1 //===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DWARFDebugAranges.h"
11 #include "DWARFCompileUnit.h"
12 #include "DWARFContext.h"
13 #include "llvm/Support/Format.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include <algorithm>
16 #include <cassert>
17 using namespace llvm;
18
19 // Compare function DWARFDebugAranges::Range structures
RangeLessThan(const DWARFDebugAranges::Range & range1,const DWARFDebugAranges::Range & range2)20 static bool RangeLessThan(const DWARFDebugAranges::Range &range1,
21 const DWARFDebugAranges::Range &range2) {
22 return range1.LoPC < range2.LoPC;
23 }
24
25 namespace {
26 class CountArangeDescriptors {
27 public:
CountArangeDescriptors(uint32_t & count_ref)28 CountArangeDescriptors(uint32_t &count_ref) : Count(count_ref) {}
operator ()(const DWARFDebugArangeSet & set)29 void operator()(const DWARFDebugArangeSet &set) {
30 Count += set.getNumDescriptors();
31 }
32 uint32_t &Count;
33 };
34
35 class AddArangeDescriptors {
36 public:
AddArangeDescriptors(DWARFDebugAranges::RangeColl & ranges)37 AddArangeDescriptors(DWARFDebugAranges::RangeColl &ranges)
38 : RangeCollection(ranges) {}
operator ()(const DWARFDebugArangeSet & set)39 void operator()(const DWARFDebugArangeSet& set) {
40 const DWARFDebugArangeSet::Descriptor* arange_desc_ptr;
41 DWARFDebugAranges::Range range;
42 range.Offset = set.getCompileUnitDIEOffset();
43
44 for (uint32_t i=0; (arange_desc_ptr = set.getDescriptor(i)) != NULL; ++i){
45 range.LoPC = arange_desc_ptr->Address;
46 range.Length = arange_desc_ptr->Length;
47
48 // Insert each item in increasing address order so binary searching
49 // can later be done!
50 DWARFDebugAranges::RangeColl::iterator insert_pos =
51 std::lower_bound(RangeCollection.begin(), RangeCollection.end(),
52 range, RangeLessThan);
53 RangeCollection.insert(insert_pos, range);
54 }
55 }
56 DWARFDebugAranges::RangeColl& RangeCollection;
57 };
58 }
59
extract(DataExtractor debug_aranges_data)60 bool DWARFDebugAranges::extract(DataExtractor debug_aranges_data) {
61 if (debug_aranges_data.isValidOffset(0)) {
62 uint32_t offset = 0;
63
64 typedef std::vector<DWARFDebugArangeSet> SetCollection;
65 typedef SetCollection::const_iterator SetCollectionIter;
66 SetCollection sets;
67
68 DWARFDebugArangeSet set;
69 Range range;
70 while (set.extract(debug_aranges_data, &offset))
71 sets.push_back(set);
72
73 uint32_t count = 0;
74
75 std::for_each(sets.begin(), sets.end(), CountArangeDescriptors(count));
76
77 if (count > 0) {
78 Aranges.reserve(count);
79 AddArangeDescriptors range_adder(Aranges);
80 std::for_each(sets.begin(), sets.end(), range_adder);
81 }
82 }
83 return false;
84 }
85
generate(DWARFContext * ctx)86 bool DWARFDebugAranges::generate(DWARFContext *ctx) {
87 clear();
88 if (ctx) {
89 const uint32_t num_compile_units = ctx->getNumCompileUnits();
90 for (uint32_t cu_idx = 0; cu_idx < num_compile_units; ++cu_idx) {
91 DWARFCompileUnit *cu = ctx->getCompileUnitAtIndex(cu_idx);
92 if (cu)
93 cu->buildAddressRangeTable(this, true);
94 }
95 }
96 return !isEmpty();
97 }
98
dump(raw_ostream & OS) const99 void DWARFDebugAranges::dump(raw_ostream &OS) const {
100 const uint32_t num_ranges = getNumRanges();
101 for (uint32_t i = 0; i < num_ranges; ++i) {
102 const Range &range = Aranges[i];
103 OS << format("0x%8.8x: [0x%8.8llx - 0x%8.8llx)\n", range.Offset,
104 (uint64_t)range.LoPC, (uint64_t)range.HiPC());
105 }
106 }
107
dump(raw_ostream & OS) const108 void DWARFDebugAranges::Range::dump(raw_ostream &OS) const {
109 OS << format("{0x%8.8x}: [0x%8.8llx - 0x%8.8llx)\n", Offset, LoPC, HiPC());
110 }
111
appendRange(uint32_t offset,uint64_t low_pc,uint64_t high_pc)112 void DWARFDebugAranges::appendRange(uint32_t offset, uint64_t low_pc,
113 uint64_t high_pc) {
114 if (!Aranges.empty()) {
115 if (Aranges.back().Offset == offset && Aranges.back().HiPC() == low_pc) {
116 Aranges.back().setHiPC(high_pc);
117 return;
118 }
119 }
120 Aranges.push_back(Range(low_pc, high_pc, offset));
121 }
122
sort(bool minimize,uint32_t n)123 void DWARFDebugAranges::sort(bool minimize, uint32_t n) {
124 const size_t orig_arange_size = Aranges.size();
125 // Size of one? If so, no sorting is needed
126 if (orig_arange_size <= 1)
127 return;
128 // Sort our address range entries
129 std::stable_sort(Aranges.begin(), Aranges.end(), RangeLessThan);
130
131 if (!minimize)
132 return;
133
134 // Most address ranges are contiguous from function to function
135 // so our new ranges will likely be smaller. We calculate the size
136 // of the new ranges since although std::vector objects can be resized,
137 // the will never reduce their allocated block size and free any excesss
138 // memory, so we might as well start a brand new collection so it is as
139 // small as possible.
140
141 // First calculate the size of the new minimal arange vector
142 // so we don't have to do a bunch of re-allocations as we
143 // copy the new minimal stuff over to the new collection.
144 size_t minimal_size = 1;
145 for (size_t i = 1; i < orig_arange_size; ++i) {
146 if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i], n))
147 ++minimal_size;
148 }
149
150 // If the sizes are the same, then no consecutive aranges can be
151 // combined, we are done.
152 if (minimal_size == orig_arange_size)
153 return;
154
155 // Else, make a new RangeColl that _only_ contains what we need.
156 RangeColl minimal_aranges;
157 minimal_aranges.resize(minimal_size);
158 uint32_t j = 0;
159 minimal_aranges[j] = Aranges[0];
160 for (size_t i = 1; i < orig_arange_size; ++i) {
161 if(Range::SortedOverlapCheck (minimal_aranges[j], Aranges[i], n)) {
162 minimal_aranges[j].setHiPC (Aranges[i].HiPC());
163 } else {
164 // Only increment j if we aren't merging
165 minimal_aranges[++j] = Aranges[i];
166 }
167 }
168 assert (j+1 == minimal_size);
169
170 // Now swap our new minimal aranges into place. The local
171 // minimal_aranges will then contian the old big collection
172 // which will get freed.
173 minimal_aranges.swap(Aranges);
174 }
175
findAddress(uint64_t address) const176 uint32_t DWARFDebugAranges::findAddress(uint64_t address) const {
177 if (!Aranges.empty()) {
178 Range range(address);
179 RangeCollIterator begin = Aranges.begin();
180 RangeCollIterator end = Aranges.end();
181 RangeCollIterator pos = lower_bound(begin, end, range, RangeLessThan);
182
183 if (pos != end && pos->LoPC <= address && address < pos->HiPC()) {
184 return pos->Offset;
185 } else if (pos != begin) {
186 --pos;
187 if (pos->LoPC <= address && address < pos->HiPC())
188 return (*pos).Offset;
189 }
190 }
191 return -1U;
192 }
193
194 bool
allRangesAreContiguous(uint64_t & LoPC,uint64_t & HiPC) const195 DWARFDebugAranges::allRangesAreContiguous(uint64_t &LoPC, uint64_t &HiPC) const{
196 if (Aranges.empty())
197 return false;
198
199 uint64_t next_addr = 0;
200 RangeCollIterator begin = Aranges.begin();
201 for (RangeCollIterator pos = begin, end = Aranges.end(); pos != end;
202 ++pos) {
203 if (pos != begin && pos->LoPC != next_addr)
204 return false;
205 next_addr = pos->HiPC();
206 }
207 // We checked for empty at the start of function so front() will be valid.
208 LoPC = Aranges.front().LoPC;
209 // We checked for empty at the start of function so back() will be valid.
210 HiPC = Aranges.back().HiPC();
211 return true;
212 }
213
getMaxRange(uint64_t & LoPC,uint64_t & HiPC) const214 bool DWARFDebugAranges::getMaxRange(uint64_t &LoPC, uint64_t &HiPC) const {
215 if (Aranges.empty())
216 return false;
217 // We checked for empty at the start of function so front() will be valid.
218 LoPC = Aranges.front().LoPC;
219 // We checked for empty at the start of function so back() will be valid.
220 HiPC = Aranges.back().HiPC();
221 return true;
222 }
223
224