1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41 #include "lp_context.h"
42
43 #include <inttypes.h>
44
45 #define NUM_CHANNELS 4
46
47 #if defined(PIPE_ARCH_SSE)
48 #include <emmintrin.h>
49 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
50 #include <altivec.h>
51 #include "util/u_pwr8.h"
52 #endif
53
54 static inline int
subpixel_snap(float a)55 subpixel_snap(float a)
56 {
57 return util_iround(FIXED_ONE * a);
58 }
59
60 static inline float
fixed_to_float(int a)61 fixed_to_float(int a)
62 {
63 return a * (1.0f / FIXED_ONE);
64 }
65
66
67 /* Position and area in fixed point coordinates */
68 struct fixed_position {
69 int32_t x[4];
70 int32_t y[4];
71 int32_t dx01;
72 int32_t dy01;
73 int32_t dx20;
74 int32_t dy20;
75 int64_t area;
76 };
77
78
79 /**
80 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
81 * immediately after it.
82 * The memory is allocated from the per-scene pool, not per-tile.
83 * \param tri_size returns number of bytes allocated
84 * \param num_inputs number of fragment shader inputs
85 * \return pointer to triangle space
86 */
87 struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene * scene,unsigned nr_inputs,unsigned nr_planes,unsigned * tri_size)88 lp_setup_alloc_triangle(struct lp_scene *scene,
89 unsigned nr_inputs,
90 unsigned nr_planes,
91 unsigned *tri_size)
92 {
93 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
94 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
95 struct lp_rast_triangle *tri;
96
97 STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
98
99 *tri_size = (sizeof(struct lp_rast_triangle) +
100 3 * input_array_sz +
101 plane_sz);
102
103 tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
104 if (!tri)
105 return NULL;
106
107 tri->inputs.stride = input_array_sz;
108
109 {
110 char *a = (char *)tri;
111 char *b = (char *)&GET_PLANES(tri)[nr_planes];
112 assert(b - a == *tri_size);
113 }
114
115 return tri;
116 }
117
118 void
lp_setup_print_vertex(struct lp_setup_context * setup,const char * name,const float (* v)[4])119 lp_setup_print_vertex(struct lp_setup_context *setup,
120 const char *name,
121 const float (*v)[4])
122 {
123 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
124 int i, j;
125
126 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
127 name,
128 v[0][0], v[0][1], v[0][2], v[0][3]);
129
130 for (i = 0; i < key->num_inputs; i++) {
131 const float *in = v[key->inputs[i].src_index];
132
133 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
134 i,
135 name, key->inputs[i].src_index,
136 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
137 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
138 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
139 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
140
141 for (j = 0; j < 4; j++)
142 if (key->inputs[i].usage_mask & (1<<j))
143 debug_printf("%.5f ", in[j]);
144
145 debug_printf("\n");
146 }
147 }
148
149
150 /**
151 * Print triangle vertex attribs (for debug).
152 */
153 void
lp_setup_print_triangle(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])154 lp_setup_print_triangle(struct lp_setup_context *setup,
155 const float (*v0)[4],
156 const float (*v1)[4],
157 const float (*v2)[4])
158 {
159 debug_printf("triangle\n");
160
161 {
162 const float ex = v0[0][0] - v2[0][0];
163 const float ey = v0[0][1] - v2[0][1];
164 const float fx = v1[0][0] - v2[0][0];
165 const float fy = v1[0][1] - v2[0][1];
166
167 /* det = cross(e,f).z */
168 const float det = ex * fy - ey * fx;
169 if (det < 0.0f)
170 debug_printf(" - ccw\n");
171 else if (det > 0.0f)
172 debug_printf(" - cw\n");
173 else
174 debug_printf(" - zero area\n");
175 }
176
177 lp_setup_print_vertex(setup, "v0", v0);
178 lp_setup_print_vertex(setup, "v1", v1);
179 lp_setup_print_vertex(setup, "v2", v2);
180 }
181
182
183 #define MAX_PLANES 8
184 static unsigned
185 lp_rast_tri_tab[MAX_PLANES+1] = {
186 0, /* should be impossible */
187 LP_RAST_OP_TRIANGLE_1,
188 LP_RAST_OP_TRIANGLE_2,
189 LP_RAST_OP_TRIANGLE_3,
190 LP_RAST_OP_TRIANGLE_4,
191 LP_RAST_OP_TRIANGLE_5,
192 LP_RAST_OP_TRIANGLE_6,
193 LP_RAST_OP_TRIANGLE_7,
194 LP_RAST_OP_TRIANGLE_8
195 };
196
197 static unsigned
198 lp_rast_32_tri_tab[MAX_PLANES+1] = {
199 0, /* should be impossible */
200 LP_RAST_OP_TRIANGLE_32_1,
201 LP_RAST_OP_TRIANGLE_32_2,
202 LP_RAST_OP_TRIANGLE_32_3,
203 LP_RAST_OP_TRIANGLE_32_4,
204 LP_RAST_OP_TRIANGLE_32_5,
205 LP_RAST_OP_TRIANGLE_32_6,
206 LP_RAST_OP_TRIANGLE_32_7,
207 LP_RAST_OP_TRIANGLE_32_8
208 };
209
210
211
212 /**
213 * The primitive covers the whole tile- shade whole tile.
214 *
215 * \param tx, ty the tile position in tiles, not pixels
216 */
217 static boolean
lp_setup_whole_tile(struct lp_setup_context * setup,const struct lp_rast_shader_inputs * inputs,int tx,int ty)218 lp_setup_whole_tile(struct lp_setup_context *setup,
219 const struct lp_rast_shader_inputs *inputs,
220 int tx, int ty)
221 {
222 struct lp_scene *scene = setup->scene;
223
224 LP_COUNT(nr_fully_covered_64);
225
226 /* if variant is opaque and scissor doesn't effect the tile */
227 if (inputs->opaque) {
228 /* Several things prevent this optimization from working:
229 * - For layered rendering we can't determine if this covers the same layer
230 * as previous rendering (or in case of clears those actually always cover
231 * all layers so optimization is impossible). Need to use fb_max_layer and
232 * not setup->layer_slot to determine this since even if there's currently
233 * no slot assigned previous rendering could have used one.
234 * - If there were any Begin/End query commands in the scene then those
235 * would get removed which would be very wrong. Furthermore, if queries
236 * were just active we also can't do the optimization since to get
237 * accurate query results we unfortunately need to execute the rendering
238 * commands.
239 */
240 if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) {
241 /*
242 * All previous rendering will be overwritten so reset the bin.
243 */
244 lp_scene_bin_reset( scene, tx, ty );
245 }
246
247 LP_COUNT(nr_shade_opaque_64);
248 return lp_scene_bin_cmd_with_state( scene, tx, ty,
249 setup->fs.stored,
250 LP_RAST_OP_SHADE_TILE_OPAQUE,
251 lp_rast_arg_inputs(inputs) );
252 } else {
253 LP_COUNT(nr_shade_64);
254 return lp_scene_bin_cmd_with_state( scene, tx, ty,
255 setup->fs.stored,
256 LP_RAST_OP_SHADE_TILE,
257 lp_rast_arg_inputs(inputs) );
258 }
259 }
260
261
262 /**
263 * Do basic setup for triangle rasterization and determine which
264 * framebuffer tiles are touched. Put the triangle in the scene's
265 * bins for the tiles which we overlap.
266 */
267 static boolean
do_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean frontfacing)268 do_triangle_ccw(struct lp_setup_context *setup,
269 struct fixed_position* position,
270 const float (*v0)[4],
271 const float (*v1)[4],
272 const float (*v2)[4],
273 boolean frontfacing )
274 {
275 struct lp_scene *scene = setup->scene;
276 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
277 struct lp_rast_triangle *tri;
278 struct lp_rast_plane *plane;
279 struct u_rect bbox;
280 unsigned tri_bytes;
281 int nr_planes = 3;
282 unsigned viewport_index = 0;
283 unsigned layer = 0;
284 const float (*pv)[4];
285
286 /* Area should always be positive here */
287 assert(position->area > 0);
288
289 if (0)
290 lp_setup_print_triangle(setup, v0, v1, v2);
291
292 if (setup->flatshade_first) {
293 pv = v0;
294 }
295 else {
296 pv = v2;
297 }
298 if (setup->viewport_index_slot > 0) {
299 unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
300 viewport_index = lp_clamp_viewport_idx(*udata);
301 }
302 if (setup->layer_slot > 0) {
303 layer = *(unsigned*)pv[setup->layer_slot];
304 layer = MIN2(layer, scene->fb_max_layer);
305 }
306
307 /* Bounding rectangle (in pixels) */
308 {
309 /* Yes this is necessary to accurately calculate bounding boxes
310 * with the two fill-conventions we support. GL (normally) ends
311 * up needing a bottom-left fill convention, which requires
312 * slightly different rounding.
313 */
314 int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
315
316 /* Inclusive x0, exclusive x1 */
317 bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
318 bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
319
320 /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
321 bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
322 bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
323 }
324
325 if (bbox.x1 < bbox.x0 ||
326 bbox.y1 < bbox.y0) {
327 if (0) debug_printf("empty bounding box\n");
328 LP_COUNT(nr_culled_tris);
329 return TRUE;
330 }
331
332 if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
333 if (0) debug_printf("offscreen\n");
334 LP_COUNT(nr_culled_tris);
335 return TRUE;
336 }
337
338 /* Can safely discard negative regions, but need to keep hold of
339 * information about when the triangle extends past screen
340 * boundaries. See trimmed_box in lp_setup_bin_triangle().
341 */
342 bbox.x0 = MAX2(bbox.x0, 0);
343 bbox.y0 = MAX2(bbox.y0, 0);
344
345 nr_planes = 3;
346 /*
347 * Determine how many scissor planes we need, that is drop scissor
348 * edges if the bounding box of the tri is fully inside that edge.
349 */
350 if (setup->scissor_test) {
351 /* why not just use draw_regions */
352 boolean s_planes[4];
353 scissor_planes_needed(s_planes, &bbox, &setup->scissors[viewport_index]);
354 nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
355 }
356
357 tri = lp_setup_alloc_triangle(scene,
358 key->num_inputs,
359 nr_planes,
360 &tri_bytes);
361 if (!tri)
362 return FALSE;
363
364 #if 0
365 tri->v[0][0] = v0[0][0];
366 tri->v[1][0] = v1[0][0];
367 tri->v[2][0] = v2[0][0];
368 tri->v[0][1] = v0[0][1];
369 tri->v[1][1] = v1[0][1];
370 tri->v[2][1] = v2[0][1];
371 #endif
372
373 LP_COUNT(nr_tris);
374
375 /* Setup parameter interpolants:
376 */
377 setup->setup.variant->jit_function(v0, v1, v2,
378 frontfacing,
379 GET_A0(&tri->inputs),
380 GET_DADX(&tri->inputs),
381 GET_DADY(&tri->inputs));
382
383 tri->inputs.frontfacing = frontfacing;
384 tri->inputs.disable = FALSE;
385 tri->inputs.opaque = setup->fs.current.variant->opaque;
386 tri->inputs.layer = layer;
387 tri->inputs.viewport_index = viewport_index;
388
389 if (0)
390 lp_dump_setup_coef(&setup->setup.variant->key,
391 (const float (*)[4])GET_A0(&tri->inputs),
392 (const float (*)[4])GET_DADX(&tri->inputs),
393 (const float (*)[4])GET_DADY(&tri->inputs));
394
395 plane = GET_PLANES(tri);
396
397 #if defined(PIPE_ARCH_SSE)
398 if (1) {
399 __m128i vertx, verty;
400 __m128i shufx, shufy;
401 __m128i dcdx, dcdy;
402 __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
403 __m128i c01, c23, unused;
404 __m128i dcdx_neg_mask;
405 __m128i dcdy_neg_mask;
406 __m128i dcdx_zero_mask;
407 __m128i top_left_flag, c_dec;
408 __m128i eo, p0, p1, p2;
409 __m128i zero = _mm_setzero_si128();
410
411 vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
412 verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
413
414 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
415 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
416
417 dcdx = _mm_sub_epi32(verty, shufy);
418 dcdy = _mm_sub_epi32(vertx, shufx);
419
420 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
421 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
422 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
423
424 top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
425
426 c_dec = _mm_or_si128(dcdx_neg_mask,
427 _mm_and_si128(dcdx_zero_mask,
428 _mm_xor_si128(dcdy_neg_mask,
429 top_left_flag)));
430
431 /*
432 * 64 bit arithmetic.
433 * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
434 */
435 cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
436 cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
437 c02 = _mm_sub_epi64(cdx02, cdy02);
438 c13 = _mm_sub_epi64(cdx13, cdy13);
439 c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
440 _MM_SHUFFLE(2,2,0,0)));
441 c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
442 _MM_SHUFFLE(3,3,1,1)));
443
444 /*
445 * Useful for very small fbs/tris (or fewer subpixel bits) only:
446 * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
447 * mm_mullo_epi32(dcdy, verty));
448 *
449 * c = _mm_sub_epi32(c, c_dec);
450 */
451
452 /* Scale up to match c:
453 */
454 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
455 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
456
457 /*
458 * Calculate trivial reject values:
459 * Note eo cannot overflow even if dcdx/dcdy would already have
460 * 31 bits (which they shouldn't have). This is because eo
461 * is never negative (albeit if we rely on that need to be careful...)
462 */
463 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
464 _mm_and_si128(dcdx_neg_mask, dcdx));
465
466 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
467
468 /*
469 * Pointless transpose which gets undone immediately in
470 * rasterization.
471 * It is actually difficult to do away with it - would essentially
472 * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
473 * for this then would need to depend on the number of planes.
474 * The transpose is quite special here due to c being 64bit...
475 * The store has to be unaligned (unless we'd make the plane size
476 * a multiple of 128), and of course storing eo separately...
477 */
478 c01 = _mm_unpacklo_epi64(c02, c13);
479 c23 = _mm_unpackhi_epi64(c02, c13);
480 transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
481 &p0, &p1, &p2, &unused);
482 _mm_storeu_si128((__m128i *)&plane[0], p0);
483 plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
484 _mm_storeu_si128((__m128i *)&plane[1], p1);
485 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
486 plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
487 _mm_storeu_si128((__m128i *)&plane[2], p2);
488 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
489 plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
490 } else
491 #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN)
492 /*
493 * XXX this code is effectively disabled for all practical purposes,
494 * as the allowed fb size is tiny if FIXED_ORDER is 8.
495 */
496 if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
497 setup->fb.height <= MAX_FIXED_LENGTH32 &&
498 (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
499 (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
500 unsigned int bottom_edge;
501 __m128i vertx, verty;
502 __m128i shufx, shufy;
503 __m128i dcdx, dcdy, c;
504 __m128i unused;
505 __m128i dcdx_neg_mask;
506 __m128i dcdy_neg_mask;
507 __m128i dcdx_zero_mask;
508 __m128i top_left_flag;
509 __m128i c_inc_mask, c_inc;
510 __m128i eo, p0, p1, p2;
511 __m128i_union vshuf_mask;
512 __m128i zero = vec_splats((unsigned char) 0);
513 PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
514
515 #ifdef PIPE_ARCH_LITTLE_ENDIAN
516 vshuf_mask.i[0] = 0x07060504;
517 vshuf_mask.i[1] = 0x0B0A0908;
518 vshuf_mask.i[2] = 0x03020100;
519 vshuf_mask.i[3] = 0x0F0E0D0C;
520 #else
521 vshuf_mask.i[0] = 0x00010203;
522 vshuf_mask.i[1] = 0x0C0D0E0F;
523 vshuf_mask.i[2] = 0x04050607;
524 vshuf_mask.i[3] = 0x08090A0B;
525 #endif
526
527 /* vertex x coords */
528 vertx = vec_load_si128((const uint32_t *) position->x);
529 /* vertex y coords */
530 verty = vec_load_si128((const uint32_t *) position->y);
531
532 shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
533 shufy = vec_perm (verty, verty, vshuf_mask.m128i);
534
535 dcdx = vec_sub_epi32(verty, shufy);
536 dcdy = vec_sub_epi32(vertx, shufx);
537
538 dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
539 dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
540 dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
541
542 bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
543 top_left_flag = (__m128i) vec_splats(bottom_edge);
544
545 c_inc_mask = vec_or(dcdx_neg_mask,
546 vec_and(dcdx_zero_mask,
547 vec_xor(dcdy_neg_mask,
548 top_left_flag)));
549
550 c_inc = vec_srli_epi32(c_inc_mask, 31);
551
552 c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
553 vec_mullo_epi32(dcdy, verty));
554
555 c = vec_add_epi32(c, c_inc);
556
557 /* Scale up to match c:
558 */
559 dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
560 dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
561
562 /* Calculate trivial reject values:
563 */
564 eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
565 vec_and(dcdx_neg_mask, dcdx));
566
567 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
568
569 /* Pointless transpose which gets undone immediately in
570 * rasterization:
571 */
572 transpose4_epi32(&c, &dcdx, &dcdy, &eo,
573 &p0, &p1, &p2, &unused);
574
575 #define STORE_PLANE(plane, vec) do { \
576 vec_store_si128((uint32_t *)&temp_vec, vec); \
577 plane.c = (int64_t)temp_vec[0]; \
578 plane.dcdx = temp_vec[1]; \
579 plane.dcdy = temp_vec[2]; \
580 plane.eo = temp_vec[3]; \
581 } while(0)
582
583 STORE_PLANE(plane[0], p0);
584 STORE_PLANE(plane[1], p1);
585 STORE_PLANE(plane[2], p2);
586 #undef STORE_PLANE
587 } else
588 #endif
589 {
590 int i;
591 plane[0].dcdy = position->dx01;
592 plane[1].dcdy = position->x[1] - position->x[2];
593 plane[2].dcdy = position->dx20;
594 plane[0].dcdx = position->dy01;
595 plane[1].dcdx = position->y[1] - position->y[2];
596 plane[2].dcdx = position->dy20;
597
598 for (i = 0; i < 3; i++) {
599 /* half-edge constants, will be iterated over the whole render
600 * target.
601 */
602 plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
603 IMUL64(plane[i].dcdy, position->y[i]);
604
605 /* correct for top-left vs. bottom-left fill convention.
606 */
607 if (plane[i].dcdx < 0) {
608 /* both fill conventions want this - adjust for left edges */
609 plane[i].c++;
610 }
611 else if (plane[i].dcdx == 0) {
612 if (setup->bottom_edge_rule == 0){
613 /* correct for top-left fill convention:
614 */
615 if (plane[i].dcdy > 0) plane[i].c++;
616 }
617 else {
618 /* correct for bottom-left fill convention:
619 */
620 if (plane[i].dcdy < 0) plane[i].c++;
621 }
622 }
623
624 /* Scale up to match c:
625 */
626 assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
627 assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
628 plane[i].dcdx <<= FIXED_ORDER;
629 plane[i].dcdy <<= FIXED_ORDER;
630
631 /* find trivial reject offsets for each edge for a single-pixel
632 * sized block. These will be scaled up at each recursive level to
633 * match the active blocksize. Scaling in this way works best if
634 * the blocks are square.
635 */
636 plane[i].eo = 0;
637 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
638 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
639 }
640 }
641
642 if (0) {
643 debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
644 plane[0].c,
645 plane[0].dcdx,
646 plane[0].dcdy,
647 plane[0].eo);
648
649 debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
650 plane[1].c,
651 plane[1].dcdx,
652 plane[1].dcdy,
653 plane[1].eo);
654
655 debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
656 plane[2].c,
657 plane[2].dcdx,
658 plane[2].dcdy,
659 plane[2].eo);
660 }
661
662
663 /*
664 * When rasterizing scissored tris, use the intersection of the
665 * triangle bounding box and the scissor rect to generate the
666 * scissor planes.
667 *
668 * This permits us to cut off the triangle "tails" that are present
669 * in the intermediate recursive levels caused when two of the
670 * triangles edges don't diverge quickly enough to trivially reject
671 * exterior blocks from the triangle.
672 *
673 * It's not really clear if it's worth worrying about these tails,
674 * but since we generate the planes for each scissored tri, it's
675 * free to trim them in this case.
676 *
677 * Note that otherwise, the scissor planes only vary in 'C' value,
678 * and even then only on state-changes. Could alternatively store
679 * these planes elsewhere.
680 * (Or only store the c value together with a bit indicating which
681 * scissor edge this is, so rasterization would treat them differently
682 * (easier to evaluate) to ordinary planes.)
683 */
684 if (nr_planes > 3) {
685 /* why not just use draw_regions */
686 const struct u_rect *scissor = &setup->scissors[viewport_index];
687 struct lp_rast_plane *plane_s = &plane[3];
688 boolean s_planes[4];
689 scissor_planes_needed(s_planes, &bbox, scissor);
690
691 if (s_planes[0]) {
692 plane_s->dcdx = -1 << 8;
693 plane_s->dcdy = 0;
694 plane_s->c = (1-scissor->x0) << 8;
695 plane_s->eo = 1 << 8;
696 plane_s++;
697 }
698 if (s_planes[1]) {
699 plane_s->dcdx = 1 << 8;
700 plane_s->dcdy = 0;
701 plane_s->c = (scissor->x1+1) << 8;
702 plane_s->eo = 0 << 8;
703 plane_s++;
704 }
705 if (s_planes[2]) {
706 plane_s->dcdx = 0;
707 plane_s->dcdy = 1 << 8;
708 plane_s->c = (1-scissor->y0) << 8;
709 plane_s->eo = 1 << 8;
710 plane_s++;
711 }
712 if (s_planes[3]) {
713 plane_s->dcdx = 0;
714 plane_s->dcdy = -1 << 8;
715 plane_s->c = (scissor->y1+1) << 8;
716 plane_s->eo = 0;
717 plane_s++;
718 }
719 assert(plane_s == &plane[nr_planes]);
720 }
721
722 return lp_setup_bin_triangle(setup, tri, &bbox, nr_planes, viewport_index);
723 }
724
725 /*
726 * Round to nearest less or equal power of two of the input.
727 *
728 * Undefined if no bit set exists, so code should check against 0 first.
729 */
730 static inline uint32_t
floor_pot(uint32_t n)731 floor_pot(uint32_t n)
732 {
733 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
734 if (n == 0)
735 return 0;
736
737 __asm__("bsr %1,%0"
738 : "=r" (n)
739 : "rm" (n));
740 return 1 << n;
741 #else
742 n |= (n >> 1);
743 n |= (n >> 2);
744 n |= (n >> 4);
745 n |= (n >> 8);
746 n |= (n >> 16);
747 return n - (n >> 1);
748 #endif
749 }
750
751
752 boolean
lp_setup_bin_triangle(struct lp_setup_context * setup,struct lp_rast_triangle * tri,const struct u_rect * bbox,int nr_planes,unsigned viewport_index)753 lp_setup_bin_triangle( struct lp_setup_context *setup,
754 struct lp_rast_triangle *tri,
755 const struct u_rect *bbox,
756 int nr_planes,
757 unsigned viewport_index )
758 {
759 struct lp_scene *scene = setup->scene;
760 struct u_rect trimmed_box = *bbox;
761 int i;
762 /* What is the largest power-of-two boundary this triangle crosses:
763 */
764 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
765 (bbox->y0 ^ bbox->y1));
766
767 /* The largest dimension of the rasterized area of the triangle
768 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
769 */
770 int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
771 (bbox->y1 - (bbox->y0 & ~3)));
772 int sz = floor_pot(max_sz);
773 boolean use_32bits = max_sz <= MAX_FIXED_LENGTH32;
774
775 /* Now apply scissor, etc to the bounding box. Could do this
776 * earlier, but it confuses the logic for tri-16 and would force
777 * the rasterizer to also respect scissor, etc, just for the rare
778 * cases where a small triangle extends beyond the scissor.
779 */
780 u_rect_find_intersection(&setup->draw_regions[viewport_index],
781 &trimmed_box);
782
783 /* Determine which tile(s) intersect the triangle's bounding box
784 */
785 if (dx < TILE_SIZE)
786 {
787 int ix0 = bbox->x0 / TILE_SIZE;
788 int iy0 = bbox->y0 / TILE_SIZE;
789 unsigned px = bbox->x0 & 63 & ~3;
790 unsigned py = bbox->y0 & 63 & ~3;
791
792 assert(iy0 == bbox->y1 / TILE_SIZE &&
793 ix0 == bbox->x1 / TILE_SIZE);
794
795 if (nr_planes == 3) {
796 if (sz < 4)
797 {
798 /* Triangle is contained in a single 4x4 stamp:
799 */
800 assert(px + 4 <= TILE_SIZE);
801 assert(py + 4 <= TILE_SIZE);
802 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
803 setup->fs.stored,
804 use_32bits ?
805 LP_RAST_OP_TRIANGLE_32_3_4 :
806 LP_RAST_OP_TRIANGLE_3_4,
807 lp_rast_arg_triangle_contained(tri, px, py) );
808 }
809
810 if (sz < 16)
811 {
812 /* Triangle is contained in a single 16x16 block:
813 */
814
815 /*
816 * The 16x16 block is only 4x4 aligned, and can exceed the tile
817 * dimensions if the triangle is 16 pixels in one dimension but 4
818 * in the other. So budge the 16x16 back inside the tile.
819 */
820 px = MIN2(px, TILE_SIZE - 16);
821 py = MIN2(py, TILE_SIZE - 16);
822
823 assert(px + 16 <= TILE_SIZE);
824 assert(py + 16 <= TILE_SIZE);
825
826 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
827 setup->fs.stored,
828 use_32bits ?
829 LP_RAST_OP_TRIANGLE_32_3_16 :
830 LP_RAST_OP_TRIANGLE_3_16,
831 lp_rast_arg_triangle_contained(tri, px, py) );
832 }
833 }
834 else if (nr_planes == 4 && sz < 16)
835 {
836 px = MIN2(px, TILE_SIZE - 16);
837 py = MIN2(py, TILE_SIZE - 16);
838
839 assert(px + 16 <= TILE_SIZE);
840 assert(py + 16 <= TILE_SIZE);
841
842 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
843 setup->fs.stored,
844 use_32bits ?
845 LP_RAST_OP_TRIANGLE_32_4_16 :
846 LP_RAST_OP_TRIANGLE_4_16,
847 lp_rast_arg_triangle_contained(tri, px, py));
848 }
849
850
851 /* Triangle is contained in a single tile:
852 */
853 return lp_scene_bin_cmd_with_state(
854 scene, ix0, iy0, setup->fs.stored,
855 use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes],
856 lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
857 }
858 else
859 {
860 struct lp_rast_plane *plane = GET_PLANES(tri);
861 int64_t c[MAX_PLANES];
862 int64_t ei[MAX_PLANES];
863
864 int64_t eo[MAX_PLANES];
865 int64_t xstep[MAX_PLANES];
866 int64_t ystep[MAX_PLANES];
867 int x, y;
868
869 int ix0 = trimmed_box.x0 / TILE_SIZE;
870 int iy0 = trimmed_box.y0 / TILE_SIZE;
871 int ix1 = trimmed_box.x1 / TILE_SIZE;
872 int iy1 = trimmed_box.y1 / TILE_SIZE;
873
874 for (i = 0; i < nr_planes; i++) {
875 c[i] = (plane[i].c +
876 IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
877 IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
878
879 ei[i] = (plane[i].dcdy -
880 plane[i].dcdx -
881 (int64_t)plane[i].eo) << TILE_ORDER;
882
883 eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
884 xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
885 ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
886 }
887
888
889
890 /* Test tile-sized blocks against the triangle.
891 * Discard blocks fully outside the tri. If the block is fully
892 * contained inside the tri, bin an lp_rast_shade_tile command.
893 * Else, bin a lp_rast_triangle command.
894 */
895 for (y = iy0; y <= iy1; y++)
896 {
897 boolean in = FALSE; /* are we inside the triangle? */
898 int64_t cx[MAX_PLANES];
899
900 for (i = 0; i < nr_planes; i++)
901 cx[i] = c[i];
902
903 for (x = ix0; x <= ix1; x++)
904 {
905 int out = 0;
906 int partial = 0;
907
908 for (i = 0; i < nr_planes; i++) {
909 int64_t planeout = cx[i] + eo[i];
910 int64_t planepartial = cx[i] + ei[i] - 1;
911 out |= (int) (planeout >> 63);
912 partial |= ((int) (planepartial >> 63)) & (1<<i);
913 }
914
915 if (out) {
916 /* do nothing */
917 if (in)
918 break; /* exiting triangle, all done with this row */
919 LP_COUNT(nr_empty_64);
920 }
921 else if (partial) {
922 /* Not trivially accepted by at least one plane -
923 * rasterize/shade partial tile
924 */
925 int count = util_bitcount(partial);
926 in = TRUE;
927
928 if (!lp_scene_bin_cmd_with_state( scene, x, y,
929 setup->fs.stored,
930 use_32bits ?
931 lp_rast_32_tri_tab[count] :
932 lp_rast_tri_tab[count],
933 lp_rast_arg_triangle(tri, partial) ))
934 goto fail;
935
936 LP_COUNT(nr_partially_covered_64);
937 }
938 else {
939 /* triangle covers the whole tile- shade whole tile */
940 LP_COUNT(nr_fully_covered_64);
941 in = TRUE;
942 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
943 goto fail;
944 }
945
946 /* Iterate cx values across the region: */
947 for (i = 0; i < nr_planes; i++)
948 cx[i] += xstep[i];
949 }
950
951 /* Iterate c values down the region: */
952 for (i = 0; i < nr_planes; i++)
953 c[i] += ystep[i];
954 }
955 }
956
957 return TRUE;
958
959 fail:
960 /* Need to disable any partially binned triangle. This is easier
961 * than trying to locate all the triangle, shade-tile, etc,
962 * commands which may have been binned.
963 */
964 tri->inputs.disable = TRUE;
965 return FALSE;
966 }
967
968
969 /**
970 * Try to draw the triangle, restart the scene on failure.
971 */
retry_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean front)972 static void retry_triangle_ccw( struct lp_setup_context *setup,
973 struct fixed_position* position,
974 const float (*v0)[4],
975 const float (*v1)[4],
976 const float (*v2)[4],
977 boolean front)
978 {
979 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
980 {
981 if (!lp_setup_flush_and_restart(setup))
982 return;
983
984 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
985 return;
986 }
987 }
988
989 /**
990 * Calculate fixed position data for a triangle
991 * It is unfortunate we need to do that here (as we need area
992 * calculated in fixed point), as there's quite some code duplication
993 * to what is done in the jit setup prog.
994 */
995 static inline void
calc_fixed_position(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])996 calc_fixed_position(struct lp_setup_context *setup,
997 struct fixed_position* position,
998 const float (*v0)[4],
999 const float (*v1)[4],
1000 const float (*v2)[4])
1001 {
1002 /*
1003 * The rounding may not be quite the same with PIPE_ARCH_SSE
1004 * (util_iround right now only does nearest/even on x87,
1005 * otherwise nearest/away-from-zero).
1006 * Both should be acceptable, I think.
1007 */
1008 #if defined(PIPE_ARCH_SSE)
1009 __m128 v0r, v1r;
1010 __m128 vxy0xy2, vxy1xy0;
1011 __m128i vxy0xy2i, vxy1xy0i;
1012 __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
1013 __m128 pix_offset = _mm_set1_ps(setup->pixel_offset);
1014 __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
1015 v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
1016 vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
1017 v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
1018 vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
1019 vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
1020 vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
1021 vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
1022 vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
1023 vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
1024 vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
1025 dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
1026 _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
1027 /*
1028 * For the mul, would need some more shuffles, plus emulation
1029 * for the signed mul (without sse41), so don't bother.
1030 */
1031 x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
1032 x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
1033 x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
1034 y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
1035 _mm_store_si128((__m128i *)&position->x[0], x0120);
1036 _mm_store_si128((__m128i *)&position->y[0], y0120);
1037
1038 #else
1039 position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
1040 position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
1041 position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
1042 position->x[3] = 0; // should be unused
1043
1044 position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
1045 position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
1046 position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
1047 position->y[3] = 0; // should be unused
1048
1049 position->dx01 = position->x[0] - position->x[1];
1050 position->dy01 = position->y[0] - position->y[1];
1051
1052 position->dx20 = position->x[2] - position->x[0];
1053 position->dy20 = position->y[2] - position->y[0];
1054 #endif
1055
1056 position->area = IMUL64(position->dx01, position->dy20) -
1057 IMUL64(position->dx20, position->dy01);
1058 }
1059
1060
1061 /**
1062 * Rotate a triangle, flipping its clockwise direction,
1063 * Swaps values for xy[0] and xy[1]
1064 */
1065 static inline void
rotate_fixed_position_01(struct fixed_position * position)1066 rotate_fixed_position_01( struct fixed_position* position )
1067 {
1068 int x, y;
1069
1070 x = position->x[1];
1071 y = position->y[1];
1072 position->x[1] = position->x[0];
1073 position->y[1] = position->y[0];
1074 position->x[0] = x;
1075 position->y[0] = y;
1076
1077 position->dx01 = -position->dx01;
1078 position->dy01 = -position->dy01;
1079 position->dx20 = position->x[2] - position->x[0];
1080 position->dy20 = position->y[2] - position->y[0];
1081
1082 position->area = -position->area;
1083 }
1084
1085
1086 /**
1087 * Rotate a triangle, flipping its clockwise direction,
1088 * Swaps values for xy[1] and xy[2]
1089 */
1090 static inline void
rotate_fixed_position_12(struct fixed_position * position)1091 rotate_fixed_position_12( struct fixed_position* position )
1092 {
1093 int x, y;
1094
1095 x = position->x[2];
1096 y = position->y[2];
1097 position->x[2] = position->x[1];
1098 position->y[2] = position->y[1];
1099 position->x[1] = x;
1100 position->y[1] = y;
1101
1102 x = position->dx01;
1103 y = position->dy01;
1104 position->dx01 = -position->dx20;
1105 position->dy01 = -position->dy20;
1106 position->dx20 = -x;
1107 position->dy20 = -y;
1108
1109 position->area = -position->area;
1110 }
1111
1112
1113 /**
1114 * Draw triangle if it's CW, cull otherwise.
1115 */
triangle_cw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1116 static void triangle_cw(struct lp_setup_context *setup,
1117 const float (*v0)[4],
1118 const float (*v1)[4],
1119 const float (*v2)[4])
1120 {
1121 PIPE_ALIGN_VAR(16) struct fixed_position position;
1122
1123 calc_fixed_position(setup, &position, v0, v1, v2);
1124
1125 if (position.area < 0) {
1126 if (setup->flatshade_first) {
1127 rotate_fixed_position_12(&position);
1128 retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
1129 } else {
1130 rotate_fixed_position_01(&position);
1131 retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
1132 }
1133 }
1134 }
1135
1136
triangle_ccw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1137 static void triangle_ccw(struct lp_setup_context *setup,
1138 const float (*v0)[4],
1139 const float (*v1)[4],
1140 const float (*v2)[4])
1141 {
1142 PIPE_ALIGN_VAR(16) struct fixed_position position;
1143
1144 calc_fixed_position(setup, &position, v0, v1, v2);
1145
1146 if (position.area > 0)
1147 retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
1148 }
1149
1150 /**
1151 * Draw triangle whether it's CW or CCW.
1152 */
triangle_both(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1153 static void triangle_both(struct lp_setup_context *setup,
1154 const float (*v0)[4],
1155 const float (*v1)[4],
1156 const float (*v2)[4])
1157 {
1158 PIPE_ALIGN_VAR(16) struct fixed_position position;
1159 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1160
1161 if (lp_context->active_statistics_queries &&
1162 !llvmpipe_rasterization_disabled(lp_context)) {
1163 lp_context->pipeline_statistics.c_primitives++;
1164 }
1165
1166 calc_fixed_position(setup, &position, v0, v1, v2);
1167
1168 if (0) {
1169 assert(!util_is_inf_or_nan(v0[0][0]));
1170 assert(!util_is_inf_or_nan(v0[0][1]));
1171 assert(!util_is_inf_or_nan(v1[0][0]));
1172 assert(!util_is_inf_or_nan(v1[0][1]));
1173 assert(!util_is_inf_or_nan(v2[0][0]));
1174 assert(!util_is_inf_or_nan(v2[0][1]));
1175 }
1176
1177 if (position.area > 0)
1178 retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
1179 else if (position.area < 0) {
1180 if (setup->flatshade_first) {
1181 rotate_fixed_position_12( &position );
1182 retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
1183 } else {
1184 rotate_fixed_position_01( &position );
1185 retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
1186 }
1187 }
1188 }
1189
1190
triangle_nop(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1191 static void triangle_nop( struct lp_setup_context *setup,
1192 const float (*v0)[4],
1193 const float (*v1)[4],
1194 const float (*v2)[4] )
1195 {
1196 }
1197
1198
1199 void
lp_setup_choose_triangle(struct lp_setup_context * setup)1200 lp_setup_choose_triangle( struct lp_setup_context *setup )
1201 {
1202 switch (setup->cullmode) {
1203 case PIPE_FACE_NONE:
1204 setup->triangle = triangle_both;
1205 break;
1206 case PIPE_FACE_BACK:
1207 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
1208 break;
1209 case PIPE_FACE_FRONT:
1210 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
1211 break;
1212 default:
1213 setup->triangle = triangle_nop;
1214 break;
1215 }
1216 }
1217