1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/ByteStream.h"
17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
18 #include "llvm/DebugInfo/CodeView/CodeView.h"
19 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
20 #include "llvm/DebugInfo/CodeView/Line.h"
21 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
22 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
23 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
24 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCSectionCOFF.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/COFF.h"
31 #include "llvm/Support/ScopedPrinter.h"
32 #include "llvm/Target/TargetFrameLowering.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35
36 using namespace llvm;
37 using namespace llvm::codeview;
38
CodeViewDebug(AsmPrinter * AP)39 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
40 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
41 // If module doesn't have named metadata anchors or COFF debug section
42 // is not available, skip any debug info related stuff.
43 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
44 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
45 Asm = nullptr;
46 return;
47 }
48
49 // Tell MMI that we have debug info.
50 MMI->setDebugInfoAvailability(true);
51 }
52
getFullFilepath(const DIFile * File)53 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
54 std::string &Filepath = FileToFilepathMap[File];
55 if (!Filepath.empty())
56 return Filepath;
57
58 StringRef Dir = File->getDirectory(), Filename = File->getFilename();
59
60 // Clang emits directory and relative filename info into the IR, but CodeView
61 // operates on full paths. We could change Clang to emit full paths too, but
62 // that would increase the IR size and probably not needed for other users.
63 // For now, just concatenate and canonicalize the path here.
64 if (Filename.find(':') == 1)
65 Filepath = Filename;
66 else
67 Filepath = (Dir + "\\" + Filename).str();
68
69 // Canonicalize the path. We have to do it textually because we may no longer
70 // have access the file in the filesystem.
71 // First, replace all slashes with backslashes.
72 std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
73
74 // Remove all "\.\" with "\".
75 size_t Cursor = 0;
76 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
77 Filepath.erase(Cursor, 2);
78
79 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
80 // path should be well-formatted, e.g. start with a drive letter, etc.
81 Cursor = 0;
82 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
83 // Something's wrong if the path starts with "\..\", abort.
84 if (Cursor == 0)
85 break;
86
87 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
88 if (PrevSlash == std::string::npos)
89 // Something's wrong, abort.
90 break;
91
92 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
93 // The next ".." might be following the one we've just erased.
94 Cursor = PrevSlash;
95 }
96
97 // Remove all duplicate backslashes.
98 Cursor = 0;
99 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
100 Filepath.erase(Cursor, 1);
101
102 return Filepath;
103 }
104
maybeRecordFile(const DIFile * F)105 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
106 unsigned NextId = FileIdMap.size() + 1;
107 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
108 if (Insertion.second) {
109 // We have to compute the full filepath and emit a .cv_file directive.
110 StringRef FullPath = getFullFilepath(F);
111 NextId = OS.EmitCVFileDirective(NextId, FullPath);
112 assert(NextId == FileIdMap.size() && ".cv_file directive failed");
113 }
114 return Insertion.first->second;
115 }
116
117 CodeViewDebug::InlineSite &
getInlineSite(const DILocation * InlinedAt,const DISubprogram * Inlinee)118 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
119 const DISubprogram *Inlinee) {
120 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
121 InlineSite *Site = &SiteInsertion.first->second;
122 if (SiteInsertion.second) {
123 Site->SiteFuncId = NextFuncId++;
124 Site->Inlinee = Inlinee;
125 InlinedSubprograms.insert(Inlinee);
126 getFuncIdForSubprogram(Inlinee);
127 }
128 return *Site;
129 }
130
getPrettyScopeName(const DIScope * Scope)131 static StringRef getPrettyScopeName(const DIScope *Scope) {
132 StringRef ScopeName = Scope->getName();
133 if (!ScopeName.empty())
134 return ScopeName;
135
136 switch (Scope->getTag()) {
137 case dwarf::DW_TAG_enumeration_type:
138 case dwarf::DW_TAG_class_type:
139 case dwarf::DW_TAG_structure_type:
140 case dwarf::DW_TAG_union_type:
141 return "<unnamed-tag>";
142 case dwarf::DW_TAG_namespace:
143 return "`anonymous namespace'";
144 }
145
146 return StringRef();
147 }
148
getQualifiedNameComponents(const DIScope * Scope,SmallVectorImpl<StringRef> & QualifiedNameComponents)149 static const DISubprogram *getQualifiedNameComponents(
150 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
151 const DISubprogram *ClosestSubprogram = nullptr;
152 while (Scope != nullptr) {
153 if (ClosestSubprogram == nullptr)
154 ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
155 StringRef ScopeName = getPrettyScopeName(Scope);
156 if (!ScopeName.empty())
157 QualifiedNameComponents.push_back(ScopeName);
158 Scope = Scope->getScope().resolve();
159 }
160 return ClosestSubprogram;
161 }
162
getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,StringRef TypeName)163 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
164 StringRef TypeName) {
165 std::string FullyQualifiedName;
166 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
167 FullyQualifiedName.append(QualifiedNameComponent);
168 FullyQualifiedName.append("::");
169 }
170 FullyQualifiedName.append(TypeName);
171 return FullyQualifiedName;
172 }
173
getFullyQualifiedName(const DIScope * Scope,StringRef Name)174 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
175 SmallVector<StringRef, 5> QualifiedNameComponents;
176 getQualifiedNameComponents(Scope, QualifiedNameComponents);
177 return getQualifiedName(QualifiedNameComponents, Name);
178 }
179
180 struct CodeViewDebug::TypeLoweringScope {
TypeLoweringScopeCodeViewDebug::TypeLoweringScope181 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
~TypeLoweringScopeCodeViewDebug::TypeLoweringScope182 ~TypeLoweringScope() {
183 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
184 // inner TypeLoweringScopes don't attempt to emit deferred types.
185 if (CVD.TypeEmissionLevel == 1)
186 CVD.emitDeferredCompleteTypes();
187 --CVD.TypeEmissionLevel;
188 }
189 CodeViewDebug &CVD;
190 };
191
getFullyQualifiedName(const DIScope * Ty)192 static std::string getFullyQualifiedName(const DIScope *Ty) {
193 const DIScope *Scope = Ty->getScope().resolve();
194 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
195 }
196
getScopeIndex(const DIScope * Scope)197 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
198 // No scope means global scope and that uses the zero index.
199 if (!Scope || isa<DIFile>(Scope))
200 return TypeIndex();
201
202 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
203
204 // Check if we've already translated this scope.
205 auto I = TypeIndices.find({Scope, nullptr});
206 if (I != TypeIndices.end())
207 return I->second;
208
209 // Build the fully qualified name of the scope.
210 std::string ScopeName = getFullyQualifiedName(Scope);
211 TypeIndex TI =
212 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName));
213 return recordTypeIndexForDINode(Scope, TI);
214 }
215
getFuncIdForSubprogram(const DISubprogram * SP)216 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
217 // It's possible to ask for the FuncId of a function which doesn't have a
218 // subprogram: inlining a function with debug info into a function with none.
219 if (!SP)
220 return TypeIndex::None();
221
222 // Check if we've already translated this subprogram.
223 auto I = TypeIndices.find({SP, nullptr});
224 if (I != TypeIndices.end())
225 return I->second;
226
227 // The display name includes function template arguments. Drop them to match
228 // MSVC.
229 StringRef DisplayName = SP->getDisplayName().split('<').first;
230
231 const DIScope *Scope = SP->getScope().resolve();
232 TypeIndex TI;
233 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
234 // If the scope is a DICompositeType, then this must be a method. Member
235 // function types take some special handling, and require access to the
236 // subprogram.
237 TypeIndex ClassType = getTypeIndex(Class);
238 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
239 DisplayName);
240 TI = TypeTable.writeMemberFuncId(MFuncId);
241 } else {
242 // Otherwise, this must be a free function.
243 TypeIndex ParentScope = getScopeIndex(Scope);
244 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
245 TI = TypeTable.writeFuncId(FuncId);
246 }
247
248 return recordTypeIndexForDINode(SP, TI);
249 }
250
getMemberFunctionType(const DISubprogram * SP,const DICompositeType * Class)251 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
252 const DICompositeType *Class) {
253 // Always use the method declaration as the key for the function type. The
254 // method declaration contains the this adjustment.
255 if (SP->getDeclaration())
256 SP = SP->getDeclaration();
257 assert(!SP->getDeclaration() && "should use declaration as key");
258
259 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
260 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
261 auto I = TypeIndices.find({SP, Class});
262 if (I != TypeIndices.end())
263 return I->second;
264
265 // Make sure complete type info for the class is emitted *after* the member
266 // function type, as the complete class type is likely to reference this
267 // member function type.
268 TypeLoweringScope S(*this);
269 TypeIndex TI =
270 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
271 return recordTypeIndexForDINode(SP, TI, Class);
272 }
273
recordTypeIndexForDINode(const DINode * Node,TypeIndex TI,const DIType * ClassTy)274 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
275 TypeIndex TI,
276 const DIType *ClassTy) {
277 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
278 (void)InsertResult;
279 assert(InsertResult.second && "DINode was already assigned a type index");
280 return TI;
281 }
282
getPointerSizeInBytes()283 unsigned CodeViewDebug::getPointerSizeInBytes() {
284 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
285 }
286
recordLocalVariable(LocalVariable && Var,const DILocation * InlinedAt)287 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
288 const DILocation *InlinedAt) {
289 if (InlinedAt) {
290 // This variable was inlined. Associate it with the InlineSite.
291 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
292 InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
293 Site.InlinedLocals.emplace_back(Var);
294 } else {
295 // This variable goes in the main ProcSym.
296 CurFn->Locals.emplace_back(Var);
297 }
298 }
299
addLocIfNotPresent(SmallVectorImpl<const DILocation * > & Locs,const DILocation * Loc)300 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
301 const DILocation *Loc) {
302 auto B = Locs.begin(), E = Locs.end();
303 if (std::find(B, E, Loc) == E)
304 Locs.push_back(Loc);
305 }
306
maybeRecordLocation(const DebugLoc & DL,const MachineFunction * MF)307 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
308 const MachineFunction *MF) {
309 // Skip this instruction if it has the same location as the previous one.
310 if (DL == CurFn->LastLoc)
311 return;
312
313 const DIScope *Scope = DL.get()->getScope();
314 if (!Scope)
315 return;
316
317 // Skip this line if it is longer than the maximum we can record.
318 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
319 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
320 LI.isNeverStepInto())
321 return;
322
323 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
324 if (CI.getStartColumn() != DL.getCol())
325 return;
326
327 if (!CurFn->HaveLineInfo)
328 CurFn->HaveLineInfo = true;
329 unsigned FileId = 0;
330 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
331 FileId = CurFn->LastFileId;
332 else
333 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
334 CurFn->LastLoc = DL;
335
336 unsigned FuncId = CurFn->FuncId;
337 if (const DILocation *SiteLoc = DL->getInlinedAt()) {
338 const DILocation *Loc = DL.get();
339
340 // If this location was actually inlined from somewhere else, give it the ID
341 // of the inline call site.
342 FuncId =
343 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
344
345 // Ensure we have links in the tree of inline call sites.
346 bool FirstLoc = true;
347 while ((SiteLoc = Loc->getInlinedAt())) {
348 InlineSite &Site =
349 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
350 if (!FirstLoc)
351 addLocIfNotPresent(Site.ChildSites, Loc);
352 FirstLoc = false;
353 Loc = SiteLoc;
354 }
355 addLocIfNotPresent(CurFn->ChildSites, Loc);
356 }
357
358 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
359 /*PrologueEnd=*/false,
360 /*IsStmt=*/false, DL->getFilename());
361 }
362
emitCodeViewMagicVersion()363 void CodeViewDebug::emitCodeViewMagicVersion() {
364 OS.EmitValueToAlignment(4);
365 OS.AddComment("Debug section magic");
366 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
367 }
368
endModule()369 void CodeViewDebug::endModule() {
370 if (!Asm || !MMI->hasDebugInfo())
371 return;
372
373 assert(Asm != nullptr);
374
375 // The COFF .debug$S section consists of several subsections, each starting
376 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
377 // of the payload followed by the payload itself. The subsections are 4-byte
378 // aligned.
379
380 // Use the generic .debug$S section, and make a subsection for all the inlined
381 // subprograms.
382 switchToDebugSectionForSymbol(nullptr);
383 emitInlineeLinesSubsection();
384
385 // Emit per-function debug information.
386 for (auto &P : FnDebugInfo)
387 if (!P.first->isDeclarationForLinker())
388 emitDebugInfoForFunction(P.first, P.second);
389
390 // Emit global variable debug information.
391 setCurrentSubprogram(nullptr);
392 emitDebugInfoForGlobals();
393
394 // Emit retained types.
395 emitDebugInfoForRetainedTypes();
396
397 // Switch back to the generic .debug$S section after potentially processing
398 // comdat symbol sections.
399 switchToDebugSectionForSymbol(nullptr);
400
401 // Emit UDT records for any types used by global variables.
402 if (!GlobalUDTs.empty()) {
403 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
404 emitDebugInfoForUDTs(GlobalUDTs);
405 endCVSubsection(SymbolsEnd);
406 }
407
408 // This subsection holds a file index to offset in string table table.
409 OS.AddComment("File index to string table offset subsection");
410 OS.EmitCVFileChecksumsDirective();
411
412 // This subsection holds the string table.
413 OS.AddComment("String table");
414 OS.EmitCVStringTableDirective();
415
416 // Emit type information last, so that any types we translate while emitting
417 // function info are included.
418 emitTypeInformation();
419
420 clear();
421 }
422
emitNullTerminatedSymbolName(MCStreamer & OS,StringRef S)423 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
424 // Microsoft's linker seems to have trouble with symbol names longer than
425 // 0xffd8 bytes.
426 S = S.substr(0, 0xffd8);
427 SmallString<32> NullTerminatedString(S);
428 NullTerminatedString.push_back('\0');
429 OS.EmitBytes(NullTerminatedString);
430 }
431
emitTypeInformation()432 void CodeViewDebug::emitTypeInformation() {
433 // Do nothing if we have no debug info or if no non-trivial types were emitted
434 // to TypeTable during codegen.
435 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
436 if (!CU_Nodes)
437 return;
438 if (TypeTable.empty())
439 return;
440
441 // Start the .debug$T section with 0x4.
442 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
443 emitCodeViewMagicVersion();
444
445 SmallString<8> CommentPrefix;
446 if (OS.isVerboseAsm()) {
447 CommentPrefix += '\t';
448 CommentPrefix += Asm->MAI->getCommentString();
449 CommentPrefix += ' ';
450 }
451
452 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
453 TypeTable.ForEachRecord(
454 [&](TypeIndex Index, StringRef Record) {
455 if (OS.isVerboseAsm()) {
456 // Emit a block comment describing the type record for readability.
457 SmallString<512> CommentBlock;
458 raw_svector_ostream CommentOS(CommentBlock);
459 ScopedPrinter SP(CommentOS);
460 SP.setPrefix(CommentPrefix);
461 CVTD.setPrinter(&SP);
462 Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
463 if (E) {
464 logAllUnhandledErrors(std::move(E), errs(), "error: ");
465 llvm_unreachable("produced malformed type record");
466 }
467 // emitRawComment will insert its own tab and comment string before
468 // the first line, so strip off our first one. It also prints its own
469 // newline.
470 OS.emitRawComment(
471 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
472 } else {
473 #ifndef NDEBUG
474 // Assert that the type data is valid even if we aren't dumping
475 // comments. The MSVC linker doesn't do much type record validation,
476 // so the first link of an invalid type record can succeed while
477 // subsequent links will fail with LNK1285.
478 ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()});
479 CVTypeArray Types;
480 StreamReader Reader(Stream);
481 Error E = Reader.readArray(Types, Reader.getLength());
482 if (!E) {
483 TypeVisitorCallbacks C;
484 E = CVTypeVisitor(C).visitTypeStream(Types);
485 }
486 if (E) {
487 logAllUnhandledErrors(std::move(E), errs(), "error: ");
488 llvm_unreachable("produced malformed type record");
489 }
490 #endif
491 }
492 OS.EmitBinaryData(Record);
493 });
494 }
495
emitInlineeLinesSubsection()496 void CodeViewDebug::emitInlineeLinesSubsection() {
497 if (InlinedSubprograms.empty())
498 return;
499
500 OS.AddComment("Inlinee lines subsection");
501 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
502
503 // We don't provide any extra file info.
504 // FIXME: Find out if debuggers use this info.
505 OS.AddComment("Inlinee lines signature");
506 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
507
508 for (const DISubprogram *SP : InlinedSubprograms) {
509 assert(TypeIndices.count({SP, nullptr}));
510 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
511
512 OS.AddBlankLine();
513 unsigned FileId = maybeRecordFile(SP->getFile());
514 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
515 SP->getFilename() + Twine(':') + Twine(SP->getLine()));
516 OS.AddBlankLine();
517 // The filechecksum table uses 8 byte entries for now, and file ids start at
518 // 1.
519 unsigned FileOffset = (FileId - 1) * 8;
520 OS.AddComment("Type index of inlined function");
521 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
522 OS.AddComment("Offset into filechecksum table");
523 OS.EmitIntValue(FileOffset, 4);
524 OS.AddComment("Starting line number");
525 OS.EmitIntValue(SP->getLine(), 4);
526 }
527
528 endCVSubsection(InlineEnd);
529 }
530
collectInlineSiteChildren(SmallVectorImpl<unsigned> & Children,const FunctionInfo & FI,const InlineSite & Site)531 void CodeViewDebug::collectInlineSiteChildren(
532 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
533 const InlineSite &Site) {
534 for (const DILocation *ChildSiteLoc : Site.ChildSites) {
535 auto I = FI.InlineSites.find(ChildSiteLoc);
536 const InlineSite &ChildSite = I->second;
537 Children.push_back(ChildSite.SiteFuncId);
538 collectInlineSiteChildren(Children, FI, ChildSite);
539 }
540 }
541
emitInlinedCallSite(const FunctionInfo & FI,const DILocation * InlinedAt,const InlineSite & Site)542 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
543 const DILocation *InlinedAt,
544 const InlineSite &Site) {
545 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
546 *InlineEnd = MMI->getContext().createTempSymbol();
547
548 assert(TypeIndices.count({Site.Inlinee, nullptr}));
549 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
550
551 // SymbolRecord
552 OS.AddComment("Record length");
553 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength
554 OS.EmitLabel(InlineBegin);
555 OS.AddComment("Record kind: S_INLINESITE");
556 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
557
558 OS.AddComment("PtrParent");
559 OS.EmitIntValue(0, 4);
560 OS.AddComment("PtrEnd");
561 OS.EmitIntValue(0, 4);
562 OS.AddComment("Inlinee type index");
563 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
564
565 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
566 unsigned StartLineNum = Site.Inlinee->getLine();
567 SmallVector<unsigned, 3> SecondaryFuncIds;
568 collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
569
570 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
571 FI.Begin, FI.End, SecondaryFuncIds);
572
573 OS.EmitLabel(InlineEnd);
574
575 emitLocalVariableList(Site.InlinedLocals);
576
577 // Recurse on child inlined call sites before closing the scope.
578 for (const DILocation *ChildSite : Site.ChildSites) {
579 auto I = FI.InlineSites.find(ChildSite);
580 assert(I != FI.InlineSites.end() &&
581 "child site not in function inline site map");
582 emitInlinedCallSite(FI, ChildSite, I->second);
583 }
584
585 // Close the scope.
586 OS.AddComment("Record length");
587 OS.EmitIntValue(2, 2); // RecordLength
588 OS.AddComment("Record kind: S_INLINESITE_END");
589 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
590 }
591
switchToDebugSectionForSymbol(const MCSymbol * GVSym)592 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
593 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
594 // comdat key. A section may be comdat because of -ffunction-sections or
595 // because it is comdat in the IR.
596 MCSectionCOFF *GVSec =
597 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
598 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
599
600 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
601 Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
602 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
603
604 OS.SwitchSection(DebugSec);
605
606 // Emit the magic version number if this is the first time we've switched to
607 // this section.
608 if (ComdatDebugSections.insert(DebugSec).second)
609 emitCodeViewMagicVersion();
610 }
611
emitDebugInfoForFunction(const Function * GV,FunctionInfo & FI)612 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
613 FunctionInfo &FI) {
614 // For each function there is a separate subsection
615 // which holds the PC to file:line table.
616 const MCSymbol *Fn = Asm->getSymbol(GV);
617 assert(Fn);
618
619 // Switch to the to a comdat section, if appropriate.
620 switchToDebugSectionForSymbol(Fn);
621
622 std::string FuncName;
623 auto *SP = GV->getSubprogram();
624 setCurrentSubprogram(SP);
625
626 // If we have a display name, build the fully qualified name by walking the
627 // chain of scopes.
628 if (SP != nullptr && !SP->getDisplayName().empty())
629 FuncName =
630 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
631
632 // If our DISubprogram name is empty, use the mangled name.
633 if (FuncName.empty())
634 FuncName = GlobalValue::getRealLinkageName(GV->getName());
635
636 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
637 OS.AddComment("Symbol subsection for " + Twine(FuncName));
638 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
639 {
640 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
641 *ProcRecordEnd = MMI->getContext().createTempSymbol();
642 OS.AddComment("Record length");
643 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
644 OS.EmitLabel(ProcRecordBegin);
645
646 if (GV->hasLocalLinkage()) {
647 OS.AddComment("Record kind: S_LPROC32_ID");
648 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
649 } else {
650 OS.AddComment("Record kind: S_GPROC32_ID");
651 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
652 }
653
654 // These fields are filled in by tools like CVPACK which run after the fact.
655 OS.AddComment("PtrParent");
656 OS.EmitIntValue(0, 4);
657 OS.AddComment("PtrEnd");
658 OS.EmitIntValue(0, 4);
659 OS.AddComment("PtrNext");
660 OS.EmitIntValue(0, 4);
661 // This is the important bit that tells the debugger where the function
662 // code is located and what's its size:
663 OS.AddComment("Code size");
664 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
665 OS.AddComment("Offset after prologue");
666 OS.EmitIntValue(0, 4);
667 OS.AddComment("Offset before epilogue");
668 OS.EmitIntValue(0, 4);
669 OS.AddComment("Function type index");
670 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
671 OS.AddComment("Function section relative address");
672 OS.EmitCOFFSecRel32(Fn);
673 OS.AddComment("Function section index");
674 OS.EmitCOFFSectionIndex(Fn);
675 OS.AddComment("Flags");
676 OS.EmitIntValue(0, 1);
677 // Emit the function display name as a null-terminated string.
678 OS.AddComment("Function name");
679 // Truncate the name so we won't overflow the record length field.
680 emitNullTerminatedSymbolName(OS, FuncName);
681 OS.EmitLabel(ProcRecordEnd);
682
683 emitLocalVariableList(FI.Locals);
684
685 // Emit inlined call site information. Only emit functions inlined directly
686 // into the parent function. We'll emit the other sites recursively as part
687 // of their parent inline site.
688 for (const DILocation *InlinedAt : FI.ChildSites) {
689 auto I = FI.InlineSites.find(InlinedAt);
690 assert(I != FI.InlineSites.end() &&
691 "child site not in function inline site map");
692 emitInlinedCallSite(FI, InlinedAt, I->second);
693 }
694
695 if (SP != nullptr)
696 emitDebugInfoForUDTs(LocalUDTs);
697
698 // We're done with this function.
699 OS.AddComment("Record length");
700 OS.EmitIntValue(0x0002, 2);
701 OS.AddComment("Record kind: S_PROC_ID_END");
702 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
703 }
704 endCVSubsection(SymbolsEnd);
705
706 // We have an assembler directive that takes care of the whole line table.
707 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
708 }
709
710 CodeViewDebug::LocalVarDefRange
createDefRangeMem(uint16_t CVRegister,int Offset)711 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
712 LocalVarDefRange DR;
713 DR.InMemory = -1;
714 DR.DataOffset = Offset;
715 assert(DR.DataOffset == Offset && "truncation");
716 DR.StructOffset = 0;
717 DR.CVRegister = CVRegister;
718 return DR;
719 }
720
721 CodeViewDebug::LocalVarDefRange
createDefRangeReg(uint16_t CVRegister)722 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
723 LocalVarDefRange DR;
724 DR.InMemory = 0;
725 DR.DataOffset = 0;
726 DR.StructOffset = 0;
727 DR.CVRegister = CVRegister;
728 return DR;
729 }
730
collectVariableInfoFromMMITable(DenseSet<InlinedVariable> & Processed)731 void CodeViewDebug::collectVariableInfoFromMMITable(
732 DenseSet<InlinedVariable> &Processed) {
733 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
734 const TargetFrameLowering *TFI = TSI.getFrameLowering();
735 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
736
737 for (const MachineModuleInfo::VariableDbgInfo &VI :
738 MMI->getVariableDbgInfo()) {
739 if (!VI.Var)
740 continue;
741 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
742 "Expected inlined-at fields to agree");
743
744 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
745 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
746
747 // If variable scope is not found then skip this variable.
748 if (!Scope)
749 continue;
750
751 // Get the frame register used and the offset.
752 unsigned FrameReg = 0;
753 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
754 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
755
756 // Calculate the label ranges.
757 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
758 for (const InsnRange &Range : Scope->getRanges()) {
759 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
760 const MCSymbol *End = getLabelAfterInsn(Range.second);
761 End = End ? End : Asm->getFunctionEnd();
762 DefRange.Ranges.emplace_back(Begin, End);
763 }
764
765 LocalVariable Var;
766 Var.DIVar = VI.Var;
767 Var.DefRanges.emplace_back(std::move(DefRange));
768 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
769 }
770 }
771
collectVariableInfo(const DISubprogram * SP)772 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
773 DenseSet<InlinedVariable> Processed;
774 // Grab the variable info that was squirreled away in the MMI side-table.
775 collectVariableInfoFromMMITable(Processed);
776
777 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
778
779 for (const auto &I : DbgValues) {
780 InlinedVariable IV = I.first;
781 if (Processed.count(IV))
782 continue;
783 const DILocalVariable *DIVar = IV.first;
784 const DILocation *InlinedAt = IV.second;
785
786 // Instruction ranges, specifying where IV is accessible.
787 const auto &Ranges = I.second;
788
789 LexicalScope *Scope = nullptr;
790 if (InlinedAt)
791 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
792 else
793 Scope = LScopes.findLexicalScope(DIVar->getScope());
794 // If variable scope is not found then skip this variable.
795 if (!Scope)
796 continue;
797
798 LocalVariable Var;
799 Var.DIVar = DIVar;
800
801 // Calculate the definition ranges.
802 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
803 const InsnRange &Range = *I;
804 const MachineInstr *DVInst = Range.first;
805 assert(DVInst->isDebugValue() && "Invalid History entry");
806 const DIExpression *DIExpr = DVInst->getDebugExpression();
807
808 // Bail if there is a complex DWARF expression for now.
809 if (DIExpr && DIExpr->getNumElements() > 0)
810 continue;
811
812 // Bail if operand 0 is not a valid register. This means the variable is a
813 // simple constant, or is described by a complex expression.
814 // FIXME: Find a way to represent constant variables, since they are
815 // relatively common.
816 unsigned Reg =
817 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
818 if (Reg == 0)
819 continue;
820
821 // Handle the two cases we can handle: indirect in memory and in register.
822 bool IsIndirect = DVInst->getOperand(1).isImm();
823 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
824 {
825 LocalVarDefRange DefRange;
826 if (IsIndirect) {
827 int64_t Offset = DVInst->getOperand(1).getImm();
828 DefRange = createDefRangeMem(CVReg, Offset);
829 } else {
830 DefRange = createDefRangeReg(CVReg);
831 }
832 if (Var.DefRanges.empty() ||
833 Var.DefRanges.back().isDifferentLocation(DefRange)) {
834 Var.DefRanges.emplace_back(std::move(DefRange));
835 }
836 }
837
838 // Compute the label range.
839 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
840 const MCSymbol *End = getLabelAfterInsn(Range.second);
841 if (!End) {
842 if (std::next(I) != E)
843 End = getLabelBeforeInsn(std::next(I)->first);
844 else
845 End = Asm->getFunctionEnd();
846 }
847
848 // If the last range end is our begin, just extend the last range.
849 // Otherwise make a new range.
850 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
851 Var.DefRanges.back().Ranges;
852 if (!Ranges.empty() && Ranges.back().second == Begin)
853 Ranges.back().second = End;
854 else
855 Ranges.emplace_back(Begin, End);
856
857 // FIXME: Do more range combining.
858 }
859
860 recordLocalVariable(std::move(Var), InlinedAt);
861 }
862 }
863
beginFunction(const MachineFunction * MF)864 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
865 assert(!CurFn && "Can't process two functions at once!");
866
867 if (!Asm || !MMI->hasDebugInfo())
868 return;
869
870 DebugHandlerBase::beginFunction(MF);
871
872 const Function *GV = MF->getFunction();
873 assert(FnDebugInfo.count(GV) == false);
874 CurFn = &FnDebugInfo[GV];
875 CurFn->FuncId = NextFuncId++;
876 CurFn->Begin = Asm->getFunctionBegin();
877
878 // Find the end of the function prolog. First known non-DBG_VALUE and
879 // non-frame setup location marks the beginning of the function body.
880 // FIXME: is there a simpler a way to do this? Can we just search
881 // for the first instruction of the function, not the last of the prolog?
882 DebugLoc PrologEndLoc;
883 bool EmptyPrologue = true;
884 for (const auto &MBB : *MF) {
885 for (const auto &MI : MBB) {
886 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
887 MI.getDebugLoc()) {
888 PrologEndLoc = MI.getDebugLoc();
889 break;
890 } else if (!MI.isDebugValue()) {
891 EmptyPrologue = false;
892 }
893 }
894 }
895
896 // Record beginning of function if we have a non-empty prologue.
897 if (PrologEndLoc && !EmptyPrologue) {
898 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
899 maybeRecordLocation(FnStartDL, MF);
900 }
901 }
902
addToUDTs(const DIType * Ty,TypeIndex TI)903 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
904 // Don't record empty UDTs.
905 if (Ty->getName().empty())
906 return;
907
908 SmallVector<StringRef, 5> QualifiedNameComponents;
909 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
910 Ty->getScope().resolve(), QualifiedNameComponents);
911
912 std::string FullyQualifiedName =
913 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
914
915 if (ClosestSubprogram == nullptr)
916 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
917 else if (ClosestSubprogram == CurrentSubprogram)
918 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
919
920 // TODO: What if the ClosestSubprogram is neither null or the current
921 // subprogram? Currently, the UDT just gets dropped on the floor.
922 //
923 // The current behavior is not desirable. To get maximal fidelity, we would
924 // need to perform all type translation before beginning emission of .debug$S
925 // and then make LocalUDTs a member of FunctionInfo
926 }
927
lowerType(const DIType * Ty,const DIType * ClassTy)928 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
929 // Generic dispatch for lowering an unknown type.
930 switch (Ty->getTag()) {
931 case dwarf::DW_TAG_array_type:
932 return lowerTypeArray(cast<DICompositeType>(Ty));
933 case dwarf::DW_TAG_typedef:
934 return lowerTypeAlias(cast<DIDerivedType>(Ty));
935 case dwarf::DW_TAG_base_type:
936 return lowerTypeBasic(cast<DIBasicType>(Ty));
937 case dwarf::DW_TAG_pointer_type:
938 case dwarf::DW_TAG_reference_type:
939 case dwarf::DW_TAG_rvalue_reference_type:
940 return lowerTypePointer(cast<DIDerivedType>(Ty));
941 case dwarf::DW_TAG_ptr_to_member_type:
942 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
943 case dwarf::DW_TAG_const_type:
944 case dwarf::DW_TAG_volatile_type:
945 return lowerTypeModifier(cast<DIDerivedType>(Ty));
946 case dwarf::DW_TAG_subroutine_type:
947 if (ClassTy) {
948 // The member function type of a member function pointer has no
949 // ThisAdjustment.
950 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
951 /*ThisAdjustment=*/0);
952 }
953 return lowerTypeFunction(cast<DISubroutineType>(Ty));
954 case dwarf::DW_TAG_enumeration_type:
955 return lowerTypeEnum(cast<DICompositeType>(Ty));
956 case dwarf::DW_TAG_class_type:
957 case dwarf::DW_TAG_structure_type:
958 return lowerTypeClass(cast<DICompositeType>(Ty));
959 case dwarf::DW_TAG_union_type:
960 return lowerTypeUnion(cast<DICompositeType>(Ty));
961 default:
962 // Use the null type index.
963 return TypeIndex();
964 }
965 }
966
lowerTypeAlias(const DIDerivedType * Ty)967 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
968 DITypeRef UnderlyingTypeRef = Ty->getBaseType();
969 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
970 StringRef TypeName = Ty->getName();
971
972 addToUDTs(Ty, UnderlyingTypeIndex);
973
974 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
975 TypeName == "HRESULT")
976 return TypeIndex(SimpleTypeKind::HResult);
977 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
978 TypeName == "wchar_t")
979 return TypeIndex(SimpleTypeKind::WideCharacter);
980
981 return UnderlyingTypeIndex;
982 }
983
lowerTypeArray(const DICompositeType * Ty)984 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
985 DITypeRef ElementTypeRef = Ty->getBaseType();
986 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
987 // IndexType is size_t, which depends on the bitness of the target.
988 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
989 ? TypeIndex(SimpleTypeKind::UInt64Quad)
990 : TypeIndex(SimpleTypeKind::UInt32Long);
991
992 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
993
994 bool UndefinedSubrange = false;
995
996 // FIXME:
997 // There is a bug in the front-end where an array of a structure, which was
998 // declared as incomplete structure first, ends up not getting a size assigned
999 // to it. (PR28303)
1000 // Example:
1001 // struct A(*p)[3];
1002 // struct A { int f; } a[3];
1003 //
1004 // This needs to be fixed in the front-end, but in the meantime we don't want
1005 // to trigger an assertion because of this.
1006 if (Ty->getSizeInBits() == 0) {
1007 UndefinedSubrange = true;
1008 }
1009
1010 // Add subranges to array type.
1011 DINodeArray Elements = Ty->getElements();
1012 for (int i = Elements.size() - 1; i >= 0; --i) {
1013 const DINode *Element = Elements[i];
1014 assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1015
1016 const DISubrange *Subrange = cast<DISubrange>(Element);
1017 assert(Subrange->getLowerBound() == 0 &&
1018 "codeview doesn't support subranges with lower bounds");
1019 int64_t Count = Subrange->getCount();
1020
1021 // Variable Length Array (VLA) has Count equal to '-1'.
1022 // Replace with Count '1', assume it is the minimum VLA length.
1023 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1024 if (Count == -1) {
1025 Count = 1;
1026 UndefinedSubrange = true;
1027 }
1028
1029 StringRef Name = (i == 0) ? Ty->getName() : "";
1030 // Update the element size and element type index for subsequent subranges.
1031 ElementSize *= Count;
1032 ElementTypeIndex = TypeTable.writeArray(
1033 ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name));
1034 }
1035
1036 (void)UndefinedSubrange;
1037 assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8));
1038
1039 return ElementTypeIndex;
1040 }
1041
lowerTypeBasic(const DIBasicType * Ty)1042 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1043 TypeIndex Index;
1044 dwarf::TypeKind Kind;
1045 uint32_t ByteSize;
1046
1047 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1048 ByteSize = Ty->getSizeInBits() / 8;
1049
1050 SimpleTypeKind STK = SimpleTypeKind::None;
1051 switch (Kind) {
1052 case dwarf::DW_ATE_address:
1053 // FIXME: Translate
1054 break;
1055 case dwarf::DW_ATE_boolean:
1056 switch (ByteSize) {
1057 case 1: STK = SimpleTypeKind::Boolean8; break;
1058 case 2: STK = SimpleTypeKind::Boolean16; break;
1059 case 4: STK = SimpleTypeKind::Boolean32; break;
1060 case 8: STK = SimpleTypeKind::Boolean64; break;
1061 case 16: STK = SimpleTypeKind::Boolean128; break;
1062 }
1063 break;
1064 case dwarf::DW_ATE_complex_float:
1065 switch (ByteSize) {
1066 case 2: STK = SimpleTypeKind::Complex16; break;
1067 case 4: STK = SimpleTypeKind::Complex32; break;
1068 case 8: STK = SimpleTypeKind::Complex64; break;
1069 case 10: STK = SimpleTypeKind::Complex80; break;
1070 case 16: STK = SimpleTypeKind::Complex128; break;
1071 }
1072 break;
1073 case dwarf::DW_ATE_float:
1074 switch (ByteSize) {
1075 case 2: STK = SimpleTypeKind::Float16; break;
1076 case 4: STK = SimpleTypeKind::Float32; break;
1077 case 6: STK = SimpleTypeKind::Float48; break;
1078 case 8: STK = SimpleTypeKind::Float64; break;
1079 case 10: STK = SimpleTypeKind::Float80; break;
1080 case 16: STK = SimpleTypeKind::Float128; break;
1081 }
1082 break;
1083 case dwarf::DW_ATE_signed:
1084 switch (ByteSize) {
1085 case 1: STK = SimpleTypeKind::SByte; break;
1086 case 2: STK = SimpleTypeKind::Int16Short; break;
1087 case 4: STK = SimpleTypeKind::Int32; break;
1088 case 8: STK = SimpleTypeKind::Int64Quad; break;
1089 case 16: STK = SimpleTypeKind::Int128Oct; break;
1090 }
1091 break;
1092 case dwarf::DW_ATE_unsigned:
1093 switch (ByteSize) {
1094 case 1: STK = SimpleTypeKind::Byte; break;
1095 case 2: STK = SimpleTypeKind::UInt16Short; break;
1096 case 4: STK = SimpleTypeKind::UInt32; break;
1097 case 8: STK = SimpleTypeKind::UInt64Quad; break;
1098 case 16: STK = SimpleTypeKind::UInt128Oct; break;
1099 }
1100 break;
1101 case dwarf::DW_ATE_UTF:
1102 switch (ByteSize) {
1103 case 2: STK = SimpleTypeKind::Character16; break;
1104 case 4: STK = SimpleTypeKind::Character32; break;
1105 }
1106 break;
1107 case dwarf::DW_ATE_signed_char:
1108 if (ByteSize == 1)
1109 STK = SimpleTypeKind::SignedCharacter;
1110 break;
1111 case dwarf::DW_ATE_unsigned_char:
1112 if (ByteSize == 1)
1113 STK = SimpleTypeKind::UnsignedCharacter;
1114 break;
1115 default:
1116 break;
1117 }
1118
1119 // Apply some fixups based on the source-level type name.
1120 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1121 STK = SimpleTypeKind::Int32Long;
1122 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1123 STK = SimpleTypeKind::UInt32Long;
1124 if (STK == SimpleTypeKind::UInt16Short &&
1125 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1126 STK = SimpleTypeKind::WideCharacter;
1127 if ((STK == SimpleTypeKind::SignedCharacter ||
1128 STK == SimpleTypeKind::UnsignedCharacter) &&
1129 Ty->getName() == "char")
1130 STK = SimpleTypeKind::NarrowCharacter;
1131
1132 return TypeIndex(STK);
1133 }
1134
lowerTypePointer(const DIDerivedType * Ty)1135 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1136 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1137
1138 // While processing the type being pointed to it is possible we already
1139 // created this pointer type. If so, we check here and return the existing
1140 // pointer type.
1141 auto I = TypeIndices.find({Ty, nullptr});
1142 if (I != TypeIndices.end())
1143 return I->second;
1144
1145 // Pointers to simple types can use SimpleTypeMode, rather than having a
1146 // dedicated pointer type record.
1147 if (PointeeTI.isSimple() &&
1148 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1149 Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1150 SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1151 ? SimpleTypeMode::NearPointer64
1152 : SimpleTypeMode::NearPointer32;
1153 return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1154 }
1155
1156 PointerKind PK =
1157 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1158 PointerMode PM = PointerMode::Pointer;
1159 switch (Ty->getTag()) {
1160 default: llvm_unreachable("not a pointer tag type");
1161 case dwarf::DW_TAG_pointer_type:
1162 PM = PointerMode::Pointer;
1163 break;
1164 case dwarf::DW_TAG_reference_type:
1165 PM = PointerMode::LValueReference;
1166 break;
1167 case dwarf::DW_TAG_rvalue_reference_type:
1168 PM = PointerMode::RValueReference;
1169 break;
1170 }
1171 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1172 // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1173 // do.
1174 PointerOptions PO = PointerOptions::None;
1175 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1176 return TypeTable.writePointer(PR);
1177 }
1178
1179 static PointerToMemberRepresentation
translatePtrToMemberRep(unsigned SizeInBytes,bool IsPMF,unsigned Flags)1180 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1181 // SizeInBytes being zero generally implies that the member pointer type was
1182 // incomplete, which can happen if it is part of a function prototype. In this
1183 // case, use the unknown model instead of the general model.
1184 if (IsPMF) {
1185 switch (Flags & DINode::FlagPtrToMemberRep) {
1186 case 0:
1187 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1188 : PointerToMemberRepresentation::GeneralFunction;
1189 case DINode::FlagSingleInheritance:
1190 return PointerToMemberRepresentation::SingleInheritanceFunction;
1191 case DINode::FlagMultipleInheritance:
1192 return PointerToMemberRepresentation::MultipleInheritanceFunction;
1193 case DINode::FlagVirtualInheritance:
1194 return PointerToMemberRepresentation::VirtualInheritanceFunction;
1195 }
1196 } else {
1197 switch (Flags & DINode::FlagPtrToMemberRep) {
1198 case 0:
1199 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1200 : PointerToMemberRepresentation::GeneralData;
1201 case DINode::FlagSingleInheritance:
1202 return PointerToMemberRepresentation::SingleInheritanceData;
1203 case DINode::FlagMultipleInheritance:
1204 return PointerToMemberRepresentation::MultipleInheritanceData;
1205 case DINode::FlagVirtualInheritance:
1206 return PointerToMemberRepresentation::VirtualInheritanceData;
1207 }
1208 }
1209 llvm_unreachable("invalid ptr to member representation");
1210 }
1211
lowerTypeMemberPointer(const DIDerivedType * Ty)1212 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1213 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1214 TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1215 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1216 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1217 : PointerKind::Near32;
1218 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1219 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1220 : PointerMode::PointerToDataMember;
1221 PointerOptions PO = PointerOptions::None; // FIXME
1222 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1223 uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1224 MemberPointerInfo MPI(
1225 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1226 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1227 return TypeTable.writePointer(PR);
1228 }
1229
1230 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1231 /// have a translation, use the NearC convention.
dwarfCCToCodeView(unsigned DwarfCC)1232 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1233 switch (DwarfCC) {
1234 case dwarf::DW_CC_normal: return CallingConvention::NearC;
1235 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1236 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
1237 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
1238 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
1239 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
1240 }
1241 return CallingConvention::NearC;
1242 }
1243
lowerTypeModifier(const DIDerivedType * Ty)1244 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1245 ModifierOptions Mods = ModifierOptions::None;
1246 bool IsModifier = true;
1247 const DIType *BaseTy = Ty;
1248 while (IsModifier && BaseTy) {
1249 // FIXME: Need to add DWARF tag for __unaligned.
1250 switch (BaseTy->getTag()) {
1251 case dwarf::DW_TAG_const_type:
1252 Mods |= ModifierOptions::Const;
1253 break;
1254 case dwarf::DW_TAG_volatile_type:
1255 Mods |= ModifierOptions::Volatile;
1256 break;
1257 default:
1258 IsModifier = false;
1259 break;
1260 }
1261 if (IsModifier)
1262 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1263 }
1264 TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1265
1266 // While processing the type being pointed to, it is possible we already
1267 // created this modifier type. If so, we check here and return the existing
1268 // modifier type.
1269 auto I = TypeIndices.find({Ty, nullptr});
1270 if (I != TypeIndices.end())
1271 return I->second;
1272
1273 ModifierRecord MR(ModifiedTI, Mods);
1274 return TypeTable.writeModifier(MR);
1275 }
1276
lowerTypeFunction(const DISubroutineType * Ty)1277 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1278 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1279 for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1280 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1281
1282 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1283 ArrayRef<TypeIndex> ArgTypeIndices = None;
1284 if (!ReturnAndArgTypeIndices.empty()) {
1285 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1286 ReturnTypeIndex = ReturnAndArgTypesRef.front();
1287 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1288 }
1289
1290 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1291 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1292
1293 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1294
1295 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1296 ArgTypeIndices.size(), ArgListIndex);
1297 return TypeTable.writeProcedure(Procedure);
1298 }
1299
lowerTypeMemberFunction(const DISubroutineType * Ty,const DIType * ClassTy,int ThisAdjustment)1300 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1301 const DIType *ClassTy,
1302 int ThisAdjustment) {
1303 // Lower the containing class type.
1304 TypeIndex ClassType = getTypeIndex(ClassTy);
1305
1306 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1307 for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1308 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1309
1310 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1311 ArrayRef<TypeIndex> ArgTypeIndices = None;
1312 if (!ReturnAndArgTypeIndices.empty()) {
1313 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1314 ReturnTypeIndex = ReturnAndArgTypesRef.front();
1315 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1316 }
1317 TypeIndex ThisTypeIndex = TypeIndex::Void();
1318 if (!ArgTypeIndices.empty()) {
1319 ThisTypeIndex = ArgTypeIndices.front();
1320 ArgTypeIndices = ArgTypeIndices.drop_front();
1321 }
1322
1323 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1324 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1325
1326 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1327
1328 // TODO: Need to use the correct values for:
1329 // FunctionOptions
1330 // ThisPointerAdjustment.
1331 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord(
1332 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1333 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1334
1335 return TI;
1336 }
1337
translateAccessFlags(unsigned RecordTag,unsigned Flags)1338 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1339 switch (Flags & DINode::FlagAccessibility) {
1340 case DINode::FlagPrivate: return MemberAccess::Private;
1341 case DINode::FlagPublic: return MemberAccess::Public;
1342 case DINode::FlagProtected: return MemberAccess::Protected;
1343 case 0:
1344 // If there was no explicit access control, provide the default for the tag.
1345 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1346 : MemberAccess::Public;
1347 }
1348 llvm_unreachable("access flags are exclusive");
1349 }
1350
translateMethodOptionFlags(const DISubprogram * SP)1351 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1352 if (SP->isArtificial())
1353 return MethodOptions::CompilerGenerated;
1354
1355 // FIXME: Handle other MethodOptions.
1356
1357 return MethodOptions::None;
1358 }
1359
translateMethodKindFlags(const DISubprogram * SP,bool Introduced)1360 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1361 bool Introduced) {
1362 switch (SP->getVirtuality()) {
1363 case dwarf::DW_VIRTUALITY_none:
1364 break;
1365 case dwarf::DW_VIRTUALITY_virtual:
1366 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1367 case dwarf::DW_VIRTUALITY_pure_virtual:
1368 return Introduced ? MethodKind::PureIntroducingVirtual
1369 : MethodKind::PureVirtual;
1370 default:
1371 llvm_unreachable("unhandled virtuality case");
1372 }
1373
1374 // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1375
1376 return MethodKind::Vanilla;
1377 }
1378
getRecordKind(const DICompositeType * Ty)1379 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1380 switch (Ty->getTag()) {
1381 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class;
1382 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1383 }
1384 llvm_unreachable("unexpected tag");
1385 }
1386
1387 /// Return ClassOptions that should be present on both the forward declaration
1388 /// and the defintion of a tag type.
getCommonClassOptions(const DICompositeType * Ty)1389 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1390 ClassOptions CO = ClassOptions::None;
1391
1392 // MSVC always sets this flag, even for local types. Clang doesn't always
1393 // appear to give every type a linkage name, which may be problematic for us.
1394 // FIXME: Investigate the consequences of not following them here.
1395 if (!Ty->getIdentifier().empty())
1396 CO |= ClassOptions::HasUniqueName;
1397
1398 // Put the Nested flag on a type if it appears immediately inside a tag type.
1399 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1400 // here. That flag is only set on definitions, and not forward declarations.
1401 const DIScope *ImmediateScope = Ty->getScope().resolve();
1402 if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1403 CO |= ClassOptions::Nested;
1404
1405 // Put the Scoped flag on function-local types.
1406 for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1407 Scope = Scope->getScope().resolve()) {
1408 if (isa<DISubprogram>(Scope)) {
1409 CO |= ClassOptions::Scoped;
1410 break;
1411 }
1412 }
1413
1414 return CO;
1415 }
1416
lowerTypeEnum(const DICompositeType * Ty)1417 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1418 ClassOptions CO = getCommonClassOptions(Ty);
1419 TypeIndex FTI;
1420 unsigned EnumeratorCount = 0;
1421
1422 if (Ty->isForwardDecl()) {
1423 CO |= ClassOptions::ForwardReference;
1424 } else {
1425 FieldListRecordBuilder Fields;
1426 for (const DINode *Element : Ty->getElements()) {
1427 // We assume that the frontend provides all members in source declaration
1428 // order, which is what MSVC does.
1429 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1430 Fields.writeEnumerator(EnumeratorRecord(
1431 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1432 Enumerator->getName()));
1433 EnumeratorCount++;
1434 }
1435 }
1436 FTI = TypeTable.writeFieldList(Fields);
1437 }
1438
1439 std::string FullName = getFullyQualifiedName(Ty);
1440
1441 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1442 Ty->getIdentifier(),
1443 getTypeIndex(Ty->getBaseType())));
1444 }
1445
1446 //===----------------------------------------------------------------------===//
1447 // ClassInfo
1448 //===----------------------------------------------------------------------===//
1449
1450 struct llvm::ClassInfo {
1451 struct MemberInfo {
1452 const DIDerivedType *MemberTypeNode;
1453 uint64_t BaseOffset;
1454 };
1455 // [MemberInfo]
1456 typedef std::vector<MemberInfo> MemberList;
1457
1458 typedef TinyPtrVector<const DISubprogram *> MethodsList;
1459 // MethodName -> MethodsList
1460 typedef MapVector<MDString *, MethodsList> MethodsMap;
1461
1462 /// Base classes.
1463 std::vector<const DIDerivedType *> Inheritance;
1464
1465 /// Direct members.
1466 MemberList Members;
1467 // Direct overloaded methods gathered by name.
1468 MethodsMap Methods;
1469
1470 std::vector<const DICompositeType *> NestedClasses;
1471 };
1472
clear()1473 void CodeViewDebug::clear() {
1474 assert(CurFn == nullptr);
1475 FileIdMap.clear();
1476 FnDebugInfo.clear();
1477 FileToFilepathMap.clear();
1478 LocalUDTs.clear();
1479 GlobalUDTs.clear();
1480 TypeIndices.clear();
1481 CompleteTypeIndices.clear();
1482 }
1483
collectMemberInfo(ClassInfo & Info,const DIDerivedType * DDTy)1484 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1485 const DIDerivedType *DDTy) {
1486 if (!DDTy->getName().empty()) {
1487 Info.Members.push_back({DDTy, 0});
1488 return;
1489 }
1490 // An unnamed member must represent a nested struct or union. Add all the
1491 // indirect fields to the current record.
1492 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1493 uint64_t Offset = DDTy->getOffsetInBits();
1494 const DIType *Ty = DDTy->getBaseType().resolve();
1495 const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1496 ClassInfo NestedInfo = collectClassInfo(DCTy);
1497 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1498 Info.Members.push_back(
1499 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1500 }
1501
collectClassInfo(const DICompositeType * Ty)1502 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1503 ClassInfo Info;
1504 // Add elements to structure type.
1505 DINodeArray Elements = Ty->getElements();
1506 for (auto *Element : Elements) {
1507 // We assume that the frontend provides all members in source declaration
1508 // order, which is what MSVC does.
1509 if (!Element)
1510 continue;
1511 if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1512 Info.Methods[SP->getRawName()].push_back(SP);
1513 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1514 if (DDTy->getTag() == dwarf::DW_TAG_member) {
1515 collectMemberInfo(Info, DDTy);
1516 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1517 Info.Inheritance.push_back(DDTy);
1518 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1519 // Ignore friend members. It appears that MSVC emitted info about
1520 // friends in the past, but modern versions do not.
1521 }
1522 // FIXME: Get Clang to emit function virtual table here and handle it.
1523 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1524 Info.NestedClasses.push_back(Composite);
1525 }
1526 // Skip other unrecognized kinds of elements.
1527 }
1528 return Info;
1529 }
1530
lowerTypeClass(const DICompositeType * Ty)1531 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1532 // First, construct the forward decl. Don't look into Ty to compute the
1533 // forward decl options, since it might not be available in all TUs.
1534 TypeRecordKind Kind = getRecordKind(Ty);
1535 ClassOptions CO =
1536 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1537 std::string FullName = getFullyQualifiedName(Ty);
1538 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord(
1539 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1540 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1541 if (!Ty->isForwardDecl())
1542 DeferredCompleteTypes.push_back(Ty);
1543 return FwdDeclTI;
1544 }
1545
lowerCompleteTypeClass(const DICompositeType * Ty)1546 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1547 // Construct the field list and complete type record.
1548 TypeRecordKind Kind = getRecordKind(Ty);
1549 ClassOptions CO = getCommonClassOptions(Ty);
1550 TypeIndex FieldTI;
1551 TypeIndex VShapeTI;
1552 unsigned FieldCount;
1553 bool ContainsNestedClass;
1554 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1555 lowerRecordFieldList(Ty);
1556
1557 if (ContainsNestedClass)
1558 CO |= ClassOptions::ContainsNestedClass;
1559
1560 std::string FullName = getFullyQualifiedName(Ty);
1561
1562 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1563
1564 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord(
1565 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1566 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1567
1568 TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1569 ClassTI, TypeTable.writeStringId(StringIdRecord(
1570 TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1571 Ty->getLine()));
1572
1573 addToUDTs(Ty, ClassTI);
1574
1575 return ClassTI;
1576 }
1577
lowerTypeUnion(const DICompositeType * Ty)1578 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1579 ClassOptions CO =
1580 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1581 std::string FullName = getFullyQualifiedName(Ty);
1582 TypeIndex FwdDeclTI =
1583 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0,
1584 FullName, Ty->getIdentifier()));
1585 if (!Ty->isForwardDecl())
1586 DeferredCompleteTypes.push_back(Ty);
1587 return FwdDeclTI;
1588 }
1589
lowerCompleteTypeUnion(const DICompositeType * Ty)1590 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1591 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1592 TypeIndex FieldTI;
1593 unsigned FieldCount;
1594 bool ContainsNestedClass;
1595 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1596 lowerRecordFieldList(Ty);
1597
1598 if (ContainsNestedClass)
1599 CO |= ClassOptions::ContainsNestedClass;
1600
1601 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1602 std::string FullName = getFullyQualifiedName(Ty);
1603
1604 TypeIndex UnionTI = TypeTable.writeUnion(
1605 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1606 Ty->getIdentifier()));
1607
1608 TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1609 UnionTI, TypeTable.writeStringId(StringIdRecord(
1610 TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1611 Ty->getLine()));
1612
1613 addToUDTs(Ty, UnionTI);
1614
1615 return UnionTI;
1616 }
1617
1618 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
lowerRecordFieldList(const DICompositeType * Ty)1619 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1620 // Manually count members. MSVC appears to count everything that generates a
1621 // field list record. Each individual overload in a method overload group
1622 // contributes to this count, even though the overload group is a single field
1623 // list record.
1624 unsigned MemberCount = 0;
1625 ClassInfo Info = collectClassInfo(Ty);
1626 FieldListRecordBuilder Fields;
1627
1628 // Create base classes.
1629 for (const DIDerivedType *I : Info.Inheritance) {
1630 if (I->getFlags() & DINode::FlagVirtual) {
1631 // Virtual base.
1632 // FIXME: Emit VBPtrOffset when the frontend provides it.
1633 unsigned VBPtrOffset = 0;
1634 // FIXME: Despite the accessor name, the offset is really in bytes.
1635 unsigned VBTableIndex = I->getOffsetInBits() / 4;
1636 Fields.writeVirtualBaseClass(VirtualBaseClassRecord(
1637 translateAccessFlags(Ty->getTag(), I->getFlags()),
1638 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1639 VBTableIndex));
1640 } else {
1641 assert(I->getOffsetInBits() % 8 == 0 &&
1642 "bases must be on byte boundaries");
1643 Fields.writeBaseClass(BaseClassRecord(
1644 translateAccessFlags(Ty->getTag(), I->getFlags()),
1645 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1646 }
1647 }
1648
1649 // Create members.
1650 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1651 const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1652 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1653 StringRef MemberName = Member->getName();
1654 MemberAccess Access =
1655 translateAccessFlags(Ty->getTag(), Member->getFlags());
1656
1657 if (Member->isStaticMember()) {
1658 Fields.writeStaticDataMember(
1659 StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1660 MemberCount++;
1661 continue;
1662 }
1663
1664 // Data member.
1665 uint64_t MemberOffsetInBits =
1666 Member->getOffsetInBits() + MemberInfo.BaseOffset;
1667 if (Member->isBitField()) {
1668 uint64_t StartBitOffset = MemberOffsetInBits;
1669 if (const auto *CI =
1670 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1671 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1672 }
1673 StartBitOffset -= MemberOffsetInBits;
1674 MemberBaseType = TypeTable.writeBitField(BitFieldRecord(
1675 MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1676 }
1677 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1678 Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType,
1679 MemberOffsetInBytes, MemberName));
1680 MemberCount++;
1681 }
1682
1683 // Create methods
1684 for (auto &MethodItr : Info.Methods) {
1685 StringRef Name = MethodItr.first->getString();
1686
1687 std::vector<OneMethodRecord> Methods;
1688 for (const DISubprogram *SP : MethodItr.second) {
1689 TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1690 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1691
1692 unsigned VFTableOffset = -1;
1693 if (Introduced)
1694 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1695
1696 Methods.push_back(
1697 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1698 translateMethodOptionFlags(SP),
1699 translateAccessFlags(Ty->getTag(), SP->getFlags()),
1700 VFTableOffset, Name));
1701 MemberCount++;
1702 }
1703 assert(Methods.size() > 0 && "Empty methods map entry");
1704 if (Methods.size() == 1)
1705 Fields.writeOneMethod(Methods[0]);
1706 else {
1707 TypeIndex MethodList =
1708 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods));
1709 Fields.writeOverloadedMethod(
1710 OverloadedMethodRecord(Methods.size(), MethodList, Name));
1711 }
1712 }
1713
1714 // Create nested classes.
1715 for (const DICompositeType *Nested : Info.NestedClasses) {
1716 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1717 Fields.writeNestedType(R);
1718 MemberCount++;
1719 }
1720
1721 TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1722 return std::make_tuple(FieldTI, TypeIndex(), MemberCount,
1723 !Info.NestedClasses.empty());
1724 }
1725
getVBPTypeIndex()1726 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1727 if (!VBPType.getIndex()) {
1728 // Make a 'const int *' type.
1729 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1730 TypeIndex ModifiedTI = TypeTable.writeModifier(MR);
1731
1732 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1733 : PointerKind::Near32;
1734 PointerMode PM = PointerMode::Pointer;
1735 PointerOptions PO = PointerOptions::None;
1736 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1737
1738 VBPType = TypeTable.writePointer(PR);
1739 }
1740
1741 return VBPType;
1742 }
1743
getTypeIndex(DITypeRef TypeRef,DITypeRef ClassTyRef)1744 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1745 const DIType *Ty = TypeRef.resolve();
1746 const DIType *ClassTy = ClassTyRef.resolve();
1747
1748 // The null DIType is the void type. Don't try to hash it.
1749 if (!Ty)
1750 return TypeIndex::Void();
1751
1752 // Check if we've already translated this type. Don't try to do a
1753 // get-or-create style insertion that caches the hash lookup across the
1754 // lowerType call. It will update the TypeIndices map.
1755 auto I = TypeIndices.find({Ty, ClassTy});
1756 if (I != TypeIndices.end())
1757 return I->second;
1758
1759 TypeLoweringScope S(*this);
1760 TypeIndex TI = lowerType(Ty, ClassTy);
1761 return recordTypeIndexForDINode(Ty, TI, ClassTy);
1762 }
1763
getCompleteTypeIndex(DITypeRef TypeRef)1764 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1765 const DIType *Ty = TypeRef.resolve();
1766
1767 // The null DIType is the void type. Don't try to hash it.
1768 if (!Ty)
1769 return TypeIndex::Void();
1770
1771 // If this is a non-record type, the complete type index is the same as the
1772 // normal type index. Just call getTypeIndex.
1773 switch (Ty->getTag()) {
1774 case dwarf::DW_TAG_class_type:
1775 case dwarf::DW_TAG_structure_type:
1776 case dwarf::DW_TAG_union_type:
1777 break;
1778 default:
1779 return getTypeIndex(Ty);
1780 }
1781
1782 // Check if we've already translated the complete record type. Lowering a
1783 // complete type should never trigger lowering another complete type, so we
1784 // can reuse the hash table lookup result.
1785 const auto *CTy = cast<DICompositeType>(Ty);
1786 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1787 if (!InsertResult.second)
1788 return InsertResult.first->second;
1789
1790 TypeLoweringScope S(*this);
1791
1792 // Make sure the forward declaration is emitted first. It's unclear if this
1793 // is necessary, but MSVC does it, and we should follow suit until we can show
1794 // otherwise.
1795 TypeIndex FwdDeclTI = getTypeIndex(CTy);
1796
1797 // Just use the forward decl if we don't have complete type info. This might
1798 // happen if the frontend is using modules and expects the complete definition
1799 // to be emitted elsewhere.
1800 if (CTy->isForwardDecl())
1801 return FwdDeclTI;
1802
1803 TypeIndex TI;
1804 switch (CTy->getTag()) {
1805 case dwarf::DW_TAG_class_type:
1806 case dwarf::DW_TAG_structure_type:
1807 TI = lowerCompleteTypeClass(CTy);
1808 break;
1809 case dwarf::DW_TAG_union_type:
1810 TI = lowerCompleteTypeUnion(CTy);
1811 break;
1812 default:
1813 llvm_unreachable("not a record");
1814 }
1815
1816 InsertResult.first->second = TI;
1817 return TI;
1818 }
1819
1820 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1821 /// and do this until fixpoint, as each complete record type typically
1822 /// references
1823 /// many other record types.
emitDeferredCompleteTypes()1824 void CodeViewDebug::emitDeferredCompleteTypes() {
1825 SmallVector<const DICompositeType *, 4> TypesToEmit;
1826 while (!DeferredCompleteTypes.empty()) {
1827 std::swap(DeferredCompleteTypes, TypesToEmit);
1828 for (const DICompositeType *RecordTy : TypesToEmit)
1829 getCompleteTypeIndex(RecordTy);
1830 TypesToEmit.clear();
1831 }
1832 }
1833
emitLocalVariableList(ArrayRef<LocalVariable> Locals)1834 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1835 // Get the sorted list of parameters and emit them first.
1836 SmallVector<const LocalVariable *, 6> Params;
1837 for (const LocalVariable &L : Locals)
1838 if (L.DIVar->isParameter())
1839 Params.push_back(&L);
1840 std::sort(Params.begin(), Params.end(),
1841 [](const LocalVariable *L, const LocalVariable *R) {
1842 return L->DIVar->getArg() < R->DIVar->getArg();
1843 });
1844 for (const LocalVariable *L : Params)
1845 emitLocalVariable(*L);
1846
1847 // Next emit all non-parameters in the order that we found them.
1848 for (const LocalVariable &L : Locals)
1849 if (!L.DIVar->isParameter())
1850 emitLocalVariable(L);
1851 }
1852
emitLocalVariable(const LocalVariable & Var)1853 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1854 // LocalSym record, see SymbolRecord.h for more info.
1855 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1856 *LocalEnd = MMI->getContext().createTempSymbol();
1857 OS.AddComment("Record length");
1858 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1859 OS.EmitLabel(LocalBegin);
1860
1861 OS.AddComment("Record kind: S_LOCAL");
1862 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1863
1864 LocalSymFlags Flags = LocalSymFlags::None;
1865 if (Var.DIVar->isParameter())
1866 Flags |= LocalSymFlags::IsParameter;
1867 if (Var.DefRanges.empty())
1868 Flags |= LocalSymFlags::IsOptimizedOut;
1869
1870 OS.AddComment("TypeIndex");
1871 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1872 OS.EmitIntValue(TI.getIndex(), 4);
1873 OS.AddComment("Flags");
1874 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1875 // Truncate the name so we won't overflow the record length field.
1876 emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1877 OS.EmitLabel(LocalEnd);
1878
1879 // Calculate the on disk prefix of the appropriate def range record. The
1880 // records and on disk formats are described in SymbolRecords.h. BytePrefix
1881 // should be big enough to hold all forms without memory allocation.
1882 SmallString<20> BytePrefix;
1883 for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1884 BytePrefix.clear();
1885 // FIXME: Handle bitpieces.
1886 if (DefRange.StructOffset != 0)
1887 continue;
1888
1889 if (DefRange.InMemory) {
1890 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1891 0, 0, ArrayRef<LocalVariableAddrGap>());
1892 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1893 BytePrefix +=
1894 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1895 BytePrefix +=
1896 StringRef(reinterpret_cast<const char *>(&Sym.Header),
1897 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1898 } else {
1899 assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1900 // Unclear what matters here.
1901 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1902 ArrayRef<LocalVariableAddrGap>());
1903 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1904 BytePrefix +=
1905 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1906 BytePrefix +=
1907 StringRef(reinterpret_cast<const char *>(&Sym.Header),
1908 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1909 }
1910 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1911 }
1912 }
1913
endFunction(const MachineFunction * MF)1914 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1915 if (!Asm || !CurFn) // We haven't created any debug info for this function.
1916 return;
1917
1918 const Function *GV = MF->getFunction();
1919 assert(FnDebugInfo.count(GV));
1920 assert(CurFn == &FnDebugInfo[GV]);
1921
1922 collectVariableInfo(GV->getSubprogram());
1923
1924 DebugHandlerBase::endFunction(MF);
1925
1926 // Don't emit anything if we don't have any line tables.
1927 if (!CurFn->HaveLineInfo) {
1928 FnDebugInfo.erase(GV);
1929 CurFn = nullptr;
1930 return;
1931 }
1932
1933 CurFn->End = Asm->getFunctionEnd();
1934
1935 CurFn = nullptr;
1936 }
1937
beginInstruction(const MachineInstr * MI)1938 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1939 DebugHandlerBase::beginInstruction(MI);
1940
1941 // Ignore DBG_VALUE locations and function prologue.
1942 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup))
1943 return;
1944 DebugLoc DL = MI->getDebugLoc();
1945 if (DL == PrevInstLoc || !DL)
1946 return;
1947 maybeRecordLocation(DL, Asm->MF);
1948 }
1949
beginCVSubsection(ModuleSubstreamKind Kind)1950 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1951 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1952 *EndLabel = MMI->getContext().createTempSymbol();
1953 OS.EmitIntValue(unsigned(Kind), 4);
1954 OS.AddComment("Subsection size");
1955 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1956 OS.EmitLabel(BeginLabel);
1957 return EndLabel;
1958 }
1959
endCVSubsection(MCSymbol * EndLabel)1960 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1961 OS.EmitLabel(EndLabel);
1962 // Every subsection must be aligned to a 4-byte boundary.
1963 OS.EmitValueToAlignment(4);
1964 }
1965
emitDebugInfoForUDTs(ArrayRef<std::pair<std::string,TypeIndex>> UDTs)1966 void CodeViewDebug::emitDebugInfoForUDTs(
1967 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1968 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1969 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1970 *UDTRecordEnd = MMI->getContext().createTempSymbol();
1971 OS.AddComment("Record length");
1972 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1973 OS.EmitLabel(UDTRecordBegin);
1974
1975 OS.AddComment("Record kind: S_UDT");
1976 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1977
1978 OS.AddComment("Type");
1979 OS.EmitIntValue(UDT.second.getIndex(), 4);
1980
1981 emitNullTerminatedSymbolName(OS, UDT.first);
1982 OS.EmitLabel(UDTRecordEnd);
1983 }
1984 }
1985
emitDebugInfoForGlobals()1986 void CodeViewDebug::emitDebugInfoForGlobals() {
1987 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1988 for (const MDNode *Node : CUs->operands()) {
1989 const auto *CU = cast<DICompileUnit>(Node);
1990
1991 // First, emit all globals that are not in a comdat in a single symbol
1992 // substream. MSVC doesn't like it if the substream is empty, so only open
1993 // it if we have at least one global to emit.
1994 switchToDebugSectionForSymbol(nullptr);
1995 MCSymbol *EndLabel = nullptr;
1996 for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1997 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1998 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
1999 if (!EndLabel) {
2000 OS.AddComment("Symbol subsection for globals");
2001 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2002 }
2003 emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
2004 }
2005 }
2006 }
2007 if (EndLabel)
2008 endCVSubsection(EndLabel);
2009
2010 // Second, emit each global that is in a comdat into its own .debug$S
2011 // section along with its own symbol substream.
2012 for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2013 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2014 if (GV->hasComdat()) {
2015 MCSymbol *GVSym = Asm->getSymbol(GV);
2016 OS.AddComment("Symbol subsection for " +
2017 Twine(GlobalValue::getRealLinkageName(GV->getName())));
2018 switchToDebugSectionForSymbol(GVSym);
2019 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2020 emitDebugInfoForGlobal(G, GVSym);
2021 endCVSubsection(EndLabel);
2022 }
2023 }
2024 }
2025 }
2026 }
2027
emitDebugInfoForRetainedTypes()2028 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2029 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2030 for (const MDNode *Node : CUs->operands()) {
2031 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2032 if (DIType *RT = dyn_cast<DIType>(Ty)) {
2033 getTypeIndex(RT);
2034 // FIXME: Add to global/local DTU list.
2035 }
2036 }
2037 }
2038 }
2039
emitDebugInfoForGlobal(const DIGlobalVariable * DIGV,MCSymbol * GVSym)2040 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2041 MCSymbol *GVSym) {
2042 // DataSym record, see SymbolRecord.h for more info.
2043 // FIXME: Thread local data, etc
2044 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2045 *DataEnd = MMI->getContext().createTempSymbol();
2046 OS.AddComment("Record length");
2047 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2048 OS.EmitLabel(DataBegin);
2049 const auto *GV = cast<GlobalVariable>(DIGV->getVariable());
2050 if (DIGV->isLocalToUnit()) {
2051 if (GV->isThreadLocal()) {
2052 OS.AddComment("Record kind: S_LTHREAD32");
2053 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2054 } else {
2055 OS.AddComment("Record kind: S_LDATA32");
2056 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2057 }
2058 } else {
2059 if (GV->isThreadLocal()) {
2060 OS.AddComment("Record kind: S_GTHREAD32");
2061 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2062 } else {
2063 OS.AddComment("Record kind: S_GDATA32");
2064 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2065 }
2066 }
2067 OS.AddComment("Type");
2068 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2069 OS.AddComment("DataOffset");
2070 OS.EmitCOFFSecRel32(GVSym);
2071 OS.AddComment("Segment");
2072 OS.EmitCOFFSectionIndex(GVSym);
2073 OS.AddComment("Name");
2074 emitNullTerminatedSymbolName(OS, DIGV->getName());
2075 OS.EmitLabel(DataEnd);
2076 }
2077