same type. Use record_compare() to check that.
851 */
852 if (existing->type->fields.array->is_record() &&
853 var->type->fields.array->is_record() &&
854 existing->type->fields.array->record_compare(var->type->fields.array))
855 return true;
856 }
857 }
858 return false;
859 }
860
861
862 /**
863 * Perform validation of global variables used across multiple shaders
864 */
865 void
cross_validate_globals(struct gl_shader_program * prog,struct exec_list * ir,glsl_symbol_table * variables,bool uniforms_only)866 cross_validate_globals(struct gl_shader_program *prog,
867 struct exec_list *ir, glsl_symbol_table *variables,
868 bool uniforms_only)
869 {
870 foreach_in_list(ir_instruction, node, ir) {
871 ir_variable *const var = node->as_variable();
872
873 if (var == NULL)
874 continue;
875
876 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
877 continue;
878
879 /* don't cross validate subroutine uniforms */
880 if (var->type->contains_subroutine())
881 continue;
882
883 /* Don't cross validate temporaries that are at global scope. These
884 * will eventually get pulled into the shaders 'main'.
885 */
886 if (var->data.mode == ir_var_temporary)
887 continue;
888
889 /* If a global with this name has already been seen, verify that the
890 * new instance has the same type. In addition, if the globals have
891 * initializers, the values of the initializers must be the same.
892 */
893 ir_variable *const existing = variables->get_variable(var->name);
894 if (existing != NULL) {
895 /* Check if types match. Interface blocks have some special
896 * rules so we handle those elsewhere.
897 */
898 if (var->type != existing->type &&
899 !var->is_interface_instance()) {
900 if (!validate_intrastage_arrays(prog, var, existing)) {
901 if (var->type->is_record() && existing->type->is_record()
902 && existing->type->record_compare(var->type)) {
903 existing->type = var->type;
904 } else {
905 /* If it is an unsized array in a Shader Storage Block,
906 * two different shaders can access to different elements.
907 * Because of that, they might be converted to different
908 * sized arrays, then check that they are compatible but
909 * ignore the array size.
910 */
911 if (!(var->data.mode == ir_var_shader_storage &&
912 var->data.from_ssbo_unsized_array &&
913 existing->data.mode == ir_var_shader_storage &&
914 existing->data.from_ssbo_unsized_array &&
915 var->type->gl_type == existing->type->gl_type)) {
916 linker_error(prog, "%s `%s' declared as type "
917 "`%s' and type `%s'\n",
918 mode_string(var),
919 var->name, var->type->name,
920 existing->type->name);
921 return;
922 }
923 }
924 }
925 }
926
927 if (var->data.explicit_location) {
928 if (existing->data.explicit_location
929 && (var->data.location != existing->data.location)) {
930 linker_error(prog, "explicit locations for %s "
931 "`%s' have differing values\n",
932 mode_string(var), var->name);
933 return;
934 }
935
936 if (var->data.location_frac != existing->data.location_frac) {
937 linker_error(prog, "explicit components for %s `%s' have "
938 "differing values\n", mode_string(var), var->name);
939 return;
940 }
941
942 existing->data.location = var->data.location;
943 existing->data.explicit_location = true;
944 } else {
945 /* Check if uniform with implicit location was marked explicit
946 * by earlier shader stage. If so, mark it explicit in this stage
947 * too to make sure later processing does not treat it as
948 * implicit one.
949 */
950 if (existing->data.explicit_location) {
951 var->data.location = existing->data.location;
952 var->data.explicit_location = true;
953 }
954 }
955
956 /* From the GLSL 4.20 specification:
957 * "A link error will result if two compilation units in a program
958 * specify different integer-constant bindings for the same
959 * opaque-uniform name. However, it is not an error to specify a
960 * binding on some but not all declarations for the same name"
961 */
962 if (var->data.explicit_binding) {
963 if (existing->data.explicit_binding &&
964 var->data.binding != existing->data.binding) {
965 linker_error(prog, "explicit bindings for %s "
966 "`%s' have differing values\n",
967 mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.binding = var->data.binding;
972 existing->data.explicit_binding = true;
973 }
974
975 if (var->type->contains_atomic() &&
976 var->data.offset != existing->data.offset) {
977 linker_error(prog, "offset specifications for %s "
978 "`%s' have differing values\n",
979 mode_string(var), var->name);
980 return;
981 }
982
983 /* Validate layout qualifiers for gl_FragDepth.
984 *
985 * From the AMD/ARB_conservative_depth specs:
986 *
987 * "If gl_FragDepth is redeclared in any fragment shader in a
988 * program, it must be redeclared in all fragment shaders in
989 * that program that have static assignments to
990 * gl_FragDepth. All redeclarations of gl_FragDepth in all
991 * fragment shaders in a single program must have the same set
992 * of qualifiers."
993 */
994 if (strcmp(var->name, "gl_FragDepth") == 0) {
995 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
996 bool layout_differs =
997 var->data.depth_layout != existing->data.depth_layout;
998
999 if (layout_declared && layout_differs) {
1000 linker_error(prog,
1001 "All redeclarations of gl_FragDepth in all "
1002 "fragment shaders in a single program must have "
1003 "the same set of qualifiers.\n");
1004 }
1005
1006 if (var->data.used && layout_differs) {
1007 linker_error(prog,
1008 "If gl_FragDepth is redeclared with a layout "
1009 "qualifier in any fragment shader, it must be "
1010 "redeclared with the same layout qualifier in "
1011 "all fragment shaders that have assignments to "
1012 "gl_FragDepth\n");
1013 }
1014 }
1015
1016 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1017 *
1018 * "If a shared global has multiple initializers, the
1019 * initializers must all be constant expressions, and they
1020 * must all have the same value. Otherwise, a link error will
1021 * result. (A shared global having only one initializer does
1022 * not require that initializer to be a constant expression.)"
1023 *
1024 * Previous to 4.20 the GLSL spec simply said that initializers
1025 * must have the same value. In this case of non-constant
1026 * initializers, this was impossible to determine. As a result,
1027 * no vendor actually implemented that behavior. The 4.20
1028 * behavior matches the implemented behavior of at least one other
1029 * vendor, so we'll implement that for all GLSL versions.
1030 */
1031 if (var->constant_initializer != NULL) {
1032 if (existing->constant_initializer != NULL) {
1033 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1034 linker_error(prog, "initializers for %s "
1035 "`%s' have differing values\n",
1036 mode_string(var), var->name);
1037 return;
1038 }
1039 } else {
1040 /* If the first-seen instance of a particular uniform did
1041 * not have an initializer but a later instance does,
1042 * replace the former with the later.
1043 */
1044 variables->replace_variable(existing->name, var);
1045 }
1046 }
1047
1048 if (var->data.has_initializer) {
1049 if (existing->data.has_initializer
1050 && (var->constant_initializer == NULL
1051 || existing->constant_initializer == NULL)) {
1052 linker_error(prog,
1053 "shared global variable `%s' has multiple "
1054 "non-constant initializers.\n",
1055 var->name);
1056 return;
1057 }
1058 }
1059
1060 if (existing->data.invariant != var->data.invariant) {
1061 linker_error(prog, "declarations for %s `%s' have "
1062 "mismatching invariant qualifiers\n",
1063 mode_string(var), var->name);
1064 return;
1065 }
1066 if (existing->data.centroid != var->data.centroid) {
1067 linker_error(prog, "declarations for %s `%s' have "
1068 "mismatching centroid qualifiers\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 if (existing->data.sample != var->data.sample) {
1073 linker_error(prog, "declarations for %s `%s` have "
1074 "mismatching sample qualifiers\n",
1075 mode_string(var), var->name);
1076 return;
1077 }
1078 if (existing->data.image_format != var->data.image_format) {
1079 linker_error(prog, "declarations for %s `%s` have "
1080 "mismatching image format qualifiers\n",
1081 mode_string(var), var->name);
1082 return;
1083 }
1084
1085 /* Only in GLSL ES 3.10, the precision qualifier should not match
1086 * between block members defined in matched block names within a
1087 * shader interface.
1088 *
1089 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1090 * member should match.
1091 */
1092 if (prog->IsES && (prog->data->Version != 310 ||
1093 !var->get_interface_type()) &&
1094 existing->data.precision != var->data.precision) {
1095 linker_error(prog, "declarations for %s `%s` have "
1096 "mismatching precision qualifiers\n",
1097 mode_string(var), var->name);
1098 return;
1099 }
1100 } else
1101 variables->add_variable(var);
1102 }
1103 }
1104
1105
1106 /**
1107 * Perform validation of uniforms used across multiple shader stages
1108 */
1109 void
cross_validate_uniforms(struct gl_shader_program * prog)1110 cross_validate_uniforms(struct gl_shader_program *prog)
1111 {
1112 glsl_symbol_table variables;
1113 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1114 if (prog->_LinkedShaders[i] == NULL)
1115 continue;
1116
1117 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1118 true);
1119 }
1120 }
1121
1122 /**
1123 * Accumulates the array of buffer blocks and checks that all definitions of
1124 * blocks agree on their contents.
1125 */
1126 static bool
interstage_cross_validate_uniform_blocks(struct gl_shader_program * prog,bool validate_ssbo)1127 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1128 bool validate_ssbo)
1129 {
1130 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1131 struct gl_uniform_block *blks = NULL;
1132 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1133 &prog->data->NumUniformBlocks;
1134
1135 unsigned max_num_buffer_blocks = 0;
1136 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1137 if (prog->_LinkedShaders[i]) {
1138 if (validate_ssbo) {
1139 max_num_buffer_blocks +=
1140 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1141 } else {
1142 max_num_buffer_blocks +=
1143 prog->_LinkedShaders[i]->Program->info.num_ubos;
1144 }
1145 }
1146 }
1147
1148 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1149 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1150
1151 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1152 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1153 InterfaceBlockStageIndex[i][j] = -1;
1154
1155 if (sh == NULL)
1156 continue;
1157
1158 unsigned sh_num_blocks;
1159 struct gl_uniform_block **sh_blks;
1160 if (validate_ssbo) {
1161 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1162 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1163 } else {
1164 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1165 sh_blks = sh->Program->sh.UniformBlocks;
1166 }
1167
1168 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1169 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1170 sh_blks[j]);
1171
1172 if (index == -1) {
1173 linker_error(prog, "buffer block `%s' has mismatching "
1174 "definitions\n", sh_blks[j]->Name);
1175
1176 for (unsigned k = 0; k <= i; k++) {
1177 delete[] InterfaceBlockStageIndex[k];
1178 }
1179
1180 /* Reset the block count. This will help avoid various segfaults
1181 * from api calls that assume the array exists due to the count
1182 * being non-zero.
1183 */
1184 *num_blks = 0;
1185 return false;
1186 }
1187
1188 InterfaceBlockStageIndex[i][index] = j;
1189 }
1190 }
1191
1192 /* Update per stage block pointers to point to the program list.
1193 * FIXME: We should be able to free the per stage blocks here.
1194 */
1195 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1196 for (unsigned j = 0; j < *num_blks; j++) {
1197 int stage_index = InterfaceBlockStageIndex[i][j];
1198
1199 if (stage_index != -1) {
1200 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1201
1202 struct gl_uniform_block **sh_blks = validate_ssbo ?
1203 sh->Program->sh.ShaderStorageBlocks :
1204 sh->Program->sh.UniformBlocks;
1205
1206 blks[j].stageref |= sh_blks[stage_index]->stageref;
1207 sh_blks[stage_index] = &blks[j];
1208 }
1209 }
1210 }
1211
1212 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1213 delete[] InterfaceBlockStageIndex[i];
1214 }
1215
1216 if (validate_ssbo)
1217 prog->data->ShaderStorageBlocks = blks;
1218 else
1219 prog->data->UniformBlocks = blks;
1220
1221 return true;
1222 }
1223
1224
1225 /**
1226 * Populates a shaders symbol table with all global declarations
1227 */
1228 static void
populate_symbol_table(gl_linked_shader * sh)1229 populate_symbol_table(gl_linked_shader *sh)
1230 {
1231 sh->symbols = new(sh) glsl_symbol_table;
1232
1233 foreach_in_list(ir_instruction, inst, sh->ir) {
1234 ir_variable *var;
1235 ir_function *func;
1236
1237 if ((func = inst->as_function()) != NULL) {
1238 sh->symbols->add_function(func);
1239 } else if ((var = inst->as_variable()) != NULL) {
1240 if (var->data.mode != ir_var_temporary)
1241 sh->symbols->add_variable(var);
1242 }
1243 }
1244 }
1245
1246
1247 /**
1248 * Remap variables referenced in an instruction tree
1249 *
1250 * This is used when instruction trees are cloned from one shader and placed in
1251 * another. These trees will contain references to \c ir_variable nodes that
1252 * do not exist in the target shader. This function finds these \c ir_variable
1253 * references and replaces the references with matching variables in the target
1254 * shader.
1255 *
1256 * If there is no matching variable in the target shader, a clone of the
1257 * \c ir_variable is made and added to the target shader. The new variable is
1258 * added to \b both the instruction stream and the symbol table.
1259 *
1260 * \param inst IR tree that is to be processed.
1261 * \param symbols Symbol table containing global scope symbols in the
1262 * linked shader.
1263 * \param instructions Instruction stream where new variable declarations
1264 * should be added.
1265 */
1266 void
remap_variables(ir_instruction * inst,struct gl_linked_shader * target,hash_table * temps)1267 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1268 hash_table *temps)
1269 {
1270 class remap_visitor : public ir_hierarchical_visitor {
1271 public:
1272 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1273 {
1274 this->target = target;
1275 this->symbols = target->symbols;
1276 this->instructions = target->ir;
1277 this->temps = temps;
1278 }
1279
1280 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1281 {
1282 if (ir->var->data.mode == ir_var_temporary) {
1283 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1284 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1285
1286 assert(var != NULL);
1287 ir->var = var;
1288 return visit_continue;
1289 }
1290
1291 ir_variable *const existing =
1292 this->symbols->get_variable(ir->var->name);
1293 if (existing != NULL)
1294 ir->var = existing;
1295 else {
1296 ir_variable *copy = ir->var->clone(this->target, NULL);
1297
1298 this->symbols->add_variable(copy);
1299 this->instructions->push_head(copy);
1300 ir->var = copy;
1301 }
1302
1303 return visit_continue;
1304 }
1305
1306 private:
1307 struct gl_linked_shader *target;
1308 glsl_symbol_table *symbols;
1309 exec_list *instructions;
1310 hash_table *temps;
1311 };
1312
1313 remap_visitor v(target, temps);
1314
1315 inst->accept(&v);
1316 }
1317
1318
1319 /**
1320 * Move non-declarations from one instruction stream to another
1321 *
1322 * The intended usage pattern of this function is to pass the pointer to the
1323 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1324 * pointer) for \c last and \c false for \c make_copies on the first
1325 * call. Successive calls pass the return value of the previous call for
1326 * \c last and \c true for \c make_copies.
1327 *
1328 * \param instructions Source instruction stream
1329 * \param last Instruction after which new instructions should be
1330 * inserted in the target instruction stream
1331 * \param make_copies Flag selecting whether instructions in \c instructions
1332 * should be copied (via \c ir_instruction::clone) into the
1333 * target list or moved.
1334 *
1335 * \return
1336 * The new "last" instruction in the target instruction stream. This pointer
1337 * is suitable for use as the \c last parameter of a later call to this
1338 * function.
1339 */
1340 exec_node *
move_non_declarations(exec_list * instructions,exec_node * last,bool make_copies,gl_linked_shader * target)1341 move_non_declarations(exec_list *instructions, exec_node *last,
1342 bool make_copies, gl_linked_shader *target)
1343 {
1344 hash_table *temps = NULL;
1345
1346 if (make_copies)
1347 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1348 _mesa_key_pointer_equal);
1349
1350 foreach_in_list_safe(ir_instruction, inst, instructions) {
1351 if (inst->as_function())
1352 continue;
1353
1354 ir_variable *var = inst->as_variable();
1355 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1356 continue;
1357
1358 assert(inst->as_assignment()
1359 || inst->as_call()
1360 || inst->as_if() /* for initializers with the ?: operator */
1361 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1362
1363 if (make_copies) {
1364 inst = inst->clone(target, NULL);
1365
1366 if (var != NULL)
1367 _mesa_hash_table_insert(temps, var, inst);
1368 else
1369 remap_variables(inst, target, temps);
1370 } else {
1371 inst->remove();
1372 }
1373
1374 last->insert_after(inst);
1375 last = inst;
1376 }
1377
1378 if (make_copies)
1379 _mesa_hash_table_destroy(temps, NULL);
1380
1381 return last;
1382 }
1383
1384
1385 /**
1386 * This class is only used in link_intrastage_shaders() below but declaring
1387 * it inside that function leads to compiler warnings with some versions of
1388 * gcc.
1389 */
1390 class array_sizing_visitor : public deref_type_updater {
1391 public:
array_sizing_visitor()1392 array_sizing_visitor()
1393 : mem_ctx(ralloc_context(NULL)),
1394 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1395 _mesa_key_pointer_equal))
1396 {
1397 }
1398
~array_sizing_visitor()1399 ~array_sizing_visitor()
1400 {
1401 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1402 ralloc_free(this->mem_ctx);
1403 }
1404
visit(ir_variable * var)1405 virtual ir_visitor_status visit(ir_variable *var)
1406 {
1407 const glsl_type *type_without_array;
1408 bool implicit_sized_array = var->data.implicit_sized_array;
1409 fixup_type(&var->type, var->data.max_array_access,
1410 var->data.from_ssbo_unsized_array,
1411 &implicit_sized_array);
1412 var->data.implicit_sized_array = implicit_sized_array;
1413 type_without_array = var->type->without_array();
1414 if (var->type->is_interface()) {
1415 if (interface_contains_unsized_arrays(var->type)) {
1416 const glsl_type *new_type =
1417 resize_interface_members(var->type,
1418 var->get_max_ifc_array_access(),
1419 var->is_in_shader_storage_block());
1420 var->type = new_type;
1421 var->change_interface_type(new_type);
1422 }
1423 } else if (type_without_array->is_interface()) {
1424 if (interface_contains_unsized_arrays(type_without_array)) {
1425 const glsl_type *new_type =
1426 resize_interface_members(type_without_array,
1427 var->get_max_ifc_array_access(),
1428 var->is_in_shader_storage_block());
1429 var->change_interface_type(new_type);
1430 var->type = update_interface_members_array(var->type, new_type);
1431 }
1432 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1433 /* Store a pointer to the variable in the unnamed_interfaces
1434 * hashtable.
1435 */
1436 hash_entry *entry =
1437 _mesa_hash_table_search(this->unnamed_interfaces,
1438 ifc_type);
1439
1440 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1441
1442 if (interface_vars == NULL) {
1443 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1444 ifc_type->length);
1445 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1446 interface_vars);
1447 }
1448 unsigned index = ifc_type->field_index(var->name);
1449 assert(index < ifc_type->length);
1450 assert(interface_vars[index] == NULL);
1451 interface_vars[index] = var;
1452 }
1453 return visit_continue;
1454 }
1455
1456 /**
1457 * For each unnamed interface block that was discovered while running the
1458 * visitor, adjust the interface type to reflect the newly assigned array
1459 * sizes, and fix up the ir_variable nodes to point to the new interface
1460 * type.
1461 */
fixup_unnamed_interface_types()1462 void fixup_unnamed_interface_types()
1463 {
1464 hash_table_call_foreach(this->unnamed_interfaces,
1465 fixup_unnamed_interface_type, NULL);
1466 }
1467
1468 private:
1469 /**
1470 * If the type pointed to by \c type represents an unsized array, replace
1471 * it with a sized array whose size is determined by max_array_access.
1472 */
fixup_type(const glsl_type ** type,unsigned max_array_access,bool from_ssbo_unsized_array,bool * implicit_sized)1473 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1474 bool from_ssbo_unsized_array, bool *implicit_sized)
1475 {
1476 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1477 *type = glsl_type::get_array_instance((*type)->fields.array,
1478 max_array_access + 1);
1479 *implicit_sized = true;
1480 assert(*type != NULL);
1481 }
1482 }
1483
1484 static const glsl_type *
update_interface_members_array(const glsl_type * type,const glsl_type * new_interface_type)1485 update_interface_members_array(const glsl_type *type,
1486 const glsl_type *new_interface_type)
1487 {
1488 const glsl_type *element_type = type->fields.array;
1489 if (element_type->is_array()) {
1490 const glsl_type *new_array_type =
1491 update_interface_members_array(element_type, new_interface_type);
1492 return glsl_type::get_array_instance(new_array_type, type->length);
1493 } else {
1494 return glsl_type::get_array_instance(new_interface_type,
1495 type->length);
1496 }
1497 }
1498
1499 /**
1500 * Determine whether the given interface type contains unsized arrays (if
1501 * it doesn't, array_sizing_visitor doesn't need to process it).
1502 */
interface_contains_unsized_arrays(const glsl_type * type)1503 static bool interface_contains_unsized_arrays(const glsl_type *type)
1504 {
1505 for (unsigned i = 0; i < type->length; i++) {
1506 const glsl_type *elem_type = type->fields.structure[i].type;
1507 if (elem_type->is_unsized_array())
1508 return true;
1509 }
1510 return false;
1511 }
1512
1513 /**
1514 * Create a new interface type based on the given type, with unsized arrays
1515 * replaced by sized arrays whose size is determined by
1516 * max_ifc_array_access.
1517 */
1518 static const glsl_type *
resize_interface_members(const glsl_type * type,const int * max_ifc_array_access,bool is_ssbo)1519 resize_interface_members(const glsl_type *type,
1520 const int *max_ifc_array_access,
1521 bool is_ssbo)
1522 {
1523 unsigned num_fields = type->length;
1524 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1525 memcpy(fields, type->fields.structure,
1526 num_fields * sizeof(*fields));
1527 for (unsigned i = 0; i < num_fields; i++) {
1528 bool implicit_sized_array = fields[i].implicit_sized_array;
1529 /* If SSBO last member is unsized array, we don't replace it by a sized
1530 * array.
1531 */
1532 if (is_ssbo && i == (num_fields - 1))
1533 fixup_type(&fields[i].type, max_ifc_array_access[i],
1534 true, &implicit_sized_array);
1535 else
1536 fixup_type(&fields[i].type, max_ifc_array_access[i],
1537 false, &implicit_sized_array);
1538 fields[i].implicit_sized_array = implicit_sized_array;
1539 }
1540 glsl_interface_packing packing =
1541 (glsl_interface_packing) type->interface_packing;
1542 bool row_major = (bool) type->interface_row_major;
1543 const glsl_type *new_ifc_type =
1544 glsl_type::get_interface_instance(fields, num_fields,
1545 packing, row_major, type->name);
1546 delete [] fields;
1547 return new_ifc_type;
1548 }
1549
fixup_unnamed_interface_type(const void * key,void * data,void *)1550 static void fixup_unnamed_interface_type(const void *key, void *data,
1551 void *)
1552 {
1553 const glsl_type *ifc_type = (const glsl_type *) key;
1554 ir_variable **interface_vars = (ir_variable **) data;
1555 unsigned num_fields = ifc_type->length;
1556 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1557 memcpy(fields, ifc_type->fields.structure,
1558 num_fields * sizeof(*fields));
1559 bool interface_type_changed = false;
1560 for (unsigned i = 0; i < num_fields; i++) {
1561 if (interface_vars[i] != NULL &&
1562 fields[i].type != interface_vars[i]->type) {
1563 fields[i].type = interface_vars[i]->type;
1564 interface_type_changed = true;
1565 }
1566 }
1567 if (!interface_type_changed) {
1568 delete [] fields;
1569 return;
1570 }
1571 glsl_interface_packing packing =
1572 (glsl_interface_packing) ifc_type->interface_packing;
1573 bool row_major = (bool) ifc_type->interface_row_major;
1574 const glsl_type *new_ifc_type =
1575 glsl_type::get_interface_instance(fields, num_fields, packing,
1576 row_major, ifc_type->name);
1577 delete [] fields;
1578 for (unsigned i = 0; i < num_fields; i++) {
1579 if (interface_vars[i] != NULL)
1580 interface_vars[i]->change_interface_type(new_ifc_type);
1581 }
1582 }
1583
1584 /**
1585 * Memory context used to allocate the data in \c unnamed_interfaces.
1586 */
1587 void *mem_ctx;
1588
1589 /**
1590 * Hash table from const glsl_type * to an array of ir_variable *'s
1591 * pointing to the ir_variables constituting each unnamed interface block.
1592 */
1593 hash_table *unnamed_interfaces;
1594 };
1595
1596 /**
1597 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1598 * for later use.
1599 */
1600 static void
link_xfb_stride_layout_qualifiers(struct gl_context * ctx,struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)1601 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1602 struct gl_shader_program *prog,
1603 struct gl_linked_shader *linked_shader,
1604 struct gl_shader **shader_list,
1605 unsigned num_shaders)
1606 {
1607 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1608 linked_shader->info.TransformFeedback.BufferStride[i] = 0;
1609 }
1610
1611 for (unsigned i = 0; i < num_shaders; i++) {
1612 struct gl_shader *shader = shader_list[i];
1613
1614 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1615 if (shader->info.TransformFeedback.BufferStride[j]) {
1616 if (linked_shader->info.TransformFeedback.BufferStride[j] != 0 &&
1617 shader->info.TransformFeedback.BufferStride[j] != 0 &&
1618 linked_shader->info.TransformFeedback.BufferStride[j] !=
1619 shader->info.TransformFeedback.BufferStride[j]) {
1620 linker_error(prog,
1621 "intrastage shaders defined with conflicting "
1622 "xfb_stride for buffer %d (%d and %d)\n", j,
1623 linked_shader->
1624 info.TransformFeedback.BufferStride[j],
1625 shader->info.TransformFeedback.BufferStride[j]);
1626 return;
1627 }
1628
1629 if (shader->info.TransformFeedback.BufferStride[j])
1630 linked_shader->info.TransformFeedback.BufferStride[j] =
1631 shader->info.TransformFeedback.BufferStride[j];
1632 }
1633 }
1634 }
1635
1636 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1637 if (linked_shader->info.TransformFeedback.BufferStride[j]) {
1638 prog->TransformFeedback.BufferStride[j] =
1639 linked_shader->info.TransformFeedback.BufferStride[j];
1640
1641 /* We will validate doubles at a later stage */
1642 if (prog->TransformFeedback.BufferStride[j] % 4) {
1643 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1644 "multiple of 4 or if its applied to a type that is "
1645 "or contains a double a multiple of 8.",
1646 prog->TransformFeedback.BufferStride[j]);
1647 return;
1648 }
1649
1650 if (prog->TransformFeedback.BufferStride[j] / 4 >
1651 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1652 linker_error(prog,
1653 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1654 "limit has been exceeded.");
1655 return;
1656 }
1657 }
1658 }
1659 }
1660
1661 /**
1662 * Performs the cross-validation of tessellation control shader vertices and
1663 * layout qualifiers for the attached tessellation control shaders,
1664 * and propagates them to the linked TCS and linked shader program.
1665 */
1666 static void
link_tcs_out_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)1667 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1668 struct gl_linked_shader *linked_shader,
1669 struct gl_shader **shader_list,
1670 unsigned num_shaders)
1671 {
1672 linked_shader->info.TessCtrl.VerticesOut = 0;
1673
1674 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1675 return;
1676
1677 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1678 *
1679 * "All tessellation control shader layout declarations in a program
1680 * must specify the same output patch vertex count. There must be at
1681 * least one layout qualifier specifying an output patch vertex count
1682 * in any program containing tessellation control shaders; however,
1683 * such a declaration is not required in all tessellation control
1684 * shaders."
1685 */
1686
1687 for (unsigned i = 0; i < num_shaders; i++) {
1688 struct gl_shader *shader = shader_list[i];
1689
1690 if (shader->info.TessCtrl.VerticesOut != 0) {
1691 if (linked_shader->info.TessCtrl.VerticesOut != 0 &&
1692 linked_shader->info.TessCtrl.VerticesOut !=
1693 shader->info.TessCtrl.VerticesOut) {
1694 linker_error(prog, "tessellation control shader defined with "
1695 "conflicting output vertex count (%d and %d)\n",
1696 linked_shader->info.TessCtrl.VerticesOut,
1697 shader->info.TessCtrl.VerticesOut);
1698 return;
1699 }
1700 linked_shader->info.TessCtrl.VerticesOut =
1701 shader->info.TessCtrl.VerticesOut;
1702 }
1703 }
1704
1705 /* Just do the intrastage -> interstage propagation right now,
1706 * since we already know we're in the right type of shader program
1707 * for doing it.
1708 */
1709 if (linked_shader->info.TessCtrl.VerticesOut == 0) {
1710 linker_error(prog, "tessellation control shader didn't declare "
1711 "vertices out layout qualifier\n");
1712 return;
1713 }
1714 }
1715
1716
1717 /**
1718 * Performs the cross-validation of tessellation evaluation shader
1719 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1720 * for the attached tessellation evaluation shaders, and propagates them
1721 * to the linked TES and linked shader program.
1722 */
1723 static void
link_tes_in_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)1724 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1725 struct gl_linked_shader *linked_shader,
1726 struct gl_shader **shader_list,
1727 unsigned num_shaders)
1728 {
1729 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1730 linked_shader->info.TessEval.Spacing = TESS_SPACING_UNSPECIFIED;
1731 linked_shader->info.TessEval.VertexOrder = 0;
1732 linked_shader->info.TessEval.PointMode = -1;
1733
1734 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1735 return;
1736
1737 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1738 *
1739 * "At least one tessellation evaluation shader (compilation unit) in
1740 * a program must declare a primitive mode in its input layout.
1741 * Declaration vertex spacing, ordering, and point mode identifiers is
1742 * optional. It is not required that all tessellation evaluation
1743 * shaders in a program declare a primitive mode. If spacing or
1744 * vertex ordering declarations are omitted, the tessellation
1745 * primitive generator will use equal spacing or counter-clockwise
1746 * vertex ordering, respectively. If a point mode declaration is
1747 * omitted, the tessellation primitive generator will produce lines or
1748 * triangles according to the primitive mode."
1749 */
1750
1751 for (unsigned i = 0; i < num_shaders; i++) {
1752 struct gl_shader *shader = shader_list[i];
1753
1754 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1755 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1756 linked_shader->info.TessEval.PrimitiveMode !=
1757 shader->info.TessEval.PrimitiveMode) {
1758 linker_error(prog, "tessellation evaluation shader defined with "
1759 "conflicting input primitive modes.\n");
1760 return;
1761 }
1762 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1763 }
1764
1765 if (shader->info.TessEval.Spacing != 0) {
1766 if (linked_shader->info.TessEval.Spacing != 0 &&
1767 linked_shader->info.TessEval.Spacing !=
1768 shader->info.TessEval.Spacing) {
1769 linker_error(prog, "tessellation evaluation shader defined with "
1770 "conflicting vertex spacing.\n");
1771 return;
1772 }
1773 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1774 }
1775
1776 if (shader->info.TessEval.VertexOrder != 0) {
1777 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1778 linked_shader->info.TessEval.VertexOrder !=
1779 shader->info.TessEval.VertexOrder) {
1780 linker_error(prog, "tessellation evaluation shader defined with "
1781 "conflicting ordering.\n");
1782 return;
1783 }
1784 linked_shader->info.TessEval.VertexOrder =
1785 shader->info.TessEval.VertexOrder;
1786 }
1787
1788 if (shader->info.TessEval.PointMode != -1) {
1789 if (linked_shader->info.TessEval.PointMode != -1 &&
1790 linked_shader->info.TessEval.PointMode !=
1791 shader->info.TessEval.PointMode) {
1792 linker_error(prog, "tessellation evaluation shader defined with "
1793 "conflicting point modes.\n");
1794 return;
1795 }
1796 linked_shader->info.TessEval.PointMode =
1797 shader->info.TessEval.PointMode;
1798 }
1799
1800 }
1801
1802 /* Just do the intrastage -> interstage propagation right now,
1803 * since we already know we're in the right type of shader program
1804 * for doing it.
1805 */
1806 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1807 linker_error(prog,
1808 "tessellation evaluation shader didn't declare input "
1809 "primitive modes.\n");
1810 return;
1811 }
1812
1813 if (linked_shader->info.TessEval.Spacing == TESS_SPACING_UNSPECIFIED)
1814 linked_shader->info.TessEval.Spacing = TESS_SPACING_EQUAL;
1815
1816 if (linked_shader->info.TessEval.VertexOrder == 0)
1817 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1818
1819 if (linked_shader->info.TessEval.PointMode == -1)
1820 linked_shader->info.TessEval.PointMode = GL_FALSE;
1821 }
1822
1823
1824 /**
1825 * Performs the cross-validation of layout qualifiers specified in
1826 * redeclaration of gl_FragCoord for the attached fragment shaders,
1827 * and propagates them to the linked FS and linked shader program.
1828 */
1829 static void
link_fs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)1830 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1831 struct gl_linked_shader *linked_shader,
1832 struct gl_shader **shader_list,
1833 unsigned num_shaders)
1834 {
1835 linked_shader->info.redeclares_gl_fragcoord = false;
1836 linked_shader->info.uses_gl_fragcoord = false;
1837 linked_shader->info.origin_upper_left = false;
1838 linked_shader->info.pixel_center_integer = false;
1839
1840 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1841 (prog->data->Version < 150 &&
1842 !prog->ARB_fragment_coord_conventions_enable))
1843 return;
1844
1845 for (unsigned i = 0; i < num_shaders; i++) {
1846 struct gl_shader *shader = shader_list[i];
1847 /* From the GLSL 1.50 spec, page 39:
1848 *
1849 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1850 * it must be redeclared in all the fragment shaders in that program
1851 * that have a static use gl_FragCoord."
1852 */
1853 if ((linked_shader->info.redeclares_gl_fragcoord
1854 && !shader->info.redeclares_gl_fragcoord
1855 && shader->info.uses_gl_fragcoord)
1856 || (shader->info.redeclares_gl_fragcoord
1857 && !linked_shader->info.redeclares_gl_fragcoord
1858 && linked_shader->info.uses_gl_fragcoord)) {
1859 linker_error(prog, "fragment shader defined with conflicting "
1860 "layout qualifiers for gl_FragCoord\n");
1861 }
1862
1863 /* From the GLSL 1.50 spec, page 39:
1864 *
1865 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1866 * single program must have the same set of qualifiers."
1867 */
1868 if (linked_shader->info.redeclares_gl_fragcoord &&
1869 shader->info.redeclares_gl_fragcoord &&
1870 (shader->info.origin_upper_left !=
1871 linked_shader->info.origin_upper_left ||
1872 shader->info.pixel_center_integer !=
1873 linked_shader->info.pixel_center_integer)) {
1874 linker_error(prog, "fragment shader defined with conflicting "
1875 "layout qualifiers for gl_FragCoord\n");
1876 }
1877
1878 /* Update the linked shader state. Note that uses_gl_fragcoord should
1879 * accumulate the results. The other values should replace. If there
1880 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1881 * are already known to be the same.
1882 */
1883 if (shader->info.redeclares_gl_fragcoord ||
1884 shader->info.uses_gl_fragcoord) {
1885 linked_shader->info.redeclares_gl_fragcoord =
1886 shader->info.redeclares_gl_fragcoord;
1887 linked_shader->info.uses_gl_fragcoord =
1888 linked_shader->info.uses_gl_fragcoord ||
1889 shader->info.uses_gl_fragcoord;
1890 linked_shader->info.origin_upper_left =
1891 shader->info.origin_upper_left;
1892 linked_shader->info.pixel_center_integer =
1893 shader->info.pixel_center_integer;
1894 }
1895
1896 linked_shader->info.EarlyFragmentTests |=
1897 shader->info.EarlyFragmentTests;
1898 linked_shader->info.InnerCoverage |=
1899 shader->info.InnerCoverage;
1900 linked_shader->Program->info.fs.post_depth_coverage |=
1901 shader->info.PostDepthCoverage;
1902
1903 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1904 }
1905 }
1906
1907 /**
1908 * Performs the cross-validation of geometry shader max_vertices and
1909 * primitive type layout qualifiers for the attached geometry shaders,
1910 * and propagates them to the linked GS and linked shader program.
1911 */
1912 static void
link_gs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)1913 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1914 struct gl_linked_shader *linked_shader,
1915 struct gl_shader **shader_list,
1916 unsigned num_shaders)
1917 {
1918 linked_shader->info.Geom.VerticesOut = -1;
1919 linked_shader->info.Geom.Invocations = 0;
1920 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1921 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1922
1923 /* No in/out qualifiers defined for anything but GLSL 1.50+
1924 * geometry shaders so far.
1925 */
1926 if (linked_shader->Stage != MESA_SHADER_GEOMETRY ||
1927 prog->data->Version < 150)
1928 return;
1929
1930 /* From the GLSL 1.50 spec, page 46:
1931 *
1932 * "All geometry shader output layout declarations in a program
1933 * must declare the same layout and same value for
1934 * max_vertices. There must be at least one geometry output
1935 * layout declaration somewhere in a program, but not all
1936 * geometry shaders (compilation units) are required to
1937 * declare it."
1938 */
1939
1940 for (unsigned i = 0; i < num_shaders; i++) {
1941 struct gl_shader *shader = shader_list[i];
1942
1943 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1944 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1945 linked_shader->info.Geom.InputType !=
1946 shader->info.Geom.InputType) {
1947 linker_error(prog, "geometry shader defined with conflicting "
1948 "input types\n");
1949 return;
1950 }
1951 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1952 }
1953
1954 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1955 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1956 linked_shader->info.Geom.OutputType !=
1957 shader->info.Geom.OutputType) {
1958 linker_error(prog, "geometry shader defined with conflicting "
1959 "output types\n");
1960 return;
1961 }
1962 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1963 }
1964
1965 if (shader->info.Geom.VerticesOut != -1) {
1966 if (linked_shader->info.Geom.VerticesOut != -1 &&
1967 linked_shader->info.Geom.VerticesOut !=
1968 shader->info.Geom.VerticesOut) {
1969 linker_error(prog, "geometry shader defined with conflicting "
1970 "output vertex count (%d and %d)\n",
1971 linked_shader->info.Geom.VerticesOut,
1972 shader->info.Geom.VerticesOut);
1973 return;
1974 }
1975 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1976 }
1977
1978 if (shader->info.Geom.Invocations != 0) {
1979 if (linked_shader->info.Geom.Invocations != 0 &&
1980 linked_shader->info.Geom.Invocations !=
1981 shader->info.Geom.Invocations) {
1982 linker_error(prog, "geometry shader defined with conflicting "
1983 "invocation count (%d and %d)\n",
1984 linked_shader->info.Geom.Invocations,
1985 shader->info.Geom.Invocations);
1986 return;
1987 }
1988 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1989 }
1990 }
1991
1992 /* Just do the intrastage -> interstage propagation right now,
1993 * since we already know we're in the right type of shader program
1994 * for doing it.
1995 */
1996 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1997 linker_error(prog,
1998 "geometry shader didn't declare primitive input type\n");
1999 return;
2000 }
2001
2002 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
2003 linker_error(prog,
2004 "geometry shader didn't declare primitive output type\n");
2005 return;
2006 }
2007
2008 if (linked_shader->info.Geom.VerticesOut == -1) {
2009 linker_error(prog,
2010 "geometry shader didn't declare max_vertices\n");
2011 return;
2012 }
2013
2014 if (linked_shader->info.Geom.Invocations == 0)
2015 linked_shader->info.Geom.Invocations = 1;
2016 }
2017
2018
2019 /**
2020 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2021 * qualifiers for the attached compute shaders, and propagate them to the
2022 * linked CS and linked shader program.
2023 */
2024 static void
link_cs_input_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)2025 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2026 struct gl_linked_shader *linked_shader,
2027 struct gl_shader **shader_list,
2028 unsigned num_shaders)
2029 {
2030 for (int i = 0; i < 3; i++)
2031 linked_shader->info.Comp.LocalSize[i] = 0;
2032
2033 linked_shader->info.Comp.LocalSizeVariable = false;
2034
2035 /* This function is called for all shader stages, but it only has an effect
2036 * for compute shaders.
2037 */
2038 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2039 return;
2040
2041 /* From the ARB_compute_shader spec, in the section describing local size
2042 * declarations:
2043 *
2044 * If multiple compute shaders attached to a single program object
2045 * declare local work-group size, the declarations must be identical;
2046 * otherwise a link-time error results. Furthermore, if a program
2047 * object contains any compute shaders, at least one must contain an
2048 * input layout qualifier specifying the local work sizes of the
2049 * program, or a link-time error will occur.
2050 */
2051 for (unsigned sh = 0; sh < num_shaders; sh++) {
2052 struct gl_shader *shader = shader_list[sh];
2053
2054 if (shader->info.Comp.LocalSize[0] != 0) {
2055 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2056 for (int i = 0; i < 3; i++) {
2057 if (linked_shader->info.Comp.LocalSize[i] !=
2058 shader->info.Comp.LocalSize[i]) {
2059 linker_error(prog, "compute shader defined with conflicting "
2060 "local sizes\n");
2061 return;
2062 }
2063 }
2064 }
2065 for (int i = 0; i < 3; i++) {
2066 linked_shader->info.Comp.LocalSize[i] =
2067 shader->info.Comp.LocalSize[i];
2068 }
2069 } else if (shader->info.Comp.LocalSizeVariable) {
2070 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2071 /* The ARB_compute_variable_group_size spec says:
2072 *
2073 * If one compute shader attached to a program declares a
2074 * variable local group size and a second compute shader
2075 * attached to the same program declares a fixed local group
2076 * size, a link-time error results.
2077 */
2078 linker_error(prog, "compute shader defined with both fixed and "
2079 "variable local group size\n");
2080 return;
2081 }
2082 linked_shader->info.Comp.LocalSizeVariable = true;
2083 }
2084 }
2085
2086 /* Just do the intrastage -> interstage propagation right now,
2087 * since we already know we're in the right type of shader program
2088 * for doing it.
2089 */
2090 if (linked_shader->info.Comp.LocalSize[0] == 0 &&
2091 !linked_shader->info.Comp.LocalSizeVariable) {
2092 linker_error(prog, "compute shader must contain a fixed or a variable "
2093 "local group size\n");
2094 return;
2095 }
2096 for (int i = 0; i < 3; i++)
2097 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2098
2099 prog->Comp.LocalSizeVariable =
2100 linked_shader->info.Comp.LocalSizeVariable;
2101 }
2102
2103
2104 /**
2105 * Combine a group of shaders for a single stage to generate a linked shader
2106 *
2107 * \note
2108 * If this function is supplied a single shader, it is cloned, and the new
2109 * shader is returned.
2110 */
2111 struct gl_linked_shader *
link_intrastage_shaders(void * mem_ctx,struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders,bool allow_missing_main)2112 link_intrastage_shaders(void *mem_ctx,
2113 struct gl_context *ctx,
2114 struct gl_shader_program *prog,
2115 struct gl_shader **shader_list,
2116 unsigned num_shaders,
2117 bool allow_missing_main)
2118 {
2119 struct gl_uniform_block *ubo_blocks = NULL;
2120 struct gl_uniform_block *ssbo_blocks = NULL;
2121 unsigned num_ubo_blocks = 0;
2122 unsigned num_ssbo_blocks = 0;
2123
2124 /* Check that global variables defined in multiple shaders are consistent.
2125 */
2126 glsl_symbol_table variables;
2127 for (unsigned i = 0; i < num_shaders; i++) {
2128 if (shader_list[i] == NULL)
2129 continue;
2130 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2131 }
2132
2133 if (!prog->data->LinkStatus)
2134 return NULL;
2135
2136 /* Check that interface blocks defined in multiple shaders are consistent.
2137 */
2138 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2139 num_shaders);
2140 if (!prog->data->LinkStatus)
2141 return NULL;
2142
2143 /* Check that there is only a single definition of each function signature
2144 * across all shaders.
2145 */
2146 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2147 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2148 ir_function *const f = node->as_function();
2149
2150 if (f == NULL)
2151 continue;
2152
2153 for (unsigned j = i + 1; j < num_shaders; j++) {
2154 ir_function *const other =
2155 shader_list[j]->symbols->get_function(f->name);
2156
2157 /* If the other shader has no function (and therefore no function
2158 * signatures) with the same name, skip to the next shader.
2159 */
2160 if (other == NULL)
2161 continue;
2162
2163 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2164 if (!sig->is_defined)
2165 continue;
2166
2167 ir_function_signature *other_sig =
2168 other->exact_matching_signature(NULL, &sig->parameters);
2169
2170 if (other_sig != NULL && other_sig->is_defined) {
2171 linker_error(prog, "function `%s' is multiply defined\n",
2172 f->name);
2173 return NULL;
2174 }
2175 }
2176 }
2177 }
2178 }
2179
2180 /* Find the shader that defines main, and make a clone of it.
2181 *
2182 * Starting with the clone, search for undefined references. If one is
2183 * found, find the shader that defines it. Clone the reference and add
2184 * it to the shader. Repeat until there are no undefined references or
2185 * until a reference cannot be resolved.
2186 */
2187 gl_shader *main = NULL;
2188 for (unsigned i = 0; i < num_shaders; i++) {
2189 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2190 main = shader_list[i];
2191 break;
2192 }
2193 }
2194
2195 if (main == NULL && allow_missing_main)
2196 main = shader_list[0];
2197
2198 if (main == NULL) {
2199 linker_error(prog, "%s shader lacks `main'\n",
2200 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2201 return NULL;
2202 }
2203
2204 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2205 linked->Stage = shader_list[0]->Stage;
2206
2207 /* Create program and attach it to the linked shader */
2208 struct gl_program *gl_prog =
2209 ctx->Driver.NewProgram(ctx,
2210 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2211 prog->Name, false);
2212 if (!gl_prog) {
2213 prog->data->LinkStatus = false;
2214 _mesa_delete_linked_shader(ctx, linked);
2215 return NULL;
2216 }
2217
2218 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2219
2220 /* Don't use _mesa_reference_program() just take ownership */
2221 linked->Program = gl_prog;
2222
2223 linked->ir = new(linked) exec_list;
2224 clone_ir_list(mem_ctx, linked->ir, main->ir);
2225
2226 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2227 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2228 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2229 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2230 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2231 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2232 num_shaders);
2233
2234 populate_symbol_table(linked);
2235
2236 /* The pointer to the main function in the final linked shader (i.e., the
2237 * copy of the original shader that contained the main function).
2238 */
2239 ir_function_signature *const main_sig =
2240 _mesa_get_main_function_signature(linked->symbols);
2241
2242 /* Move any instructions other than variable declarations or function
2243 * declarations into main.
2244 */
2245 if (main_sig != NULL) {
2246 exec_node *insertion_point =
2247 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2248 linked);
2249
2250 for (unsigned i = 0; i < num_shaders; i++) {
2251 if (shader_list[i] == main)
2252 continue;
2253
2254 insertion_point = move_non_declarations(shader_list[i]->ir,
2255 insertion_point, true, linked);
2256 }
2257 }
2258
2259 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2260 _mesa_delete_linked_shader(ctx, linked);
2261 return NULL;
2262 }
2263
2264 /* Make a pass over all variable declarations to ensure that arrays with
2265 * unspecified sizes have a size specified. The size is inferred from the
2266 * max_array_access field.
2267 */
2268 array_sizing_visitor v;
2269 v.run(linked->ir);
2270 v.fixup_unnamed_interface_types();
2271
2272 /* Link up uniform blocks defined within this stage. */
2273 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2274 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2275
2276 if (!prog->data->LinkStatus) {
2277 _mesa_delete_linked_shader(ctx, linked);
2278 return NULL;
2279 }
2280
2281 /* Copy ubo blocks to linked shader list */
2282 linked->Program->sh.UniformBlocks =
2283 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2284 ralloc_steal(linked, ubo_blocks);
2285 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2286 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2287 }
2288 linked->Program->info.num_ubos = num_ubo_blocks;
2289
2290 /* Copy ssbo blocks to linked shader list */
2291 linked->Program->sh.ShaderStorageBlocks =
2292 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2293 ralloc_steal(linked, ssbo_blocks);
2294 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2295 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2296 }
2297 linked->Program->info.num_ssbos = num_ssbo_blocks;
2298
2299 /* At this point linked should contain all of the linked IR, so
2300 * validate it to make sure nothing went wrong.
2301 */
2302 validate_ir_tree(linked->ir);
2303
2304 /* Set the size of geometry shader input arrays */
2305 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2306 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2307 array_resize_visitor input_resize_visitor(num_vertices, prog,
2308 MESA_SHADER_GEOMETRY);
2309 foreach_in_list(ir_instruction, ir, linked->ir) {
2310 ir->accept(&input_resize_visitor);
2311 }
2312 }
2313
2314 if (ctx->Const.VertexID_is_zero_based)
2315 lower_vertex_id(linked);
2316
2317 #ifdef DEBUG
2318 /* Compute the source checksum. */
2319 linked->SourceChecksum = 0;
2320 for (unsigned i = 0; i < num_shaders; i++) {
2321 if (shader_list[i] == NULL)
2322 continue;
2323 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2324 }
2325 #endif
2326
2327 return linked;
2328 }
2329
2330 /**
2331 * Update the sizes of linked shader uniform arrays to the maximum
2332 * array index used.
2333 *
2334 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2335 *
2336 * If one or more elements of an array are active,
2337 * GetActiveUniform will return the name of the array in name,
2338 * subject to the restrictions listed above. The type of the array
2339 * is returned in type. The size parameter contains the highest
2340 * array element index used, plus one. The compiler or linker
2341 * determines the highest index used. There will be only one
2342 * active uniform reported by the GL per uniform array.
2343
2344 */
2345 static void
update_array_sizes(struct gl_shader_program * prog)2346 update_array_sizes(struct gl_shader_program *prog)
2347 {
2348 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2349 if (prog->_LinkedShaders[i] == NULL)
2350 continue;
2351
2352 bool types_were_updated = false;
2353
2354 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2355 ir_variable *const var = node->as_variable();
2356
2357 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2358 !var->type->is_array())
2359 continue;
2360
2361 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2362 * will not be eliminated. Since we always do std140, just
2363 * don't resize arrays in UBOs.
2364 *
2365 * Atomic counters are supposed to get deterministic
2366 * locations assigned based on the declaration ordering and
2367 * sizes, array compaction would mess that up.
2368 *
2369 * Subroutine uniforms are not removed.
2370 */
2371 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2372 var->type->contains_subroutine() || var->constant_initializer)
2373 continue;
2374
2375 int size = var->data.max_array_access;
2376 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2377 if (prog->_LinkedShaders[j] == NULL)
2378 continue;
2379
2380 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2381 ir_variable *other_var = node2->as_variable();
2382 if (!other_var)
2383 continue;
2384
2385 if (strcmp(var->name, other_var->name) == 0 &&
2386 other_var->data.max_array_access > size) {
2387 size = other_var->data.max_array_access;
2388 }
2389 }
2390 }
2391
2392 if (size + 1 != (int)var->type->length) {
2393 /* If this is a built-in uniform (i.e., it's backed by some
2394 * fixed-function state), adjust the number of state slots to
2395 * match the new array size. The number of slots per array entry
2396 * is not known. It seems safe to assume that the total number of
2397 * slots is an integer multiple of the number of array elements.
2398 * Determine the number of slots per array element by dividing by
2399 * the old (total) size.
2400 */
2401 const unsigned num_slots = var->get_num_state_slots();
2402 if (num_slots > 0) {
2403 var->set_num_state_slots((size + 1)
2404 * (num_slots / var->type->length));
2405 }
2406
2407 var->type = glsl_type::get_array_instance(var->type->fields.array,
2408 size + 1);
2409 types_were_updated = true;
2410 }
2411 }
2412
2413 /* Update the types of dereferences in case we changed any. */
2414 if (types_were_updated) {
2415 deref_type_updater v;
2416 v.run(prog->_LinkedShaders[i]->ir);
2417 }
2418 }
2419 }
2420
2421 /**
2422 * Resize tessellation evaluation per-vertex inputs to the size of
2423 * tessellation control per-vertex outputs.
2424 */
2425 static void
resize_tes_inputs(struct gl_context * ctx,struct gl_shader_program * prog)2426 resize_tes_inputs(struct gl_context *ctx,
2427 struct gl_shader_program *prog)
2428 {
2429 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2430 return;
2431
2432 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2433 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2434
2435 /* If no control shader is present, then the TES inputs are statically
2436 * sized to MaxPatchVertices; the actual size of the arrays won't be
2437 * known until draw time.
2438 */
2439 const int num_vertices = tcs
2440 ? tcs->info.TessCtrl.VerticesOut
2441 : ctx->Const.MaxPatchVertices;
2442
2443 array_resize_visitor input_resize_visitor(num_vertices, prog,
2444 MESA_SHADER_TESS_EVAL);
2445 foreach_in_list(ir_instruction, ir, tes->ir) {
2446 ir->accept(&input_resize_visitor);
2447 }
2448
2449 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2450 /* Convert the gl_PatchVerticesIn system value into a constant, since
2451 * the value is known at this point.
2452 */
2453 foreach_in_list(ir_instruction, ir, tes->ir) {
2454 ir_variable *var = ir->as_variable();
2455 if (var && var->data.mode == ir_var_system_value &&
2456 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2457 void *mem_ctx = ralloc_parent(var);
2458 var->data.location = 0;
2459 var->data.explicit_location = false;
2460 if (tcs) {
2461 var->data.mode = ir_var_auto;
2462 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2463 } else {
2464 var->data.mode = ir_var_uniform;
2465 var->data.how_declared = ir_var_hidden;
2466 var->allocate_state_slots(1);
2467 ir_state_slot *slot0 = &var->get_state_slots()[0];
2468 slot0->swizzle = SWIZZLE_XXXX;
2469 slot0->tokens[0] = STATE_INTERNAL;
2470 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2471 for (int i = 2; i < STATE_LENGTH; i++)
2472 slot0->tokens[i] = 0;
2473 }
2474 }
2475 }
2476 }
2477 }
2478
2479 /**
2480 * Find a contiguous set of available bits in a bitmask.
2481 *
2482 * \param used_mask Bits representing used (1) and unused (0) locations
2483 * \param needed_count Number of contiguous bits needed.
2484 *
2485 * \return
2486 * Base location of the available bits on success or -1 on failure.
2487 */
2488 int
find_available_slots(unsigned used_mask,unsigned needed_count)2489 find_available_slots(unsigned used_mask, unsigned needed_count)
2490 {
2491 unsigned needed_mask = (1 << needed_count) - 1;
2492 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2493
2494 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2495 * cannot optimize possibly infinite loops" for the loop below.
2496 */
2497 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2498 return -1;
2499
2500 for (int i = 0; i <= max_bit_to_test; i++) {
2501 if ((needed_mask & ~used_mask) == needed_mask)
2502 return i;
2503
2504 needed_mask <<= 1;
2505 }
2506
2507 return -1;
2508 }
2509
2510
2511 /**
2512 * Assign locations for either VS inputs or FS outputs
2513 *
2514 * \param mem_ctx Temporary ralloc context used for linking
2515 * \param prog Shader program whose variables need locations assigned
2516 * \param constants Driver specific constant values for the program.
2517 * \param target_index Selector for the program target to receive location
2518 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2519 * \c MESA_SHADER_FRAGMENT.
2520 *
2521 * \return
2522 * If locations are successfully assigned, true is returned. Otherwise an
2523 * error is emitted to the shader link log and false is returned.
2524 */
2525 bool
assign_attribute_or_color_locations(void * mem_ctx,gl_shader_program * prog,struct gl_constants * constants,unsigned target_index)2526 assign_attribute_or_color_locations(void *mem_ctx,
2527 gl_shader_program *prog,
2528 struct gl_constants *constants,
2529 unsigned target_index)
2530 {
2531 /* Maximum number of generic locations. This corresponds to either the
2532 * maximum number of draw buffers or the maximum number of generic
2533 * attributes.
2534 */
2535 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2536 constants->Program[target_index].MaxAttribs :
2537 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2538
2539 /* Mark invalid locations as being used.
2540 */
2541 unsigned used_locations = (max_index >= 32)
2542 ? ~0 : ~((1 << max_index) - 1);
2543 unsigned double_storage_locations = 0;
2544
2545 assert((target_index == MESA_SHADER_VERTEX)
2546 || (target_index == MESA_SHADER_FRAGMENT));
2547
2548 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2549 if (sh == NULL)
2550 return true;
2551
2552 /* Operate in a total of four passes.
2553 *
2554 * 1. Invalidate the location assignments for all vertex shader inputs.
2555 *
2556 * 2. Assign locations for inputs that have user-defined (via
2557 * glBindVertexAttribLocation) locations and outputs that have
2558 * user-defined locations (via glBindFragDataLocation).
2559 *
2560 * 3. Sort the attributes without assigned locations by number of slots
2561 * required in decreasing order. Fragmentation caused by attribute
2562 * locations assigned by the application may prevent large attributes
2563 * from having enough contiguous space.
2564 *
2565 * 4. Assign locations to any inputs without assigned locations.
2566 */
2567
2568 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2569 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2570
2571 const enum ir_variable_mode direction =
2572 (target_index == MESA_SHADER_VERTEX)
2573 ? ir_var_shader_in : ir_var_shader_out;
2574
2575
2576 /* Temporary storage for the set of attributes that need locations assigned.
2577 */
2578 struct temp_attr {
2579 unsigned slots;
2580 ir_variable *var;
2581
2582 /* Used below in the call to qsort. */
2583 static int compare(const void *a, const void *b)
2584 {
2585 const temp_attr *const l = (const temp_attr *) a;
2586 const temp_attr *const r = (const temp_attr *) b;
2587
2588 /* Reversed because we want a descending order sort below. */
2589 return r->slots - l->slots;
2590 }
2591 } to_assign[32];
2592 assert(max_index <= 32);
2593
2594 /* Temporary array for the set of attributes that have locations assigned.
2595 */
2596 ir_variable *assigned[16];
2597
2598 unsigned num_attr = 0;
2599 unsigned assigned_attr = 0;
2600
2601 foreach_in_list(ir_instruction, node, sh->ir) {
2602 ir_variable *const var = node->as_variable();
2603
2604 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2605 continue;
2606
2607 if (var->data.explicit_location) {
2608 var->data.is_unmatched_generic_inout = 0;
2609 if ((var->data.location >= (int)(max_index + generic_base))
2610 || (var->data.location < 0)) {
2611 linker_error(prog,
2612 "invalid explicit location %d specified for `%s'\n",
2613 (var->data.location < 0)
2614 ? var->data.location
2615 : var->data.location - generic_base,
2616 var->name);
2617 return false;
2618 }
2619 } else if (target_index == MESA_SHADER_VERTEX) {
2620 unsigned binding;
2621
2622 if (prog->AttributeBindings->get(binding, var->name)) {
2623 assert(binding >= VERT_ATTRIB_GENERIC0);
2624 var->data.location = binding;
2625 var->data.is_unmatched_generic_inout = 0;
2626 }
2627 } else if (target_index == MESA_SHADER_FRAGMENT) {
2628 unsigned binding;
2629 unsigned index;
2630 const char *name = var->name;
2631 const glsl_type *type = var->type;
2632
2633 while (type) {
2634 /* Check if there's a binding for the variable name */
2635 if (prog->FragDataBindings->get(binding, name)) {
2636 assert(binding >= FRAG_RESULT_DATA0);
2637 var->data.location = binding;
2638 var->data.is_unmatched_generic_inout = 0;
2639
2640 if (prog->FragDataIndexBindings->get(index, name)) {
2641 var->data.index = index;
2642 }
2643 break;
2644 }
2645
2646 /* If not, but it's an array type, look for name[0] */
2647 if (type->is_array()) {
2648 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2649 type = type->fields.array;
2650 continue;
2651 }
2652
2653 break;
2654 }
2655 }
2656
2657 if (strcmp(var->name, "gl_LastFragData") == 0)
2658 continue;
2659
2660 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2661 *
2662 * "Output binding assignments will cause LinkProgram to fail:
2663 * ...
2664 * If the program has an active output assigned to a location greater
2665 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2666 * an active output assigned an index greater than or equal to one;"
2667 */
2668 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2669 var->data.location - generic_base >=
2670 (int) constants->MaxDualSourceDrawBuffers) {
2671 linker_error(prog,
2672 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2673 "with index %u for %s\n",
2674 var->data.location - generic_base, var->data.index,
2675 var->name);
2676 return false;
2677 }
2678
2679 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2680
2681 /* If the variable is not a built-in and has a location statically
2682 * assigned in the shader (presumably via a layout qualifier), make sure
2683 * that it doesn't collide with other assigned locations. Otherwise,
2684 * add it to the list of variables that need linker-assigned locations.
2685 */
2686 if (var->data.location != -1) {
2687 if (var->data.location >= generic_base && var->data.index < 1) {
2688 /* From page 61 of the OpenGL 4.0 spec:
2689 *
2690 * "LinkProgram will fail if the attribute bindings assigned
2691 * by BindAttribLocation do not leave not enough space to
2692 * assign a location for an active matrix attribute or an
2693 * active attribute array, both of which require multiple
2694 * contiguous generic attributes."
2695 *
2696 * I think above text prohibits the aliasing of explicit and
2697 * automatic assignments. But, aliasing is allowed in manual
2698 * assignments of attribute locations. See below comments for
2699 * the details.
2700 *
2701 * From OpenGL 4.0 spec, page 61:
2702 *
2703 * "It is possible for an application to bind more than one
2704 * attribute name to the same location. This is referred to as
2705 * aliasing. This will only work if only one of the aliased
2706 * attributes is active in the executable program, or if no
2707 * path through the shader consumes more than one attribute of
2708 * a set of attributes aliased to the same location. A link
2709 * error can occur if the linker determines that every path
2710 * through the shader consumes multiple aliased attributes,
2711 * but implementations are not required to generate an error
2712 * in this case."
2713 *
2714 * From GLSL 4.30 spec, page 54:
2715 *
2716 * "A program will fail to link if any two non-vertex shader
2717 * input variables are assigned to the same location. For
2718 * vertex shaders, multiple input variables may be assigned
2719 * to the same location using either layout qualifiers or via
2720 * the OpenGL API. However, such aliasing is intended only to
2721 * support vertex shaders where each execution path accesses
2722 * at most one input per each location. Implementations are
2723 * permitted, but not required, to generate link-time errors
2724 * if they detect that every path through the vertex shader
2725 * executable accesses multiple inputs assigned to any single
2726 * location. For all shader types, a program will fail to link
2727 * if explicit location assignments leave the linker unable
2728 * to find space for other variables without explicit
2729 * assignments."
2730 *
2731 * From OpenGL ES 3.0 spec, page 56:
2732 *
2733 * "Binding more than one attribute name to the same location
2734 * is referred to as aliasing, and is not permitted in OpenGL
2735 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2736 * fail when this condition exists. However, aliasing is
2737 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2738 * This will only work if only one of the aliased attributes
2739 * is active in the executable program, or if no path through
2740 * the shader consumes more than one attribute of a set of
2741 * attributes aliased to the same location. A link error can
2742 * occur if the linker determines that every path through the
2743 * shader consumes multiple aliased attributes, but implemen-
2744 * tations are not required to generate an error in this case."
2745 *
2746 * After looking at above references from OpenGL, OpenGL ES and
2747 * GLSL specifications, we allow aliasing of vertex input variables
2748 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2749 *
2750 * NOTE: This is not required by the spec but its worth mentioning
2751 * here that we're not doing anything to make sure that no path
2752 * through the vertex shader executable accesses multiple inputs
2753 * assigned to any single location.
2754 */
2755
2756 /* Mask representing the contiguous slots that will be used by
2757 * this attribute.
2758 */
2759 const unsigned attr = var->data.location - generic_base;
2760 const unsigned use_mask = (1 << slots) - 1;
2761 const char *const string = (target_index == MESA_SHADER_VERTEX)
2762 ? "vertex shader input" : "fragment shader output";
2763
2764 /* Generate a link error if the requested locations for this
2765 * attribute exceed the maximum allowed attribute location.
2766 */
2767 if (attr + slots > max_index) {
2768 linker_error(prog,
2769 "insufficient contiguous locations "
2770 "available for %s `%s' %d %d %d\n", string,
2771 var->name, used_locations, use_mask, attr);
2772 return false;
2773 }
2774
2775 /* Generate a link error if the set of bits requested for this
2776 * attribute overlaps any previously allocated bits.
2777 */
2778 if ((~(use_mask << attr) & used_locations) != used_locations) {
2779 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2780 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2781 * 4.40 spec:
2782 *
2783 * "Additionally, for fragment shader outputs, if two
2784 * variables are placed within the same location, they
2785 * must have the same underlying type (floating-point or
2786 * integer). No component aliasing of output variables or
2787 * members is allowed.
2788 */
2789 for (unsigned i = 0; i < assigned_attr; i++) {
2790 unsigned assigned_slots =
2791 assigned[i]->type->count_attribute_slots(false);
2792 unsigned assig_attr =
2793 assigned[i]->data.location - generic_base;
2794 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2795
2796 if ((assigned_use_mask << assig_attr) &
2797 (use_mask << attr)) {
2798
2799 const glsl_type *assigned_type =
2800 assigned[i]->type->without_array();
2801 const glsl_type *type = var->type->without_array();
2802 if (assigned_type->base_type != type->base_type) {
2803 linker_error(prog, "types do not match for aliased"
2804 " %ss %s and %s\n", string,
2805 assigned[i]->name, var->name);
2806 return false;
2807 }
2808
2809 unsigned assigned_component_mask =
2810 ((1 << assigned_type->vector_elements) - 1) <<
2811 assigned[i]->data.location_frac;
2812 unsigned component_mask =
2813 ((1 << type->vector_elements) - 1) <<
2814 var->data.location_frac;
2815 if (assigned_component_mask & component_mask) {
2816 linker_error(prog, "overlapping component is "
2817 "assigned to %ss %s and %s "
2818 "(component=%d)\n",
2819 string, assigned[i]->name, var->name,
2820 var->data.location_frac);
2821 return false;
2822 }
2823 }
2824 }
2825 } else if (target_index == MESA_SHADER_FRAGMENT ||
2826 (prog->IsES && prog->data->Version >= 300)) {
2827 linker_error(prog, "overlapping location is assigned "
2828 "to %s `%s' %d %d %d\n", string, var->name,
2829 used_locations, use_mask, attr);
2830 return false;
2831 } else {
2832 linker_warning(prog, "overlapping location is assigned "
2833 "to %s `%s' %d %d %d\n", string, var->name,
2834 used_locations, use_mask, attr);
2835 }
2836 }
2837
2838 used_locations |= (use_mask << attr);
2839
2840 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2841 *
2842 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2843 * active attribute variables may fail to link, unless
2844 * device-dependent optimizations are able to make the program
2845 * fit within available hardware resources. For the purposes
2846 * of this test, attribute variables of the type dvec3, dvec4,
2847 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2848 * count as consuming twice as many attributes as equivalent
2849 * single-precision types. While these types use the same number
2850 * of generic attributes as their single-precision equivalents,
2851 * implementations are permitted to consume two single-precision
2852 * vectors of internal storage for each three- or four-component
2853 * double-precision vector."
2854 *
2855 * Mark this attribute slot as taking up twice as much space
2856 * so we can count it properly against limits. According to
2857 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2858 * is optional behavior, but it seems preferable.
2859 */
2860 if (var->type->without_array()->is_dual_slot())
2861 double_storage_locations |= (use_mask << attr);
2862 }
2863
2864 assigned[assigned_attr] = var;
2865 assigned_attr++;
2866
2867 continue;
2868 }
2869
2870 if (num_attr >= max_index) {
2871 linker_error(prog, "too many %s (max %u)",
2872 target_index == MESA_SHADER_VERTEX ?
2873 "vertex shader inputs" : "fragment shader outputs",
2874 max_index);
2875 return false;
2876 }
2877 to_assign[num_attr].slots = slots;
2878 to_assign[num_attr].var = var;
2879 num_attr++;
2880 }
2881
2882 if (target_index == MESA_SHADER_VERTEX) {
2883 unsigned total_attribs_size =
2884 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2885 _mesa_bitcount(double_storage_locations);
2886 if (total_attribs_size > max_index) {
2887 linker_error(prog,
2888 "attempt to use %d vertex attribute slots only %d available ",
2889 total_attribs_size, max_index);
2890 return false;
2891 }
2892 }
2893
2894 /* If all of the attributes were assigned locations by the application (or
2895 * are built-in attributes with fixed locations), return early. This should
2896 * be the common case.
2897 */
2898 if (num_attr == 0)
2899 return true;
2900
2901 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2902
2903 if (target_index == MESA_SHADER_VERTEX) {
2904 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2905 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2906 * reserved to prevent it from being automatically allocated below.
2907 */
2908 find_deref_visitor find("gl_Vertex");
2909 find.run(sh->ir);
2910 if (find.variable_found())
2911 used_locations |= (1 << 0);
2912 }
2913
2914 for (unsigned i = 0; i < num_attr; i++) {
2915 /* Mask representing the contiguous slots that will be used by this
2916 * attribute.
2917 */
2918 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2919
2920 int location = find_available_slots(used_locations, to_assign[i].slots);
2921
2922 if (location < 0) {
2923 const char *const string = (target_index == MESA_SHADER_VERTEX)
2924 ? "vertex shader input" : "fragment shader output";
2925
2926 linker_error(prog,
2927 "insufficient contiguous locations "
2928 "available for %s `%s'\n",
2929 string, to_assign[i].var->name);
2930 return false;
2931 }
2932
2933 to_assign[i].var->data.location = generic_base + location;
2934 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2935 used_locations |= (use_mask << location);
2936
2937 if (to_assign[i].var->type->without_array()->is_dual_slot())
2938 double_storage_locations |= (use_mask << location);
2939 }
2940
2941 /* Now that we have all the locations, from the GL 4.5 core spec, section
2942 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2943 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2944 * as equivalent single-precision types.
2945 */
2946 if (target_index == MESA_SHADER_VERTEX) {
2947 unsigned total_attribs_size =
2948 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2949 _mesa_bitcount(double_storage_locations);
2950 if (total_attribs_size > max_index) {
2951 linker_error(prog,
2952 "attempt to use %d vertex attribute slots only %d available ",
2953 total_attribs_size, max_index);
2954 return false;
2955 }
2956 }
2957
2958 return true;
2959 }
2960
2961 /**
2962 * Match explicit locations of outputs to inputs and deactivate the
2963 * unmatch flag if found so we don't optimise them away.
2964 */
2965 static void
match_explicit_outputs_to_inputs(gl_linked_shader * producer,gl_linked_shader * consumer)2966 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2967 gl_linked_shader *consumer)
2968 {
2969 glsl_symbol_table parameters;
2970 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2971 { {NULL, NULL} };
2972
2973 /* Find all shader outputs in the "producer" stage.
2974 */
2975 foreach_in_list(ir_instruction, node, producer->ir) {
2976 ir_variable *const var = node->as_variable();
2977
2978 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2979 continue;
2980
2981 if (var->data.explicit_location &&
2982 var->data.location >= VARYING_SLOT_VAR0) {
2983 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2984 if (explicit_locations[idx][var->data.location_frac] == NULL)
2985 explicit_locations[idx][var->data.location_frac] = var;
2986 }
2987 }
2988
2989 /* Match inputs to outputs */
2990 foreach_in_list(ir_instruction, node, consumer->ir) {
2991 ir_variable *const input = node->as_variable();
2992
2993 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2994 continue;
2995
2996 ir_variable *output = NULL;
2997 if (input->data.explicit_location
2998 && input->data.location >= VARYING_SLOT_VAR0) {
2999 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3000 [input->data.location_frac];
3001
3002 if (output != NULL){
3003 input->data.is_unmatched_generic_inout = 0;
3004 output->data.is_unmatched_generic_inout = 0;
3005 }
3006 }
3007 }
3008 }
3009
3010 /**
3011 * Store the gl_FragDepth layout in the gl_shader_program struct.
3012 */
3013 static void
store_fragdepth_layout(struct gl_shader_program * prog)3014 store_fragdepth_layout(struct gl_shader_program *prog)
3015 {
3016 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3017 return;
3018 }
3019
3020 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3021
3022 /* We don't look up the gl_FragDepth symbol directly because if
3023 * gl_FragDepth is not used in the shader, it's removed from the IR.
3024 * However, the symbol won't be removed from the symbol table.
3025 *
3026 * We're only interested in the cases where the variable is NOT removed
3027 * from the IR.
3028 */
3029 foreach_in_list(ir_instruction, node, ir) {
3030 ir_variable *const var = node->as_variable();
3031
3032 if (var == NULL || var->data.mode != ir_var_shader_out) {
3033 continue;
3034 }
3035
3036 if (strcmp(var->name, "gl_FragDepth") == 0) {
3037 switch (var->data.depth_layout) {
3038 case ir_depth_layout_none:
3039 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3040 return;
3041 case ir_depth_layout_any:
3042 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3043 return;
3044 case ir_depth_layout_greater:
3045 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3046 return;
3047 case ir_depth_layout_less:
3048 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3049 return;
3050 case ir_depth_layout_unchanged:
3051 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3052 return;
3053 default:
3054 assert(0);
3055 return;
3056 }
3057 }
3058 }
3059 }
3060
3061 /**
3062 * Validate the resources used by a program versus the implementation limits
3063 */
3064 static void
check_resources(struct gl_context * ctx,struct gl_shader_program * prog)3065 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3066 {
3067 unsigned total_uniform_blocks = 0;
3068 unsigned total_shader_storage_blocks = 0;
3069
3070 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3071 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3072
3073 if (sh == NULL)
3074 continue;
3075
3076 if (sh->Program->info.num_textures >
3077 ctx->Const.Program[i].MaxTextureImageUnits) {
3078 linker_error(prog, "Too many %s shader texture samplers\n",
3079 _mesa_shader_stage_to_string(i));
3080 }
3081
3082 if (sh->num_uniform_components >
3083 ctx->Const.Program[i].MaxUniformComponents) {
3084 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3085 linker_warning(prog, "Too many %s shader default uniform block "
3086 "components, but the driver will try to optimize "
3087 "them out; this is non-portable out-of-spec "
3088 "behavior\n",
3089 _mesa_shader_stage_to_string(i));
3090 } else {
3091 linker_error(prog, "Too many %s shader default uniform block "
3092 "components\n",
3093 _mesa_shader_stage_to_string(i));
3094 }
3095 }
3096
3097 if (sh->num_combined_uniform_components >
3098 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3099 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3100 linker_warning(prog, "Too many %s shader uniform components, "
3101 "but the driver will try to optimize them out; "
3102 "this is non-portable out-of-spec behavior\n",
3103 _mesa_shader_stage_to_string(i));
3104 } else {
3105 linker_error(prog, "Too many %s shader uniform components\n",
3106 _mesa_shader_stage_to_string(i));
3107 }
3108 }
3109
3110 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3111 total_uniform_blocks += sh->Program->info.num_ubos;
3112
3113 const unsigned max_uniform_blocks =
3114 ctx->Const.Program[i].MaxUniformBlocks;
3115 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3116 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3117 _mesa_shader_stage_to_string(i),
3118 sh->Program->info.num_ubos, max_uniform_blocks);
3119 }
3120
3121 const unsigned max_shader_storage_blocks =
3122 ctx->Const.Program[i].MaxShaderStorageBlocks;
3123 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3124 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3125 _mesa_shader_stage_to_string(i),
3126 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3127 }
3128 }
3129
3130 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3131 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3132 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3133 }
3134
3135 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3136 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3137 total_shader_storage_blocks,
3138 ctx->Const.MaxCombinedShaderStorageBlocks);
3139 }
3140
3141 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3142 if (prog->data->UniformBlocks[i].UniformBufferSize >
3143 ctx->Const.MaxUniformBlockSize) {
3144 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3145 prog->data->UniformBlocks[i].Name,
3146 prog->data->UniformBlocks[i].UniformBufferSize,
3147 ctx->Const.MaxUniformBlockSize);
3148 }
3149 }
3150
3151 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3152 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3153 ctx->Const.MaxShaderStorageBlockSize) {
3154 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3155 prog->data->ShaderStorageBlocks[i].Name,
3156 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3157 ctx->Const.MaxShaderStorageBlockSize);
3158 }
3159 }
3160 }
3161
3162 static void
link_calculate_subroutine_compat(struct gl_shader_program * prog)3163 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3164 {
3165 unsigned mask = prog->data->linked_stages;
3166 while (mask) {
3167 const int i = u_bit_scan(&mask);
3168 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3169
3170 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3171 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3172 continue;
3173
3174 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3175
3176 if (!uni)
3177 continue;
3178
3179 int count = 0;
3180 if (p->sh.NumSubroutineFunctions == 0) {
3181 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3182 continue;
3183 }
3184 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3185 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3186 for (int k = 0; k < fn->num_compat_types; k++) {
3187 if (fn->types[k] == uni->type) {
3188 count++;
3189 break;
3190 }
3191 }
3192 }
3193 uni->num_compatible_subroutines = count;
3194 }
3195 }
3196 }
3197
3198 static void
check_subroutine_resources(struct gl_shader_program * prog)3199 check_subroutine_resources(struct gl_shader_program *prog)
3200 {
3201 unsigned mask = prog->data->linked_stages;
3202 while (mask) {
3203 const int i = u_bit_scan(&mask);
3204 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3205
3206 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3207 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3208 _mesa_shader_stage_to_string(i));
3209 }
3210 }
3211 }
3212 /**
3213 * Validate shader image resources.
3214 */
3215 static void
check_image_resources(struct gl_context * ctx,struct gl_shader_program * prog)3216 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3217 {
3218 unsigned total_image_units = 0;
3219 unsigned fragment_outputs = 0;
3220 unsigned total_shader_storage_blocks = 0;
3221
3222 if (!ctx->Extensions.ARB_shader_image_load_store)
3223 return;
3224
3225 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3226 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3227
3228 if (sh) {
3229 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3230 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3231 _mesa_shader_stage_to_string(i),
3232 sh->Program->info.num_images,
3233 ctx->Const.Program[i].MaxImageUniforms);
3234
3235 total_image_units += sh->Program->info.num_images;
3236 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3237
3238 if (i == MESA_SHADER_FRAGMENT) {
3239 foreach_in_list(ir_instruction, node, sh->ir) {
3240 ir_variable *var = node->as_variable();
3241 if (var && var->data.mode == ir_var_shader_out)
3242 /* since there are no double fs outputs - pass false */
3243 fragment_outputs += var->type->count_attribute_slots(false);
3244 }
3245 }
3246 }
3247 }
3248
3249 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3250 linker_error(prog, "Too many combined image uniforms\n");
3251
3252 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3253 ctx->Const.MaxCombinedShaderOutputResources)
3254 linker_error(prog, "Too many combined image uniforms, shader storage "
3255 " buffers and fragment outputs\n");
3256 }
3257
3258
3259 /**
3260 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3261 * for a variable, checks for overlaps between other uniforms using explicit
3262 * locations.
3263 */
3264 static int
reserve_explicit_locations(struct gl_shader_program * prog,string_to_uint_map * map,ir_variable * var)3265 reserve_explicit_locations(struct gl_shader_program *prog,
3266 string_to_uint_map *map, ir_variable *var)
3267 {
3268 unsigned slots = var->type->uniform_locations();
3269 unsigned max_loc = var->data.location + slots - 1;
3270 unsigned return_value = slots;
3271
3272 /* Resize remap table if locations do not fit in the current one. */
3273 if (max_loc + 1 > prog->NumUniformRemapTable) {
3274 prog->UniformRemapTable =
3275 reralloc(prog, prog->UniformRemapTable,
3276 gl_uniform_storage *,
3277 max_loc + 1);
3278
3279 if (!prog->UniformRemapTable) {
3280 linker_error(prog, "Out of memory during linking.\n");
3281 return -1;
3282 }
3283
3284 /* Initialize allocated space. */
3285 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3286 prog->UniformRemapTable[i] = NULL;
3287
3288 prog->NumUniformRemapTable = max_loc + 1;
3289 }
3290
3291 for (unsigned i = 0; i < slots; i++) {
3292 unsigned loc = var->data.location + i;
3293
3294 /* Check if location is already used. */
3295 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3296
3297 /* Possibly same uniform from a different stage, this is ok. */
3298 unsigned hash_loc;
3299 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3300 return_value = 0;
3301 continue;
3302 }
3303
3304 /* ARB_explicit_uniform_location specification states:
3305 *
3306 * "No two default-block uniform variables in the program can have
3307 * the same location, even if they are unused, otherwise a compiler
3308 * or linker error will be generated."
3309 */
3310 linker_error(prog,
3311 "location qualifier for uniform %s overlaps "
3312 "previously used location\n",
3313 var->name);
3314 return -1;
3315 }
3316
3317 /* Initialize location as inactive before optimization
3318 * rounds and location assignment.
3319 */
3320 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3321 }
3322
3323 /* Note, base location used for arrays. */
3324 map->put(var->data.location, var->name);
3325
3326 return return_value;
3327 }
3328
3329 static bool
reserve_subroutine_explicit_locations(struct gl_shader_program * prog,struct gl_program * p,ir_variable * var)3330 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3331 struct gl_program *p,
3332 ir_variable *var)
3333 {
3334 unsigned slots = var->type->uniform_locations();
3335 unsigned max_loc = var->data.location + slots - 1;
3336
3337 /* Resize remap table if locations do not fit in the current one. */
3338 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3339 p->sh.SubroutineUniformRemapTable =
3340 reralloc(p, p->sh.SubroutineUniformRemapTable,
3341 gl_uniform_storage *,
3342 max_loc + 1);
3343
3344 if (!p->sh.SubroutineUniformRemapTable) {
3345 linker_error(prog, "Out of memory during linking.\n");
3346 return false;
3347 }
3348
3349 /* Initialize allocated space. */
3350 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3351 p->sh.SubroutineUniformRemapTable[i] = NULL;
3352
3353 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3354 }
3355
3356 for (unsigned i = 0; i < slots; i++) {
3357 unsigned loc = var->data.location + i;
3358
3359 /* Check if location is already used. */
3360 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3361
3362 /* ARB_explicit_uniform_location specification states:
3363 * "No two subroutine uniform variables can have the same location
3364 * in the same shader stage, otherwise a compiler or linker error
3365 * will be generated."
3366 */
3367 linker_error(prog,
3368 "location qualifier for uniform %s overlaps "
3369 "previously used location\n",
3370 var->name);
3371 return false;
3372 }
3373
3374 /* Initialize location as inactive before optimization
3375 * rounds and location assignment.
3376 */
3377 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3378 }
3379
3380 return true;
3381 }
3382 /**
3383 * Check and reserve all explicit uniform locations, called before
3384 * any optimizations happen to handle also inactive uniforms and
3385 * inactive array elements that may get trimmed away.
3386 */
3387 static unsigned
check_explicit_uniform_locations(struct gl_context * ctx,struct gl_shader_program * prog)3388 check_explicit_uniform_locations(struct gl_context *ctx,
3389 struct gl_shader_program *prog)
3390 {
3391 if (!ctx->Extensions.ARB_explicit_uniform_location)
3392 return 0;
3393
3394 /* This map is used to detect if overlapping explicit locations
3395 * occur with the same uniform (from different stage) or a different one.
3396 */
3397 string_to_uint_map *uniform_map = new string_to_uint_map;
3398
3399 if (!uniform_map) {
3400 linker_error(prog, "Out of memory during linking.\n");
3401 return 0;
3402 }
3403
3404 unsigned entries_total = 0;
3405 unsigned mask = prog->data->linked_stages;
3406 while (mask) {
3407 const int i = u_bit_scan(&mask);
3408 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3409
3410 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3411 ir_variable *var = node->as_variable();
3412 if (!var || var->data.mode != ir_var_uniform)
3413 continue;
3414
3415 if (var->data.explicit_location) {
3416 bool ret = false;
3417 if (var->type->without_array()->is_subroutine())
3418 ret = reserve_subroutine_explicit_locations(prog, p, var);
3419 else {
3420 int slots = reserve_explicit_locations(prog, uniform_map,
3421 var);
3422 if (slots != -1) {
3423 ret = true;
3424 entries_total += slots;
3425 }
3426 }
3427 if (!ret) {
3428 delete uniform_map;
3429 return 0;
3430 }
3431 }
3432 }
3433 }
3434
3435 struct empty_uniform_block *current_block = NULL;
3436
3437 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3438 /* We found empty space in UniformRemapTable. */
3439 if (prog->UniformRemapTable[i] == NULL) {
3440 /* We've found the beginning of a new continous block of empty slots */
3441 if (!current_block || current_block->start + current_block->slots != i) {
3442 current_block = rzalloc(prog, struct empty_uniform_block);
3443 current_block->start = i;
3444 exec_list_push_tail(&prog->EmptyUniformLocations,
3445 ¤t_block->link);
3446 }
3447
3448 /* The current block continues, so we simply increment its slots */
3449 current_block->slots++;
3450 }
3451 }
3452
3453 delete uniform_map;
3454 return entries_total;
3455 }
3456
3457 static bool
should_add_buffer_variable(struct gl_shader_program * shProg,GLenum type,const char * name)3458 should_add_buffer_variable(struct gl_shader_program *shProg,
3459 GLenum type, const char *name)
3460 {
3461 bool found_interface = false;
3462 unsigned block_name_len = 0;
3463 const char *block_name_dot = strchr(name, '.');
3464
3465 /* These rules only apply to buffer variables. So we return
3466 * true for the rest of types.
3467 */
3468 if (type != GL_BUFFER_VARIABLE)
3469 return true;
3470
3471 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3472 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3473 block_name_len = strlen(block_name);
3474
3475 const char *block_square_bracket = strchr(block_name, '[');
3476 if (block_square_bracket) {
3477 /* The block is part of an array of named interfaces,
3478 * for the name comparison we ignore the "[x]" part.
3479 */
3480 block_name_len -= strlen(block_square_bracket);
3481 }
3482
3483 if (block_name_dot) {
3484 /* Check if the variable name starts with the interface
3485 * name. The interface name (if present) should have the
3486 * length than the interface block name we are comparing to.
3487 */
3488 unsigned len = strlen(name) - strlen(block_name_dot);
3489 if (len != block_name_len)
3490 continue;
3491 }
3492
3493 if (strncmp(block_name, name, block_name_len) == 0) {
3494 found_interface = true;
3495 break;
3496 }
3497 }
3498
3499 /* We remove the interface name from the buffer variable name,
3500 * including the dot that follows it.
3501 */
3502 if (found_interface)
3503 name = name + block_name_len + 1;
3504
3505 /* The ARB_program_interface_query spec says:
3506 *
3507 * "For an active shader storage block member declared as an array, an
3508 * entry will be generated only for the first array element, regardless
3509 * of its type. For arrays of aggregate types, the enumeration rules
3510 * are applied recursively for the single enumerated array element."
3511 */
3512 const char *struct_first_dot = strchr(name, '.');
3513 const char *first_square_bracket = strchr(name, '[');
3514
3515 /* The buffer variable is on top level and it is not an array */
3516 if (!first_square_bracket) {
3517 return true;
3518 /* The shader storage block member is a struct, then generate the entry */
3519 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3520 return true;
3521 } else {
3522 /* Shader storage block member is an array, only generate an entry for the
3523 * first array element.
3524 */
3525 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3526 return true;
3527 }
3528
3529 return false;
3530 }
3531
3532 static bool
add_program_resource(struct gl_shader_program * prog,struct set * resource_set,GLenum type,const void * data,uint8_t stages)3533 add_program_resource(struct gl_shader_program *prog,
3534 struct set *resource_set,
3535 GLenum type, const void *data, uint8_t stages)
3536 {
3537 assert(data);
3538
3539 /* If resource already exists, do not add it again. */
3540 if (_mesa_set_search(resource_set, data))
3541 return true;
3542
3543 prog->ProgramResourceList =
3544 reralloc(prog,
3545 prog->ProgramResourceList,
3546 gl_program_resource,
3547 prog->NumProgramResourceList + 1);
3548
3549 if (!prog->ProgramResourceList) {
3550 linker_error(prog, "Out of memory during linking.\n");
3551 return false;
3552 }
3553
3554 struct gl_program_resource *res =
3555 &prog->ProgramResourceList[prog->NumProgramResourceList];
3556
3557 res->Type = type;
3558 res->Data = data;
3559 res->StageReferences = stages;
3560
3561 prog->NumProgramResourceList++;
3562
3563 _mesa_set_add(resource_set, data);
3564
3565 return true;
3566 }
3567
3568 /* Function checks if a variable var is a packed varying and
3569 * if given name is part of packed varying's list.
3570 *
3571 * If a variable is a packed varying, it has a name like
3572 * 'packed:a,b,c' where a, b and c are separate variables.
3573 */
3574 static bool
included_in_packed_varying(ir_variable * var,const char * name)3575 included_in_packed_varying(ir_variable *var, const char *name)
3576 {
3577 if (strncmp(var->name, "packed:", 7) != 0)
3578 return false;
3579
3580 char *list = strdup(var->name + 7);
3581 assert(list);
3582
3583 bool found = false;
3584 char *saveptr;
3585 char *token = strtok_r(list, ",", &saveptr);
3586 while (token) {
3587 if (strcmp(token, name) == 0) {
3588 found = true;
3589 break;
3590 }
3591 token = strtok_r(NULL, ",", &saveptr);
3592 }
3593 free(list);
3594 return found;
3595 }
3596
3597 /**
3598 * Function builds a stage reference bitmask from variable name.
3599 */
3600 static uint8_t
build_stageref(struct gl_shader_program * shProg,const char * name,unsigned mode)3601 build_stageref(struct gl_shader_program *shProg, const char *name,
3602 unsigned mode)
3603 {
3604 uint8_t stages = 0;
3605
3606 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3607 * used for reference mask in gl_program_resource will need to be changed.
3608 */
3609 assert(MESA_SHADER_STAGES < 8);
3610
3611 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3612 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3613 if (!sh)
3614 continue;
3615
3616 /* Shader symbol table may contain variables that have
3617 * been optimized away. Search IR for the variable instead.
3618 */
3619 foreach_in_list(ir_instruction, node, sh->ir) {
3620 ir_variable *var = node->as_variable();
3621 if (var) {
3622 unsigned baselen = strlen(var->name);
3623
3624 if (included_in_packed_varying(var, name)) {
3625 stages |= (1 << i);
3626 break;
3627 }
3628
3629 /* Type needs to match if specified, otherwise we might
3630 * pick a variable with same name but different interface.
3631 */
3632 if (var->data.mode != mode)
3633 continue;
3634
3635 if (strncmp(var->name, name, baselen) == 0) {
3636 /* Check for exact name matches but also check for arrays and
3637 * structs.
3638 */
3639 if (name[baselen] == '\0' ||
3640 name[baselen] == '[' ||
3641 name[baselen] == '.') {
3642 stages |= (1 << i);
3643 break;
3644 }
3645 }
3646 }
3647 }
3648 }
3649 return stages;
3650 }
3651
3652 /**
3653 * Create gl_shader_variable from ir_variable class.
3654 */
3655 static gl_shader_variable *
create_shader_variable(struct gl_shader_program * shProg,const ir_variable * in,const char * name,const glsl_type * type,const glsl_type * interface_type,bool use_implicit_location,int location,const glsl_type * outermost_struct_type)3656 create_shader_variable(struct gl_shader_program *shProg,
3657 const ir_variable *in,
3658 const char *name, const glsl_type *type,
3659 const glsl_type *interface_type,
3660 bool use_implicit_location, int location,
3661 const glsl_type *outermost_struct_type)
3662 {
3663 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3664 if (!out)
3665 return NULL;
3666
3667 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3668 * expect to see gl_VertexID in the program resource list. Pretend.
3669 */
3670 if (in->data.mode == ir_var_system_value &&
3671 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3672 out->name = ralloc_strdup(shProg, "gl_VertexID");
3673 } else if ((in->data.mode == ir_var_shader_out &&
3674 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3675 (in->data.mode == ir_var_system_value &&
3676 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3677 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3678 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3679 } else if ((in->data.mode == ir_var_shader_out &&
3680 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3681 (in->data.mode == ir_var_system_value &&
3682 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3683 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3684 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3685 } else {
3686 out->name = ralloc_strdup(shProg, name);
3687 }
3688
3689 if (!out->name)
3690 return NULL;
3691
3692 /* The ARB_program_interface_query spec says:
3693 *
3694 * "Not all active variables are assigned valid locations; the
3695 * following variables will have an effective location of -1:
3696 *
3697 * * uniforms declared as atomic counters;
3698 *
3699 * * members of a uniform block;
3700 *
3701 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3702 *
3703 * * inputs or outputs not declared with a "location" layout
3704 * qualifier, except for vertex shader inputs and fragment shader
3705 * outputs."
3706 */
3707 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3708 is_gl_identifier(in->name) ||
3709 !(in->data.explicit_location || use_implicit_location)) {
3710 out->location = -1;
3711 } else {
3712 out->location = location;
3713 }
3714
3715 out->type = type;
3716 out->outermost_struct_type = outermost_struct_type;
3717 out->interface_type = interface_type;
3718 out->component = in->data.location_frac;
3719 out->index = in->data.index;
3720 out->patch = in->data.patch;
3721 out->mode = in->data.mode;
3722 out->interpolation = in->data.interpolation;
3723 out->explicit_location = in->data.explicit_location;
3724 out->precision = in->data.precision;
3725
3726 return out;
3727 }
3728
3729 static const glsl_type *
resize_to_max_patch_vertices(const struct gl_context * ctx,const glsl_type * type)3730 resize_to_max_patch_vertices(const struct gl_context *ctx,
3731 const glsl_type *type)
3732 {
3733 if (!type)
3734 return NULL;
3735
3736 return glsl_type::get_array_instance(type->fields.array,
3737 ctx->Const.MaxPatchVertices);
3738 }
3739
3740 static bool
add_shader_variable(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage_mask,GLenum programInterface,ir_variable * var,const char * name,const glsl_type * type,bool use_implicit_location,int location,const glsl_type * outermost_struct_type=NULL)3741 add_shader_variable(const struct gl_context *ctx,
3742 struct gl_shader_program *shProg,
3743 struct set *resource_set,
3744 unsigned stage_mask,
3745 GLenum programInterface, ir_variable *var,
3746 const char *name, const glsl_type *type,
3747 bool use_implicit_location, int location,
3748 const glsl_type *outermost_struct_type = NULL)
3749 {
3750 const glsl_type *interface_type = var->get_interface_type();
3751
3752 if (outermost_struct_type == NULL) {
3753 /* Unsized (non-patch) TCS output/TES input arrays are implicitly
3754 * sized to gl_MaxPatchVertices. Internally, we shrink them to a
3755 * smaller size.
3756 *
3757 * This can cause trouble with SSO programs. Since the TCS declares
3758 * the number of output vertices, we can always shrink TCS output
3759 * arrays. However, the TES might not be linked with a TCS, in
3760 * which case it won't know the size of the patch. In other words,
3761 * the TCS and TES may disagree on the (smaller) array sizes. This
3762 * can result in the resource names differing across stages, causing
3763 * SSO validation failures and other cascading issues.
3764 *
3765 * Expanding the array size to the full gl_MaxPatchVertices fixes
3766 * these issues. It's also what program interface queries expect,
3767 * as that is the official size of the array.
3768 */
3769 if (var->data.tess_varying_implicit_sized_array) {
3770 type = resize_to_max_patch_vertices(ctx, type);
3771 interface_type = resize_to_max_patch_vertices(ctx, interface_type);
3772 }
3773
3774 if (var->data.from_named_ifc_block) {
3775 const char *interface_name = interface_type->name;
3776
3777 if (interface_type->is_array()) {
3778 /* Issue #16 of the ARB_program_interface_query spec says:
3779 *
3780 * "* If a variable is a member of an interface block without an
3781 * instance name, it is enumerated using just the variable name.
3782 *
3783 * * If a variable is a member of an interface block with an
3784 * instance name, it is enumerated as "BlockName.Member", where
3785 * "BlockName" is the name of the interface block (not the
3786 * instance name) and "Member" is the name of the variable."
3787 *
3788 * In particular, it indicates that it should be "BlockName",
3789 * not "BlockName[array length]". The conformance suite and
3790 * dEQP both require this behavior.
3791 *
3792 * Here, we unwrap the extra array level added by named interface
3793 * block array lowering so we have the correct variable type. We
3794 * also unwrap the interface type when constructing the name.
3795 *
3796 * We leave interface_type the same so that ES 3.x SSO pipeline
3797 * validation can enforce the rules requiring array length to
3798 * match on interface blocks.
3799 */
3800 type = type->fields.array;
3801
3802 interface_name = interface_type->fields.array->name;
3803 }
3804
3805 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3806 }
3807 }
3808
3809 switch (type->base_type) {
3810 case GLSL_TYPE_STRUCT: {
3811 /* The ARB_program_interface_query spec says:
3812 *
3813 * "For an active variable declared as a structure, a separate entry
3814 * will be generated for each active structure member. The name of
3815 * each entry is formed by concatenating the name of the structure,
3816 * the "." character, and the name of the structure member. If a
3817 * structure member to enumerate is itself a structure or array,
3818 * these enumeration rules are applied recursively."
3819 */
3820 if (outermost_struct_type == NULL)
3821 outermost_struct_type = type;
3822
3823 unsigned field_location = location;
3824 for (unsigned i = 0; i < type->length; i++) {
3825 const struct glsl_struct_field *field = &type->fields.structure[i];
3826 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3827 if (!add_shader_variable(ctx, shProg, resource_set,
3828 stage_mask, programInterface,
3829 var, field_name, field->type,
3830 use_implicit_location, field_location,
3831 outermost_struct_type))
3832 return false;
3833
3834 field_location += field->type->count_attribute_slots(false);
3835 }
3836 return true;
3837 }
3838
3839 default: {
3840 /* The ARB_program_interface_query spec says:
3841 *
3842 * "For an active variable declared as a single instance of a basic
3843 * type, a single entry will be generated, using the variable name
3844 * from the shader source."
3845 */
3846 gl_shader_variable *sha_v =
3847 create_shader_variable(shProg, var, name, type, interface_type,
3848 use_implicit_location, location,
3849 outermost_struct_type);
3850 if (!sha_v)
3851 return false;
3852
3853 return add_program_resource(shProg, resource_set,
3854 programInterface, sha_v, stage_mask);
3855 }
3856 }
3857 }
3858
3859 static bool
add_interface_variables(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage,GLenum programInterface)3860 add_interface_variables(const struct gl_context *ctx,
3861 struct gl_shader_program *shProg,
3862 struct set *resource_set,
3863 unsigned stage, GLenum programInterface)
3864 {
3865 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3866
3867 foreach_in_list(ir_instruction, node, ir) {
3868 ir_variable *var = node->as_variable();
3869
3870 if (!var || var->data.how_declared == ir_var_hidden)
3871 continue;
3872
3873 int loc_bias;
3874
3875 switch (var->data.mode) {
3876 case ir_var_system_value:
3877 case ir_var_shader_in:
3878 if (programInterface != GL_PROGRAM_INPUT)
3879 continue;
3880 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3881 : int(VARYING_SLOT_VAR0);
3882 break;
3883 case ir_var_shader_out:
3884 if (programInterface != GL_PROGRAM_OUTPUT)
3885 continue;
3886 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3887 : int(VARYING_SLOT_VAR0);
3888 break;
3889 default:
3890 continue;
3891 };
3892
3893 if (var->data.patch)
3894 loc_bias = int(VARYING_SLOT_PATCH0);
3895
3896 /* Skip packed varyings, packed varyings are handled separately
3897 * by add_packed_varyings.
3898 */
3899 if (strncmp(var->name, "packed:", 7) == 0)
3900 continue;
3901
3902 /* Skip fragdata arrays, these are handled separately
3903 * by add_fragdata_arrays.
3904 */
3905 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3906 continue;
3907
3908 const bool vs_input_or_fs_output =
3909 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3910 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3911
3912 if (!add_shader_variable(ctx, shProg, resource_set,
3913 1 << stage, programInterface,
3914 var, var->name, var->type, vs_input_or_fs_output,
3915 var->data.location - loc_bias))
3916 return false;
3917 }
3918 return true;
3919 }
3920
3921 static bool
add_packed_varyings(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,int stage,GLenum type)3922 add_packed_varyings(const struct gl_context *ctx,
3923 struct gl_shader_program *shProg,
3924 struct set *resource_set,
3925 int stage, GLenum type)
3926 {
3927 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3928 GLenum iface;
3929
3930 if (!sh || !sh->packed_varyings)
3931 return true;
3932
3933 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3934 ir_variable *var = node->as_variable();
3935 if (var) {
3936 switch (var->data.mode) {
3937 case ir_var_shader_in:
3938 iface = GL_PROGRAM_INPUT;
3939 break;
3940 case ir_var_shader_out:
3941 iface = GL_PROGRAM_OUTPUT;
3942 break;
3943 default:
3944 unreachable("unexpected type");
3945 }
3946
3947 if (type == iface) {
3948 const int stage_mask =
3949 build_stageref(shProg, var->name, var->data.mode);
3950 if (!add_shader_variable(ctx, shProg, resource_set,
3951 stage_mask,
3952 iface, var, var->name, var->type, false,
3953 var->data.location - VARYING_SLOT_VAR0))
3954 return false;
3955 }
3956 }
3957 }
3958 return true;
3959 }
3960
3961 static bool
add_fragdata_arrays(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set)3962 add_fragdata_arrays(const struct gl_context *ctx,
3963 struct gl_shader_program *shProg,
3964 struct set *resource_set)
3965 {
3966 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3967
3968 if (!sh || !sh->fragdata_arrays)
3969 return true;
3970
3971 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3972 ir_variable *var = node->as_variable();
3973 if (var) {
3974 assert(var->data.mode == ir_var_shader_out);
3975
3976 if (!add_shader_variable(ctx, shProg, resource_set,
3977 1 << MESA_SHADER_FRAGMENT,
3978 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3979 true, var->data.location - FRAG_RESULT_DATA0))
3980 return false;
3981 }
3982 }
3983 return true;
3984 }
3985
3986 static char*
get_top_level_name(const char * name)3987 get_top_level_name(const char *name)
3988 {
3989 const char *first_dot = strchr(name, '.');
3990 const char *first_square_bracket = strchr(name, '[');
3991 int name_size = 0;
3992
3993 /* The ARB_program_interface_query spec says:
3994 *
3995 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3996 * the number of active array elements of the top-level shader storage
3997 * block member containing to the active variable is written to
3998 * <params>. If the top-level block member is not declared as an
3999 * array, the value one is written to <params>. If the top-level block
4000 * member is an array with no declared size, the value zero is written
4001 * to <params>."
4002 */
4003
4004 /* The buffer variable is on top level.*/
4005 if (!first_square_bracket && !first_dot)
4006 name_size = strlen(name);
4007 else if ((!first_square_bracket ||
4008 (first_dot && first_dot < first_square_bracket)))
4009 name_size = first_dot - name;
4010 else
4011 name_size = first_square_bracket - name;
4012
4013 return strndup(name, name_size);
4014 }
4015
4016 static char*
get_var_name(const char * name)4017 get_var_name(const char *name)
4018 {
4019 const char *first_dot = strchr(name, '.');
4020
4021 if (!first_dot)
4022 return strdup(name);
4023
4024 return strndup(first_dot+1, strlen(first_dot) - 1);
4025 }
4026
4027 static bool
is_top_level_shader_storage_block_member(const char * name,const char * interface_name,const char * field_name)4028 is_top_level_shader_storage_block_member(const char* name,
4029 const char* interface_name,
4030 const char* field_name)
4031 {
4032 bool result = false;
4033
4034 /* If the given variable is already a top-level shader storage
4035 * block member, then return array_size = 1.
4036 * We could have two possibilities: if we have an instanced
4037 * shader storage block or not instanced.
4038 *
4039 * For the first, we check create a name as it was in top level and
4040 * compare it with the real name. If they are the same, then
4041 * the variable is already at top-level.
4042 *
4043 * Full instanced name is: interface name + '.' + var name +
4044 * NULL character
4045 */
4046 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4047 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4048 if (!full_instanced_name) {
4049 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4050 return false;
4051 }
4052
4053 snprintf(full_instanced_name, name_length, "%s.%s",
4054 interface_name, field_name);
4055
4056 /* Check if its top-level shader storage block member of an
4057 * instanced interface block, or of a unnamed interface block.
4058 */
4059 if (strcmp(name, full_instanced_name) == 0 ||
4060 strcmp(name, field_name) == 0)
4061 result = true;
4062
4063 free(full_instanced_name);
4064 return result;
4065 }
4066
4067 static int
get_array_size(struct gl_uniform_storage * uni,const glsl_struct_field * field,char * interface_name,char * var_name)4068 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4069 char *interface_name, char *var_name)
4070 {
4071 /* The ARB_program_interface_query spec says:
4072 *
4073 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4074 * the number of active array elements of the top-level shader storage
4075 * block member containing to the active variable is written to
4076 * <params>. If the top-level block member is not declared as an
4077 * array, the value one is written to <params>. If the top-level block
4078 * member is an array with no declared size, the value zero is written
4079 * to <params>."
4080 */
4081 if (is_top_level_shader_storage_block_member(uni->name,
4082 interface_name,
4083 var_name))
4084 return 1;
4085 else if (field->type->is_unsized_array())
4086 return 0;
4087 else if (field->type->is_array())
4088 return field->type->length;
4089
4090 return 1;
4091 }
4092
4093 static int
get_array_stride(struct gl_uniform_storage * uni,const glsl_type * interface,const glsl_struct_field * field,char * interface_name,char * var_name)4094 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4095 const glsl_struct_field *field, char *interface_name,
4096 char *var_name)
4097 {
4098 /* The ARB_program_interface_query spec says:
4099 *
4100 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4101 * identifying the stride between array elements of the top-level
4102 * shader storage block member containing the active variable is
4103 * written to <params>. For top-level block members declared as
4104 * arrays, the value written is the difference, in basic machine units,
4105 * between the offsets of the active variable for consecutive elements
4106 * in the top-level array. For top-level block members not declared as
4107 * an array, zero is written to <params>."
4108 */
4109 if (field->type->is_array()) {
4110 const enum glsl_matrix_layout matrix_layout =
4111 glsl_matrix_layout(field->matrix_layout);
4112 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4113 const glsl_type *array_type = field->type->fields.array;
4114
4115 if (is_top_level_shader_storage_block_member(uni->name,
4116 interface_name,
4117 var_name))
4118 return 0;
4119
4120 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4121 if (array_type->is_record() || array_type->is_array())
4122 return glsl_align(array_type->std140_size(row_major), 16);
4123 else
4124 return MAX2(array_type->std140_base_alignment(row_major), 16);
4125 } else {
4126 return array_type->std430_array_stride(row_major);
4127 }
4128 }
4129 return 0;
4130 }
4131
4132 static void
calculate_array_size_and_stride(struct gl_shader_program * shProg,struct gl_uniform_storage * uni)4133 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4134 struct gl_uniform_storage *uni)
4135 {
4136 int block_index = uni->block_index;
4137 int array_size = -1;
4138 int array_stride = -1;
4139 char *var_name = get_top_level_name(uni->name);
4140 char *interface_name =
4141 get_top_level_name(uni->is_shader_storage ?
4142 shProg->data->ShaderStorageBlocks[block_index].Name :
4143 shProg->data->UniformBlocks[block_index].Name);
4144
4145 if (strcmp(var_name, interface_name) == 0) {
4146 /* Deal with instanced array of SSBOs */
4147 char *temp_name = get_var_name(uni->name);
4148 if (!temp_name) {
4149 linker_error(shProg, "Out of memory during linking.\n");
4150 goto write_top_level_array_size_and_stride;
4151 }
4152 free(var_name);
4153 var_name = get_top_level_name(temp_name);
4154 free(temp_name);
4155 if (!var_name) {
4156 linker_error(shProg, "Out of memory during linking.\n");
4157 goto write_top_level_array_size_and_stride;
4158 }
4159 }
4160
4161 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4162 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4163 if (sh == NULL)
4164 continue;
4165
4166 foreach_in_list(ir_instruction, node, sh->ir) {
4167 ir_variable *var = node->as_variable();
4168 if (!var || !var->get_interface_type() ||
4169 var->data.mode != ir_var_shader_storage)
4170 continue;
4171
4172 const glsl_type *interface = var->get_interface_type();
4173
4174 if (strcmp(interface_name, interface->name) != 0)
4175 continue;
4176
4177 for (unsigned i = 0; i < interface->length; i++) {
4178 const glsl_struct_field *field = &interface->fields.structure[i];
4179 if (strcmp(field->name, var_name) != 0)
4180 continue;
4181
4182 array_stride = get_array_stride(uni, interface, field,
4183 interface_name, var_name);
4184 array_size = get_array_size(uni, field, interface_name, var_name);
4185 goto write_top_level_array_size_and_stride;
4186 }
4187 }
4188 }
4189 write_top_level_array_size_and_stride:
4190 free(interface_name);
4191 free(var_name);
4192 uni->top_level_array_stride = array_stride;
4193 uni->top_level_array_size = array_size;
4194 }
4195
4196 /**
4197 * Builds up a list of program resources that point to existing
4198 * resource data.
4199 */
4200 void
build_program_resource_list(struct gl_context * ctx,struct gl_shader_program * shProg)4201 build_program_resource_list(struct gl_context *ctx,
4202 struct gl_shader_program *shProg)
4203 {
4204 /* Rebuild resource list. */
4205 if (shProg->ProgramResourceList) {
4206 ralloc_free(shProg->ProgramResourceList);
4207 shProg->ProgramResourceList = NULL;
4208 shProg->NumProgramResourceList = 0;
4209 }
4210
4211 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4212
4213 /* Determine first input and final output stage. These are used to
4214 * detect which variables should be enumerated in the resource list
4215 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4216 */
4217 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4218 if (!shProg->_LinkedShaders[i])
4219 continue;
4220 if (input_stage == MESA_SHADER_STAGES)
4221 input_stage = i;
4222 output_stage = i;
4223 }
4224
4225 /* Empty shader, no resources. */
4226 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4227 return;
4228
4229 struct set *resource_set = _mesa_set_create(NULL,
4230 _mesa_hash_pointer,
4231 _mesa_key_pointer_equal);
4232
4233 /* Program interface needs to expose varyings in case of SSO. */
4234 if (shProg->SeparateShader) {
4235 if (!add_packed_varyings(ctx, shProg, resource_set,
4236 input_stage, GL_PROGRAM_INPUT))
4237 return;
4238
4239 if (!add_packed_varyings(ctx, shProg, resource_set,
4240 output_stage, GL_PROGRAM_OUTPUT))
4241 return;
4242 }
4243
4244 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4245 return;
4246
4247 /* Add inputs and outputs to the resource list. */
4248 if (!add_interface_variables(ctx, shProg, resource_set,
4249 input_stage, GL_PROGRAM_INPUT))
4250 return;
4251
4252 if (!add_interface_variables(ctx, shProg, resource_set,
4253 output_stage, GL_PROGRAM_OUTPUT))
4254 return;
4255
4256 struct gl_transform_feedback_info *linked_xfb =
4257 shProg->xfb_program->sh.LinkedTransformFeedback;
4258
4259 /* Add transform feedback varyings. */
4260 if (linked_xfb->NumVarying > 0) {
4261 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4262 if (!add_program_resource(shProg, resource_set,
4263 GL_TRANSFORM_FEEDBACK_VARYING,
4264 &linked_xfb->Varyings[i], 0))
4265 return;
4266 }
4267 }
4268
4269 /* Add transform feedback buffers. */
4270 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4271 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4272 linked_xfb->Buffers[i].Binding = i;
4273 if (!add_program_resource(shProg, resource_set,
4274 GL_TRANSFORM_FEEDBACK_BUFFER,
4275 &linked_xfb->Buffers[i], 0))
4276 return;
4277 }
4278 }
4279
4280 /* Add uniforms from uniform storage. */
4281 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4282 /* Do not add uniforms internally used by Mesa. */
4283 if (shProg->data->UniformStorage[i].hidden)
4284 continue;
4285
4286 uint8_t stageref =
4287 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4288 ir_var_uniform);
4289
4290 /* Add stagereferences for uniforms in a uniform block. */
4291 bool is_shader_storage =
4292 shProg->data->UniformStorage[i].is_shader_storage;
4293 int block_index = shProg->data->UniformStorage[i].block_index;
4294 if (block_index != -1) {
4295 stageref |= is_shader_storage ?
4296 shProg->data->ShaderStorageBlocks[block_index].stageref :
4297 shProg->data->UniformBlocks[block_index].stageref;
4298 }
4299
4300 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4301 if (!should_add_buffer_variable(shProg, type,
4302 shProg->data->UniformStorage[i].name))
4303 continue;
4304
4305 if (is_shader_storage) {
4306 calculate_array_size_and_stride(shProg,
4307 &shProg->data->UniformStorage[i]);
4308 }
4309
4310 if (!add_program_resource(shProg, resource_set, type,
4311 &shProg->data->UniformStorage[i], stageref))
4312 return;
4313 }
4314
4315 /* Add program uniform blocks. */
4316 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4317 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4318 &shProg->data->UniformBlocks[i], 0))
4319 return;
4320 }
4321
4322 /* Add program shader storage blocks. */
4323 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4324 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4325 &shProg->data->ShaderStorageBlocks[i], 0))
4326 return;
4327 }
4328
4329 /* Add atomic counter buffers. */
4330 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4331 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4332 &shProg->data->AtomicBuffers[i], 0))
4333 return;
4334 }
4335
4336 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4337 GLenum type;
4338 if (!shProg->data->UniformStorage[i].hidden)
4339 continue;
4340
4341 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4342 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4343 !shProg->data->UniformStorage[i].type->is_subroutine())
4344 continue;
4345
4346 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4347 /* add shader subroutines */
4348 if (!add_program_resource(shProg, resource_set,
4349 type, &shProg->data->UniformStorage[i], 0))
4350 return;
4351 }
4352 }
4353
4354 unsigned mask = shProg->data->linked_stages;
4355 while (mask) {
4356 const int i = u_bit_scan(&mask);
4357 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4358
4359 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4360 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4361 if (!add_program_resource(shProg, resource_set,
4362 type, &p->sh.SubroutineFunctions[j], 0))
4363 return;
4364 }
4365 }
4366
4367 _mesa_set_destroy(resource_set, NULL);
4368 }
4369
4370 /**
4371 * This check is done to make sure we allow only constant expression
4372 * indexing and "constant-index-expression" (indexing with an expression
4373 * that includes loop induction variable).
4374 */
4375 static bool
validate_sampler_array_indexing(struct gl_context * ctx,struct gl_shader_program * prog)4376 validate_sampler_array_indexing(struct gl_context *ctx,
4377 struct gl_shader_program *prog)
4378 {
4379 dynamic_sampler_array_indexing_visitor v;
4380 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4381 if (prog->_LinkedShaders[i] == NULL)
4382 continue;
4383
4384 bool no_dynamic_indexing =
4385 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4386
4387 /* Search for array derefs in shader. */
4388 v.run(prog->_LinkedShaders[i]->ir);
4389 if (v.uses_dynamic_sampler_array_indexing()) {
4390 const char *msg = "sampler arrays indexed with non-constant "
4391 "expressions is forbidden in GLSL %s %u";
4392 /* Backend has indicated that it has no dynamic indexing support. */
4393 if (no_dynamic_indexing) {
4394 linker_error(prog, msg, prog->IsES ? "ES" : "",
4395 prog->data->Version);
4396 return false;
4397 } else {
4398 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4399 prog->data->Version);
4400 }
4401 }
4402 }
4403 return true;
4404 }
4405
4406 static void
link_assign_subroutine_types(struct gl_shader_program * prog)4407 link_assign_subroutine_types(struct gl_shader_program *prog)
4408 {
4409 unsigned mask = prog->data->linked_stages;
4410 while (mask) {
4411 const int i = u_bit_scan(&mask);
4412 gl_program *p = prog->_LinkedShaders[i]->Program;
4413
4414 p->sh.MaxSubroutineFunctionIndex = 0;
4415 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4416 ir_function *fn = node->as_function();
4417 if (!fn)
4418 continue;
4419
4420 if (fn->is_subroutine)
4421 p->sh.NumSubroutineUniformTypes++;
4422
4423 if (!fn->num_subroutine_types)
4424 continue;
4425
4426 /* these should have been calculated earlier. */
4427 assert(fn->subroutine_index != -1);
4428 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4429 linker_error(prog, "Too many subroutine functions declared.\n");
4430 return;
4431 }
4432 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4433 struct gl_subroutine_function,
4434 p->sh.NumSubroutineFunctions + 1);
4435 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4436 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4437 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4438 ralloc_array(p, const struct glsl_type *,
4439 fn->num_subroutine_types);
4440
4441 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4442 * GLSL 4.5 spec:
4443 *
4444 * "Each subroutine with an index qualifier in the shader must be
4445 * given a unique index, otherwise a compile or link error will be
4446 * generated."
4447 */
4448 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4449 if (p->sh.SubroutineFunctions[j].index != -1 &&
4450 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4451 linker_error(prog, "each subroutine index qualifier in the "
4452 "shader must be unique\n");
4453 return;
4454 }
4455 }
4456 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4457 fn->subroutine_index;
4458
4459 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4460 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4461
4462 for (int j = 0; j < fn->num_subroutine_types; j++)
4463 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4464 p->sh.NumSubroutineFunctions++;
4465 }
4466 }
4467 }
4468
4469 static void
set_always_active_io(exec_list * ir,ir_variable_mode io_mode)4470 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4471 {
4472 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4473
4474 foreach_in_list(ir_instruction, node, ir) {
4475 ir_variable *const var = node->as_variable();
4476
4477 if (var == NULL || var->data.mode != io_mode)
4478 continue;
4479
4480 /* Don't set always active on builtins that haven't been redeclared */
4481 if (var->data.how_declared == ir_var_declared_implicitly)
4482 continue;
4483
4484 var->data.always_active_io = true;
4485 }
4486 }
4487
4488 /**
4489 * When separate shader programs are enabled, only input/outputs between
4490 * the stages of a multi-stage separate program can be safely removed
4491 * from the shader interface. Other inputs/outputs must remain active.
4492 */
4493 static void
disable_varying_optimizations_for_sso(struct gl_shader_program * prog)4494 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4495 {
4496 unsigned first, last;
4497 assert(prog->SeparateShader);
4498
4499 first = MESA_SHADER_STAGES;
4500 last = 0;
4501
4502 /* Determine first and last stage. Excluding the compute stage */
4503 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4504 if (!prog->_LinkedShaders[i])
4505 continue;
4506 if (first == MESA_SHADER_STAGES)
4507 first = i;
4508 last = i;
4509 }
4510
4511 if (first == MESA_SHADER_STAGES)
4512 return;
4513
4514 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4515 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4516 if (!sh)
4517 continue;
4518
4519 if (first == last) {
4520 /* For a single shader program only allow inputs to the vertex shader
4521 * and outputs from the fragment shader to be removed.
4522 */
4523 if (stage != MESA_SHADER_VERTEX)
4524 set_always_active_io(sh->ir, ir_var_shader_in);
4525 if (stage != MESA_SHADER_FRAGMENT)
4526 set_always_active_io(sh->ir, ir_var_shader_out);
4527 } else {
4528 /* For multi-stage separate shader programs only allow inputs and
4529 * outputs between the shader stages to be removed as well as inputs
4530 * to the vertex shader and outputs from the fragment shader.
4531 */
4532 if (stage == first && stage != MESA_SHADER_VERTEX)
4533 set_always_active_io(sh->ir, ir_var_shader_in);
4534 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4535 set_always_active_io(sh->ir, ir_var_shader_out);
4536 }
4537 }
4538 }
4539
4540 static bool
link_varyings_and_uniforms(unsigned first,unsigned last,unsigned num_explicit_uniform_locs,struct gl_context * ctx,struct gl_shader_program * prog,void * mem_ctx)4541 link_varyings_and_uniforms(unsigned first, unsigned last,
4542 unsigned num_explicit_uniform_locs,
4543 struct gl_context *ctx,
4544 struct gl_shader_program *prog, void *mem_ctx)
4545 {
4546 bool has_xfb_qualifiers = false;
4547 unsigned num_tfeedback_decls = 0;
4548 char **varying_names = NULL;
4549 tfeedback_decl *tfeedback_decls = NULL;
4550
4551 /* Mark all generic shader inputs and outputs as unpaired. */
4552 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4553 if (prog->_LinkedShaders[i] != NULL) {
4554 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4555 }
4556 }
4557
4558 unsigned prev = first;
4559 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4560 if (prog->_LinkedShaders[i] == NULL)
4561 continue;
4562
4563 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4564 prog->_LinkedShaders[i]);
4565 prev = i;
4566 }
4567
4568 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4569 MESA_SHADER_VERTEX)) {
4570 return false;
4571 }
4572
4573 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4574 MESA_SHADER_FRAGMENT)) {
4575 return false;
4576 }
4577
4578 /* From the ARB_enhanced_layouts spec:
4579 *
4580 * "If the shader used to record output variables for transform feedback
4581 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4582 * qualifiers, the values specified by TransformFeedbackVaryings are
4583 * ignored, and the set of variables captured for transform feedback is
4584 * instead derived from the specified layout qualifiers."
4585 */
4586 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4587 /* Find last stage before fragment shader */
4588 if (prog->_LinkedShaders[i]) {
4589 has_xfb_qualifiers =
4590 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4591 &num_tfeedback_decls,
4592 &varying_names);
4593 break;
4594 }
4595 }
4596
4597 if (!has_xfb_qualifiers) {
4598 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4599 varying_names = prog->TransformFeedback.VaryingNames;
4600 }
4601
4602 /* Find the program used for xfb. Even if we don't use xfb we still want to
4603 * set this so we can fill the default values for program interface query.
4604 */
4605 prog->xfb_program = prog->_LinkedShaders[last]->Program;
4606 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4607 if (prog->_LinkedShaders[i] == NULL)
4608 continue;
4609
4610 prog->xfb_program = prog->_LinkedShaders[i]->Program;
4611 break;
4612 }
4613
4614 if (num_tfeedback_decls != 0) {
4615 /* From GL_EXT_transform_feedback:
4616 * A program will fail to link if:
4617 *
4618 * * the <count> specified by TransformFeedbackVaryingsEXT is
4619 * non-zero, but the program object has no vertex or geometry
4620 * shader;
4621 */
4622 if (first >= MESA_SHADER_FRAGMENT) {
4623 linker_error(prog, "Transform feedback varyings specified, but "
4624 "no vertex, tessellation, or geometry shader is "
4625 "present.\n");
4626 return false;
4627 }
4628
4629 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl,
4630 num_tfeedback_decls);
4631 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4632 varying_names, tfeedback_decls))
4633 return false;
4634 }
4635
4636 /* If there is no fragment shader we need to set transform feedback.
4637 *
4638 * For SSO we also need to assign output locations. We assign them here
4639 * because we need to do it for both single stage programs and multi stage
4640 * programs.
4641 */
4642 if (last < MESA_SHADER_FRAGMENT &&
4643 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4644 const uint64_t reserved_out_slots =
4645 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4646 if (!assign_varying_locations(ctx, mem_ctx, prog,
4647 prog->_LinkedShaders[last], NULL,
4648 num_tfeedback_decls, tfeedback_decls,
4649 reserved_out_slots))
4650 return false;
4651 }
4652
4653 if (last <= MESA_SHADER_FRAGMENT) {
4654 /* Remove unused varyings from the first/last stage unless SSO */
4655 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4656 prog->_LinkedShaders[first],
4657 ir_var_shader_in);
4658 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4659 prog->_LinkedShaders[last],
4660 ir_var_shader_out);
4661
4662 /* If the program is made up of only a single stage */
4663 if (first == last) {
4664 gl_linked_shader *const sh = prog->_LinkedShaders[last];
4665
4666 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4667 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4668 tfeedback_decls);
4669
4670 if (prog->SeparateShader) {
4671 const uint64_t reserved_slots =
4672 reserved_varying_slot(sh, ir_var_shader_in);
4673
4674 /* Assign input locations for SSO, output locations are already
4675 * assigned.
4676 */
4677 if (!assign_varying_locations(ctx, mem_ctx, prog,
4678 NULL /* producer */,
4679 sh /* consumer */,
4680 0 /* num_tfeedback_decls */,
4681 NULL /* tfeedback_decls */,
4682 reserved_slots))
4683 return false;
4684 }
4685 } else {
4686 /* Linking the stages in the opposite order (from fragment to vertex)
4687 * ensures that inter-shader outputs written to in an earlier stage
4688 * are eliminated if they are (transitively) not used in a later
4689 * stage.
4690 */
4691 int next = last;
4692 for (int i = next - 1; i >= 0; i--) {
4693 if (prog->_LinkedShaders[i] == NULL && i != 0)
4694 continue;
4695
4696 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
4697 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
4698
4699 const uint64_t reserved_out_slots =
4700 reserved_varying_slot(sh_i, ir_var_shader_out);
4701 const uint64_t reserved_in_slots =
4702 reserved_varying_slot(sh_next, ir_var_shader_in);
4703
4704 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4705 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4706 tfeedback_decls);
4707
4708 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4709 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4710 tfeedback_decls,
4711 reserved_out_slots | reserved_in_slots))
4712 return false;
4713
4714 /* This must be done after all dead varyings are eliminated. */
4715 if (sh_i != NULL) {
4716 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4717 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4718 return false;
4719 }
4720 }
4721
4722 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4723 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4724 return false;
4725
4726 next = i;
4727 }
4728 }
4729 }
4730
4731 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4732 has_xfb_qualifiers))
4733 return false;
4734
4735 update_array_sizes(prog);
4736 link_assign_uniform_locations(prog, ctx, num_explicit_uniform_locs);
4737 link_assign_atomic_counter_resources(ctx, prog);
4738
4739 link_calculate_subroutine_compat(prog);
4740 check_resources(ctx, prog);
4741 check_subroutine_resources(prog);
4742 check_image_resources(ctx, prog);
4743 link_check_atomic_counter_resources(ctx, prog);
4744
4745 if (!prog->data->LinkStatus)
4746 return false;
4747
4748 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4749 if (prog->_LinkedShaders[i] == NULL)
4750 continue;
4751
4752 const struct gl_shader_compiler_options *options =
4753 &ctx->Const.ShaderCompilerOptions[i];
4754
4755 if (options->LowerBufferInterfaceBlocks)
4756 lower_ubo_reference(prog->_LinkedShaders[i],
4757 options->ClampBlockIndicesToArrayBounds);
4758
4759 if (i == MESA_SHADER_COMPUTE)
4760 lower_shared_reference(prog->_LinkedShaders[i],
4761 &prog->Comp.SharedSize);
4762
4763 lower_vector_derefs(prog->_LinkedShaders[i]);
4764 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4765 }
4766
4767 return true;
4768 }
4769
4770 void
link_shaders(struct gl_context * ctx,struct gl_shader_program * prog)4771 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4772 {
4773 prog->data->LinkStatus = true; /* All error paths will set this to false */
4774 prog->data->Validated = false;
4775
4776 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4777 *
4778 * "Linking can fail for a variety of reasons as specified in the
4779 * OpenGL Shading Language Specification, as well as any of the
4780 * following reasons:
4781 *
4782 * - No shader objects are attached to program."
4783 *
4784 * The Compatibility Profile specification does not list the error. In
4785 * Compatibility Profile missing shader stages are replaced by
4786 * fixed-function. This applies to the case where all stages are
4787 * missing.
4788 */
4789 if (prog->NumShaders == 0) {
4790 if (ctx->API != API_OPENGL_COMPAT)
4791 linker_error(prog, "no shaders attached to the program\n");
4792 return;
4793 }
4794
4795 unsigned int num_explicit_uniform_locs = 0;
4796
4797 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4798
4799 prog->ARB_fragment_coord_conventions_enable = false;
4800
4801 /* Separate the shaders into groups based on their type.
4802 */
4803 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4804 unsigned num_shaders[MESA_SHADER_STAGES];
4805
4806 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4807 shader_list[i] = (struct gl_shader **)
4808 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4809 num_shaders[i] = 0;
4810 }
4811
4812 unsigned min_version = UINT_MAX;
4813 unsigned max_version = 0;
4814 for (unsigned i = 0; i < prog->NumShaders; i++) {
4815 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4816 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4817
4818 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4819 linker_error(prog, "all shaders must use same shading "
4820 "language version\n");
4821 goto done;
4822 }
4823
4824 if (prog->Shaders[i]->info.ARB_fragment_coord_conventions_enable) {
4825 prog->ARB_fragment_coord_conventions_enable = true;
4826 }
4827
4828 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4829 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4830 num_shaders[shader_type]++;
4831 }
4832
4833 /* In desktop GLSL, different shader versions may be linked together. In
4834 * GLSL ES, all shader versions must be the same.
4835 */
4836 if (prog->Shaders[0]->IsES && min_version != max_version) {
4837 linker_error(prog, "all shaders must use same shading "
4838 "language version\n");
4839 goto done;
4840 }
4841
4842 prog->data->Version = max_version;
4843 prog->IsES = prog->Shaders[0]->IsES;
4844
4845 /* Some shaders have to be linked with some other shaders present.
4846 */
4847 if (!prog->SeparateShader) {
4848 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4849 num_shaders[MESA_SHADER_VERTEX] == 0) {
4850 linker_error(prog, "Geometry shader must be linked with "
4851 "vertex shader\n");
4852 goto done;
4853 }
4854 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4855 num_shaders[MESA_SHADER_VERTEX] == 0) {
4856 linker_error(prog, "Tessellation evaluation shader must be linked "
4857 "with vertex shader\n");
4858 goto done;
4859 }
4860 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4861 num_shaders[MESA_SHADER_VERTEX] == 0) {
4862 linker_error(prog, "Tessellation control shader must be linked with "
4863 "vertex shader\n");
4864 goto done;
4865 }
4866
4867 /* The spec is self-contradictory here. It allows linking without a tess
4868 * eval shader, but that can only be used with transform feedback and
4869 * rasterization disabled. However, transform feedback isn't allowed
4870 * with GL_PATCHES, so it can't be used.
4871 *
4872 * More investigation showed that the idea of transform feedback after
4873 * a tess control shader was dropped, because some hw vendors couldn't
4874 * support tessellation without a tess eval shader, but the linker
4875 * section wasn't updated to reflect that.
4876 *
4877 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4878 * spec bug.
4879 *
4880 * Do what's reasonable and always require a tess eval shader if a tess
4881 * control shader is present.
4882 */
4883 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4884 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4885 linker_error(prog, "Tessellation control shader must be linked with "
4886 "tessellation evaluation shader\n");
4887 goto done;
4888 }
4889 }
4890
4891 /* Compute shaders have additional restrictions. */
4892 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4893 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4894 linker_error(prog, "Compute shaders may not be linked with any other "
4895 "type of shader\n");
4896 }
4897
4898 /* Link all shaders for a particular stage and validate the result.
4899 */
4900 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4901 if (num_shaders[stage] > 0) {
4902 gl_linked_shader *const sh =
4903 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4904 num_shaders[stage], false);
4905
4906 if (!prog->data->LinkStatus) {
4907 if (sh)
4908 _mesa_delete_linked_shader(ctx, sh);
4909 goto done;
4910 }
4911
4912 switch (stage) {
4913 case MESA_SHADER_VERTEX:
4914 validate_vertex_shader_executable(prog, sh, ctx);
4915 break;
4916 case MESA_SHADER_TESS_CTRL:
4917 /* nothing to be done */
4918 break;
4919 case MESA_SHADER_TESS_EVAL:
4920 validate_tess_eval_shader_executable(prog, sh, ctx);
4921 break;
4922 case MESA_SHADER_GEOMETRY:
4923 validate_geometry_shader_executable(prog, sh, ctx);
4924 break;
4925 case MESA_SHADER_FRAGMENT:
4926 validate_fragment_shader_executable(prog, sh);
4927 break;
4928 }
4929 if (!prog->data->LinkStatus) {
4930 if (sh)
4931 _mesa_delete_linked_shader(ctx, sh);
4932 goto done;
4933 }
4934
4935 prog->_LinkedShaders[stage] = sh;
4936 prog->data->linked_stages |= 1 << stage;
4937 }
4938 }
4939
4940 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4941 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4942 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4943 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4944 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4945 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4946 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4947 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4948 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4949 } else {
4950 prog->LastClipDistanceArraySize = 0; /* Not used */
4951 prog->LastCullDistanceArraySize = 0; /* Not used */
4952 }
4953
4954 /* Here begins the inter-stage linking phase. Some initial validation is
4955 * performed, then locations are assigned for uniforms, attributes, and
4956 * varyings.
4957 */
4958 cross_validate_uniforms(prog);
4959 if (!prog->data->LinkStatus)
4960 goto done;
4961
4962 unsigned first, last, prev;
4963
4964 first = MESA_SHADER_STAGES;
4965 last = 0;
4966
4967 /* Determine first and last stage. */
4968 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4969 if (!prog->_LinkedShaders[i])
4970 continue;
4971 if (first == MESA_SHADER_STAGES)
4972 first = i;
4973 last = i;
4974 }
4975
4976 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4977 link_assign_subroutine_types(prog);
4978
4979 if (!prog->data->LinkStatus)
4980 goto done;
4981
4982 resize_tes_inputs(ctx, prog);
4983
4984 /* Validate the inputs of each stage with the output of the preceding
4985 * stage.
4986 */
4987 prev = first;
4988 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4989 if (prog->_LinkedShaders[i] == NULL)
4990 continue;
4991
4992 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4993 prog->_LinkedShaders[i]);
4994 if (!prog->data->LinkStatus)
4995 goto done;
4996
4997 cross_validate_outputs_to_inputs(prog,
4998 prog->_LinkedShaders[prev],
4999 prog->_LinkedShaders[i]);
5000 if (!prog->data->LinkStatus)
5001 goto done;
5002
5003 prev = i;
5004 }
5005
5006 /* Cross-validate uniform blocks between shader stages */
5007 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5008 if (!prog->data->LinkStatus)
5009 goto done;
5010
5011 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5012 if (prog->_LinkedShaders[i] != NULL)
5013 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5014 }
5015
5016 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5017 * it before optimization because we want most of the checks to get
5018 * dropped thanks to constant propagation.
5019 *
5020 * This rule also applies to GLSL ES 3.00.
5021 */
5022 if (max_version >= (prog->IsES ? 300 : 130)) {
5023 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5024 if (sh) {
5025 lower_discard_flow(sh->ir);
5026 }
5027 }
5028
5029 if (prog->SeparateShader)
5030 disable_varying_optimizations_for_sso(prog);
5031
5032 /* Process UBOs */
5033 if (!interstage_cross_validate_uniform_blocks(prog, false))
5034 goto done;
5035
5036 /* Process SSBOs */
5037 if (!interstage_cross_validate_uniform_blocks(prog, true))
5038 goto done;
5039
5040 /* Do common optimization before assigning storage for attributes,
5041 * uniforms, and varyings. Later optimization could possibly make
5042 * some of that unused.
5043 */
5044 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5045 if (prog->_LinkedShaders[i] == NULL)
5046 continue;
5047
5048 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5049 if (!prog->data->LinkStatus)
5050 goto done;
5051
5052 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5053 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5054 }
5055
5056 if (ctx->Const.LowerTessLevel) {
5057 lower_tess_level(prog->_LinkedShaders[i]);
5058 }
5059
5060 if (ctx->Const.GLSLOptimizeConservatively) {
5061 /* Run it just once. */
5062 do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
5063 &ctx->Const.ShaderCompilerOptions[i],
5064 ctx->Const.NativeIntegers);
5065 } else {
5066 /* Repeat it until it stops making changes. */
5067 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
5068 &ctx->Const.ShaderCompilerOptions[i],
5069 ctx->Const.NativeIntegers))
5070 ;
5071 }
5072
5073 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
5074 propagate_invariance(prog->_LinkedShaders[i]->ir);
5075 }
5076
5077 /* Validation for special cases where we allow sampler array indexing
5078 * with loop induction variable. This check emits a warning or error
5079 * depending if backend can handle dynamic indexing.
5080 */
5081 if ((!prog->IsES && prog->data->Version < 130) ||
5082 (prog->IsES && prog->data->Version < 300)) {
5083 if (!validate_sampler_array_indexing(ctx, prog))
5084 goto done;
5085 }
5086
5087 /* Check and validate stream emissions in geometry shaders */
5088 validate_geometry_shader_emissions(ctx, prog);
5089
5090 store_fragdepth_layout(prog);
5091
5092 if(!link_varyings_and_uniforms(first, last, num_explicit_uniform_locs, ctx,
5093 prog, mem_ctx))
5094 goto done;
5095
5096 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5097 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5098 * anything about shader linking when one of the shaders (vertex or
5099 * fragment shader) is absent. So, the extension shouldn't change the
5100 * behavior specified in GLSL specification.
5101 *
5102 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5103 * "Linking can fail for a variety of reasons as specified in the
5104 * OpenGL ES Shading Language Specification, as well as any of the
5105 * following reasons:
5106 *
5107 * ...
5108 *
5109 * * program contains objects to form either a vertex shader or
5110 * fragment shader, and program is not separable, and does not
5111 * contain objects to form both a vertex shader and fragment
5112 * shader."
5113 *
5114 * However, the only scenario in 3.1+ where we don't require them both is
5115 * when we have a compute shader. For example:
5116 *
5117 * - No shaders is a link error.
5118 * - Geom or Tess without a Vertex shader is a link error which means we
5119 * always require a Vertex shader and hence a Fragment shader.
5120 * - Finally a Compute shader linked with any other stage is a link error.
5121 */
5122 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5123 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5124 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5125 linker_error(prog, "program lacks a vertex shader\n");
5126 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5127 linker_error(prog, "program lacks a fragment shader\n");
5128 }
5129 }
5130
5131 done:
5132 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5133 free(shader_list[i]);
5134 if (prog->_LinkedShaders[i] == NULL)
5135 continue;
5136
5137 /* Do a final validation step to make sure that the IR wasn't
5138 * invalidated by any modifications performed after intrastage linking.
5139 */
5140 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5141
5142 /* Retain any live IR, but trash the rest. */
5143 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5144
5145 /* The symbol table in the linked shaders may contain references to
5146 * variables that were removed (e.g., unused uniforms). Since it may
5147 * contain junk, there is no possible valid use. Delete it and set the
5148 * pointer to NULL.
5149 */
5150 delete prog->_LinkedShaders[i]->symbols;
5151 prog->_LinkedShaders[i]->symbols = NULL;
5152 }
5153
5154 ralloc_free(mem_ctx);
5155 }
5156