• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "contents.h"
18 
19 #include <sys/stat.h>
20 #include <string.h>
21 #include <stdio.h>
22 
23 #include "allocate.h"
24 #include "ext4_utils/ext4_utils.h"
25 #include "ext4_utils/make_ext4fs.h"
26 #include "extent.h"
27 #include "indirect.h"
28 
29 #ifdef __ANDROID__
30 #include <linux/capability.h>
31 #else
32 #include <private/android_filesystem_capability.h>
33 #endif
34 
35 #define XATTR_SELINUX_SUFFIX "selinux"
36 #define XATTR_CAPS_SUFFIX "capability"
37 
38 #ifdef _WIN32
39 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
40 #endif
41 
42 static struct block_allocation* saved_allocation_head = NULL;
43 
get_saved_allocation_chain()44 struct block_allocation* get_saved_allocation_chain() {
45 	return saved_allocation_head;
46 }
47 
dentry_size(u32 entries,struct dentry * dentries)48 static u32 dentry_size(u32 entries, struct dentry *dentries)
49 {
50 	u32 len = 24;
51 	unsigned int i;
52 	unsigned int dentry_len;
53 
54 	for (i = 0; i < entries; i++) {
55 		dentry_len = 8 + EXT4_ALIGN(strlen(dentries[i].filename), 4);
56 		if (len % info.block_size + dentry_len > info.block_size)
57 			len += info.block_size - (len % info.block_size);
58 		len += dentry_len;
59 	}
60 
61 	return len;
62 }
63 
add_dentry(u8 * data,u32 * offset,struct ext4_dir_entry_2 * prev,u32 inode,const char * name,u8 file_type)64 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
65 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
66 		u8 file_type)
67 {
68 	u8 name_len = strlen(name);
69 	u16 rec_len = 8 + EXT4_ALIGN(name_len, 4);
70 	struct ext4_dir_entry_2 *dentry;
71 
72 	u32 start_block = *offset / info.block_size;
73 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
74 	if (start_block != end_block) {
75 		/* Adding this dentry will cross a block boundary, so pad the previous
76 		   dentry to the block boundary */
77 		if (!prev)
78 			critical_error("no prev");
79 		prev->rec_len += end_block * info.block_size - *offset;
80 		*offset = end_block * info.block_size;
81 	}
82 
83 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
84 	dentry->inode = inode;
85 	dentry->rec_len = rec_len;
86 	dentry->name_len = name_len;
87 	dentry->file_type = file_type;
88 	memcpy(dentry->name, name, name_len);
89 
90 	*offset += rec_len;
91 	return dentry;
92 }
93 
94 /* Creates a directory structure for an array of directory entries, dentries,
95    and stores the location of the structure in an inode.  The new inode's
96    .. link is set to dir_inode_num.  Stores the location of the inode number
97    of each directory entry into dentries[i].inode, to be filled in later
98    when the inode for the entry is allocated.  Returns the inode number of the
99    new directory */
make_directory(u32 dir_inode_num,u32 entries,struct dentry * dentries,u32 dirs)100 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
101 	u32 dirs)
102 {
103 	struct ext4_inode *inode;
104 	u32 blocks;
105 	u32 len;
106 	u32 offset = 0;
107 	u32 inode_num;
108 	u8 *data;
109 	unsigned int i;
110 	struct ext4_dir_entry_2 *dentry;
111 
112 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
113 	len = blocks * info.block_size;
114 
115 	if (dir_inode_num) {
116 		inode_num = allocate_inode(info);
117 	} else {
118 		dir_inode_num = EXT4_ROOT_INO;
119 		inode_num = EXT4_ROOT_INO;
120 	}
121 
122 	if (inode_num == EXT4_ALLOCATE_FAILED) {
123 		error("failed to allocate inode\n");
124 		return EXT4_ALLOCATE_FAILED;
125 	}
126 
127 	add_directory(inode_num);
128 
129 	inode = get_inode(inode_num);
130 	if (inode == NULL) {
131 		error("failed to get inode %u", inode_num);
132 		return EXT4_ALLOCATE_FAILED;
133 	}
134 
135 	data = inode_allocate_data_extents(inode, len, len);
136 	if (data == NULL) {
137 		error("failed to allocate %u extents", len);
138 		return EXT4_ALLOCATE_FAILED;
139 	}
140 
141 	inode->i_mode = S_IFDIR;
142 	inode->i_links_count = dirs + 2;
143 	inode->i_flags |= aux_info.default_i_flags;
144 
145 	dentry = NULL;
146 
147 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
148 	if (!dentry) {
149 		error("failed to add . directory");
150 		return EXT4_ALLOCATE_FAILED;
151 	}
152 
153 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
154 	if (!dentry) {
155 		error("failed to add .. directory");
156 		return EXT4_ALLOCATE_FAILED;
157 	}
158 
159 	for (i = 0; i < entries; i++) {
160 		dentry = add_dentry(data, &offset, dentry, 0,
161 				dentries[i].filename, dentries[i].file_type);
162 		if (offset > len || (offset == len && i != entries - 1))
163 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
164 				dentries[i].filename, offset, len);
165 		dentries[i].inode = &dentry->inode;
166 		if (!dentry) {
167 			error("failed to add directory");
168 			return EXT4_ALLOCATE_FAILED;
169 		}
170 	}
171 
172 	/* pad the last dentry out to the end of the block */
173 	dentry->rec_len += len - offset;
174 
175 	return inode_num;
176 }
177 
178 /* Creates a file on disk.  Returns the inode number of the new file */
make_file(const char * filename,u64 len)179 u32 make_file(const char *filename, u64 len)
180 {
181 	struct ext4_inode *inode;
182 	u32 inode_num;
183 
184 	inode_num = allocate_inode(info);
185 	if (inode_num == EXT4_ALLOCATE_FAILED) {
186 		error("failed to allocate inode\n");
187 		return EXT4_ALLOCATE_FAILED;
188 	}
189 
190 	inode = get_inode(inode_num);
191 	if (inode == NULL) {
192 		error("failed to get inode %u", inode_num);
193 		return EXT4_ALLOCATE_FAILED;
194 	}
195 
196 	if (len > 0) {
197 		struct block_allocation* alloc = inode_allocate_file_extents(inode, len, filename);
198 		if (alloc) {
199 			alloc->filename = strdup(filename);
200 			alloc->next = saved_allocation_head;
201 			saved_allocation_head = alloc;
202 		}
203 	}
204 
205 	inode->i_mode = S_IFREG;
206 	inode->i_links_count = 1;
207 	inode->i_flags |= aux_info.default_i_flags;
208 
209 	return inode_num;
210 }
211 
212 /* Creates a file on disk.  Returns the inode number of the new file */
make_link(const char * link)213 u32 make_link(const char *link)
214 {
215 	struct ext4_inode *inode;
216 	u32 inode_num;
217 	u32 len = strlen(link);
218 
219 	inode_num = allocate_inode(info);
220 	if (inode_num == EXT4_ALLOCATE_FAILED) {
221 		error("failed to allocate inode\n");
222 		return EXT4_ALLOCATE_FAILED;
223 	}
224 
225 	inode = get_inode(inode_num);
226 	if (inode == NULL) {
227 		error("failed to get inode %u", inode_num);
228 		return EXT4_ALLOCATE_FAILED;
229 	}
230 
231 	inode->i_mode = S_IFLNK;
232 	inode->i_links_count = 1;
233 	inode->i_flags |= aux_info.default_i_flags;
234 	inode->i_size_lo = len;
235 
236 	if (len + 1 <= sizeof(inode->i_block)) {
237 		/* Fast symlink */
238 		memcpy((char*)inode->i_block, link, len);
239 	} else {
240 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
241 		memcpy(data, link, len);
242 		inode->i_blocks_lo = info.block_size / 512;
243 	}
244 
245 	return inode_num;
246 }
247 
inode_set_permissions(u32 inode_num,u16 mode,u16 uid,u16 gid,u32 mtime)248 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
249 {
250 	struct ext4_inode *inode = get_inode(inode_num);
251 
252 	if (!inode)
253 		return -1;
254 
255 	inode->i_mode |= mode;
256 	inode->i_uid = uid;
257 	inode->i_gid = gid;
258 	inode->i_mtime = mtime;
259 	inode->i_atime = mtime;
260 	inode->i_ctime = mtime;
261 
262 	return 0;
263 }
264 
265 /*
266  * Returns the amount of free space available in the specified
267  * xattr region
268  */
xattr_free_space(struct ext4_xattr_entry * entry,char * end)269 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
270 {
271         end -= sizeof(uint32_t); /* Required four null bytes */
272 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
273 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
274 		entry  = EXT4_XATTR_NEXT(entry);
275 	}
276 
277 	if (((char *) entry) > end) {
278 		error("unexpected read beyond end of xattr space");
279 		return 0;
280 	}
281 
282 	return end - ((char *) entry);
283 }
284 
285 /*
286  * Returns a pointer to the free space immediately after the
287  * last xattr element
288  */
xattr_get_last(struct ext4_xattr_entry * entry)289 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
290 {
291 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
292 		// skip entry
293 	}
294 	return entry;
295 }
296 
297 /*
298  * assert that the elements in the ext4 xattr section are in sorted order
299  *
300  * The ext4 filesystem requires extended attributes to be sorted when
301  * they're not stored in the inode. The kernel ext4 code uses the following
302  * sorting algorithm:
303  *
304  * 1) First sort extended attributes by their name_index. For example,
305  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
306  * 2) If the name_indexes are equal, then sorting is based on the length
307  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
308  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
309  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
310  *    which name comes first. For example, "selinux" would come before "yelinux".
311  *
312  * This method is intended to implement the sorting function defined in
313  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
314  */
xattr_assert_sane(struct ext4_xattr_entry * entry)315 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
316 {
317 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
318 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
319 		if (IS_LAST_ENTRY(next)) {
320 			return;
321 		}
322 
323 		int cmp = next->e_name_index - entry->e_name_index;
324 		if (cmp == 0)
325 			cmp = next->e_name_len - entry->e_name_len;
326 		if (cmp == 0)
327 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
328 		if (cmp < 0) {
329 			error("BUG: extended attributes are not sorted\n");
330 			return;
331 		}
332 		if (cmp == 0) {
333 			error("BUG: duplicate extended attributes detected\n");
334 			return;
335 		}
336 	}
337 }
338 
339 #define NAME_HASH_SHIFT 5
340 #define VALUE_HASH_SHIFT 16
341 
ext4_xattr_hash_entry(struct ext4_xattr_header * header,struct ext4_xattr_entry * entry)342 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
343 		struct ext4_xattr_entry *entry)
344 {
345 	u32 hash = 0;
346 	char *name = entry->e_name;
347 	int n;
348 
349 	for (n = 0; n < entry->e_name_len; n++) {
350 		hash = (hash << NAME_HASH_SHIFT) ^
351 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
352 			*name++;
353 	}
354 
355 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
356 		u32 *value = (u32 *)((char *)header +
357 			le16_to_cpu(entry->e_value_offs));
358 		for (n = (le32_to_cpu(entry->e_value_size) +
359 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
360 			hash = (hash << VALUE_HASH_SHIFT) ^
361 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
362 				le32_to_cpu(*value++);
363 		}
364 	}
365 	entry->e_hash = cpu_to_le32(hash);
366 }
367 
368 #undef NAME_HASH_SHIFT
369 #undef VALUE_HASH_SHIFT
370 
xattr_addto_range(void * block_start,void * block_end,struct ext4_xattr_entry * first,int name_index,const char * name,const void * value,size_t value_len)371 static struct ext4_xattr_entry* xattr_addto_range(
372 		void *block_start,
373 		void *block_end,
374 		struct ext4_xattr_entry *first,
375 		int name_index,
376 		const char *name,
377 		const void *value,
378 		size_t value_len)
379 {
380 	size_t name_len = strlen(name);
381 	if (name_len > 255)
382 		return NULL;
383 
384 	size_t available_size = xattr_free_space(first, block_end);
385 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
386 
387 	if (needed_size > available_size)
388 		return NULL;
389 
390 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
391 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
392 
393 	new_entry->e_name_len = name_len;
394 	new_entry->e_name_index = name_index;
395 	memcpy(new_entry->e_name, name, name_len);
396 	new_entry->e_value_block = 0;
397 	new_entry->e_value_size = cpu_to_le32(value_len);
398 
399 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
400 	size_t e_value_offs = val - (char *) block_start;
401 
402 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
403 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
404 	memcpy(val, value, value_len);
405 
406 	xattr_assert_sane(first);
407 	return new_entry;
408 }
409 
xattr_addto_inode(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)410 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
411 		const char *name, const void *value, size_t value_len)
412 {
413 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
414 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
415 	char *block_end = ((char *) inode) + info.inode_size;
416 
417 	struct ext4_xattr_entry *result =
418 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
419 
420 	if (result == NULL)
421 		return -1;
422 
423 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
424 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
425 
426 	return 0;
427 }
428 
xattr_addto_block(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)429 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
430 		const char *name, const void *value, size_t value_len)
431 {
432 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
433 	if (!header)
434 		return -1;
435 
436 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
437 	char *block_end = ((char *) header) + info.block_size;
438 
439 	struct ext4_xattr_entry *result =
440 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
441 
442 	if (result == NULL)
443 		return -1;
444 
445 	ext4_xattr_hash_entry(header, result);
446 	return 0;
447 }
448 
449 
xattr_add(u32 inode_num,int name_index,const char * name,const void * value,size_t value_len)450 static int xattr_add(u32 inode_num, int name_index, const char *name,
451 		const void *value, size_t value_len)
452 {
453 	if (!value)
454 		return 0;
455 
456 	struct ext4_inode *inode = get_inode(inode_num);
457 
458 	if (!inode)
459 		return -1;
460 
461 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
462 	if (result != 0) {
463 		result = xattr_addto_block(inode, name_index, name, value, value_len);
464 	}
465 	return result;
466 }
467 
inode_set_selinux(u32 inode_num,const char * secon)468 int inode_set_selinux(u32 inode_num, const char *secon)
469 {
470 	if (!secon)
471 		return 0;
472 
473 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
474 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
475 }
476 
inode_set_capabilities(u32 inode_num,uint64_t capabilities)477 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
478 	if (capabilities == 0)
479 		return 0;
480 
481 	struct vfs_cap_data cap_data;
482 	memset(&cap_data, 0, sizeof(cap_data));
483 
484 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
485 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
486 	cap_data.data[0].inheritable = 0;
487 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
488 	cap_data.data[1].inheritable = 0;
489 
490 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
491 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
492 }
493