• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /*
29  * Binning code for triangles
30  */
31 
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41 #include "lp_context.h"
42 
43 #include <inttypes.h>
44 
45 #define NUM_CHANNELS 4
46 
47 #if defined(PIPE_ARCH_SSE)
48 #include <emmintrin.h>
49 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
50 #include <altivec.h>
51 #include "util/u_pwr8.h"
52 #endif
53 
54 static inline int
subpixel_snap(float a)55 subpixel_snap(float a)
56 {
57    return util_iround(FIXED_ONE * a);
58 }
59 
60 static inline float
fixed_to_float(int a)61 fixed_to_float(int a)
62 {
63    return a * (1.0f / FIXED_ONE);
64 }
65 
66 
67 /* Position and area in fixed point coordinates */
68 struct fixed_position {
69    int32_t x[4];
70    int32_t y[4];
71    int32_t dx01;
72    int32_t dy01;
73    int32_t dx20;
74    int32_t dy20;
75    int64_t area;
76 };
77 
78 
79 /**
80  * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
81  * immediately after it.
82  * The memory is allocated from the per-scene pool, not per-tile.
83  * \param tri_size  returns number of bytes allocated
84  * \param num_inputs  number of fragment shader inputs
85  * \return pointer to triangle space
86  */
87 struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene * scene,unsigned nr_inputs,unsigned nr_planes,unsigned * tri_size)88 lp_setup_alloc_triangle(struct lp_scene *scene,
89                         unsigned nr_inputs,
90                         unsigned nr_planes,
91                         unsigned *tri_size)
92 {
93    unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
94    unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
95    struct lp_rast_triangle *tri;
96 
97    STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
98 
99    *tri_size = (sizeof(struct lp_rast_triangle) +
100                 3 * input_array_sz +
101                 plane_sz);
102 
103    tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
104    if (!tri)
105       return NULL;
106 
107    tri->inputs.stride = input_array_sz;
108 
109    {
110       char *a = (char *)tri;
111       char *b = (char *)&GET_PLANES(tri)[nr_planes];
112       assert(b - a == *tri_size);
113    }
114 
115    return tri;
116 }
117 
118 void
lp_setup_print_vertex(struct lp_setup_context * setup,const char * name,const float (* v)[4])119 lp_setup_print_vertex(struct lp_setup_context *setup,
120                       const char *name,
121                       const float (*v)[4])
122 {
123    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
124    int i, j;
125 
126    debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
127                 name,
128                 v[0][0], v[0][1], v[0][2], v[0][3]);
129 
130    for (i = 0; i < key->num_inputs; i++) {
131       const float *in = v[key->inputs[i].src_index];
132 
133       debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
134                    i,
135                    name, key->inputs[i].src_index,
136                    (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
137                    (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
138                    (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
139                    (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
140 
141       for (j = 0; j < 4; j++)
142          if (key->inputs[i].usage_mask & (1<<j))
143             debug_printf("%.5f ", in[j]);
144 
145       debug_printf("\n");
146    }
147 }
148 
149 
150 /**
151  * Print triangle vertex attribs (for debug).
152  */
153 void
lp_setup_print_triangle(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])154 lp_setup_print_triangle(struct lp_setup_context *setup,
155                         const float (*v0)[4],
156                         const float (*v1)[4],
157                         const float (*v2)[4])
158 {
159    debug_printf("triangle\n");
160 
161    {
162       const float ex = v0[0][0] - v2[0][0];
163       const float ey = v0[0][1] - v2[0][1];
164       const float fx = v1[0][0] - v2[0][0];
165       const float fy = v1[0][1] - v2[0][1];
166 
167       /* det = cross(e,f).z */
168       const float det = ex * fy - ey * fx;
169       if (det < 0.0f)
170          debug_printf("   - ccw\n");
171       else if (det > 0.0f)
172          debug_printf("   - cw\n");
173       else
174          debug_printf("   - zero area\n");
175    }
176 
177    lp_setup_print_vertex(setup, "v0", v0);
178    lp_setup_print_vertex(setup, "v1", v1);
179    lp_setup_print_vertex(setup, "v2", v2);
180 }
181 
182 
183 #define MAX_PLANES 8
184 static unsigned
185 lp_rast_tri_tab[MAX_PLANES+1] = {
186    0,               /* should be impossible */
187    LP_RAST_OP_TRIANGLE_1,
188    LP_RAST_OP_TRIANGLE_2,
189    LP_RAST_OP_TRIANGLE_3,
190    LP_RAST_OP_TRIANGLE_4,
191    LP_RAST_OP_TRIANGLE_5,
192    LP_RAST_OP_TRIANGLE_6,
193    LP_RAST_OP_TRIANGLE_7,
194    LP_RAST_OP_TRIANGLE_8
195 };
196 
197 static unsigned
198 lp_rast_32_tri_tab[MAX_PLANES+1] = {
199    0,               /* should be impossible */
200    LP_RAST_OP_TRIANGLE_32_1,
201    LP_RAST_OP_TRIANGLE_32_2,
202    LP_RAST_OP_TRIANGLE_32_3,
203    LP_RAST_OP_TRIANGLE_32_4,
204    LP_RAST_OP_TRIANGLE_32_5,
205    LP_RAST_OP_TRIANGLE_32_6,
206    LP_RAST_OP_TRIANGLE_32_7,
207    LP_RAST_OP_TRIANGLE_32_8
208 };
209 
210 
211 
212 /**
213  * The primitive covers the whole tile- shade whole tile.
214  *
215  * \param tx, ty  the tile position in tiles, not pixels
216  */
217 static boolean
lp_setup_whole_tile(struct lp_setup_context * setup,const struct lp_rast_shader_inputs * inputs,int tx,int ty)218 lp_setup_whole_tile(struct lp_setup_context *setup,
219                     const struct lp_rast_shader_inputs *inputs,
220                     int tx, int ty)
221 {
222    struct lp_scene *scene = setup->scene;
223 
224    LP_COUNT(nr_fully_covered_64);
225 
226    /* if variant is opaque and scissor doesn't effect the tile */
227    if (inputs->opaque) {
228       /* Several things prevent this optimization from working:
229        * - For layered rendering we can't determine if this covers the same layer
230        * as previous rendering (or in case of clears those actually always cover
231        * all layers so optimization is impossible). Need to use fb_max_layer and
232        * not setup->layer_slot to determine this since even if there's currently
233        * no slot assigned previous rendering could have used one.
234        * - If there were any Begin/End query commands in the scene then those
235        * would get removed which would be very wrong. Furthermore, if queries
236        * were just active we also can't do the optimization since to get
237        * accurate query results we unfortunately need to execute the rendering
238        * commands.
239        */
240       if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) {
241          /*
242           * All previous rendering will be overwritten so reset the bin.
243           */
244          lp_scene_bin_reset( scene, tx, ty );
245       }
246 
247       LP_COUNT(nr_shade_opaque_64);
248       return lp_scene_bin_cmd_with_state( scene, tx, ty,
249                                           setup->fs.stored,
250                                           LP_RAST_OP_SHADE_TILE_OPAQUE,
251                                           lp_rast_arg_inputs(inputs) );
252    } else {
253       LP_COUNT(nr_shade_64);
254       return lp_scene_bin_cmd_with_state( scene, tx, ty,
255                                           setup->fs.stored,
256                                           LP_RAST_OP_SHADE_TILE,
257                                           lp_rast_arg_inputs(inputs) );
258    }
259 }
260 
261 
262 /**
263  * Do basic setup for triangle rasterization and determine which
264  * framebuffer tiles are touched.  Put the triangle in the scene's
265  * bins for the tiles which we overlap.
266  */
267 static boolean
do_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean frontfacing)268 do_triangle_ccw(struct lp_setup_context *setup,
269                 struct fixed_position* position,
270                 const float (*v0)[4],
271                 const float (*v1)[4],
272                 const float (*v2)[4],
273                 boolean frontfacing )
274 {
275    struct lp_scene *scene = setup->scene;
276    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
277    struct lp_rast_triangle *tri;
278    struct lp_rast_plane *plane;
279    struct u_rect bbox;
280    unsigned tri_bytes;
281    int nr_planes = 3;
282    unsigned viewport_index = 0;
283    unsigned layer = 0;
284    const float (*pv)[4];
285 
286    /* Area should always be positive here */
287    assert(position->area > 0);
288 
289    if (0)
290       lp_setup_print_triangle(setup, v0, v1, v2);
291 
292    if (setup->flatshade_first) {
293       pv = v0;
294    }
295    else {
296       pv = v2;
297    }
298    if (setup->viewport_index_slot > 0) {
299       unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
300       viewport_index = lp_clamp_viewport_idx(*udata);
301    }
302    if (setup->layer_slot > 0) {
303       layer = *(unsigned*)pv[setup->layer_slot];
304       layer = MIN2(layer, scene->fb_max_layer);
305    }
306 
307    /* Bounding rectangle (in pixels) */
308    {
309       /* Yes this is necessary to accurately calculate bounding boxes
310        * with the two fill-conventions we support.  GL (normally) ends
311        * up needing a bottom-left fill convention, which requires
312        * slightly different rounding.
313        */
314       int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
315 
316       /* Inclusive x0, exclusive x1 */
317       bbox.x0 =  MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
318       bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
319 
320       /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
321       bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
322       bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
323    }
324 
325    if (bbox.x1 < bbox.x0 ||
326        bbox.y1 < bbox.y0) {
327       if (0) debug_printf("empty bounding box\n");
328       LP_COUNT(nr_culled_tris);
329       return TRUE;
330    }
331 
332    if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
333       if (0) debug_printf("offscreen\n");
334       LP_COUNT(nr_culled_tris);
335       return TRUE;
336    }
337 
338    /* Can safely discard negative regions, but need to keep hold of
339     * information about when the triangle extends past screen
340     * boundaries.  See trimmed_box in lp_setup_bin_triangle().
341     */
342    bbox.x0 = MAX2(bbox.x0, 0);
343    bbox.y0 = MAX2(bbox.y0, 0);
344 
345    nr_planes = 3;
346    /*
347     * Determine how many scissor planes we need, that is drop scissor
348     * edges if the bounding box of the tri is fully inside that edge.
349     */
350    if (setup->scissor_test) {
351       /* why not just use draw_regions */
352       boolean s_planes[4];
353       scissor_planes_needed(s_planes, &bbox, &setup->scissors[viewport_index]);
354       nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
355    }
356 
357    tri = lp_setup_alloc_triangle(scene,
358                                  key->num_inputs,
359                                  nr_planes,
360                                  &tri_bytes);
361    if (!tri)
362       return FALSE;
363 
364 #if 0
365    tri->v[0][0] = v0[0][0];
366    tri->v[1][0] = v1[0][0];
367    tri->v[2][0] = v2[0][0];
368    tri->v[0][1] = v0[0][1];
369    tri->v[1][1] = v1[0][1];
370    tri->v[2][1] = v2[0][1];
371 #endif
372 
373    LP_COUNT(nr_tris);
374 
375    /* Setup parameter interpolants:
376     */
377    setup->setup.variant->jit_function(v0, v1, v2,
378                                       frontfacing,
379                                       GET_A0(&tri->inputs),
380                                       GET_DADX(&tri->inputs),
381                                       GET_DADY(&tri->inputs));
382 
383    tri->inputs.frontfacing = frontfacing;
384    tri->inputs.disable = FALSE;
385    tri->inputs.opaque = setup->fs.current.variant->opaque;
386    tri->inputs.layer = layer;
387    tri->inputs.viewport_index = viewport_index;
388 
389    if (0)
390       lp_dump_setup_coef(&setup->setup.variant->key,
391                          (const float (*)[4])GET_A0(&tri->inputs),
392                          (const float (*)[4])GET_DADX(&tri->inputs),
393                          (const float (*)[4])GET_DADY(&tri->inputs));
394 
395    plane = GET_PLANES(tri);
396 
397 #if defined(PIPE_ARCH_SSE)
398    if (1) {
399       __m128i vertx, verty;
400       __m128i shufx, shufy;
401       __m128i dcdx, dcdy;
402       __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
403       __m128i c01, c23, unused;
404       __m128i dcdx_neg_mask;
405       __m128i dcdy_neg_mask;
406       __m128i dcdx_zero_mask;
407       __m128i top_left_flag, c_dec;
408       __m128i eo, p0, p1, p2;
409       __m128i zero = _mm_setzero_si128();
410 
411       vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
412       verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
413 
414       shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
415       shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
416 
417       dcdx = _mm_sub_epi32(verty, shufy);
418       dcdy = _mm_sub_epi32(vertx, shufx);
419 
420       dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
421       dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
422       dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
423 
424       top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
425 
426       c_dec = _mm_or_si128(dcdx_neg_mask,
427                            _mm_and_si128(dcdx_zero_mask,
428                                          _mm_xor_si128(dcdy_neg_mask,
429                                                        top_left_flag)));
430 
431       /*
432        * 64 bit arithmetic.
433        * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
434        */
435       cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
436       cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
437       c02 = _mm_sub_epi64(cdx02, cdy02);
438       c13 = _mm_sub_epi64(cdx13, cdy13);
439       c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
440                                                  _MM_SHUFFLE(2,2,0,0)));
441       c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
442                                                  _MM_SHUFFLE(3,3,1,1)));
443 
444       /*
445        * Useful for very small fbs/tris (or fewer subpixel bits) only:
446        * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
447        *                   mm_mullo_epi32(dcdy, verty));
448        *
449        * c = _mm_sub_epi32(c, c_dec);
450        */
451 
452       /* Scale up to match c:
453        */
454       dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
455       dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
456 
457       /*
458        * Calculate trivial reject values:
459        * Note eo cannot overflow even if dcdx/dcdy would already have
460        * 31 bits (which they shouldn't have). This is because eo
461        * is never negative (albeit if we rely on that need to be careful...)
462        */
463       eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
464                          _mm_and_si128(dcdx_neg_mask, dcdx));
465 
466       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
467 
468       /*
469        * Pointless transpose which gets undone immediately in
470        * rasterization.
471        * It is actually difficult to do away with it - would essentially
472        * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
473        * for this then would need to depend on the number of planes.
474        * The transpose is quite special here due to c being 64bit...
475        * The store has to be unaligned (unless we'd make the plane size
476        * a multiple of 128), and of course storing eo separately...
477        */
478       c01 = _mm_unpacklo_epi64(c02, c13);
479       c23 = _mm_unpackhi_epi64(c02, c13);
480       transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
481                          &p0, &p1, &p2, &unused);
482       _mm_storeu_si128((__m128i *)&plane[0], p0);
483       plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
484       _mm_storeu_si128((__m128i *)&plane[1], p1);
485       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
486       plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
487       _mm_storeu_si128((__m128i *)&plane[2], p2);
488       eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
489       plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
490    } else
491 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
492    /*
493     * XXX this code is effectively disabled for all practical purposes,
494     * as the allowed fb size is tiny if FIXED_ORDER is 8.
495     */
496    if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
497        setup->fb.height <= MAX_FIXED_LENGTH32 &&
498        (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
499        (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
500       unsigned int bottom_edge;
501       __m128i vertx, verty;
502       __m128i shufx, shufy;
503       __m128i dcdx, dcdy, c;
504       __m128i unused;
505       __m128i dcdx_neg_mask;
506       __m128i dcdy_neg_mask;
507       __m128i dcdx_zero_mask;
508       __m128i top_left_flag;
509       __m128i c_inc_mask, c_inc;
510       __m128i eo, p0, p1, p2;
511       __m128i_union vshuf_mask;
512       __m128i zero = vec_splats((unsigned char) 0);
513       PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
514 
515 #ifdef PIPE_ARCH_LITTLE_ENDIAN
516       vshuf_mask.i[0] = 0x07060504;
517       vshuf_mask.i[1] = 0x0B0A0908;
518       vshuf_mask.i[2] = 0x03020100;
519       vshuf_mask.i[3] = 0x0F0E0D0C;
520 #else
521       vshuf_mask.i[0] = 0x00010203;
522       vshuf_mask.i[1] = 0x0C0D0E0F;
523       vshuf_mask.i[2] = 0x04050607;
524       vshuf_mask.i[3] = 0x08090A0B;
525 #endif
526 
527       /* vertex x coords */
528       vertx = vec_load_si128((const uint32_t *) position->x);
529       /* vertex y coords */
530       verty = vec_load_si128((const uint32_t *) position->y);
531 
532       shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
533       shufy = vec_perm (verty, verty, vshuf_mask.m128i);
534 
535       dcdx = vec_sub_epi32(verty, shufy);
536       dcdy = vec_sub_epi32(vertx, shufx);
537 
538       dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
539       dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
540       dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
541 
542       bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
543       top_left_flag = (__m128i) vec_splats(bottom_edge);
544 
545       c_inc_mask = vec_or(dcdx_neg_mask,
546                                 vec_and(dcdx_zero_mask,
547                                               vec_xor(dcdy_neg_mask,
548                                                             top_left_flag)));
549 
550       c_inc = vec_srli_epi32(c_inc_mask, 31);
551 
552       c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
553                         vec_mullo_epi32(dcdy, verty));
554 
555       c = vec_add_epi32(c, c_inc);
556 
557       /* Scale up to match c:
558        */
559       dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
560       dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
561 
562       /* Calculate trivial reject values:
563        */
564       eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
565                          vec_and(dcdx_neg_mask, dcdx));
566 
567       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
568 
569       /* Pointless transpose which gets undone immediately in
570        * rasterization:
571        */
572       transpose4_epi32(&c, &dcdx, &dcdy, &eo,
573                        &p0, &p1, &p2, &unused);
574 
575 #define STORE_PLANE(plane, vec) do {                  \
576          vec_store_si128((uint32_t *)&temp_vec, vec); \
577          plane.c    = (int64_t)temp_vec[0];           \
578          plane.dcdx = temp_vec[1];                    \
579          plane.dcdy = temp_vec[2];                    \
580          plane.eo   = temp_vec[3];                    \
581       } while(0)
582 
583       STORE_PLANE(plane[0], p0);
584       STORE_PLANE(plane[1], p1);
585       STORE_PLANE(plane[2], p2);
586 #undef STORE_PLANE
587    } else
588 #endif
589    {
590       int i;
591       plane[0].dcdy = position->dx01;
592       plane[1].dcdy = position->x[1] - position->x[2];
593       plane[2].dcdy = position->dx20;
594       plane[0].dcdx = position->dy01;
595       plane[1].dcdx = position->y[1] - position->y[2];
596       plane[2].dcdx = position->dy20;
597 
598       for (i = 0; i < 3; i++) {
599          /* half-edge constants, will be iterated over the whole render
600           * target.
601           */
602          plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
603                       IMUL64(plane[i].dcdy, position->y[i]);
604 
605          /* correct for top-left vs. bottom-left fill convention.
606           */
607          if (plane[i].dcdx < 0) {
608             /* both fill conventions want this - adjust for left edges */
609             plane[i].c++;
610          }
611          else if (plane[i].dcdx == 0) {
612             if (setup->bottom_edge_rule == 0){
613                /* correct for top-left fill convention:
614                 */
615                if (plane[i].dcdy > 0) plane[i].c++;
616             }
617             else {
618                /* correct for bottom-left fill convention:
619                 */
620                if (plane[i].dcdy < 0) plane[i].c++;
621             }
622          }
623 
624          /* Scale up to match c:
625           */
626          assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
627          assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
628          plane[i].dcdx <<= FIXED_ORDER;
629          plane[i].dcdy <<= FIXED_ORDER;
630 
631          /* find trivial reject offsets for each edge for a single-pixel
632           * sized block.  These will be scaled up at each recursive level to
633           * match the active blocksize.  Scaling in this way works best if
634           * the blocks are square.
635           */
636          plane[i].eo = 0;
637          if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
638          if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
639       }
640    }
641 
642    if (0) {
643       debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
644                    plane[0].c,
645                    plane[0].dcdx,
646                    plane[0].dcdy,
647                    plane[0].eo);
648 
649       debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
650                    plane[1].c,
651                    plane[1].dcdx,
652                    plane[1].dcdy,
653                    plane[1].eo);
654 
655       debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
656                    plane[2].c,
657                    plane[2].dcdx,
658                    plane[2].dcdy,
659                    plane[2].eo);
660    }
661 
662 
663    /*
664     * When rasterizing scissored tris, use the intersection of the
665     * triangle bounding box and the scissor rect to generate the
666     * scissor planes.
667     *
668     * This permits us to cut off the triangle "tails" that are present
669     * in the intermediate recursive levels caused when two of the
670     * triangles edges don't diverge quickly enough to trivially reject
671     * exterior blocks from the triangle.
672     *
673     * It's not really clear if it's worth worrying about these tails,
674     * but since we generate the planes for each scissored tri, it's
675     * free to trim them in this case.
676     *
677     * Note that otherwise, the scissor planes only vary in 'C' value,
678     * and even then only on state-changes.  Could alternatively store
679     * these planes elsewhere.
680     * (Or only store the c value together with a bit indicating which
681     * scissor edge this is, so rasterization would treat them differently
682     * (easier to evaluate) to ordinary planes.)
683     */
684    if (nr_planes > 3) {
685       /* why not just use draw_regions */
686       const struct u_rect *scissor = &setup->scissors[viewport_index];
687       struct lp_rast_plane *plane_s = &plane[3];
688       boolean s_planes[4];
689       scissor_planes_needed(s_planes, &bbox, scissor);
690 
691       if (s_planes[0]) {
692          plane_s->dcdx = -1 << 8;
693          plane_s->dcdy = 0;
694          plane_s->c = (1-scissor->x0) << 8;
695          plane_s->eo = 1 << 8;
696          plane_s++;
697       }
698       if (s_planes[1]) {
699          plane_s->dcdx = 1 << 8;
700          plane_s->dcdy = 0;
701          plane_s->c = (scissor->x1+1) << 8;
702          plane_s->eo = 0 << 8;
703          plane_s++;
704       }
705       if (s_planes[2]) {
706          plane_s->dcdx = 0;
707          plane_s->dcdy = 1 << 8;
708          plane_s->c = (1-scissor->y0) << 8;
709          plane_s->eo = 1 << 8;
710          plane_s++;
711       }
712       if (s_planes[3]) {
713          plane_s->dcdx = 0;
714          plane_s->dcdy = -1 << 8;
715          plane_s->c = (scissor->y1+1) << 8;
716          plane_s->eo = 0;
717          plane_s++;
718       }
719       assert(plane_s == &plane[nr_planes]);
720    }
721 
722    return lp_setup_bin_triangle(setup, tri, &bbox, nr_planes, viewport_index);
723 }
724 
725 /*
726  * Round to nearest less or equal power of two of the input.
727  *
728  * Undefined if no bit set exists, so code should check against 0 first.
729  */
730 static inline uint32_t
floor_pot(uint32_t n)731 floor_pot(uint32_t n)
732 {
733 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
734    if (n == 0)
735       return 0;
736 
737    __asm__("bsr %1,%0"
738           : "=r" (n)
739           : "rm" (n));
740    return 1 << n;
741 #else
742    n |= (n >>  1);
743    n |= (n >>  2);
744    n |= (n >>  4);
745    n |= (n >>  8);
746    n |= (n >> 16);
747    return n - (n >> 1);
748 #endif
749 }
750 
751 
752 boolean
lp_setup_bin_triangle(struct lp_setup_context * setup,struct lp_rast_triangle * tri,const struct u_rect * bbox,int nr_planes,unsigned viewport_index)753 lp_setup_bin_triangle( struct lp_setup_context *setup,
754                        struct lp_rast_triangle *tri,
755                        const struct u_rect *bbox,
756                        int nr_planes,
757                        unsigned viewport_index )
758 {
759    struct lp_scene *scene = setup->scene;
760    struct u_rect trimmed_box = *bbox;
761    int i;
762    /* What is the largest power-of-two boundary this triangle crosses:
763     */
764    int dx = floor_pot((bbox->x0 ^ bbox->x1) |
765 		      (bbox->y0 ^ bbox->y1));
766 
767    /* The largest dimension of the rasterized area of the triangle
768     * (aligned to a 4x4 grid), rounded down to the nearest power of two:
769     */
770    int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
771                  (bbox->y1 - (bbox->y0 & ~3)));
772    int sz = floor_pot(max_sz);
773    boolean use_32bits = max_sz <= MAX_FIXED_LENGTH32;
774 
775    /* Now apply scissor, etc to the bounding box.  Could do this
776     * earlier, but it confuses the logic for tri-16 and would force
777     * the rasterizer to also respect scissor, etc, just for the rare
778     * cases where a small triangle extends beyond the scissor.
779     */
780    u_rect_find_intersection(&setup->draw_regions[viewport_index],
781                             &trimmed_box);
782 
783    /* Determine which tile(s) intersect the triangle's bounding box
784     */
785    if (dx < TILE_SIZE)
786    {
787       int ix0 = bbox->x0 / TILE_SIZE;
788       int iy0 = bbox->y0 / TILE_SIZE;
789       unsigned px = bbox->x0 & 63 & ~3;
790       unsigned py = bbox->y0 & 63 & ~3;
791 
792       assert(iy0 == bbox->y1 / TILE_SIZE &&
793 	     ix0 == bbox->x1 / TILE_SIZE);
794 
795       if (nr_planes == 3) {
796          if (sz < 4)
797          {
798             /* Triangle is contained in a single 4x4 stamp:
799              */
800             assert(px + 4 <= TILE_SIZE);
801             assert(py + 4 <= TILE_SIZE);
802             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
803                                                 setup->fs.stored,
804                                                 use_32bits ?
805                                                 LP_RAST_OP_TRIANGLE_32_3_4 :
806                                                 LP_RAST_OP_TRIANGLE_3_4,
807                                                 lp_rast_arg_triangle_contained(tri, px, py) );
808          }
809 
810          if (sz < 16)
811          {
812             /* Triangle is contained in a single 16x16 block:
813              */
814 
815             /*
816              * The 16x16 block is only 4x4 aligned, and can exceed the tile
817              * dimensions if the triangle is 16 pixels in one dimension but 4
818              * in the other. So budge the 16x16 back inside the tile.
819              */
820             px = MIN2(px, TILE_SIZE - 16);
821             py = MIN2(py, TILE_SIZE - 16);
822 
823             assert(px + 16 <= TILE_SIZE);
824             assert(py + 16 <= TILE_SIZE);
825 
826             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
827                                                 setup->fs.stored,
828                                                 use_32bits ?
829                                                 LP_RAST_OP_TRIANGLE_32_3_16 :
830                                                 LP_RAST_OP_TRIANGLE_3_16,
831                                                 lp_rast_arg_triangle_contained(tri, px, py) );
832          }
833       }
834       else if (nr_planes == 4 && sz < 16)
835       {
836          px = MIN2(px, TILE_SIZE - 16);
837          py = MIN2(py, TILE_SIZE - 16);
838 
839          assert(px + 16 <= TILE_SIZE);
840          assert(py + 16 <= TILE_SIZE);
841 
842          return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
843                                             setup->fs.stored,
844                                             use_32bits ?
845                                             LP_RAST_OP_TRIANGLE_32_4_16 :
846                                             LP_RAST_OP_TRIANGLE_4_16,
847                                             lp_rast_arg_triangle_contained(tri, px, py));
848       }
849 
850 
851       /* Triangle is contained in a single tile:
852        */
853       return lp_scene_bin_cmd_with_state(
854          scene, ix0, iy0, setup->fs.stored,
855          use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes],
856          lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
857    }
858    else
859    {
860       struct lp_rast_plane *plane = GET_PLANES(tri);
861       int64_t c[MAX_PLANES];
862       int64_t ei[MAX_PLANES];
863 
864       int64_t eo[MAX_PLANES];
865       int64_t xstep[MAX_PLANES];
866       int64_t ystep[MAX_PLANES];
867       int x, y;
868 
869       int ix0 = trimmed_box.x0 / TILE_SIZE;
870       int iy0 = trimmed_box.y0 / TILE_SIZE;
871       int ix1 = trimmed_box.x1 / TILE_SIZE;
872       int iy1 = trimmed_box.y1 / TILE_SIZE;
873 
874       for (i = 0; i < nr_planes; i++) {
875          c[i] = (plane[i].c +
876                  IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
877                  IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
878 
879          ei[i] = (plane[i].dcdy -
880                   plane[i].dcdx -
881                   (int64_t)plane[i].eo) << TILE_ORDER;
882 
883          eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
884          xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
885          ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
886       }
887 
888 
889 
890       /* Test tile-sized blocks against the triangle.
891        * Discard blocks fully outside the tri.  If the block is fully
892        * contained inside the tri, bin an lp_rast_shade_tile command.
893        * Else, bin a lp_rast_triangle command.
894        */
895       for (y = iy0; y <= iy1; y++)
896       {
897          boolean in = FALSE;  /* are we inside the triangle? */
898          int64_t cx[MAX_PLANES];
899 
900          for (i = 0; i < nr_planes; i++)
901             cx[i] = c[i];
902 
903          for (x = ix0; x <= ix1; x++)
904          {
905             int out = 0;
906             int partial = 0;
907 
908             for (i = 0; i < nr_planes; i++) {
909                int64_t planeout = cx[i] + eo[i];
910                int64_t planepartial = cx[i] + ei[i] - 1;
911                out |= (int) (planeout >> 63);
912                partial |= ((int) (planepartial >> 63)) & (1<<i);
913             }
914 
915             if (out) {
916                /* do nothing */
917                if (in)
918                   break;  /* exiting triangle, all done with this row */
919                LP_COUNT(nr_empty_64);
920             }
921             else if (partial) {
922                /* Not trivially accepted by at least one plane -
923                 * rasterize/shade partial tile
924                 */
925                int count = util_bitcount(partial);
926                in = TRUE;
927 
928                if (!lp_scene_bin_cmd_with_state( scene, x, y,
929                                                  setup->fs.stored,
930                                                  use_32bits ?
931                                                  lp_rast_32_tri_tab[count] :
932                                                  lp_rast_tri_tab[count],
933                                                  lp_rast_arg_triangle(tri, partial) ))
934                   goto fail;
935 
936                LP_COUNT(nr_partially_covered_64);
937             }
938             else {
939                /* triangle covers the whole tile- shade whole tile */
940                LP_COUNT(nr_fully_covered_64);
941                in = TRUE;
942                if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
943                   goto fail;
944             }
945 
946             /* Iterate cx values across the region: */
947             for (i = 0; i < nr_planes; i++)
948                cx[i] += xstep[i];
949          }
950 
951          /* Iterate c values down the region: */
952          for (i = 0; i < nr_planes; i++)
953             c[i] += ystep[i];
954       }
955    }
956 
957    return TRUE;
958 
959 fail:
960    /* Need to disable any partially binned triangle.  This is easier
961     * than trying to locate all the triangle, shade-tile, etc,
962     * commands which may have been binned.
963     */
964    tri->inputs.disable = TRUE;
965    return FALSE;
966 }
967 
968 
969 /**
970  * Try to draw the triangle, restart the scene on failure.
971  */
retry_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean front)972 static void retry_triangle_ccw( struct lp_setup_context *setup,
973                                 struct fixed_position* position,
974                                 const float (*v0)[4],
975                                 const float (*v1)[4],
976                                 const float (*v2)[4],
977                                 boolean front)
978 {
979    if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
980    {
981       if (!lp_setup_flush_and_restart(setup))
982          return;
983 
984       if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
985          return;
986    }
987 }
988 
989 /**
990  * Calculate fixed position data for a triangle
991  * It is unfortunate we need to do that here (as we need area
992  * calculated in fixed point), as there's quite some code duplication
993  * to what is done in the jit setup prog.
994  */
995 static inline void
calc_fixed_position(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])996 calc_fixed_position(struct lp_setup_context *setup,
997                     struct fixed_position* position,
998                     const float (*v0)[4],
999                     const float (*v1)[4],
1000                     const float (*v2)[4])
1001 {
1002    /*
1003     * The rounding may not be quite the same with PIPE_ARCH_SSE
1004     * (util_iround right now only does nearest/even on x87,
1005     * otherwise nearest/away-from-zero).
1006     * Both should be acceptable, I think.
1007     */
1008 #if defined(PIPE_ARCH_SSE)
1009    __m128 v0r, v1r;
1010    __m128 vxy0xy2, vxy1xy0;
1011    __m128i vxy0xy2i, vxy1xy0i;
1012    __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
1013    __m128 pix_offset = _mm_set1_ps(setup->pixel_offset);
1014    __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
1015    v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
1016    vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
1017    v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
1018    vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
1019    vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
1020    vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
1021    vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
1022    vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
1023    vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
1024    vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
1025    dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
1026    _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
1027    /*
1028     * For the mul, would need some more shuffles, plus emulation
1029     * for the signed mul (without sse41), so don't bother.
1030     */
1031    x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
1032    x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
1033    x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
1034    y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
1035    _mm_store_si128((__m128i *)&position->x[0], x0120);
1036    _mm_store_si128((__m128i *)&position->y[0], y0120);
1037 
1038 #else
1039    position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
1040    position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
1041    position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
1042    position->x[3] = 0; // should be unused
1043 
1044    position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
1045    position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
1046    position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
1047    position->y[3] = 0; // should be unused
1048 
1049    position->dx01 = position->x[0] - position->x[1];
1050    position->dy01 = position->y[0] - position->y[1];
1051 
1052    position->dx20 = position->x[2] - position->x[0];
1053    position->dy20 = position->y[2] - position->y[0];
1054 #endif
1055 
1056    position->area = IMUL64(position->dx01, position->dy20) -
1057          IMUL64(position->dx20, position->dy01);
1058 }
1059 
1060 
1061 /**
1062  * Rotate a triangle, flipping its clockwise direction,
1063  * Swaps values for xy[0] and xy[1]
1064  */
1065 static inline void
rotate_fixed_position_01(struct fixed_position * position)1066 rotate_fixed_position_01( struct fixed_position* position )
1067 {
1068    int x, y;
1069 
1070    x = position->x[1];
1071    y = position->y[1];
1072    position->x[1] = position->x[0];
1073    position->y[1] = position->y[0];
1074    position->x[0] = x;
1075    position->y[0] = y;
1076 
1077    position->dx01 = -position->dx01;
1078    position->dy01 = -position->dy01;
1079    position->dx20 = position->x[2] - position->x[0];
1080    position->dy20 = position->y[2] - position->y[0];
1081 
1082    position->area = -position->area;
1083 }
1084 
1085 
1086 /**
1087  * Rotate a triangle, flipping its clockwise direction,
1088  * Swaps values for xy[1] and xy[2]
1089  */
1090 static inline void
rotate_fixed_position_12(struct fixed_position * position)1091 rotate_fixed_position_12( struct fixed_position* position )
1092 {
1093    int x, y;
1094 
1095    x = position->x[2];
1096    y = position->y[2];
1097    position->x[2] = position->x[1];
1098    position->y[2] = position->y[1];
1099    position->x[1] = x;
1100    position->y[1] = y;
1101 
1102    x = position->dx01;
1103    y = position->dy01;
1104    position->dx01 = -position->dx20;
1105    position->dy01 = -position->dy20;
1106    position->dx20 = -x;
1107    position->dy20 = -y;
1108 
1109    position->area = -position->area;
1110 }
1111 
1112 
1113 /**
1114  * Draw triangle if it's CW, cull otherwise.
1115  */
triangle_cw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1116 static void triangle_cw(struct lp_setup_context *setup,
1117                         const float (*v0)[4],
1118                         const float (*v1)[4],
1119                         const float (*v2)[4])
1120 {
1121    PIPE_ALIGN_VAR(16) struct fixed_position position;
1122 
1123    calc_fixed_position(setup, &position, v0, v1, v2);
1124 
1125    if (position.area < 0) {
1126       if (setup->flatshade_first) {
1127          rotate_fixed_position_12(&position);
1128          retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
1129       } else {
1130          rotate_fixed_position_01(&position);
1131          retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
1132       }
1133    }
1134 }
1135 
1136 
triangle_ccw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1137 static void triangle_ccw(struct lp_setup_context *setup,
1138                          const float (*v0)[4],
1139                          const float (*v1)[4],
1140                          const float (*v2)[4])
1141 {
1142    PIPE_ALIGN_VAR(16) struct fixed_position position;
1143 
1144    calc_fixed_position(setup, &position, v0, v1, v2);
1145 
1146    if (position.area > 0)
1147       retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
1148 }
1149 
1150 /**
1151  * Draw triangle whether it's CW or CCW.
1152  */
triangle_both(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1153 static void triangle_both(struct lp_setup_context *setup,
1154                           const float (*v0)[4],
1155                           const float (*v1)[4],
1156                           const float (*v2)[4])
1157 {
1158    PIPE_ALIGN_VAR(16) struct fixed_position position;
1159    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1160 
1161    if (lp_context->active_statistics_queries &&
1162        !llvmpipe_rasterization_disabled(lp_context)) {
1163       lp_context->pipeline_statistics.c_primitives++;
1164    }
1165 
1166    calc_fixed_position(setup, &position, v0, v1, v2);
1167 
1168    if (0) {
1169       assert(!util_is_inf_or_nan(v0[0][0]));
1170       assert(!util_is_inf_or_nan(v0[0][1]));
1171       assert(!util_is_inf_or_nan(v1[0][0]));
1172       assert(!util_is_inf_or_nan(v1[0][1]));
1173       assert(!util_is_inf_or_nan(v2[0][0]));
1174       assert(!util_is_inf_or_nan(v2[0][1]));
1175    }
1176 
1177    if (position.area > 0)
1178       retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
1179    else if (position.area < 0) {
1180       if (setup->flatshade_first) {
1181          rotate_fixed_position_12( &position );
1182          retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
1183       } else {
1184          rotate_fixed_position_01( &position );
1185          retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
1186       }
1187    }
1188 }
1189 
1190 
triangle_nop(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1191 static void triangle_nop( struct lp_setup_context *setup,
1192 			  const float (*v0)[4],
1193 			  const float (*v1)[4],
1194 			  const float (*v2)[4] )
1195 {
1196 }
1197 
1198 
1199 void
lp_setup_choose_triangle(struct lp_setup_context * setup)1200 lp_setup_choose_triangle( struct lp_setup_context *setup )
1201 {
1202    switch (setup->cullmode) {
1203    case PIPE_FACE_NONE:
1204       setup->triangle = triangle_both;
1205       break;
1206    case PIPE_FACE_BACK:
1207       setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
1208       break;
1209    case PIPE_FACE_FRONT:
1210       setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
1211       break;
1212    default:
1213       setup->triangle = triangle_nop;
1214       break;
1215    }
1216 }
1217