• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2009 VMware, Inc.
4  * Copyright 2007 VMware, Inc.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * @file
31  * Code generate the whole fragment pipeline.
32  *
33  * The fragment pipeline consists of the following stages:
34  * - early depth test
35  * - fragment shader
36  * - alpha test
37  * - depth/stencil test
38  * - blending
39  *
40  * This file has only the glue to assemble the fragment pipeline.  The actual
41  * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42  * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43  * muster the LLVM JIT execution engine to create a function that follows an
44  * established binary interface and that can be called from C directly.
45  *
46  * A big source of complexity here is that we often want to run different
47  * stages with different precisions and data types and precisions. For example,
48  * the fragment shader needs typically to be done in floats, but the
49  * depth/stencil test and blending is better done in the type that most closely
50  * matches the depth/stencil and color buffer respectively.
51  *
52  * Since the width of a SIMD vector register stays the same regardless of the
53  * element type, different types imply different number of elements, so we must
54  * code generate more instances of the stages with larger types to be able to
55  * feed/consume the stages with smaller types.
56  *
57  * @author Jose Fonseca <jfonseca@vmware.com>
58  */
59 
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90 
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104 
105 
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108 
109 
110 /**
111  * Expand the relevant bits of mask_input to a n*4-dword mask for the
112  * n*four pixels in n 2x2 quads.  This will set the n*four elements of the
113  * quad mask vector to 0 or ~0.
114  * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115  * quad arguments with fs length 8.
116  *
117  * \param first_quad  which quad(s) of the quad group to test, in [0,3]
118  * \param mask_input  bitwise mask for the whole 4x4 stamp
119  */
120 static LLVMValueRef
generate_quad_mask(struct gallivm_state * gallivm,struct lp_type fs_type,unsigned first_quad,LLVMValueRef mask_input)121 generate_quad_mask(struct gallivm_state *gallivm,
122                    struct lp_type fs_type,
123                    unsigned first_quad,
124                    LLVMValueRef mask_input) /* int32 */
125 {
126    LLVMBuilderRef builder = gallivm->builder;
127    struct lp_type mask_type;
128    LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129    LLVMValueRef bits[16];
130    LLVMValueRef mask, bits_vec;
131    int shift, i;
132 
133    /*
134     * XXX: We'll need a different path for 16 x u8
135     */
136    assert(fs_type.width == 32);
137    assert(fs_type.length <= ARRAY_SIZE(bits));
138    mask_type = lp_int_type(fs_type);
139 
140    /*
141     * mask_input >>= (quad * 4)
142     */
143    switch (first_quad) {
144    case 0:
145       shift = 0;
146       break;
147    case 1:
148       assert(fs_type.length == 4);
149       shift = 2;
150       break;
151    case 2:
152       shift = 8;
153       break;
154    case 3:
155       assert(fs_type.length == 4);
156       shift = 10;
157       break;
158    default:
159       assert(0);
160       shift = 0;
161    }
162 
163    mask_input = LLVMBuildLShr(builder,
164                               mask_input,
165                               LLVMConstInt(i32t, shift, 0),
166                               "");
167 
168    /*
169     * mask = { mask_input & (1 << i), for i in [0,3] }
170     */
171    mask = lp_build_broadcast(gallivm,
172                              lp_build_vec_type(gallivm, mask_type),
173                              mask_input);
174 
175    for (i = 0; i < fs_type.length / 4; i++) {
176       unsigned j = 2 * (i % 2) + (i / 2) * 8;
177       bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
178       bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
179       bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
180       bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
181    }
182    bits_vec = LLVMConstVector(bits, fs_type.length);
183    mask = LLVMBuildAnd(builder, mask, bits_vec, "");
184 
185    /*
186     * mask = mask == bits ? ~0 : 0
187     */
188    mask = lp_build_compare(gallivm,
189                            mask_type, PIPE_FUNC_EQUAL,
190                            mask, bits_vec);
191 
192    return mask;
193 }
194 
195 
196 #define EARLY_DEPTH_TEST  0x1
197 #define LATE_DEPTH_TEST   0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE  0x8
200 
201 static int
find_output_by_semantic(const struct tgsi_shader_info * info,unsigned semantic,unsigned index)202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 			 unsigned semantic,
204 			 unsigned index )
205 {
206    int i;
207 
208    for (i = 0; i < info->num_outputs; i++)
209       if (info->output_semantic_name[i] == semantic &&
210 	  info->output_semantic_index[i] == index)
211 	 return i;
212 
213    return -1;
214 }
215 
216 
217 /**
218  * Fetch the specified lp_jit_viewport structure for a given viewport_index.
219  */
220 static LLVMValueRef
lp_llvm_viewport(LLVMValueRef context_ptr,struct gallivm_state * gallivm,LLVMValueRef viewport_index)221 lp_llvm_viewport(LLVMValueRef context_ptr,
222                  struct gallivm_state *gallivm,
223                  LLVMValueRef viewport_index)
224 {
225    LLVMBuilderRef builder = gallivm->builder;
226    LLVMValueRef ptr;
227    LLVMValueRef res;
228    struct lp_type viewport_type =
229       lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
230 
231    ptr = lp_jit_context_viewports(gallivm, context_ptr);
232    ptr = LLVMBuildPointerCast(builder, ptr,
233             LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
234 
235    res = lp_build_pointer_get(builder, ptr, viewport_index);
236 
237    return res;
238 }
239 
240 
241 static LLVMValueRef
lp_build_depth_clamp(struct gallivm_state * gallivm,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef thread_data_ptr,LLVMValueRef z)242 lp_build_depth_clamp(struct gallivm_state *gallivm,
243                      LLVMBuilderRef builder,
244                      struct lp_type type,
245                      LLVMValueRef context_ptr,
246                      LLVMValueRef thread_data_ptr,
247                      LLVMValueRef z)
248 {
249    LLVMValueRef viewport, min_depth, max_depth;
250    LLVMValueRef viewport_index;
251    struct lp_build_context f32_bld;
252 
253    assert(type.floating);
254    lp_build_context_init(&f32_bld, gallivm, type);
255 
256    /*
257     * Assumes clamping of the viewport index will occur in setup/gs. Value
258     * is passed through the rasterization stage via lp_rast_shader_inputs.
259     *
260     * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
261     *      semantics.
262     */
263    viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
264                        thread_data_ptr);
265 
266    /*
267     * Load the min and max depth from the lp_jit_context.viewports
268     * array of lp_jit_viewport structures.
269     */
270    viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
271 
272    /* viewports[viewport_index].min_depth */
273    min_depth = LLVMBuildExtractElement(builder, viewport,
274                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
275    min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
276 
277    /* viewports[viewport_index].max_depth */
278    max_depth = LLVMBuildExtractElement(builder, viewport,
279                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
280    max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
281 
282    /*
283     * Clamp to the min and max depth values for the given viewport.
284     */
285    return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
286 }
287 
288 
289 /**
290  * Generate the fragment shader, depth/stencil test, and alpha tests.
291  */
292 static void
generate_fs_loop(struct gallivm_state * gallivm,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef num_loop,struct lp_build_interp_soa_context * interp,struct lp_build_sampler_soa * sampler,LLVMValueRef mask_store,LLVMValueRef (* out_color)[4],LLVMValueRef depth_ptr,LLVMValueRef depth_stride,LLVMValueRef facing,LLVMValueRef thread_data_ptr)293 generate_fs_loop(struct gallivm_state *gallivm,
294                  struct lp_fragment_shader *shader,
295                  const struct lp_fragment_shader_variant_key *key,
296                  LLVMBuilderRef builder,
297                  struct lp_type type,
298                  LLVMValueRef context_ptr,
299                  LLVMValueRef num_loop,
300                  struct lp_build_interp_soa_context *interp,
301                  struct lp_build_sampler_soa *sampler,
302                  LLVMValueRef mask_store,
303                  LLVMValueRef (*out_color)[4],
304                  LLVMValueRef depth_ptr,
305                  LLVMValueRef depth_stride,
306                  LLVMValueRef facing,
307                  LLVMValueRef thread_data_ptr)
308 {
309    const struct util_format_description *zs_format_desc = NULL;
310    const struct tgsi_token *tokens = shader->base.tokens;
311    struct lp_type int_type = lp_int_type(type);
312    LLVMTypeRef vec_type, int_vec_type;
313    LLVMValueRef mask_ptr, mask_val;
314    LLVMValueRef consts_ptr, num_consts_ptr;
315    LLVMValueRef z;
316    LLVMValueRef z_value, s_value;
317    LLVMValueRef z_fb, s_fb;
318    LLVMValueRef stencil_refs[2];
319    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
320    struct lp_build_for_loop_state loop_state;
321    struct lp_build_mask_context mask;
322    /*
323     * TODO: figure out if simple_shader optimization is really worthwile to
324     * keep. Disabled because it may hide some real bugs in the (depth/stencil)
325     * code since tests tend to take another codepath than real shaders.
326     */
327    boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
328                             shader->info.base.num_inputs < 3 &&
329                             shader->info.base.num_instructions < 8) && 0;
330    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
331                                      util_blend_state_is_dual(&key->blend, 0);
332    unsigned attrib;
333    unsigned chan;
334    unsigned cbuf;
335    unsigned depth_mode;
336 
337    struct lp_bld_tgsi_system_values system_values;
338 
339    memset(&system_values, 0, sizeof(system_values));
340 
341    if (key->depth.enabled ||
342        key->stencil[0].enabled) {
343 
344       zs_format_desc = util_format_description(key->zsbuf_format);
345       assert(zs_format_desc);
346 
347       if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
348          if (key->alpha.enabled ||
349              key->blend.alpha_to_coverage ||
350              shader->info.base.uses_kill) {
351             /* With alpha test and kill, can do the depth test early
352              * and hopefully eliminate some quads.  But need to do a
353              * special deferred depth write once the final mask value
354              * is known. This only works though if there's either no
355              * stencil test or the stencil value isn't written.
356              */
357             if (key->stencil[0].enabled && (key->stencil[0].writemask ||
358                                             (key->stencil[1].enabled &&
359                                              key->stencil[1].writemask)))
360                depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
361             else
362                depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
363          }
364          else
365             depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
366       }
367       else {
368          depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
369       }
370 
371       if (!(key->depth.enabled && key->depth.writemask) &&
372           !(key->stencil[0].enabled && (key->stencil[0].writemask ||
373                                         (key->stencil[1].enabled &&
374                                          key->stencil[1].writemask))))
375          depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
376    }
377    else {
378       depth_mode = 0;
379    }
380 
381    vec_type = lp_build_vec_type(gallivm, type);
382    int_vec_type = lp_build_vec_type(gallivm, int_type);
383 
384    stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
385    stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
386    /* convert scalar stencil refs into vectors */
387    stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
388    stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
389 
390    consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
391    num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
392 
393    lp_build_for_loop_begin(&loop_state, gallivm,
394                            lp_build_const_int32(gallivm, 0),
395                            LLVMIntULT,
396                            num_loop,
397                            lp_build_const_int32(gallivm, 1));
398 
399    mask_ptr = LLVMBuildGEP(builder, mask_store,
400                            &loop_state.counter, 1, "mask_ptr");
401    mask_val = LLVMBuildLoad(builder, mask_ptr, "");
402 
403    memset(outputs, 0, sizeof outputs);
404 
405    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
406       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
407          out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
408                                                        lp_build_vec_type(gallivm,
409                                                                          type),
410                                                        num_loop, "color");
411       }
412    }
413    if (dual_source_blend) {
414       assert(key->nr_cbufs <= 1);
415       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
416          out_color[1][chan] = lp_build_array_alloca(gallivm,
417                                                     lp_build_vec_type(gallivm,
418                                                                       type),
419                                                     num_loop, "color1");
420       }
421    }
422 
423 
424    /* 'mask' will control execution based on quad's pixel alive/killed state */
425    lp_build_mask_begin(&mask, gallivm, type, mask_val);
426 
427    if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
428       lp_build_mask_check(&mask);
429 
430    lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
431    z = interp->pos[2];
432 
433    if (depth_mode & EARLY_DEPTH_TEST) {
434       /*
435        * Clamp according to ARB_depth_clamp semantics.
436        */
437       if (key->depth_clamp) {
438          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
439                                   thread_data_ptr, z);
440       }
441       lp_build_depth_stencil_load_swizzled(gallivm, type,
442                                            zs_format_desc, key->resource_1d,
443                                            depth_ptr, depth_stride,
444                                            &z_fb, &s_fb, loop_state.counter);
445       lp_build_depth_stencil_test(gallivm,
446                                   &key->depth,
447                                   key->stencil,
448                                   type,
449                                   zs_format_desc,
450                                   &mask,
451                                   stencil_refs,
452                                   z, z_fb, s_fb,
453                                   facing,
454                                   &z_value, &s_value,
455                                   !simple_shader);
456 
457       if (depth_mode & EARLY_DEPTH_WRITE) {
458          lp_build_depth_stencil_write_swizzled(gallivm, type,
459                                                zs_format_desc, key->resource_1d,
460                                                NULL, NULL, NULL, loop_state.counter,
461                                                depth_ptr, depth_stride,
462                                                z_value, s_value);
463       }
464       /*
465        * Note mask check if stencil is enabled must be after ds write not after
466        * stencil test otherwise new stencil values may not get written if all
467        * fragments got killed by depth/stencil test.
468        */
469       if (!simple_shader && key->stencil[0].enabled)
470          lp_build_mask_check(&mask);
471    }
472 
473    lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
474 
475    /* Build the actual shader */
476    lp_build_tgsi_soa(gallivm, tokens, type, &mask,
477                      consts_ptr, num_consts_ptr, &system_values,
478                      interp->inputs,
479                      outputs, context_ptr, thread_data_ptr,
480                      sampler, &shader->info.base, NULL);
481 
482    /* Alpha test */
483    if (key->alpha.enabled) {
484       int color0 = find_output_by_semantic(&shader->info.base,
485                                            TGSI_SEMANTIC_COLOR,
486                                            0);
487 
488       if (color0 != -1 && outputs[color0][3]) {
489          const struct util_format_description *cbuf_format_desc;
490          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
491          LLVMValueRef alpha_ref_value;
492 
493          alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
494          alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
495 
496          cbuf_format_desc = util_format_description(key->cbuf_format[0]);
497 
498          lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
499                              &mask, alpha, alpha_ref_value,
500                              (depth_mode & LATE_DEPTH_TEST) != 0);
501       }
502    }
503 
504    /* Emulate Alpha to Coverage with Alpha test */
505    if (key->blend.alpha_to_coverage) {
506       int color0 = find_output_by_semantic(&shader->info.base,
507                                            TGSI_SEMANTIC_COLOR,
508                                            0);
509 
510       if (color0 != -1 && outputs[color0][3]) {
511          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
512 
513          lp_build_alpha_to_coverage(gallivm, type,
514                                     &mask, alpha,
515                                     (depth_mode & LATE_DEPTH_TEST) != 0);
516       }
517    }
518 
519    /* Late Z test */
520    if (depth_mode & LATE_DEPTH_TEST) {
521       int pos0 = find_output_by_semantic(&shader->info.base,
522                                          TGSI_SEMANTIC_POSITION,
523                                          0);
524       int s_out = find_output_by_semantic(&shader->info.base,
525                                           TGSI_SEMANTIC_STENCIL,
526                                           0);
527       if (pos0 != -1 && outputs[pos0][2]) {
528          z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
529       }
530       /*
531        * Clamp according to ARB_depth_clamp semantics.
532        */
533       if (key->depth_clamp) {
534          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
535                                   thread_data_ptr, z);
536       }
537 
538       if (s_out != -1 && outputs[s_out][1]) {
539          /* there's only one value, and spec says to discard additional bits */
540          LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
541          stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
542          stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
543          stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
544          stencil_refs[1] = stencil_refs[0];
545       }
546 
547       lp_build_depth_stencil_load_swizzled(gallivm, type,
548                                            zs_format_desc, key->resource_1d,
549                                            depth_ptr, depth_stride,
550                                            &z_fb, &s_fb, loop_state.counter);
551 
552       lp_build_depth_stencil_test(gallivm,
553                                   &key->depth,
554                                   key->stencil,
555                                   type,
556                                   zs_format_desc,
557                                   &mask,
558                                   stencil_refs,
559                                   z, z_fb, s_fb,
560                                   facing,
561                                   &z_value, &s_value,
562                                   !simple_shader);
563       /* Late Z write */
564       if (depth_mode & LATE_DEPTH_WRITE) {
565          lp_build_depth_stencil_write_swizzled(gallivm, type,
566                                                zs_format_desc, key->resource_1d,
567                                                NULL, NULL, NULL, loop_state.counter,
568                                                depth_ptr, depth_stride,
569                                                z_value, s_value);
570       }
571    }
572    else if ((depth_mode & EARLY_DEPTH_TEST) &&
573             (depth_mode & LATE_DEPTH_WRITE))
574    {
575       /* Need to apply a reduced mask to the depth write.  Reload the
576        * depth value, update from zs_value with the new mask value and
577        * write that out.
578        */
579       lp_build_depth_stencil_write_swizzled(gallivm, type,
580                                             zs_format_desc, key->resource_1d,
581                                             &mask, z_fb, s_fb, loop_state.counter,
582                                             depth_ptr, depth_stride,
583                                             z_value, s_value);
584    }
585 
586 
587    /* Color write  */
588    for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
589    {
590       unsigned cbuf = shader->info.base.output_semantic_index[attrib];
591       if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
592            ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
593       {
594          for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
595             if(outputs[attrib][chan]) {
596                /* XXX: just initialize outputs to point at colors[] and
597                 * skip this.
598                 */
599                LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
600                LLVMValueRef color_ptr;
601                color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
602                                         &loop_state.counter, 1, "");
603                lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
604                LLVMBuildStore(builder, out, color_ptr);
605             }
606          }
607       }
608    }
609 
610    if (key->occlusion_count) {
611       LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
612       lp_build_name(counter, "counter");
613       lp_build_occlusion_count(gallivm, type,
614                                lp_build_mask_value(&mask), counter);
615    }
616 
617    mask_val = lp_build_mask_end(&mask);
618    LLVMBuildStore(builder, mask_val, mask_ptr);
619    lp_build_for_loop_end(&loop_state);
620 }
621 
622 
623 /**
624  * This function will reorder pixels from the fragment shader SoA to memory layout AoS
625  *
626  * Fragment Shader outputs pixels in small 2x2 blocks
627  *  e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
628  *
629  * However in memory pixels are stored in rows
630  *  e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
631  *
632  * @param type            fragment shader type (4x or 8x float)
633  * @param num_fs          number of fs_src
634  * @param is_1d           whether we're outputting to a 1d resource
635  * @param dst_channels    number of output channels
636  * @param fs_src          output from fragment shader
637  * @param dst             pointer to store result
638  * @param pad_inline      is channel padding inline or at end of row
639  * @return                the number of dsts
640  */
641 static int
generate_fs_twiddle(struct gallivm_state * gallivm,struct lp_type type,unsigned num_fs,unsigned dst_channels,LLVMValueRef fs_src[][4],LLVMValueRef * dst,bool pad_inline)642 generate_fs_twiddle(struct gallivm_state *gallivm,
643                     struct lp_type type,
644                     unsigned num_fs,
645                     unsigned dst_channels,
646                     LLVMValueRef fs_src[][4],
647                     LLVMValueRef* dst,
648                     bool pad_inline)
649 {
650    LLVMValueRef src[16];
651 
652    bool swizzle_pad;
653    bool twiddle;
654    bool split;
655 
656    unsigned pixels = type.length / 4;
657    unsigned reorder_group;
658    unsigned src_channels;
659    unsigned src_count;
660    unsigned i;
661 
662    src_channels = dst_channels < 3 ? dst_channels : 4;
663    src_count = num_fs * src_channels;
664 
665    assert(pixels == 2 || pixels == 1);
666    assert(num_fs * src_channels <= ARRAY_SIZE(src));
667 
668    /*
669     * Transpose from SoA -> AoS
670     */
671    for (i = 0; i < num_fs; ++i) {
672       lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
673    }
674 
675    /*
676     * Pick transformation options
677     */
678    swizzle_pad = false;
679    twiddle = false;
680    split = false;
681    reorder_group = 0;
682 
683    if (dst_channels == 1) {
684       twiddle = true;
685 
686       if (pixels == 2) {
687          split = true;
688       }
689    } else if (dst_channels == 2) {
690       if (pixels == 1) {
691          reorder_group = 1;
692       }
693    } else if (dst_channels > 2) {
694       if (pixels == 1) {
695          reorder_group = 2;
696       } else {
697          twiddle = true;
698       }
699 
700       if (!pad_inline && dst_channels == 3 && pixels > 1) {
701          swizzle_pad = true;
702       }
703    }
704 
705    /*
706     * Split the src in half
707     */
708    if (split) {
709       for (i = num_fs; i > 0; --i) {
710          src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
711          src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
712       }
713 
714       src_count *= 2;
715       type.length = 4;
716    }
717 
718    /*
719     * Ensure pixels are in memory order
720     */
721    if (reorder_group) {
722       /* Twiddle pixels by reordering the array, e.g.:
723        *
724        * src_count =  8 -> 0 2 1 3 4 6 5 7
725        * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
726        */
727       const unsigned reorder_sw[] = { 0, 2, 1, 3 };
728 
729       for (i = 0; i < src_count; ++i) {
730          unsigned group = i / reorder_group;
731          unsigned block = (group / 4) * 4 * reorder_group;
732          unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
733          dst[i] = src[j];
734       }
735    } else if (twiddle) {
736       /* Twiddle pixels across elements of array */
737       /*
738        * XXX: we should avoid this in some cases, but would need to tell
739        * lp_build_conv to reorder (or deal with it ourselves).
740        */
741       lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
742    } else {
743       /* Do nothing */
744       memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
745    }
746 
747    /*
748     * Moves any padding between pixels to the end
749     * e.g. RGBXRGBX -> RGBRGBXX
750     */
751    if (swizzle_pad) {
752       unsigned char swizzles[16];
753       unsigned elems = pixels * dst_channels;
754 
755       for (i = 0; i < type.length; ++i) {
756          if (i < elems)
757             swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
758          else
759             swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
760       }
761 
762       for (i = 0; i < src_count; ++i) {
763          dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
764       }
765    }
766 
767    return src_count;
768 }
769 
770 
771 /*
772  * Untwiddle and transpose, much like the above.
773  * However, this is after conversion, so we get packed vectors.
774  * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
775  * the vectors will look like:
776  * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
777  * be swizzled here). Extending to 16bit should be trivial.
778  * Should also be extended to handle twice wide vectors with AVX2...
779  */
780 static void
fs_twiddle_transpose(struct gallivm_state * gallivm,struct lp_type type,LLVMValueRef * src,unsigned src_count,LLVMValueRef * dst)781 fs_twiddle_transpose(struct gallivm_state *gallivm,
782                      struct lp_type type,
783                      LLVMValueRef *src,
784                      unsigned src_count,
785                      LLVMValueRef *dst)
786 {
787    unsigned i, j;
788    struct lp_type type64, type16, type32;
789    LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
790    LLVMBuilderRef builder = gallivm->builder;
791    LLVMValueRef tmp[4], shuf[8];
792    for (j = 0; j < 2; j++) {
793       shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
794       shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
795       shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
796       shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
797    }
798 
799    assert(src_count == 4 || src_count == 2 || src_count == 1);
800    assert(type.width == 8);
801    assert(type.length == 16);
802 
803    type8_t = lp_build_vec_type(gallivm, type);
804 
805    type64 = type;
806    type64.length /= 8;
807    type64.width *= 8;
808    type64_t = lp_build_vec_type(gallivm, type64);
809 
810    type16 = type;
811    type16.length /= 2;
812    type16.width *= 2;
813    type16_t = lp_build_vec_type(gallivm, type16);
814 
815    type32 = type;
816    type32.length /= 4;
817    type32.width *= 4;
818    type32_t = lp_build_vec_type(gallivm, type32);
819 
820    lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
821 
822    if (src_count == 1) {
823       /* transpose was no-op, just untwiddle */
824       LLVMValueRef shuf_vec;
825       shuf_vec = LLVMConstVector(shuf, 8);
826       tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
827       tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
828       dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
829    } else if (src_count == 2) {
830       LLVMValueRef shuf_vec;
831       shuf_vec = LLVMConstVector(shuf, 4);
832 
833       for (i = 0; i < 2; i++) {
834          tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
835          tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
836          dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
837       }
838    } else {
839       for (j = 0; j < 2; j++) {
840          LLVMValueRef lo, hi, lo2, hi2;
841           /*
842           * Note that if we only really have 3 valid channels (rgb)
843           * and we don't need alpha we could substitute a undef here
844           * for the respective channel (causing llvm to drop conversion
845           * for alpha).
846           */
847          /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
848          lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
849          hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
850          lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
851          hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
852          dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
853          dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
854       }
855    }
856 }
857 
858 
859 /**
860  * Load an unswizzled block of pixels from memory
861  */
862 static void
load_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * dst,struct lp_type dst_type,unsigned dst_count,unsigned dst_alignment)863 load_unswizzled_block(struct gallivm_state *gallivm,
864                       LLVMValueRef base_ptr,
865                       LLVMValueRef stride,
866                       unsigned block_width,
867                       unsigned block_height,
868                       LLVMValueRef* dst,
869                       struct lp_type dst_type,
870                       unsigned dst_count,
871                       unsigned dst_alignment)
872 {
873    LLVMBuilderRef builder = gallivm->builder;
874    unsigned row_size = dst_count / block_height;
875    unsigned i;
876 
877    /* Ensure block exactly fits into dst */
878    assert((block_width * block_height) % dst_count == 0);
879 
880    for (i = 0; i < dst_count; ++i) {
881       unsigned x = i % row_size;
882       unsigned y = i / row_size;
883 
884       LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
885       LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
886 
887       LLVMValueRef gep[2];
888       LLVMValueRef dst_ptr;
889 
890       gep[0] = lp_build_const_int32(gallivm, 0);
891       gep[1] = LLVMBuildAdd(builder, bx, by, "");
892 
893       dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
894       dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
895                                  LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
896 
897       dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
898 
899       LLVMSetAlignment(dst[i], dst_alignment);
900    }
901 }
902 
903 
904 /**
905  * Store an unswizzled block of pixels to memory
906  */
907 static void
store_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * src,struct lp_type src_type,unsigned src_count,unsigned src_alignment)908 store_unswizzled_block(struct gallivm_state *gallivm,
909                        LLVMValueRef base_ptr,
910                        LLVMValueRef stride,
911                        unsigned block_width,
912                        unsigned block_height,
913                        LLVMValueRef* src,
914                        struct lp_type src_type,
915                        unsigned src_count,
916                        unsigned src_alignment)
917 {
918    LLVMBuilderRef builder = gallivm->builder;
919    unsigned row_size = src_count / block_height;
920    unsigned i;
921 
922    /* Ensure src exactly fits into block */
923    assert((block_width * block_height) % src_count == 0);
924 
925    for (i = 0; i < src_count; ++i) {
926       unsigned x = i % row_size;
927       unsigned y = i / row_size;
928 
929       LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
930       LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
931 
932       LLVMValueRef gep[2];
933       LLVMValueRef src_ptr;
934 
935       gep[0] = lp_build_const_int32(gallivm, 0);
936       gep[1] = LLVMBuildAdd(builder, bx, by, "");
937 
938       src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
939       src_ptr = LLVMBuildBitCast(builder, src_ptr,
940                                  LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
941 
942       src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
943 
944       LLVMSetAlignment(src_ptr, src_alignment);
945    }
946 }
947 
948 
949 /**
950  * Checks if a format description is an arithmetic format
951  *
952  * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
953  */
954 static inline boolean
is_arithmetic_format(const struct util_format_description * format_desc)955 is_arithmetic_format(const struct util_format_description *format_desc)
956 {
957    boolean arith = false;
958    unsigned i;
959 
960    for (i = 0; i < format_desc->nr_channels; ++i) {
961       arith |= format_desc->channel[i].size != format_desc->channel[0].size;
962       arith |= (format_desc->channel[i].size % 8) != 0;
963    }
964 
965    return arith;
966 }
967 
968 
969 /**
970  * Checks if this format requires special handling due to required expansion
971  * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
972  * SoA conversion.
973  */
974 static inline boolean
format_expands_to_float_soa(const struct util_format_description * format_desc)975 format_expands_to_float_soa(const struct util_format_description *format_desc)
976 {
977    if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
978        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
979       return true;
980    }
981    return false;
982 }
983 
984 
985 /**
986  * Retrieves the type representing the memory layout for a format
987  *
988  * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
989  */
990 static inline void
lp_mem_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)991 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
992                              struct lp_type* type)
993 {
994    unsigned i;
995    unsigned chan;
996 
997    if (format_expands_to_float_soa(format_desc)) {
998       /* just make this a uint with width of block */
999       type->floating = false;
1000       type->fixed = false;
1001       type->sign = false;
1002       type->norm = false;
1003       type->width = format_desc->block.bits;
1004       type->length = 1;
1005       return;
1006    }
1007 
1008    for (i = 0; i < 4; i++)
1009       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1010          break;
1011    chan = i;
1012 
1013    memset(type, 0, sizeof(struct lp_type));
1014    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1015    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1016    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1017    type->norm     = format_desc->channel[chan].normalized;
1018 
1019    if (is_arithmetic_format(format_desc)) {
1020       type->width = 0;
1021       type->length = 1;
1022 
1023       for (i = 0; i < format_desc->nr_channels; ++i) {
1024          type->width += format_desc->channel[i].size;
1025       }
1026    } else {
1027       type->width = format_desc->channel[chan].size;
1028       type->length = format_desc->nr_channels;
1029    }
1030 }
1031 
1032 
1033 /**
1034  * Retrieves the type for a format which is usable in the blending code.
1035  *
1036  * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1037  */
1038 static inline void
lp_blend_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)1039 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1040                                struct lp_type* type)
1041 {
1042    unsigned i;
1043    unsigned chan;
1044 
1045    if (format_expands_to_float_soa(format_desc)) {
1046       /* always use ordinary floats for blending */
1047       type->floating = true;
1048       type->fixed = false;
1049       type->sign = true;
1050       type->norm = false;
1051       type->width = 32;
1052       type->length = 4;
1053       return;
1054    }
1055 
1056    for (i = 0; i < 4; i++)
1057       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1058          break;
1059    chan = i;
1060 
1061    memset(type, 0, sizeof(struct lp_type));
1062    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1063    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1064    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1065    type->norm     = format_desc->channel[chan].normalized;
1066    type->width    = format_desc->channel[chan].size;
1067    type->length   = format_desc->nr_channels;
1068 
1069    for (i = 1; i < format_desc->nr_channels; ++i) {
1070       if (format_desc->channel[i].size > type->width)
1071          type->width = format_desc->channel[i].size;
1072    }
1073 
1074    if (type->floating) {
1075       type->width = 32;
1076    } else {
1077       if (type->width <= 8) {
1078          type->width = 8;
1079       } else if (type->width <= 16) {
1080          type->width = 16;
1081       } else {
1082          type->width = 32;
1083       }
1084    }
1085 
1086    if (is_arithmetic_format(format_desc) && type->length == 3) {
1087       type->length = 4;
1088    }
1089 }
1090 
1091 
1092 /**
1093  * Scale a normalized value from src_bits to dst_bits.
1094  *
1095  * The exact calculation is
1096  *
1097  *    dst = iround(src * dst_mask / src_mask)
1098  *
1099  *  or with integer rounding
1100  *
1101  *    dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1102  *
1103  *  where
1104  *
1105  *    src_mask = (1 << src_bits) - 1
1106  *    dst_mask = (1 << dst_bits) - 1
1107  *
1108  * but we try to avoid division and multiplication through shifts.
1109  */
1110 static inline LLVMValueRef
scale_bits(struct gallivm_state * gallivm,int src_bits,int dst_bits,LLVMValueRef src,struct lp_type src_type)1111 scale_bits(struct gallivm_state *gallivm,
1112            int src_bits,
1113            int dst_bits,
1114            LLVMValueRef src,
1115            struct lp_type src_type)
1116 {
1117    LLVMBuilderRef builder = gallivm->builder;
1118    LLVMValueRef result = src;
1119 
1120    if (dst_bits < src_bits) {
1121       int delta_bits = src_bits - dst_bits;
1122 
1123       if (delta_bits <= dst_bits) {
1124          /*
1125           * Approximate the rescaling with a single shift.
1126           *
1127           * This gives the wrong rounding.
1128           */
1129 
1130          result = LLVMBuildLShr(builder,
1131                                 src,
1132                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1133                                 "");
1134 
1135       } else {
1136          /*
1137           * Try more accurate rescaling.
1138           */
1139 
1140          /*
1141           * Drop the least significant bits to make space for the multiplication.
1142           *
1143           * XXX: A better approach would be to use a wider integer type as intermediate.  But
1144           * this is enough to convert alpha from 16bits -> 2 when rendering to
1145           * PIPE_FORMAT_R10G10B10A2_UNORM.
1146           */
1147          result = LLVMBuildLShr(builder,
1148                                 src,
1149                                 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1150                                 "");
1151 
1152 
1153          result = LLVMBuildMul(builder,
1154                                result,
1155                                lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1156                                "");
1157 
1158          /*
1159           * Add a rounding term before the division.
1160           *
1161           * TODO: Handle signed integers too.
1162           */
1163          if (!src_type.sign) {
1164             result = LLVMBuildAdd(builder,
1165                                   result,
1166                                   lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1167                                   "");
1168          }
1169 
1170          /*
1171           * Approximate the division by src_mask with a src_bits shift.
1172           *
1173           * Given the src has already been shifted by dst_bits, all we need
1174           * to do is to shift by the difference.
1175           */
1176 
1177          result = LLVMBuildLShr(builder,
1178                                 result,
1179                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1180                                 "");
1181       }
1182 
1183    } else if (dst_bits > src_bits) {
1184       /* Scale up bits */
1185       int db = dst_bits - src_bits;
1186 
1187       /* Shift left by difference in bits */
1188       result = LLVMBuildShl(builder,
1189                             src,
1190                             lp_build_const_int_vec(gallivm, src_type, db),
1191                             "");
1192 
1193       if (db <= src_bits) {
1194          /* Enough bits in src to fill the remainder */
1195          LLVMValueRef lower = LLVMBuildLShr(builder,
1196                                             src,
1197                                             lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1198                                             "");
1199 
1200          result = LLVMBuildOr(builder, result, lower, "");
1201       } else if (db > src_bits) {
1202          /* Need to repeatedly copy src bits to fill remainder in dst */
1203          unsigned n;
1204 
1205          for (n = src_bits; n < dst_bits; n *= 2) {
1206             LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1207 
1208             result = LLVMBuildOr(builder,
1209                                  result,
1210                                  LLVMBuildLShr(builder, result, shuv, ""),
1211                                  "");
1212          }
1213       }
1214    }
1215 
1216    return result;
1217 }
1218 
1219 /**
1220  * If RT is a smallfloat (needing denorms) format
1221  */
1222 static inline int
have_smallfloat_format(struct lp_type dst_type,enum pipe_format format)1223 have_smallfloat_format(struct lp_type dst_type,
1224                        enum pipe_format format)
1225 {
1226    return ((dst_type.floating && dst_type.width != 32) ||
1227     /* due to format handling hacks this format doesn't have floating set
1228      * here (and actually has width set to 32 too) so special case this. */
1229     (format == PIPE_FORMAT_R11G11B10_FLOAT));
1230 }
1231 
1232 
1233 /**
1234  * Convert from memory format to blending format
1235  *
1236  * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1237  */
1238 static void
convert_to_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)1239 convert_to_blend_type(struct gallivm_state *gallivm,
1240                       unsigned block_size,
1241                       const struct util_format_description *src_fmt,
1242                       struct lp_type src_type,
1243                       struct lp_type dst_type,
1244                       LLVMValueRef* src, // and dst
1245                       unsigned num_srcs)
1246 {
1247    LLVMValueRef *dst = src;
1248    LLVMBuilderRef builder = gallivm->builder;
1249    struct lp_type blend_type;
1250    struct lp_type mem_type;
1251    unsigned i, j;
1252    unsigned pixels = block_size / num_srcs;
1253    bool is_arith;
1254 
1255    /*
1256     * full custom path for packed floats and srgb formats - none of the later
1257     * functions would do anything useful, and given the lp_type representation they
1258     * can't be fixed. Should really have some SoA blend path for these kind of
1259     * formats rather than hacking them in here.
1260     */
1261    if (format_expands_to_float_soa(src_fmt)) {
1262       LLVMValueRef tmpsrc[4];
1263       /*
1264        * This is pretty suboptimal for this case blending in SoA would be much
1265        * better, since conversion gets us SoA values so need to convert back.
1266        */
1267       assert(src_type.width == 32 || src_type.width == 16);
1268       assert(dst_type.floating);
1269       assert(dst_type.width == 32);
1270       assert(dst_type.length % 4 == 0);
1271       assert(num_srcs % 4 == 0);
1272 
1273       if (src_type.width == 16) {
1274          /* expand 4x16bit values to 4x32bit */
1275          struct lp_type type32x4 = src_type;
1276          LLVMTypeRef ltype32x4;
1277          unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1278          type32x4.width = 32;
1279          ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1280          for (i = 0; i < num_fetch; i++) {
1281             src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1282          }
1283          src_type.width = 32;
1284       }
1285       for (i = 0; i < 4; i++) {
1286          tmpsrc[i] = src[i];
1287       }
1288       for (i = 0; i < num_srcs / 4; i++) {
1289          LLVMValueRef tmpsoa[4];
1290          LLVMValueRef tmps = tmpsrc[i];
1291          if (dst_type.length == 8) {
1292             LLVMValueRef shuffles[8];
1293             unsigned j;
1294             /* fetch was 4 values but need 8-wide output values */
1295             tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1296             /*
1297              * for 8-wide aos transpose would give us wrong order not matching
1298              * incoming converted fs values and mask. ARGH.
1299              */
1300             for (j = 0; j < 4; j++) {
1301                shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1302                shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1303             }
1304             tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1305                                           LLVMConstVector(shuffles, 8), "");
1306          }
1307          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1308             lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1309          }
1310          else {
1311             lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1312          }
1313          lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1314       }
1315       return;
1316    }
1317 
1318    lp_mem_type_from_format_desc(src_fmt, &mem_type);
1319    lp_blend_type_from_format_desc(src_fmt, &blend_type);
1320 
1321    /* Is the format arithmetic */
1322    is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1323    is_arith &= !(mem_type.width == 16 && mem_type.floating);
1324 
1325    /* Pad if necessary */
1326    if (!is_arith && src_type.length < dst_type.length) {
1327       for (i = 0; i < num_srcs; ++i) {
1328          dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1329       }
1330 
1331       src_type.length = dst_type.length;
1332    }
1333 
1334    /* Special case for half-floats */
1335    if (mem_type.width == 16 && mem_type.floating) {
1336       assert(blend_type.width == 32 && blend_type.floating);
1337       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1338       is_arith = false;
1339    }
1340 
1341    if (!is_arith) {
1342       return;
1343    }
1344 
1345    src_type.width = blend_type.width * blend_type.length;
1346    blend_type.length *= pixels;
1347    src_type.length *= pixels / (src_type.length / mem_type.length);
1348 
1349    for (i = 0; i < num_srcs; ++i) {
1350       LLVMValueRef chans[4];
1351       LLVMValueRef res = NULL;
1352 
1353       dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1354 
1355       for (j = 0; j < src_fmt->nr_channels; ++j) {
1356          unsigned mask = 0;
1357          unsigned sa = src_fmt->channel[j].shift;
1358 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1359          unsigned from_lsb = j;
1360 #else
1361          unsigned from_lsb = src_fmt->nr_channels - j - 1;
1362 #endif
1363 
1364          mask = (1 << src_fmt->channel[j].size) - 1;
1365 
1366          /* Extract bits from source */
1367          chans[j] = LLVMBuildLShr(builder,
1368                                   dst[i],
1369                                   lp_build_const_int_vec(gallivm, src_type, sa),
1370                                   "");
1371 
1372          chans[j] = LLVMBuildAnd(builder,
1373                                  chans[j],
1374                                  lp_build_const_int_vec(gallivm, src_type, mask),
1375                                  "");
1376 
1377          /* Scale bits */
1378          if (src_type.norm) {
1379             chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1380                                   blend_type.width, chans[j], src_type);
1381          }
1382 
1383          /* Insert bits into correct position */
1384          chans[j] = LLVMBuildShl(builder,
1385                                  chans[j],
1386                                  lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1387                                  "");
1388 
1389          if (j == 0) {
1390             res = chans[j];
1391          } else {
1392             res = LLVMBuildOr(builder, res, chans[j], "");
1393          }
1394       }
1395 
1396       dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1397    }
1398 }
1399 
1400 
1401 /**
1402  * Convert from blending format to memory format
1403  *
1404  * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1405  */
1406 static void
convert_from_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)1407 convert_from_blend_type(struct gallivm_state *gallivm,
1408                         unsigned block_size,
1409                         const struct util_format_description *src_fmt,
1410                         struct lp_type src_type,
1411                         struct lp_type dst_type,
1412                         LLVMValueRef* src, // and dst
1413                         unsigned num_srcs)
1414 {
1415    LLVMValueRef* dst = src;
1416    unsigned i, j, k;
1417    struct lp_type mem_type;
1418    struct lp_type blend_type;
1419    LLVMBuilderRef builder = gallivm->builder;
1420    unsigned pixels = block_size / num_srcs;
1421    bool is_arith;
1422 
1423    /*
1424     * full custom path for packed floats and srgb formats - none of the later
1425     * functions would do anything useful, and given the lp_type representation they
1426     * can't be fixed. Should really have some SoA blend path for these kind of
1427     * formats rather than hacking them in here.
1428     */
1429    if (format_expands_to_float_soa(src_fmt)) {
1430       /*
1431        * This is pretty suboptimal for this case blending in SoA would be much
1432        * better - we need to transpose the AoS values back to SoA values for
1433        * conversion/packing.
1434        */
1435       assert(src_type.floating);
1436       assert(src_type.width == 32);
1437       assert(src_type.length % 4 == 0);
1438       assert(dst_type.width == 32 || dst_type.width == 16);
1439 
1440       for (i = 0; i < num_srcs / 4; i++) {
1441          LLVMValueRef tmpsoa[4], tmpdst;
1442          lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1443          /* really really need SoA here */
1444 
1445          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1446             tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1447          }
1448          else {
1449             tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1450                                                    src_type, tmpsoa);
1451          }
1452 
1453          if (src_type.length == 8) {
1454             LLVMValueRef tmpaos, shuffles[8];
1455             unsigned j;
1456             /*
1457              * for 8-wide aos transpose has given us wrong order not matching
1458              * output order. HMPF. Also need to split the output values manually.
1459              */
1460             for (j = 0; j < 4; j++) {
1461                shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1462                shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1463             }
1464             tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1465                                             LLVMConstVector(shuffles, 8), "");
1466             src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1467             src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1468          }
1469          else {
1470             src[i] = tmpdst;
1471          }
1472       }
1473       if (dst_type.width == 16) {
1474          struct lp_type type16x8 = dst_type;
1475          struct lp_type type32x4 = dst_type;
1476          LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1477          unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1478          type16x8.length = 8;
1479          type32x4.width = 32;
1480          ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1481          ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1482          ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1483          /* We could do vector truncation but it doesn't generate very good code */
1484          for (i = 0; i < num_fetch; i++) {
1485             src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1486                                     src[i], lp_build_zero(gallivm, type32x4));
1487             src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1488             src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1489             src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1490          }
1491       }
1492       return;
1493    }
1494 
1495    lp_mem_type_from_format_desc(src_fmt, &mem_type);
1496    lp_blend_type_from_format_desc(src_fmt, &blend_type);
1497 
1498    is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1499 
1500    /* Special case for half-floats */
1501    if (mem_type.width == 16 && mem_type.floating) {
1502       int length = dst_type.length;
1503       assert(blend_type.width == 32 && blend_type.floating);
1504 
1505       dst_type.length = src_type.length;
1506 
1507       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1508 
1509       dst_type.length = length;
1510       is_arith = false;
1511    }
1512 
1513    /* Remove any padding */
1514    if (!is_arith && (src_type.length % mem_type.length)) {
1515       src_type.length -= (src_type.length % mem_type.length);
1516 
1517       for (i = 0; i < num_srcs; ++i) {
1518          dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1519       }
1520    }
1521 
1522    /* No bit arithmetic to do */
1523    if (!is_arith) {
1524       return;
1525    }
1526 
1527    src_type.length = pixels;
1528    src_type.width = blend_type.length * blend_type.width;
1529    dst_type.length = pixels;
1530 
1531    for (i = 0; i < num_srcs; ++i) {
1532       LLVMValueRef chans[4];
1533       LLVMValueRef res = NULL;
1534 
1535       dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1536 
1537       for (j = 0; j < src_fmt->nr_channels; ++j) {
1538          unsigned mask = 0;
1539          unsigned sa = src_fmt->channel[j].shift;
1540 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1541          unsigned from_lsb = j;
1542 #else
1543          unsigned from_lsb = src_fmt->nr_channels - j - 1;
1544 #endif
1545 
1546          assert(blend_type.width > src_fmt->channel[j].size);
1547 
1548          for (k = 0; k < blend_type.width; ++k) {
1549             mask |= 1 << k;
1550          }
1551 
1552          /* Extract bits */
1553          chans[j] = LLVMBuildLShr(builder,
1554                                   dst[i],
1555                                   lp_build_const_int_vec(gallivm, src_type,
1556                                                          from_lsb * blend_type.width),
1557                                   "");
1558 
1559          chans[j] = LLVMBuildAnd(builder,
1560                                  chans[j],
1561                                  lp_build_const_int_vec(gallivm, src_type, mask),
1562                                  "");
1563 
1564          /* Scale down bits */
1565          if (src_type.norm) {
1566             chans[j] = scale_bits(gallivm, blend_type.width,
1567                                   src_fmt->channel[j].size, chans[j], src_type);
1568          }
1569 
1570          /* Insert bits */
1571          chans[j] = LLVMBuildShl(builder,
1572                                  chans[j],
1573                                  lp_build_const_int_vec(gallivm, src_type, sa),
1574                                  "");
1575 
1576          sa += src_fmt->channel[j].size;
1577 
1578          if (j == 0) {
1579             res = chans[j];
1580          } else {
1581             res = LLVMBuildOr(builder, res, chans[j], "");
1582          }
1583       }
1584 
1585       assert (dst_type.width != 24);
1586 
1587       dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1588    }
1589 }
1590 
1591 
1592 /**
1593  * Convert alpha to same blend type as src
1594  */
1595 static void
convert_alpha(struct gallivm_state * gallivm,struct lp_type row_type,struct lp_type alpha_type,const unsigned block_size,const unsigned block_height,const unsigned src_count,const unsigned dst_channels,const bool pad_inline,LLVMValueRef * src_alpha)1596 convert_alpha(struct gallivm_state *gallivm,
1597               struct lp_type row_type,
1598               struct lp_type alpha_type,
1599               const unsigned block_size,
1600               const unsigned block_height,
1601               const unsigned src_count,
1602               const unsigned dst_channels,
1603               const bool pad_inline,
1604               LLVMValueRef* src_alpha)
1605 {
1606    LLVMBuilderRef builder = gallivm->builder;
1607    unsigned i, j;
1608    unsigned length = row_type.length;
1609    row_type.length = alpha_type.length;
1610 
1611    /* Twiddle the alpha to match pixels */
1612    lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1613 
1614    /*
1615     * TODO this should use single lp_build_conv call for
1616     * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1617     */
1618    for (i = 0; i < block_height; ++i) {
1619       lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1620    }
1621 
1622    alpha_type = row_type;
1623    row_type.length = length;
1624 
1625    /* If only one channel we can only need the single alpha value per pixel */
1626    if (src_count == 1 && dst_channels == 1) {
1627 
1628       lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1629    } else {
1630       /* If there are more srcs than rows then we need to split alpha up */
1631       if (src_count > block_height) {
1632          for (i = src_count; i > 0; --i) {
1633             unsigned pixels = block_size / src_count;
1634             unsigned idx = i - 1;
1635 
1636             src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1637                                                     (idx * pixels) % 4, pixels);
1638          }
1639       }
1640 
1641       /* If there is a src for each pixel broadcast the alpha across whole row */
1642       if (src_count == block_size) {
1643          for (i = 0; i < src_count; ++i) {
1644             src_alpha[i] = lp_build_broadcast(gallivm,
1645                               lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1646          }
1647       } else {
1648          unsigned pixels = block_size / src_count;
1649          unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1650          unsigned alpha_span = 1;
1651          LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1652 
1653          /* Check if we need 2 src_alphas for our shuffles */
1654          if (pixels > alpha_type.length) {
1655             alpha_span = 2;
1656          }
1657 
1658          /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1659          for (j = 0; j < row_type.length; ++j) {
1660             if (j < pixels * channels) {
1661                shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1662             } else {
1663                shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1664             }
1665          }
1666 
1667          for (i = 0; i < src_count; ++i) {
1668             unsigned idx1 = i, idx2 = i;
1669 
1670             if (alpha_span > 1){
1671                idx1 *= alpha_span;
1672                idx2 = idx1 + 1;
1673             }
1674 
1675             src_alpha[i] = LLVMBuildShuffleVector(builder,
1676                                                   src_alpha[idx1],
1677                                                   src_alpha[idx2],
1678                                                   LLVMConstVector(shuffles, row_type.length),
1679                                                   "");
1680          }
1681       }
1682    }
1683 }
1684 
1685 
1686 /**
1687  * Generates the blend function for unswizzled colour buffers
1688  * Also generates the read & write from colour buffer
1689  */
1690 static void
generate_unswizzled_blend(struct gallivm_state * gallivm,unsigned rt,struct lp_fragment_shader_variant * variant,enum pipe_format out_format,unsigned int num_fs,struct lp_type fs_type,LLVMValueRef * fs_mask,LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],LLVMValueRef context_ptr,LLVMValueRef color_ptr,LLVMValueRef stride,unsigned partial_mask,boolean do_branch)1691 generate_unswizzled_blend(struct gallivm_state *gallivm,
1692                           unsigned rt,
1693                           struct lp_fragment_shader_variant *variant,
1694                           enum pipe_format out_format,
1695                           unsigned int num_fs,
1696                           struct lp_type fs_type,
1697                           LLVMValueRef* fs_mask,
1698                           LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1699                           LLVMValueRef context_ptr,
1700                           LLVMValueRef color_ptr,
1701                           LLVMValueRef stride,
1702                           unsigned partial_mask,
1703                           boolean do_branch)
1704 {
1705    const unsigned alpha_channel = 3;
1706    const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1707    const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1708    const unsigned block_size = block_width * block_height;
1709    const unsigned lp_integer_vector_width = 128;
1710 
1711    LLVMBuilderRef builder = gallivm->builder;
1712    LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1713    LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1714    LLVMValueRef src_alpha[4 * 4];
1715    LLVMValueRef src1_alpha[4 * 4] = { NULL };
1716    LLVMValueRef src_mask[4 * 4];
1717    LLVMValueRef src[4 * 4];
1718    LLVMValueRef src1[4 * 4];
1719    LLVMValueRef dst[4 * 4];
1720    LLVMValueRef blend_color;
1721    LLVMValueRef blend_alpha;
1722    LLVMValueRef i32_zero;
1723    LLVMValueRef check_mask;
1724    LLVMValueRef undef_src_val;
1725 
1726    struct lp_build_mask_context mask_ctx;
1727    struct lp_type mask_type;
1728    struct lp_type blend_type;
1729    struct lp_type row_type;
1730    struct lp_type dst_type;
1731    struct lp_type ls_type;
1732 
1733    unsigned char swizzle[TGSI_NUM_CHANNELS];
1734    unsigned vector_width;
1735    unsigned src_channels = TGSI_NUM_CHANNELS;
1736    unsigned dst_channels;
1737    unsigned dst_count;
1738    unsigned src_count;
1739    unsigned i, j;
1740 
1741    const struct util_format_description* out_format_desc = util_format_description(out_format);
1742 
1743    unsigned dst_alignment;
1744 
1745    bool pad_inline = is_arithmetic_format(out_format_desc);
1746    bool has_alpha = false;
1747    const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1748                                      util_blend_state_is_dual(&variant->key.blend, 0);
1749 
1750    const boolean is_1d = variant->key.resource_1d;
1751    boolean twiddle_after_convert = FALSE;
1752    unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1753    LLVMValueRef fpstate = 0;
1754 
1755    /* Get type from output format */
1756    lp_blend_type_from_format_desc(out_format_desc, &row_type);
1757    lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1758 
1759    /*
1760     * Technically this code should go into lp_build_smallfloat_to_float
1761     * and lp_build_float_to_smallfloat but due to the
1762     * http://llvm.org/bugs/show_bug.cgi?id=6393
1763     * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1764     * So the ordering is important here and there shouldn't be any
1765     * llvm ir instrunctions in this function before
1766     * this, otherwise half-float format conversions won't work
1767     * (again due to llvm bug #6393).
1768     */
1769    if (have_smallfloat_format(dst_type, out_format)) {
1770       /* We need to make sure that denorms are ok for half float
1771          conversions */
1772       fpstate = lp_build_fpstate_get(gallivm);
1773       lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1774    }
1775 
1776    mask_type = lp_int32_vec4_type();
1777    mask_type.length = fs_type.length;
1778 
1779    for (i = num_fs; i < num_fullblock_fs; i++) {
1780       fs_mask[i] = lp_build_zero(gallivm, mask_type);
1781    }
1782 
1783    /* Do not bother executing code when mask is empty.. */
1784    if (do_branch) {
1785       check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1786 
1787       for (i = 0; i < num_fullblock_fs; ++i) {
1788          check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1789       }
1790 
1791       lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1792       lp_build_mask_check(&mask_ctx);
1793    }
1794 
1795    partial_mask |= !variant->opaque;
1796    i32_zero = lp_build_const_int32(gallivm, 0);
1797 
1798    undef_src_val = lp_build_undef(gallivm, fs_type);
1799 
1800    row_type.length = fs_type.length;
1801    vector_width    = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1802 
1803    /* Compute correct swizzle and count channels */
1804    memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1805    dst_channels = 0;
1806 
1807    for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1808       /* Ensure channel is used */
1809       if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1810          continue;
1811       }
1812 
1813       /* Ensure not already written to (happens in case with GL_ALPHA) */
1814       if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1815          continue;
1816       }
1817 
1818       /* Ensure we havn't already found all channels */
1819       if (dst_channels >= out_format_desc->nr_channels) {
1820          continue;
1821       }
1822 
1823       swizzle[out_format_desc->swizzle[i]] = i;
1824       ++dst_channels;
1825 
1826       if (i == alpha_channel) {
1827          has_alpha = true;
1828       }
1829    }
1830 
1831    if (format_expands_to_float_soa(out_format_desc)) {
1832       /*
1833        * the code above can't work for layout_other
1834        * for srgb it would sort of work but we short-circuit swizzles, etc.
1835        * as that is done as part of unpack / pack.
1836        */
1837       dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1838       has_alpha = true;
1839       swizzle[0] = 0;
1840       swizzle[1] = 1;
1841       swizzle[2] = 2;
1842       swizzle[3] = 3;
1843       pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1844    }
1845 
1846    /* If 3 channels then pad to include alpha for 4 element transpose */
1847    if (dst_channels == 3) {
1848       assert (!has_alpha);
1849       for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1850          if (swizzle[i] > TGSI_NUM_CHANNELS)
1851             swizzle[i] = 3;
1852       }
1853       if (out_format_desc->nr_channels == 4) {
1854          dst_channels = 4;
1855          /*
1856           * We use alpha from the color conversion, not separate one.
1857           * We had to include it for transpose, hence it will get converted
1858           * too (albeit when doing transpose after conversion, that would
1859           * no longer be the case necessarily).
1860           * (It works only with 4 channel dsts, e.g. rgbx formats, because
1861           * otherwise we really have padding, not alpha, included.)
1862           */
1863          has_alpha = true;
1864       }
1865    }
1866 
1867    /*
1868     * Load shader output
1869     */
1870    for (i = 0; i < num_fullblock_fs; ++i) {
1871       /* Always load alpha for use in blending */
1872       LLVMValueRef alpha;
1873       if (i < num_fs) {
1874          alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1875       }
1876       else {
1877          alpha = undef_src_val;
1878       }
1879 
1880       /* Load each channel */
1881       for (j = 0; j < dst_channels; ++j) {
1882          assert(swizzle[j] < 4);
1883          if (i < num_fs) {
1884             fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1885          }
1886          else {
1887             fs_src[i][j] = undef_src_val;
1888          }
1889       }
1890 
1891       /* If 3 channels then pad to include alpha for 4 element transpose */
1892       /*
1893        * XXX If we include that here maybe could actually use it instead of
1894        * separate alpha for blending?
1895        * (Difficult though we actually convert pad channels, not alpha.)
1896        */
1897       if (dst_channels == 3 && !has_alpha) {
1898          fs_src[i][3] = alpha;
1899       }
1900 
1901       /* We split the row_mask and row_alpha as we want 128bit interleave */
1902       if (fs_type.length == 8) {
1903          src_mask[i*2 + 0]  = lp_build_extract_range(gallivm, fs_mask[i],
1904                                                      0, src_channels);
1905          src_mask[i*2 + 1]  = lp_build_extract_range(gallivm, fs_mask[i],
1906                                                      src_channels, src_channels);
1907 
1908          src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1909          src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1910                                                      src_channels, src_channels);
1911       } else {
1912          src_mask[i] = fs_mask[i];
1913          src_alpha[i] = alpha;
1914       }
1915    }
1916    if (dual_source_blend) {
1917       /* same as above except different src/dst, skip masks and comments... */
1918       for (i = 0; i < num_fullblock_fs; ++i) {
1919          LLVMValueRef alpha;
1920          if (i < num_fs) {
1921             alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1922          }
1923          else {
1924             alpha = undef_src_val;
1925          }
1926 
1927          for (j = 0; j < dst_channels; ++j) {
1928             assert(swizzle[j] < 4);
1929             if (i < num_fs) {
1930                fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1931             }
1932             else {
1933                fs_src1[i][j] = undef_src_val;
1934             }
1935          }
1936          if (dst_channels == 3 && !has_alpha) {
1937             fs_src1[i][3] = alpha;
1938          }
1939          if (fs_type.length == 8) {
1940             src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1941             src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1942                                                          src_channels, src_channels);
1943          } else {
1944             src1_alpha[i] = alpha;
1945          }
1946       }
1947    }
1948 
1949    if (util_format_is_pure_integer(out_format)) {
1950       /*
1951        * In this case fs_type was really ints or uints disguised as floats,
1952        * fix that up now.
1953        */
1954       fs_type.floating = 0;
1955       fs_type.sign = dst_type.sign;
1956       for (i = 0; i < num_fullblock_fs; ++i) {
1957          for (j = 0; j < dst_channels; ++j) {
1958             fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1959                                             lp_build_vec_type(gallivm, fs_type), "");
1960          }
1961          if (dst_channels == 3 && !has_alpha) {
1962             fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1963                                             lp_build_vec_type(gallivm, fs_type), "");
1964          }
1965       }
1966    }
1967 
1968    /*
1969     * We actually should generally do conversion first (for non-1d cases)
1970     * when the blend format is 8 or 16 bits. The reason is obvious,
1971     * there's 2 or 4 times less vectors to deal with for the interleave...
1972     * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
1973     * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
1974     * unpack only with 128bit vectors).
1975     * Note: for 16bit sizes really need matching pack conversion code
1976     */
1977    if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
1978       twiddle_after_convert = TRUE;
1979    }
1980 
1981    /*
1982     * Pixel twiddle from fragment shader order to memory order
1983     */
1984    if (!twiddle_after_convert) {
1985       src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1986                                       dst_channels, fs_src, src, pad_inline);
1987       if (dual_source_blend) {
1988          generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1989                              fs_src1, src1, pad_inline);
1990       }
1991    } else {
1992       src_count = num_fullblock_fs * dst_channels;
1993       /*
1994        * We reorder things a bit here, so the cases for 4-wide and 8-wide
1995        * (AVX) turn out the same later when untwiddling/transpose (albeit
1996        * for true AVX2 path untwiddle needs to be different).
1997        * For now just order by colors first (so we can use unpack later).
1998        */
1999       for (j = 0; j < num_fullblock_fs; j++) {
2000          for (i = 0; i < dst_channels; i++) {
2001             src[i*num_fullblock_fs + j] = fs_src[j][i];
2002             if (dual_source_blend) {
2003                src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2004             }
2005          }
2006       }
2007    }
2008 
2009    src_channels = dst_channels < 3 ? dst_channels : 4;
2010    if (src_count != num_fullblock_fs * src_channels) {
2011       unsigned ds = src_count / (num_fullblock_fs * src_channels);
2012       row_type.length /= ds;
2013       fs_type.length = row_type.length;
2014    }
2015 
2016    blend_type = row_type;
2017    mask_type.length = 4;
2018 
2019    /* Convert src to row_type */
2020    if (dual_source_blend) {
2021       struct lp_type old_row_type = row_type;
2022       lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2023       src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2024    }
2025    else {
2026       src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2027    }
2028 
2029    /* If the rows are not an SSE vector, combine them to become SSE size! */
2030    if ((row_type.width * row_type.length) % 128) {
2031       unsigned bits = row_type.width * row_type.length;
2032       unsigned combined;
2033 
2034       assert(src_count >= (vector_width / bits));
2035 
2036       dst_count = src_count / (vector_width / bits);
2037 
2038       combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2039       if (dual_source_blend) {
2040          lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2041       }
2042 
2043       row_type.length *= combined;
2044       src_count /= combined;
2045 
2046       bits = row_type.width * row_type.length;
2047       assert(bits == 128 || bits == 256);
2048    }
2049 
2050    if (twiddle_after_convert) {
2051       fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2052       if (dual_source_blend) {
2053          fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2054       }
2055    }
2056 
2057    /*
2058     * Blend Colour conversion
2059     */
2060    blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2061    blend_color = LLVMBuildPointerCast(builder, blend_color,
2062                     LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2063    blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2064                                &i32_zero, 1, ""), "");
2065 
2066    /* Convert */
2067    lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2068 
2069    if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2070       /*
2071        * since blending is done with floats, there was no conversion.
2072        * However, the rules according to fixed point renderbuffers still
2073        * apply, that is we must clamp inputs to 0.0/1.0.
2074        * (This would apply to separate alpha conversion too but we currently
2075        * force has_alpha to be true.)
2076        * TODO: should skip this with "fake" blend, since post-blend conversion
2077        * will clamp anyway.
2078        * TODO: could also skip this if fragment color clamping is enabled. We
2079        * don't support it natively so it gets baked into the shader however, so
2080        * can't really tell here.
2081        */
2082       struct lp_build_context f32_bld;
2083       assert(row_type.floating);
2084       lp_build_context_init(&f32_bld, gallivm, row_type);
2085       for (i = 0; i < src_count; i++) {
2086          src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2087       }
2088       if (dual_source_blend) {
2089          for (i = 0; i < src_count; i++) {
2090             src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2091          }
2092       }
2093       /* probably can't be different than row_type but better safe than sorry... */
2094       lp_build_context_init(&f32_bld, gallivm, blend_type);
2095       blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2096    }
2097 
2098    /* Extract alpha */
2099    blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2100 
2101    /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2102    pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2103    if (pad_inline) {
2104       /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2105       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2106    } else {
2107       /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2108       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2109    }
2110 
2111    /*
2112     * Mask conversion
2113     */
2114    lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2115 
2116    if (src_count < block_height) {
2117       lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2118    } else if (src_count > block_height) {
2119       for (i = src_count; i > 0; --i) {
2120          unsigned pixels = block_size / src_count;
2121          unsigned idx = i - 1;
2122 
2123          src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2124                                                 (idx * pixels) % 4, pixels);
2125       }
2126    }
2127 
2128    assert(mask_type.width == 32);
2129 
2130    for (i = 0; i < src_count; ++i) {
2131       unsigned pixels = block_size / src_count;
2132       unsigned pixel_width = row_type.width * dst_channels;
2133 
2134       if (pixel_width == 24) {
2135          mask_type.width = 8;
2136          mask_type.length = vector_width / mask_type.width;
2137       } else {
2138          mask_type.length = pixels;
2139          mask_type.width = row_type.width * dst_channels;
2140 
2141          /*
2142           * If mask_type width is smaller than 32bit, this doesn't quite
2143           * generate the most efficient code (could use some pack).
2144           */
2145          src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2146                                         lp_build_int_vec_type(gallivm, mask_type), "");
2147 
2148          mask_type.length *= dst_channels;
2149          mask_type.width /= dst_channels;
2150       }
2151 
2152       src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2153                                      lp_build_int_vec_type(gallivm, mask_type), "");
2154       src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2155    }
2156 
2157    /*
2158     * Alpha conversion
2159     */
2160    if (!has_alpha) {
2161       struct lp_type alpha_type = fs_type;
2162       alpha_type.length = 4;
2163       convert_alpha(gallivm, row_type, alpha_type,
2164                     block_size, block_height,
2165                     src_count, dst_channels,
2166                     pad_inline, src_alpha);
2167       if (dual_source_blend) {
2168          convert_alpha(gallivm, row_type, alpha_type,
2169                        block_size, block_height,
2170                        src_count, dst_channels,
2171                        pad_inline, src1_alpha);
2172       }
2173    }
2174 
2175 
2176    /*
2177     * Load dst from memory
2178     */
2179    if (src_count < block_height) {
2180       dst_count = block_height;
2181    } else {
2182       dst_count = src_count;
2183    }
2184 
2185    dst_type.length *= block_size / dst_count;
2186 
2187    if (format_expands_to_float_soa(out_format_desc)) {
2188       /*
2189        * we need multiple values at once for the conversion, so can as well
2190        * load them vectorized here too instead of concatenating later.
2191        * (Still need concatenation later for 8-wide vectors).
2192        */
2193       dst_count = block_height;
2194       dst_type.length = block_width;
2195    }
2196 
2197    /*
2198     * Compute the alignment of the destination pointer in bytes
2199     * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2200     * are always aligned by MIN2(16, fetch_width) except for buffers (not
2201     * 1d tex but can't distinguish here) so need to stick with per-pixel
2202     * alignment in this case.
2203     */
2204    if (is_1d) {
2205       dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2206    }
2207    else {
2208       dst_alignment = dst_type.length * dst_type.width / 8;
2209    }
2210    /* Force power-of-two alignment by extracting only the least-significant-bit */
2211    dst_alignment = 1 << (ffs(dst_alignment) - 1);
2212    /*
2213     * Resource base and stride pointers are aligned to 16 bytes, so that's
2214     * the maximum alignment we can guarantee
2215     */
2216    dst_alignment = MIN2(16, dst_alignment);
2217 
2218    ls_type = dst_type;
2219 
2220    if (dst_count > src_count) {
2221       if ((dst_type.width == 8 || dst_type.width == 16) &&
2222           util_is_power_of_two(dst_type.length) &&
2223           dst_type.length * dst_type.width < 128) {
2224          /*
2225           * Never try to load values as 4xi8 which we will then
2226           * concatenate to larger vectors. This gives llvm a real
2227           * headache (the problem is the type legalizer (?) will
2228           * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2229           * then the shuffles to concatenate are more or less impossible
2230           * - llvm is easily capable of generating a sequence of 32
2231           * pextrb/pinsrb instructions for that. Albeit it appears to
2232           * be fixed in llvm 4.0. So, load and concatenate with 32bit
2233           * width to avoid the trouble (16bit seems not as bad, llvm
2234           * probably recognizes the load+shuffle as only one shuffle
2235           * is necessary, but we can do just the same anyway).
2236           */
2237          ls_type.length = dst_type.length * dst_type.width / 32;
2238          ls_type.width = 32;
2239       }
2240    }
2241 
2242    if (is_1d) {
2243       load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2244                             dst, ls_type, dst_count / 4, dst_alignment);
2245       for (i = dst_count / 4; i < dst_count; i++) {
2246          dst[i] = lp_build_undef(gallivm, ls_type);
2247       }
2248 
2249    }
2250    else {
2251       load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2252                             dst, ls_type, dst_count, dst_alignment);
2253    }
2254 
2255 
2256    /*
2257     * Convert from dst/output format to src/blending format.
2258     *
2259     * This is necessary as we can only read 1 row from memory at a time,
2260     * so the minimum dst_count will ever be at this point is 4.
2261     *
2262     * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2263     * this will take the 4 dsts and combine them into 1 src so we can perform blending
2264     * on all 16 pixels in that single vector at once.
2265     */
2266    if (dst_count > src_count) {
2267       if (ls_type.length != dst_type.length && ls_type.length == 1) {
2268          LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2269          LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2270          for (i = 0; i < dst_count; i++) {
2271             dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2272          }
2273       }
2274 
2275       lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2276 
2277       if (ls_type.length != dst_type.length) {
2278          struct lp_type tmp_type = dst_type;
2279          tmp_type.length = dst_type.length * 4 / src_count;
2280          for (i = 0; i < src_count; i++) {
2281             dst[i] = LLVMBuildBitCast(builder, dst[i],
2282                                       lp_build_vec_type(gallivm, tmp_type), "");
2283          }
2284       }
2285    }
2286 
2287    /*
2288     * Blending
2289     */
2290    /* XXX this is broken for RGB8 formats -
2291     * they get expanded from 12 to 16 elements (to include alpha)
2292     * by convert_to_blend_type then reduced to 15 instead of 12
2293     * by convert_from_blend_type (a simple fix though breaks A8...).
2294     * R16G16B16 also crashes differently however something going wrong
2295     * inside llvm handling npot vector sizes seemingly.
2296     * It seems some cleanup could be done here (like skipping conversion/blend
2297     * when not needed).
2298     */
2299    convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2300                          row_type, dst, src_count);
2301 
2302    /*
2303     * FIXME: Really should get logic ops / masks out of generic blend / row
2304     * format. Logic ops will definitely not work on the blend float format
2305     * used for SRGB here and I think OpenGL expects this to work as expected
2306     * (that is incoming values converted to srgb then logic op applied).
2307     */
2308    for (i = 0; i < src_count; ++i) {
2309       dst[i] = lp_build_blend_aos(gallivm,
2310                                   &variant->key.blend,
2311                                   out_format,
2312                                   row_type,
2313                                   rt,
2314                                   src[i],
2315                                   has_alpha ? NULL : src_alpha[i],
2316                                   src1[i],
2317                                   has_alpha ? NULL : src1_alpha[i],
2318                                   dst[i],
2319                                   partial_mask ? src_mask[i] : NULL,
2320                                   blend_color,
2321                                   has_alpha ? NULL : blend_alpha,
2322                                   swizzle,
2323                                   pad_inline ? 4 : dst_channels);
2324    }
2325 
2326    convert_from_blend_type(gallivm, block_size, out_format_desc,
2327                            row_type, dst_type, dst, src_count);
2328 
2329    /* Split the blend rows back to memory rows */
2330    if (dst_count > src_count) {
2331       row_type.length = dst_type.length * (dst_count / src_count);
2332 
2333       if (src_count == 1) {
2334          dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2335          dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2336 
2337          row_type.length /= 2;
2338          src_count *= 2;
2339       }
2340 
2341       dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2342       dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2343       dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2344       dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2345 
2346       row_type.length /= 2;
2347       src_count *= 2;
2348    }
2349 
2350    /*
2351     * Store blend result to memory
2352     */
2353    if (is_1d) {
2354       store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2355                              dst, dst_type, dst_count / 4, dst_alignment);
2356    }
2357    else {
2358       store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2359                              dst, dst_type, dst_count, dst_alignment);
2360    }
2361 
2362    if (have_smallfloat_format(dst_type, out_format)) {
2363       lp_build_fpstate_set(gallivm, fpstate);
2364    }
2365 
2366    if (do_branch) {
2367       lp_build_mask_end(&mask_ctx);
2368    }
2369 }
2370 
2371 
2372 /**
2373  * Generate the runtime callable function for the whole fragment pipeline.
2374  * Note that the function which we generate operates on a block of 16
2375  * pixels at at time.  The block contains 2x2 quads.  Each quad contains
2376  * 2x2 pixels.
2377  */
2378 static void
generate_fragment(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,struct lp_fragment_shader_variant * variant,unsigned partial_mask)2379 generate_fragment(struct llvmpipe_context *lp,
2380                   struct lp_fragment_shader *shader,
2381                   struct lp_fragment_shader_variant *variant,
2382                   unsigned partial_mask)
2383 {
2384    struct gallivm_state *gallivm = variant->gallivm;
2385    const struct lp_fragment_shader_variant_key *key = &variant->key;
2386    struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2387    char func_name[64];
2388    struct lp_type fs_type;
2389    struct lp_type blend_type;
2390    LLVMTypeRef fs_elem_type;
2391    LLVMTypeRef blend_vec_type;
2392    LLVMTypeRef arg_types[13];
2393    LLVMTypeRef func_type;
2394    LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2395    LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2396    LLVMValueRef context_ptr;
2397    LLVMValueRef x;
2398    LLVMValueRef y;
2399    LLVMValueRef a0_ptr;
2400    LLVMValueRef dadx_ptr;
2401    LLVMValueRef dady_ptr;
2402    LLVMValueRef color_ptr_ptr;
2403    LLVMValueRef stride_ptr;
2404    LLVMValueRef depth_ptr;
2405    LLVMValueRef depth_stride;
2406    LLVMValueRef mask_input;
2407    LLVMValueRef thread_data_ptr;
2408    LLVMBasicBlockRef block;
2409    LLVMBuilderRef builder;
2410    struct lp_build_sampler_soa *sampler;
2411    struct lp_build_interp_soa_context interp;
2412    LLVMValueRef fs_mask[16 / 4];
2413    LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2414    LLVMValueRef function;
2415    LLVMValueRef facing;
2416    unsigned num_fs;
2417    unsigned i;
2418    unsigned chan;
2419    unsigned cbuf;
2420    boolean cbuf0_write_all;
2421    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2422                                      util_blend_state_is_dual(&key->blend, 0);
2423 
2424    assert(lp_native_vector_width / 32 >= 4);
2425 
2426    /* Adjust color input interpolation according to flatshade state:
2427     */
2428    memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2429    for (i = 0; i < shader->info.base.num_inputs; i++) {
2430       if (inputs[i].interp == LP_INTERP_COLOR) {
2431 	 if (key->flatshade)
2432 	    inputs[i].interp = LP_INTERP_CONSTANT;
2433 	 else
2434 	    inputs[i].interp = LP_INTERP_PERSPECTIVE;
2435       }
2436    }
2437 
2438    /* check if writes to cbuf[0] are to be copied to all cbufs */
2439    cbuf0_write_all =
2440      shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2441 
2442    /* TODO: actually pick these based on the fs and color buffer
2443     * characteristics. */
2444 
2445    memset(&fs_type, 0, sizeof fs_type);
2446    fs_type.floating = TRUE;      /* floating point values */
2447    fs_type.sign = TRUE;          /* values are signed */
2448    fs_type.norm = FALSE;         /* values are not limited to [0,1] or [-1,1] */
2449    fs_type.width = 32;           /* 32-bit float */
2450    fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2451 
2452    memset(&blend_type, 0, sizeof blend_type);
2453    blend_type.floating = FALSE; /* values are integers */
2454    blend_type.sign = FALSE;     /* values are unsigned */
2455    blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
2456    blend_type.width = 8;        /* 8-bit ubyte values */
2457    blend_type.length = 16;      /* 16 elements per vector */
2458 
2459    /*
2460     * Generate the function prototype. Any change here must be reflected in
2461     * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2462     */
2463 
2464    fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2465 
2466    blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2467 
2468    util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2469                  shader->no, variant->no, partial_mask ? "partial" : "whole");
2470 
2471    arg_types[0] = variant->jit_context_ptr_type;       /* context */
2472    arg_types[1] = int32_type;                          /* x */
2473    arg_types[2] = int32_type;                          /* y */
2474    arg_types[3] = int32_type;                          /* facing */
2475    arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
2476    arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
2477    arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
2478    arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
2479    arg_types[8] = LLVMPointerType(int8_type, 0);       /* depth */
2480    arg_types[9] = int32_type;                          /* mask_input */
2481    arg_types[10] = variant->jit_thread_data_ptr_type;  /* per thread data */
2482    arg_types[11] = LLVMPointerType(int32_type, 0);     /* stride */
2483    arg_types[12] = int32_type;                         /* depth_stride */
2484 
2485    func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2486                                 arg_types, ARRAY_SIZE(arg_types), 0);
2487 
2488    function = LLVMAddFunction(gallivm->module, func_name, func_type);
2489    LLVMSetFunctionCallConv(function, LLVMCCallConv);
2490 
2491    variant->function[partial_mask] = function;
2492 
2493    /* XXX: need to propagate noalias down into color param now we are
2494     * passing a pointer-to-pointer?
2495     */
2496    for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2497       if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2498          lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2499 
2500    context_ptr  = LLVMGetParam(function, 0);
2501    x            = LLVMGetParam(function, 1);
2502    y            = LLVMGetParam(function, 2);
2503    facing       = LLVMGetParam(function, 3);
2504    a0_ptr       = LLVMGetParam(function, 4);
2505    dadx_ptr     = LLVMGetParam(function, 5);
2506    dady_ptr     = LLVMGetParam(function, 6);
2507    color_ptr_ptr = LLVMGetParam(function, 7);
2508    depth_ptr    = LLVMGetParam(function, 8);
2509    mask_input   = LLVMGetParam(function, 9);
2510    thread_data_ptr  = LLVMGetParam(function, 10);
2511    stride_ptr   = LLVMGetParam(function, 11);
2512    depth_stride = LLVMGetParam(function, 12);
2513 
2514    lp_build_name(context_ptr, "context");
2515    lp_build_name(x, "x");
2516    lp_build_name(y, "y");
2517    lp_build_name(a0_ptr, "a0");
2518    lp_build_name(dadx_ptr, "dadx");
2519    lp_build_name(dady_ptr, "dady");
2520    lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2521    lp_build_name(depth_ptr, "depth");
2522    lp_build_name(mask_input, "mask_input");
2523    lp_build_name(thread_data_ptr, "thread_data");
2524    lp_build_name(stride_ptr, "stride_ptr");
2525    lp_build_name(depth_stride, "depth_stride");
2526 
2527    /*
2528     * Function body
2529     */
2530 
2531    block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2532    builder = gallivm->builder;
2533    assert(builder);
2534    LLVMPositionBuilderAtEnd(builder, block);
2535 
2536    /* code generated texture sampling */
2537    sampler = lp_llvm_sampler_soa_create(key->state);
2538 
2539    num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2540    /* for 1d resources only run "upper half" of stamp */
2541    if (key->resource_1d)
2542       num_fs /= 2;
2543 
2544    {
2545       LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2546       LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2547       LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2548                                                       num_loop, "mask_store");
2549       LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2550       boolean pixel_center_integer =
2551          shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2552 
2553       /*
2554        * The shader input interpolation info is not explicitely baked in the
2555        * shader key, but everything it derives from (TGSI, and flatshade) is
2556        * already included in the shader key.
2557        */
2558       lp_build_interp_soa_init(&interp,
2559                                gallivm,
2560                                shader->info.base.num_inputs,
2561                                inputs,
2562                                pixel_center_integer,
2563                                key->depth_clamp,
2564                                builder, fs_type,
2565                                a0_ptr, dadx_ptr, dady_ptr,
2566                                x, y);
2567 
2568       for (i = 0; i < num_fs; i++) {
2569          LLVMValueRef mask;
2570          LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2571          LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2572                                               &indexi, 1, "mask_ptr");
2573 
2574          if (partial_mask) {
2575             mask = generate_quad_mask(gallivm, fs_type,
2576                                       i*fs_type.length/4, mask_input);
2577          }
2578          else {
2579             mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2580          }
2581          LLVMBuildStore(builder, mask, mask_ptr);
2582       }
2583 
2584       generate_fs_loop(gallivm,
2585                        shader, key,
2586                        builder,
2587                        fs_type,
2588                        context_ptr,
2589                        num_loop,
2590                        &interp,
2591                        sampler,
2592                        mask_store, /* output */
2593                        color_store,
2594                        depth_ptr,
2595                        depth_stride,
2596                        facing,
2597                        thread_data_ptr);
2598 
2599       for (i = 0; i < num_fs; i++) {
2600          LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2601          LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2602                                          &indexi, 1, "");
2603          fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2604          /* This is fucked up need to reorganize things */
2605          for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2606             for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2607                ptr = LLVMBuildGEP(builder,
2608                                   color_store[cbuf * !cbuf0_write_all][chan],
2609                                   &indexi, 1, "");
2610                fs_out_color[cbuf][chan][i] = ptr;
2611             }
2612          }
2613          if (dual_source_blend) {
2614             /* only support one dual source blend target hence always use output 1 */
2615             for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2616                ptr = LLVMBuildGEP(builder,
2617                                   color_store[1][chan],
2618                                   &indexi, 1, "");
2619                fs_out_color[1][chan][i] = ptr;
2620             }
2621          }
2622       }
2623    }
2624 
2625    sampler->destroy(sampler);
2626 
2627    /* Loop over color outputs / color buffers to do blending.
2628     */
2629    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2630       if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2631          LLVMValueRef color_ptr;
2632          LLVMValueRef stride;
2633          LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2634 
2635          boolean do_branch = ((key->depth.enabled
2636                                || key->stencil[0].enabled
2637                                || key->alpha.enabled)
2638                               && !shader->info.base.uses_kill);
2639 
2640          color_ptr = LLVMBuildLoad(builder,
2641                                    LLVMBuildGEP(builder, color_ptr_ptr,
2642                                                 &index, 1, ""),
2643                                    "");
2644 
2645          lp_build_name(color_ptr, "color_ptr%d", cbuf);
2646 
2647          stride = LLVMBuildLoad(builder,
2648                                 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2649                                 "");
2650 
2651          generate_unswizzled_blend(gallivm, cbuf, variant,
2652                                    key->cbuf_format[cbuf],
2653                                    num_fs, fs_type, fs_mask, fs_out_color,
2654                                    context_ptr, color_ptr, stride,
2655                                    partial_mask, do_branch);
2656       }
2657    }
2658 
2659    LLVMBuildRetVoid(builder);
2660 
2661    gallivm_verify_function(gallivm, function);
2662 }
2663 
2664 
2665 static void
dump_fs_variant_key(const struct lp_fragment_shader_variant_key * key)2666 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2667 {
2668    unsigned i;
2669 
2670    debug_printf("fs variant %p:\n", (void *) key);
2671 
2672    if (key->flatshade) {
2673       debug_printf("flatshade = 1\n");
2674    }
2675    for (i = 0; i < key->nr_cbufs; ++i) {
2676       debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2677    }
2678    if (key->depth.enabled || key->stencil[0].enabled) {
2679       debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2680    }
2681    if (key->depth.enabled) {
2682       debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2683       debug_printf("depth.writemask = %u\n", key->depth.writemask);
2684    }
2685 
2686    for (i = 0; i < 2; ++i) {
2687       if (key->stencil[i].enabled) {
2688          debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2689          debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2690          debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2691          debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2692          debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2693          debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2694       }
2695    }
2696 
2697    if (key->alpha.enabled) {
2698       debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2699    }
2700 
2701    if (key->occlusion_count) {
2702       debug_printf("occlusion_count = 1\n");
2703    }
2704 
2705    if (key->blend.logicop_enable) {
2706       debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2707    }
2708    else if (key->blend.rt[0].blend_enable) {
2709       debug_printf("blend.rgb_func = %s\n",   util_dump_blend_func  (key->blend.rt[0].rgb_func, TRUE));
2710       debug_printf("blend.rgb_src_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2711       debug_printf("blend.rgb_dst_factor = %s\n",   util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2712       debug_printf("blend.alpha_func = %s\n",       util_dump_blend_func  (key->blend.rt[0].alpha_func, TRUE));
2713       debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2714       debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2715    }
2716    debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2717    if (key->blend.alpha_to_coverage) {
2718       debug_printf("blend.alpha_to_coverage is enabled\n");
2719    }
2720    for (i = 0; i < key->nr_samplers; ++i) {
2721       const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2722       debug_printf("sampler[%u] = \n", i);
2723       debug_printf("  .wrap = %s %s %s\n",
2724                    util_dump_tex_wrap(sampler->wrap_s, TRUE),
2725                    util_dump_tex_wrap(sampler->wrap_t, TRUE),
2726                    util_dump_tex_wrap(sampler->wrap_r, TRUE));
2727       debug_printf("  .min_img_filter = %s\n",
2728                    util_dump_tex_filter(sampler->min_img_filter, TRUE));
2729       debug_printf("  .min_mip_filter = %s\n",
2730                    util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2731       debug_printf("  .mag_img_filter = %s\n",
2732                    util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2733       if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2734          debug_printf("  .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2735       debug_printf("  .normalized_coords = %u\n", sampler->normalized_coords);
2736       debug_printf("  .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2737       debug_printf("  .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2738       debug_printf("  .apply_min_lod = %u\n", sampler->apply_min_lod);
2739       debug_printf("  .apply_max_lod = %u\n", sampler->apply_max_lod);
2740    }
2741    for (i = 0; i < key->nr_sampler_views; ++i) {
2742       const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2743       debug_printf("texture[%u] = \n", i);
2744       debug_printf("  .format = %s\n",
2745                    util_format_name(texture->format));
2746       debug_printf("  .target = %s\n",
2747                    util_dump_tex_target(texture->target, TRUE));
2748       debug_printf("  .level_zero_only = %u\n",
2749                    texture->level_zero_only);
2750       debug_printf("  .pot = %u %u %u\n",
2751                    texture->pot_width,
2752                    texture->pot_height,
2753                    texture->pot_depth);
2754    }
2755 }
2756 
2757 
2758 void
lp_debug_fs_variant(const struct lp_fragment_shader_variant * variant)2759 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2760 {
2761    debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2762                 variant->shader->no, variant->no);
2763    tgsi_dump(variant->shader->base.tokens, 0);
2764    dump_fs_variant_key(&variant->key);
2765    debug_printf("variant->opaque = %u\n", variant->opaque);
2766    debug_printf("\n");
2767 }
2768 
2769 
2770 /**
2771  * Generate a new fragment shader variant from the shader code and
2772  * other state indicated by the key.
2773  */
2774 static struct lp_fragment_shader_variant *
generate_variant(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key)2775 generate_variant(struct llvmpipe_context *lp,
2776                  struct lp_fragment_shader *shader,
2777                  const struct lp_fragment_shader_variant_key *key)
2778 {
2779    struct lp_fragment_shader_variant *variant;
2780    const struct util_format_description *cbuf0_format_desc;
2781    boolean fullcolormask;
2782    char module_name[64];
2783 
2784    variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2785    if (!variant)
2786       return NULL;
2787 
2788    util_snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2789                  shader->no, shader->variants_created);
2790 
2791    variant->gallivm = gallivm_create(module_name, lp->context);
2792    if (!variant->gallivm) {
2793       FREE(variant);
2794       return NULL;
2795    }
2796 
2797    variant->shader = shader;
2798    variant->list_item_global.base = variant;
2799    variant->list_item_local.base = variant;
2800    variant->no = shader->variants_created++;
2801 
2802    memcpy(&variant->key, key, shader->variant_key_size);
2803 
2804    /*
2805     * Determine whether we are touching all channels in the color buffer.
2806     */
2807    fullcolormask = FALSE;
2808    if (key->nr_cbufs == 1) {
2809       cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2810       fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2811    }
2812 
2813    variant->opaque =
2814          !key->blend.logicop_enable &&
2815          !key->blend.rt[0].blend_enable &&
2816          fullcolormask &&
2817          !key->stencil[0].enabled &&
2818          !key->alpha.enabled &&
2819          !key->blend.alpha_to_coverage &&
2820          !key->depth.enabled &&
2821          !shader->info.base.uses_kill
2822       ? TRUE : FALSE;
2823 
2824    if ((shader->info.base.num_tokens <= 1) &&
2825        !key->depth.enabled && !key->stencil[0].enabled) {
2826       variant->ps_inv_multiplier = 0;
2827    } else {
2828       variant->ps_inv_multiplier = 1;
2829    }
2830 
2831    if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2832       lp_debug_fs_variant(variant);
2833    }
2834 
2835    lp_jit_init_types(variant);
2836 
2837    if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2838       generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2839 
2840    if (variant->jit_function[RAST_WHOLE] == NULL) {
2841       if (variant->opaque) {
2842          /* Specialized shader, which doesn't need to read the color buffer. */
2843          generate_fragment(lp, shader, variant, RAST_WHOLE);
2844       }
2845    }
2846 
2847    /*
2848     * Compile everything
2849     */
2850 
2851    gallivm_compile_module(variant->gallivm);
2852 
2853    variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2854 
2855    if (variant->function[RAST_EDGE_TEST]) {
2856       variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2857             gallivm_jit_function(variant->gallivm,
2858                                  variant->function[RAST_EDGE_TEST]);
2859    }
2860 
2861    if (variant->function[RAST_WHOLE]) {
2862          variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2863                gallivm_jit_function(variant->gallivm,
2864                                     variant->function[RAST_WHOLE]);
2865    } else if (!variant->jit_function[RAST_WHOLE]) {
2866       variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2867    }
2868 
2869    gallivm_free_ir(variant->gallivm);
2870 
2871    return variant;
2872 }
2873 
2874 
2875 static void *
llvmpipe_create_fs_state(struct pipe_context * pipe,const struct pipe_shader_state * templ)2876 llvmpipe_create_fs_state(struct pipe_context *pipe,
2877                          const struct pipe_shader_state *templ)
2878 {
2879    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2880    struct lp_fragment_shader *shader;
2881    int nr_samplers;
2882    int nr_sampler_views;
2883    int i;
2884 
2885    shader = CALLOC_STRUCT(lp_fragment_shader);
2886    if (!shader)
2887       return NULL;
2888 
2889    shader->no = fs_no++;
2890    make_empty_list(&shader->variants);
2891 
2892    /* get/save the summary info for this shader */
2893    lp_build_tgsi_info(templ->tokens, &shader->info);
2894 
2895    /* we need to keep a local copy of the tokens */
2896    shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2897 
2898    shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2899    if (shader->draw_data == NULL) {
2900       FREE((void *) shader->base.tokens);
2901       FREE(shader);
2902       return NULL;
2903    }
2904 
2905    nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2906    nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2907 
2908    shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2909                                      state[MAX2(nr_samplers, nr_sampler_views)]);
2910 
2911    for (i = 0; i < shader->info.base.num_inputs; i++) {
2912       shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2913       shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2914 
2915       switch (shader->info.base.input_interpolate[i]) {
2916       case TGSI_INTERPOLATE_CONSTANT:
2917          shader->inputs[i].interp = LP_INTERP_CONSTANT;
2918          break;
2919       case TGSI_INTERPOLATE_LINEAR:
2920          shader->inputs[i].interp = LP_INTERP_LINEAR;
2921          break;
2922       case TGSI_INTERPOLATE_PERSPECTIVE:
2923          shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2924          break;
2925       case TGSI_INTERPOLATE_COLOR:
2926          shader->inputs[i].interp = LP_INTERP_COLOR;
2927          break;
2928       default:
2929          assert(0);
2930          break;
2931       }
2932 
2933       switch (shader->info.base.input_semantic_name[i]) {
2934       case TGSI_SEMANTIC_FACE:
2935          shader->inputs[i].interp = LP_INTERP_FACING;
2936          break;
2937       case TGSI_SEMANTIC_POSITION:
2938          /* Position was already emitted above
2939           */
2940          shader->inputs[i].interp = LP_INTERP_POSITION;
2941          shader->inputs[i].src_index = 0;
2942          continue;
2943       }
2944 
2945       /* XXX this is a completely pointless index map... */
2946       shader->inputs[i].src_index = i+1;
2947    }
2948 
2949    if (LP_DEBUG & DEBUG_TGSI) {
2950       unsigned attrib;
2951       debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2952                    shader->no, (void *) shader);
2953       tgsi_dump(templ->tokens, 0);
2954       debug_printf("usage masks:\n");
2955       for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2956          unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2957          debug_printf("  IN[%u].%s%s%s%s\n",
2958                       attrib,
2959                       usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2960                       usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2961                       usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2962                       usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2963       }
2964       debug_printf("\n");
2965    }
2966 
2967    return shader;
2968 }
2969 
2970 
2971 static void
llvmpipe_bind_fs_state(struct pipe_context * pipe,void * fs)2972 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2973 {
2974    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2975 
2976    if (llvmpipe->fs == fs)
2977       return;
2978 
2979    llvmpipe->fs = (struct lp_fragment_shader *) fs;
2980 
2981    draw_bind_fragment_shader(llvmpipe->draw,
2982                              (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2983 
2984    llvmpipe->dirty |= LP_NEW_FS;
2985 }
2986 
2987 
2988 /**
2989  * Remove shader variant from two lists: the shader's variant list
2990  * and the context's variant list.
2991  */
2992 void
llvmpipe_remove_shader_variant(struct llvmpipe_context * lp,struct lp_fragment_shader_variant * variant)2993 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2994                                struct lp_fragment_shader_variant *variant)
2995 {
2996    if (gallivm_debug & GALLIVM_DEBUG_IR) {
2997       debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2998                    " #%u v total cached #%u\n",
2999                    variant->shader->no,
3000                    variant->no,
3001                    variant->shader->variants_created,
3002                    variant->shader->variants_cached,
3003                    lp->nr_fs_variants);
3004    }
3005 
3006    gallivm_destroy(variant->gallivm);
3007 
3008    /* remove from shader's list */
3009    remove_from_list(&variant->list_item_local);
3010    variant->shader->variants_cached--;
3011 
3012    /* remove from context's list */
3013    remove_from_list(&variant->list_item_global);
3014    lp->nr_fs_variants--;
3015    lp->nr_fs_instrs -= variant->nr_instrs;
3016 
3017    FREE(variant);
3018 }
3019 
3020 
3021 static void
llvmpipe_delete_fs_state(struct pipe_context * pipe,void * fs)3022 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3023 {
3024    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3025    struct lp_fragment_shader *shader = fs;
3026    struct lp_fs_variant_list_item *li;
3027 
3028    assert(fs != llvmpipe->fs);
3029 
3030    /*
3031     * XXX: we need to flush the context until we have some sort of reference
3032     * counting in fragment shaders as they may still be binned
3033     * Flushing alone might not sufficient we need to wait on it too.
3034     */
3035    llvmpipe_finish(pipe, __FUNCTION__);
3036 
3037    /* Delete all the variants */
3038    li = first_elem(&shader->variants);
3039    while(!at_end(&shader->variants, li)) {
3040       struct lp_fs_variant_list_item *next = next_elem(li);
3041       llvmpipe_remove_shader_variant(llvmpipe, li->base);
3042       li = next;
3043    }
3044 
3045    /* Delete draw module's data */
3046    draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3047 
3048    assert(shader->variants_cached == 0);
3049    FREE((void *) shader->base.tokens);
3050    FREE(shader);
3051 }
3052 
3053 
3054 
3055 static void
llvmpipe_set_constant_buffer(struct pipe_context * pipe,uint shader,uint index,const struct pipe_constant_buffer * cb)3056 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3057                              uint shader, uint index,
3058                              const struct pipe_constant_buffer *cb)
3059 {
3060    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3061    struct pipe_resource *constants = cb ? cb->buffer : NULL;
3062 
3063    assert(shader < PIPE_SHADER_TYPES);
3064    assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3065 
3066    /* note: reference counting */
3067    util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3068 
3069    if (constants) {
3070        if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3071          debug_printf("Illegal set constant without bind flag\n");
3072          constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3073       }
3074    }
3075 
3076    if (shader == PIPE_SHADER_VERTEX ||
3077        shader == PIPE_SHADER_GEOMETRY) {
3078       /* Pass the constants to the 'draw' module */
3079       const unsigned size = cb ? cb->buffer_size : 0;
3080       const ubyte *data;
3081 
3082       if (constants) {
3083          data = (ubyte *) llvmpipe_resource_data(constants);
3084       }
3085       else if (cb && cb->user_buffer) {
3086          data = (ubyte *) cb->user_buffer;
3087       }
3088       else {
3089          data = NULL;
3090       }
3091 
3092       if (data)
3093          data += cb->buffer_offset;
3094 
3095       draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3096                                       index, data, size);
3097    }
3098    else {
3099       llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3100    }
3101 
3102    if (cb && cb->user_buffer) {
3103       pipe_resource_reference(&constants, NULL);
3104    }
3105 }
3106 
3107 
3108 /**
3109  * Return the blend factor equivalent to a destination alpha of one.
3110  */
3111 static inline unsigned
force_dst_alpha_one(unsigned factor,boolean clamped_zero)3112 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3113 {
3114    switch(factor) {
3115    case PIPE_BLENDFACTOR_DST_ALPHA:
3116       return PIPE_BLENDFACTOR_ONE;
3117    case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3118       return PIPE_BLENDFACTOR_ZERO;
3119    case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3120       if (clamped_zero)
3121          return PIPE_BLENDFACTOR_ZERO;
3122       else
3123          return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3124    }
3125 
3126    return factor;
3127 }
3128 
3129 
3130 /**
3131  * We need to generate several variants of the fragment pipeline to match
3132  * all the combinations of the contributing state atoms.
3133  *
3134  * TODO: there is actually no reason to tie this to context state -- the
3135  * generated code could be cached globally in the screen.
3136  */
3137 static void
make_variant_key(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,struct lp_fragment_shader_variant_key * key)3138 make_variant_key(struct llvmpipe_context *lp,
3139                  struct lp_fragment_shader *shader,
3140                  struct lp_fragment_shader_variant_key *key)
3141 {
3142    unsigned i;
3143 
3144    memset(key, 0, shader->variant_key_size);
3145 
3146    if (lp->framebuffer.zsbuf) {
3147       enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3148       const struct util_format_description *zsbuf_desc =
3149          util_format_description(zsbuf_format);
3150 
3151       if (lp->depth_stencil->depth.enabled &&
3152           util_format_has_depth(zsbuf_desc)) {
3153          key->zsbuf_format = zsbuf_format;
3154          memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3155       }
3156       if (lp->depth_stencil->stencil[0].enabled &&
3157           util_format_has_stencil(zsbuf_desc)) {
3158          key->zsbuf_format = zsbuf_format;
3159          memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3160       }
3161       if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3162          key->resource_1d = TRUE;
3163       }
3164    }
3165 
3166    /*
3167     * Propagate the depth clamp setting from the rasterizer state.
3168     * depth_clip == 0 implies depth clamping is enabled.
3169     *
3170     * When clip_halfz is enabled, then always clamp the depth values.
3171     *
3172     * XXX: This is incorrect for GL, but correct for d3d10 (depth
3173     * clamp is always active in d3d10, regardless if depth clip is
3174     * enabled or not).
3175     * (GL has an always-on [0,1] clamp on fs depth output instead
3176     * to ensure the depth values stay in range. Doesn't look like
3177     * we do that, though...)
3178     */
3179    if (lp->rasterizer->clip_halfz) {
3180       key->depth_clamp = 1;
3181    } else {
3182       key->depth_clamp = (lp->rasterizer->depth_clip == 0) ? 1 : 0;
3183    }
3184 
3185    /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3186    if (!lp->framebuffer.nr_cbufs ||
3187        !lp->framebuffer.cbufs[0] ||
3188        !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3189       key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3190    }
3191    if(key->alpha.enabled)
3192       key->alpha.func = lp->depth_stencil->alpha.func;
3193    /* alpha.ref_value is passed in jit_context */
3194 
3195    key->flatshade = lp->rasterizer->flatshade;
3196    if (lp->active_occlusion_queries) {
3197       key->occlusion_count = TRUE;
3198    }
3199 
3200    if (lp->framebuffer.nr_cbufs) {
3201       memcpy(&key->blend, lp->blend, sizeof key->blend);
3202    }
3203 
3204    key->nr_cbufs = lp->framebuffer.nr_cbufs;
3205 
3206    if (!key->blend.independent_blend_enable) {
3207       /* we always need independent blend otherwise the fixups below won't work */
3208       for (i = 1; i < key->nr_cbufs; i++) {
3209          memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3210       }
3211       key->blend.independent_blend_enable = 1;
3212    }
3213 
3214    for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3215       struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3216 
3217       if (lp->framebuffer.cbufs[i]) {
3218          enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3219          const struct util_format_description *format_desc;
3220 
3221          key->cbuf_format[i] = format;
3222 
3223          /*
3224           * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3225           * mixing of 2d textures with height 1 and 1d textures, so make sure
3226           * we pick 1d if any cbuf or zsbuf is 1d.
3227           */
3228          if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3229             key->resource_1d = TRUE;
3230          }
3231 
3232          format_desc = util_format_description(format);
3233          assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3234                 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3235 
3236          /*
3237           * Mask out color channels not present in the color buffer.
3238           */
3239          blend_rt->colormask &= util_format_colormask(format_desc);
3240 
3241          /*
3242           * Disable blend for integer formats.
3243           */
3244          if (util_format_is_pure_integer(format)) {
3245             blend_rt->blend_enable = 0;
3246          }
3247 
3248          /*
3249           * Our swizzled render tiles always have an alpha channel, but the
3250           * linear render target format often does not, so force here the dst
3251           * alpha to be one.
3252           *
3253           * This is not a mere optimization. Wrong results will be produced if
3254           * the dst alpha is used, the dst format does not have alpha, and the
3255           * previous rendering was not flushed from the swizzled to linear
3256           * buffer. For example, NonPowTwo DCT.
3257           *
3258           * TODO: This should be generalized to all channels for better
3259           * performance, but only alpha causes correctness issues.
3260           *
3261           * Also, force rgb/alpha func/factors match, to make AoS blending
3262           * easier.
3263           */
3264          if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3265              format_desc->swizzle[3] == format_desc->swizzle[0]) {
3266             /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3267             boolean clamped_zero = !util_format_is_float(format) &&
3268                                    !util_format_is_snorm(format);
3269             blend_rt->rgb_src_factor =
3270                force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3271             blend_rt->rgb_dst_factor =
3272                force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3273             blend_rt->alpha_func       = blend_rt->rgb_func;
3274             blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3275             blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3276          }
3277       }
3278       else {
3279          /* no color buffer for this fragment output */
3280          key->cbuf_format[i] = PIPE_FORMAT_NONE;
3281          blend_rt->colormask = 0x0;
3282          blend_rt->blend_enable = 0;
3283       }
3284    }
3285 
3286    /* This value will be the same for all the variants of a given shader:
3287     */
3288    key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3289 
3290    for(i = 0; i < key->nr_samplers; ++i) {
3291       if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3292          lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3293                                          lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3294       }
3295    }
3296 
3297    /*
3298     * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3299     * are dx10-style? Can't really have mixed opcodes, at least not
3300     * if we want to skip the holes here (without rescanning tgsi).
3301     */
3302    if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3303       key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3304       for(i = 0; i < key->nr_sampler_views; ++i) {
3305          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
3306             lp_sampler_static_texture_state(&key->state[i].texture_state,
3307                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3308          }
3309       }
3310    }
3311    else {
3312       key->nr_sampler_views = key->nr_samplers;
3313       for(i = 0; i < key->nr_sampler_views; ++i) {
3314          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3315             lp_sampler_static_texture_state(&key->state[i].texture_state,
3316                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3317          }
3318       }
3319    }
3320 }
3321 
3322 
3323 
3324 /**
3325  * Update fragment shader state.  This is called just prior to drawing
3326  * something when some fragment-related state has changed.
3327  */
3328 void
llvmpipe_update_fs(struct llvmpipe_context * lp)3329 llvmpipe_update_fs(struct llvmpipe_context *lp)
3330 {
3331    struct lp_fragment_shader *shader = lp->fs;
3332    struct lp_fragment_shader_variant_key key;
3333    struct lp_fragment_shader_variant *variant = NULL;
3334    struct lp_fs_variant_list_item *li;
3335 
3336    make_variant_key(lp, shader, &key);
3337 
3338    /* Search the variants for one which matches the key */
3339    li = first_elem(&shader->variants);
3340    while(!at_end(&shader->variants, li)) {
3341       if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3342          variant = li->base;
3343          break;
3344       }
3345       li = next_elem(li);
3346    }
3347 
3348    if (variant) {
3349       /* Move this variant to the head of the list to implement LRU
3350        * deletion of shader's when we have too many.
3351        */
3352       move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3353    }
3354    else {
3355       /* variant not found, create it now */
3356       int64_t t0, t1, dt;
3357       unsigned i;
3358       unsigned variants_to_cull;
3359 
3360       if (0) {
3361          debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3362                       lp->nr_fs_variants,
3363                       lp->nr_fs_instrs,
3364                       lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3365       }
3366 
3367       /* First, check if we've exceeded the max number of shader variants.
3368        * If so, free 25% of them (the least recently used ones).
3369        */
3370       variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
3371 
3372       if (variants_to_cull ||
3373           lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3374          struct pipe_context *pipe = &lp->pipe;
3375 
3376          /*
3377           * XXX: we need to flush the context until we have some sort of
3378           * reference counting in fragment shaders as they may still be binned
3379           * Flushing alone might not be sufficient we need to wait on it too.
3380           */
3381          llvmpipe_finish(pipe, __FUNCTION__);
3382 
3383          /*
3384           * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3385           * number of shader variants (potentially all of them) could be
3386           * pending for destruction on flush.
3387           */
3388 
3389          for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3390             struct lp_fs_variant_list_item *item;
3391             if (is_empty_list(&lp->fs_variants_list)) {
3392                break;
3393             }
3394             item = last_elem(&lp->fs_variants_list);
3395             assert(item);
3396             assert(item->base);
3397             llvmpipe_remove_shader_variant(lp, item->base);
3398          }
3399       }
3400 
3401       /*
3402        * Generate the new variant.
3403        */
3404       t0 = os_time_get();
3405       variant = generate_variant(lp, shader, &key);
3406       t1 = os_time_get();
3407       dt = t1 - t0;
3408       LP_COUNT_ADD(llvm_compile_time, dt);
3409       LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
3410 
3411       /* Put the new variant into the list */
3412       if (variant) {
3413          insert_at_head(&shader->variants, &variant->list_item_local);
3414          insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3415          lp->nr_fs_variants++;
3416          lp->nr_fs_instrs += variant->nr_instrs;
3417          shader->variants_cached++;
3418       }
3419    }
3420 
3421    /* Bind this variant */
3422    lp_setup_set_fs_variant(lp->setup, variant);
3423 }
3424 
3425 
3426 
3427 
3428 
3429 void
llvmpipe_init_fs_funcs(struct llvmpipe_context * llvmpipe)3430 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3431 {
3432    llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3433    llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
3434    llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3435 
3436    llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3437 }
3438 
3439 /*
3440  * Rasterization is disabled if there is no pixel shader and
3441  * both depth and stencil testing are disabled:
3442  * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3443  */
3444 boolean
llvmpipe_rasterization_disabled(struct llvmpipe_context * lp)3445 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3446 {
3447    boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3448 
3449    return (null_fs &&
3450            !lp->depth_stencil->depth.enabled &&
3451            !lp->depth_stencil->stencil[0].enabled);
3452 }
3453