1 /* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
2 * Use of this source code is governed by a BSD-style license that can be
3 * found in the LICENSE file.
4 */
5
6 #define _BSD_SOURCE
7 #define _DEFAULT_SOURCE
8 #define _GNU_SOURCE
9
10 #include <asm/unistd.h>
11 #include <dirent.h>
12 #include <errno.h>
13 #include <fcntl.h>
14 #include <grp.h>
15 #include <linux/capability.h>
16 #include <pwd.h>
17 #include <sched.h>
18 #include <signal.h>
19 #include <stdbool.h>
20 #include <stddef.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/capability.h>
25 #include <sys/mount.h>
26 #include <sys/param.h>
27 #include <sys/prctl.h>
28 #include <sys/resource.h>
29 #include <sys/stat.h>
30 #include <sys/types.h>
31 #include <sys/user.h>
32 #include <sys/wait.h>
33 #include <syscall.h>
34 #include <unistd.h>
35
36 #include "libminijail.h"
37 #include "libminijail-private.h"
38
39 #include "signal_handler.h"
40 #include "syscall_filter.h"
41 #include "syscall_wrapper.h"
42 #include "system.h"
43 #include "util.h"
44
45 /* Until these are reliably available in linux/prctl.h. */
46 #ifndef PR_ALT_SYSCALL
47 # define PR_ALT_SYSCALL 0x43724f53
48 #endif
49
50 /* Seccomp filter related flags. */
51 #ifndef PR_SET_NO_NEW_PRIVS
52 # define PR_SET_NO_NEW_PRIVS 38
53 #endif
54
55 #ifndef SECCOMP_MODE_FILTER
56 #define SECCOMP_MODE_FILTER 2 /* Uses user-supplied filter. */
57 #endif
58
59 #ifndef SECCOMP_SET_MODE_STRICT
60 # define SECCOMP_SET_MODE_STRICT 0
61 #endif
62 #ifndef SECCOMP_SET_MODE_FILTER
63 # define SECCOMP_SET_MODE_FILTER 1
64 #endif
65
66 #ifndef SECCOMP_FILTER_FLAG_TSYNC
67 # define SECCOMP_FILTER_FLAG_TSYNC 1
68 #endif
69 /* End seccomp filter related flags. */
70
71 /* New cgroup namespace might not be in linux-headers yet. */
72 #ifndef CLONE_NEWCGROUP
73 # define CLONE_NEWCGROUP 0x02000000
74 #endif
75
76 #define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */
77
78 #define MAX_RLIMITS 32 /* Currently there are 15 supported by Linux. */
79
80 /* Keyctl commands. */
81 #define KEYCTL_JOIN_SESSION_KEYRING 1
82
83 struct minijail_rlimit {
84 int type;
85 uint32_t cur;
86 uint32_t max;
87 };
88
89 struct mountpoint {
90 char *src;
91 char *dest;
92 char *type;
93 char *data;
94 int has_data;
95 unsigned long flags;
96 struct mountpoint *next;
97 };
98
99 struct minijail {
100 /*
101 * WARNING: if you add a flag here you need to make sure it's
102 * accounted for in minijail_pre{enter|exec}() below.
103 */
104 struct {
105 int uid : 1;
106 int gid : 1;
107 int inherit_suppl_gids : 1;
108 int set_suppl_gids : 1;
109 int keep_suppl_gids : 1;
110 int use_caps : 1;
111 int capbset_drop : 1;
112 int set_ambient_caps : 1;
113 int vfs : 1;
114 int enter_vfs : 1;
115 int skip_remount_private : 1;
116 int pids : 1;
117 int ipc : 1;
118 int uts : 1;
119 int net : 1;
120 int enter_net : 1;
121 int ns_cgroups : 1;
122 int userns : 1;
123 int disable_setgroups : 1;
124 int seccomp : 1;
125 int remount_proc_ro : 1;
126 int no_new_privs : 1;
127 int seccomp_filter : 1;
128 int seccomp_filter_tsync : 1;
129 int seccomp_filter_logging : 1;
130 int chroot : 1;
131 int pivot_root : 1;
132 int mount_tmp : 1;
133 int do_init : 1;
134 int pid_file : 1;
135 int cgroups : 1;
136 int alt_syscall : 1;
137 int reset_signal_mask : 1;
138 int close_open_fds : 1;
139 int new_session_keyring : 1;
140 int forward_signals : 1;
141 } flags;
142 uid_t uid;
143 gid_t gid;
144 gid_t usergid;
145 char *user;
146 size_t suppl_gid_count;
147 gid_t *suppl_gid_list;
148 uint64_t caps;
149 uint64_t cap_bset;
150 pid_t initpid;
151 int mountns_fd;
152 int netns_fd;
153 char *chrootdir;
154 char *pid_file_path;
155 char *uidmap;
156 char *gidmap;
157 char *hostname;
158 size_t filter_len;
159 struct sock_fprog *filter_prog;
160 char *alt_syscall_table;
161 struct mountpoint *mounts_head;
162 struct mountpoint *mounts_tail;
163 size_t mounts_count;
164 size_t tmpfs_size;
165 char *cgroups[MAX_CGROUPS];
166 size_t cgroup_count;
167 struct minijail_rlimit rlimits[MAX_RLIMITS];
168 size_t rlimit_count;
169 uint64_t securebits_skip_mask;
170 };
171
172 /*
173 * Strip out flags meant for the parent.
174 * We keep things that are not inherited across execve(2) (e.g. capabilities),
175 * or are easier to set after execve(2) (e.g. seccomp filters).
176 */
minijail_preenter(struct minijail * j)177 void minijail_preenter(struct minijail *j)
178 {
179 j->flags.vfs = 0;
180 j->flags.enter_vfs = 0;
181 j->flags.skip_remount_private = 0;
182 j->flags.remount_proc_ro = 0;
183 j->flags.pids = 0;
184 j->flags.do_init = 0;
185 j->flags.pid_file = 0;
186 j->flags.cgroups = 0;
187 j->flags.forward_signals = 0;
188 }
189
190 /*
191 * Strip out flags meant for the child.
192 * We keep things that are inherited across execve(2).
193 */
minijail_preexec(struct minijail * j)194 void minijail_preexec(struct minijail *j)
195 {
196 int vfs = j->flags.vfs;
197 int enter_vfs = j->flags.enter_vfs;
198 int skip_remount_private = j->flags.skip_remount_private;
199 int remount_proc_ro = j->flags.remount_proc_ro;
200 int userns = j->flags.userns;
201 if (j->user)
202 free(j->user);
203 j->user = NULL;
204 if (j->suppl_gid_list)
205 free(j->suppl_gid_list);
206 j->suppl_gid_list = NULL;
207 memset(&j->flags, 0, sizeof(j->flags));
208 /* Now restore anything we meant to keep. */
209 j->flags.vfs = vfs;
210 j->flags.enter_vfs = enter_vfs;
211 j->flags.skip_remount_private = skip_remount_private;
212 j->flags.remount_proc_ro = remount_proc_ro;
213 j->flags.userns = userns;
214 /* Note, |pids| will already have been used before this call. */
215 }
216
217 /* Minijail API. */
218
minijail_new(void)219 struct minijail API *minijail_new(void)
220 {
221 return calloc(1, sizeof(struct minijail));
222 }
223
minijail_change_uid(struct minijail * j,uid_t uid)224 void API minijail_change_uid(struct minijail *j, uid_t uid)
225 {
226 if (uid == 0)
227 die("useless change to uid 0");
228 j->uid = uid;
229 j->flags.uid = 1;
230 }
231
minijail_change_gid(struct minijail * j,gid_t gid)232 void API minijail_change_gid(struct minijail *j, gid_t gid)
233 {
234 if (gid == 0)
235 die("useless change to gid 0");
236 j->gid = gid;
237 j->flags.gid = 1;
238 }
239
minijail_set_supplementary_gids(struct minijail * j,size_t size,const gid_t * list)240 void API minijail_set_supplementary_gids(struct minijail *j, size_t size,
241 const gid_t *list)
242 {
243 size_t i;
244
245 if (j->flags.inherit_suppl_gids)
246 die("cannot inherit *and* set supplementary groups");
247 if (j->flags.keep_suppl_gids)
248 die("cannot keep *and* set supplementary groups");
249
250 if (size == 0) {
251 /* Clear supplementary groups. */
252 j->suppl_gid_list = NULL;
253 j->suppl_gid_count = 0;
254 j->flags.set_suppl_gids = 1;
255 return;
256 }
257
258 /* Copy the gid_t array. */
259 j->suppl_gid_list = calloc(size, sizeof(gid_t));
260 if (!j->suppl_gid_list) {
261 die("failed to allocate internal supplementary group array");
262 }
263 for (i = 0; i < size; i++) {
264 j->suppl_gid_list[i] = list[i];
265 }
266 j->suppl_gid_count = size;
267 j->flags.set_suppl_gids = 1;
268 }
269
minijail_keep_supplementary_gids(struct minijail * j)270 void API minijail_keep_supplementary_gids(struct minijail *j) {
271 j->flags.keep_suppl_gids = 1;
272 }
273
minijail_change_user(struct minijail * j,const char * user)274 int API minijail_change_user(struct minijail *j, const char *user)
275 {
276 char *buf = NULL;
277 struct passwd pw;
278 struct passwd *ppw = NULL;
279 ssize_t sz = sysconf(_SC_GETPW_R_SIZE_MAX);
280 if (sz == -1)
281 sz = 65536; /* your guess is as good as mine... */
282
283 /*
284 * sysconf(_SC_GETPW_R_SIZE_MAX), under glibc, is documented to return
285 * the maximum needed size of the buffer, so we don't have to search.
286 */
287 buf = malloc(sz);
288 if (!buf)
289 return -ENOMEM;
290 getpwnam_r(user, &pw, buf, sz, &ppw);
291 /*
292 * We're safe to free the buffer here. The strings inside |pw| point
293 * inside |buf|, but we don't use any of them; this leaves the pointers
294 * dangling but it's safe. |ppw| points at |pw| if getpwnam_r(3)
295 * succeeded.
296 */
297 free(buf);
298 /* getpwnam_r(3) does *not* set errno when |ppw| is NULL. */
299 if (!ppw)
300 return -1;
301 minijail_change_uid(j, ppw->pw_uid);
302 j->user = strdup(user);
303 if (!j->user)
304 return -ENOMEM;
305 j->usergid = ppw->pw_gid;
306 return 0;
307 }
308
minijail_change_group(struct minijail * j,const char * group)309 int API minijail_change_group(struct minijail *j, const char *group)
310 {
311 char *buf = NULL;
312 struct group gr;
313 struct group *pgr = NULL;
314 ssize_t sz = sysconf(_SC_GETGR_R_SIZE_MAX);
315 if (sz == -1)
316 sz = 65536; /* and mine is as good as yours, really */
317
318 /*
319 * sysconf(_SC_GETGR_R_SIZE_MAX), under glibc, is documented to return
320 * the maximum needed size of the buffer, so we don't have to search.
321 */
322 buf = malloc(sz);
323 if (!buf)
324 return -ENOMEM;
325 getgrnam_r(group, &gr, buf, sz, &pgr);
326 /*
327 * We're safe to free the buffer here. The strings inside gr point
328 * inside buf, but we don't use any of them; this leaves the pointers
329 * dangling but it's safe. pgr points at gr if getgrnam_r succeeded.
330 */
331 free(buf);
332 /* getgrnam_r(3) does *not* set errno when |pgr| is NULL. */
333 if (!pgr)
334 return -1;
335 minijail_change_gid(j, pgr->gr_gid);
336 return 0;
337 }
338
minijail_use_seccomp(struct minijail * j)339 void API minijail_use_seccomp(struct minijail *j)
340 {
341 j->flags.seccomp = 1;
342 }
343
minijail_no_new_privs(struct minijail * j)344 void API minijail_no_new_privs(struct minijail *j)
345 {
346 j->flags.no_new_privs = 1;
347 }
348
minijail_use_seccomp_filter(struct minijail * j)349 void API minijail_use_seccomp_filter(struct minijail *j)
350 {
351 j->flags.seccomp_filter = 1;
352 }
353
minijail_set_seccomp_filter_tsync(struct minijail * j)354 void API minijail_set_seccomp_filter_tsync(struct minijail *j)
355 {
356 if (j->filter_len > 0 && j->filter_prog != NULL) {
357 die("minijail_set_seccomp_filter_tsync() must be called "
358 "before minijail_parse_seccomp_filters()");
359 }
360 j->flags.seccomp_filter_tsync = 1;
361 }
362
minijail_log_seccomp_filter_failures(struct minijail * j)363 void API minijail_log_seccomp_filter_failures(struct minijail *j)
364 {
365 if (j->filter_len > 0 && j->filter_prog != NULL) {
366 die("minijail_log_seccomp_filter_failures() must be called "
367 "before minijail_parse_seccomp_filters()");
368 }
369 j->flags.seccomp_filter_logging = 1;
370 }
371
minijail_use_caps(struct minijail * j,uint64_t capmask)372 void API minijail_use_caps(struct minijail *j, uint64_t capmask)
373 {
374 /*
375 * 'minijail_use_caps' configures a runtime-capabilities-only
376 * environment, including a bounding set matching the thread's runtime
377 * (permitted|inheritable|effective) sets.
378 * Therefore, it will override any existing bounding set configurations
379 * since the latter would allow gaining extra runtime capabilities from
380 * file capabilities.
381 */
382 if (j->flags.capbset_drop) {
383 warn("overriding bounding set configuration");
384 j->cap_bset = 0;
385 j->flags.capbset_drop = 0;
386 }
387 j->caps = capmask;
388 j->flags.use_caps = 1;
389 }
390
minijail_capbset_drop(struct minijail * j,uint64_t capmask)391 void API minijail_capbset_drop(struct minijail *j, uint64_t capmask)
392 {
393 if (j->flags.use_caps) {
394 /*
395 * 'minijail_use_caps' will have already configured a capability
396 * bounding set matching the (permitted|inheritable|effective)
397 * sets. Abort if the user tries to configure a separate
398 * bounding set. 'minijail_capbset_drop' and 'minijail_use_caps'
399 * are mutually exclusive.
400 */
401 die("runtime capabilities already configured, can't drop "
402 "bounding set separately");
403 }
404 j->cap_bset = capmask;
405 j->flags.capbset_drop = 1;
406 }
407
minijail_set_ambient_caps(struct minijail * j)408 void API minijail_set_ambient_caps(struct minijail *j)
409 {
410 j->flags.set_ambient_caps = 1;
411 }
412
minijail_reset_signal_mask(struct minijail * j)413 void API minijail_reset_signal_mask(struct minijail *j)
414 {
415 j->flags.reset_signal_mask = 1;
416 }
417
minijail_namespace_vfs(struct minijail * j)418 void API minijail_namespace_vfs(struct minijail *j)
419 {
420 j->flags.vfs = 1;
421 }
422
minijail_namespace_enter_vfs(struct minijail * j,const char * ns_path)423 void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path)
424 {
425 int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
426 if (ns_fd < 0) {
427 pdie("failed to open namespace '%s'", ns_path);
428 }
429 j->mountns_fd = ns_fd;
430 j->flags.enter_vfs = 1;
431 }
432
minijail_new_session_keyring(struct minijail * j)433 void API minijail_new_session_keyring(struct minijail *j)
434 {
435 j->flags.new_session_keyring = 1;
436 }
437
minijail_skip_setting_securebits(struct minijail * j,uint64_t securebits_skip_mask)438 void API minijail_skip_setting_securebits(struct minijail *j,
439 uint64_t securebits_skip_mask)
440 {
441 j->securebits_skip_mask = securebits_skip_mask;
442 }
443
minijail_skip_remount_private(struct minijail * j)444 void API minijail_skip_remount_private(struct minijail *j)
445 {
446 j->flags.skip_remount_private = 1;
447 }
448
minijail_namespace_pids(struct minijail * j)449 void API minijail_namespace_pids(struct minijail *j)
450 {
451 j->flags.vfs = 1;
452 j->flags.remount_proc_ro = 1;
453 j->flags.pids = 1;
454 j->flags.do_init = 1;
455 }
456
minijail_namespace_ipc(struct minijail * j)457 void API minijail_namespace_ipc(struct minijail *j)
458 {
459 j->flags.ipc = 1;
460 }
461
minijail_namespace_uts(struct minijail * j)462 void API minijail_namespace_uts(struct minijail *j)
463 {
464 j->flags.uts = 1;
465 }
466
minijail_namespace_set_hostname(struct minijail * j,const char * name)467 int API minijail_namespace_set_hostname(struct minijail *j, const char *name)
468 {
469 if (j->hostname)
470 return -EINVAL;
471 minijail_namespace_uts(j);
472 j->hostname = strdup(name);
473 if (!j->hostname)
474 return -ENOMEM;
475 return 0;
476 }
477
minijail_namespace_net(struct minijail * j)478 void API minijail_namespace_net(struct minijail *j)
479 {
480 j->flags.net = 1;
481 }
482
minijail_namespace_enter_net(struct minijail * j,const char * ns_path)483 void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path)
484 {
485 int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
486 if (ns_fd < 0) {
487 pdie("failed to open namespace '%s'", ns_path);
488 }
489 j->netns_fd = ns_fd;
490 j->flags.enter_net = 1;
491 }
492
minijail_namespace_cgroups(struct minijail * j)493 void API minijail_namespace_cgroups(struct minijail *j)
494 {
495 j->flags.ns_cgroups = 1;
496 }
497
minijail_close_open_fds(struct minijail * j)498 void API minijail_close_open_fds(struct minijail *j)
499 {
500 j->flags.close_open_fds = 1;
501 }
502
minijail_remount_proc_readonly(struct minijail * j)503 void API minijail_remount_proc_readonly(struct minijail *j)
504 {
505 j->flags.vfs = 1;
506 j->flags.remount_proc_ro = 1;
507 }
508
minijail_namespace_user(struct minijail * j)509 void API minijail_namespace_user(struct minijail *j)
510 {
511 j->flags.userns = 1;
512 }
513
minijail_namespace_user_disable_setgroups(struct minijail * j)514 void API minijail_namespace_user_disable_setgroups(struct minijail *j)
515 {
516 j->flags.disable_setgroups = 1;
517 }
518
minijail_uidmap(struct minijail * j,const char * uidmap)519 int API minijail_uidmap(struct minijail *j, const char *uidmap)
520 {
521 j->uidmap = strdup(uidmap);
522 if (!j->uidmap)
523 return -ENOMEM;
524 char *ch;
525 for (ch = j->uidmap; *ch; ch++) {
526 if (*ch == ',')
527 *ch = '\n';
528 }
529 return 0;
530 }
531
minijail_gidmap(struct minijail * j,const char * gidmap)532 int API minijail_gidmap(struct minijail *j, const char *gidmap)
533 {
534 j->gidmap = strdup(gidmap);
535 if (!j->gidmap)
536 return -ENOMEM;
537 char *ch;
538 for (ch = j->gidmap; *ch; ch++) {
539 if (*ch == ',')
540 *ch = '\n';
541 }
542 return 0;
543 }
544
minijail_inherit_usergroups(struct minijail * j)545 void API minijail_inherit_usergroups(struct minijail *j)
546 {
547 j->flags.inherit_suppl_gids = 1;
548 }
549
minijail_run_as_init(struct minijail * j)550 void API minijail_run_as_init(struct minijail *j)
551 {
552 /*
553 * Since the jailed program will become 'init' in the new PID namespace,
554 * Minijail does not need to fork an 'init' process.
555 */
556 j->flags.do_init = 0;
557 }
558
minijail_enter_chroot(struct minijail * j,const char * dir)559 int API minijail_enter_chroot(struct minijail *j, const char *dir)
560 {
561 if (j->chrootdir)
562 return -EINVAL;
563 j->chrootdir = strdup(dir);
564 if (!j->chrootdir)
565 return -ENOMEM;
566 j->flags.chroot = 1;
567 return 0;
568 }
569
minijail_enter_pivot_root(struct minijail * j,const char * dir)570 int API minijail_enter_pivot_root(struct minijail *j, const char *dir)
571 {
572 if (j->chrootdir)
573 return -EINVAL;
574 j->chrootdir = strdup(dir);
575 if (!j->chrootdir)
576 return -ENOMEM;
577 j->flags.pivot_root = 1;
578 return 0;
579 }
580
minijail_get_original_path(struct minijail * j,const char * path_inside_chroot)581 char API *minijail_get_original_path(struct minijail *j,
582 const char *path_inside_chroot)
583 {
584 struct mountpoint *b;
585
586 b = j->mounts_head;
587 while (b) {
588 /*
589 * If |path_inside_chroot| is the exact destination of a
590 * mount, then the original path is exactly the source of
591 * the mount.
592 * for example: "-b /some/path/exe,/chroot/path/exe"
593 * mount source = /some/path/exe, mount dest =
594 * /chroot/path/exe Then when getting the original path of
595 * "/chroot/path/exe", the source of that mount,
596 * "/some/path/exe" is what should be returned.
597 */
598 if (!strcmp(b->dest, path_inside_chroot))
599 return strdup(b->src);
600
601 /*
602 * If |path_inside_chroot| is within the destination path of a
603 * mount, take the suffix of the chroot path relative to the
604 * mount destination path, and append it to the mount source
605 * path.
606 */
607 if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) {
608 const char *relative_path =
609 path_inside_chroot + strlen(b->dest);
610 return path_join(b->src, relative_path);
611 }
612 b = b->next;
613 }
614
615 /* If there is a chroot path, append |path_inside_chroot| to that. */
616 if (j->chrootdir)
617 return path_join(j->chrootdir, path_inside_chroot);
618
619 /* No chroot, so the path outside is the same as it is inside. */
620 return strdup(path_inside_chroot);
621 }
622
minijail_get_tmpfs_size(const struct minijail * j)623 size_t minijail_get_tmpfs_size(const struct minijail *j)
624 {
625 return j->tmpfs_size;
626 }
627
minijail_mount_tmp(struct minijail * j)628 void API minijail_mount_tmp(struct minijail *j)
629 {
630 minijail_mount_tmp_size(j, 64 * 1024 * 1024);
631 }
632
minijail_mount_tmp_size(struct minijail * j,size_t size)633 void API minijail_mount_tmp_size(struct minijail *j, size_t size)
634 {
635 j->tmpfs_size = size;
636 j->flags.mount_tmp = 1;
637 }
638
minijail_write_pid_file(struct minijail * j,const char * path)639 int API minijail_write_pid_file(struct minijail *j, const char *path)
640 {
641 j->pid_file_path = strdup(path);
642 if (!j->pid_file_path)
643 return -ENOMEM;
644 j->flags.pid_file = 1;
645 return 0;
646 }
647
minijail_add_to_cgroup(struct minijail * j,const char * path)648 int API minijail_add_to_cgroup(struct minijail *j, const char *path)
649 {
650 if (j->cgroup_count >= MAX_CGROUPS)
651 return -ENOMEM;
652 j->cgroups[j->cgroup_count] = strdup(path);
653 if (!j->cgroups[j->cgroup_count])
654 return -ENOMEM;
655 j->cgroup_count++;
656 j->flags.cgroups = 1;
657 return 0;
658 }
659
minijail_rlimit(struct minijail * j,int type,uint32_t cur,uint32_t max)660 int API minijail_rlimit(struct minijail *j, int type, uint32_t cur,
661 uint32_t max)
662 {
663 size_t i;
664
665 if (j->rlimit_count >= MAX_RLIMITS)
666 return -ENOMEM;
667 /* It's an error if the caller sets the same rlimit multiple times. */
668 for (i = 0; i < j->rlimit_count; i++) {
669 if (j->rlimits[i].type == type)
670 return -EEXIST;
671 }
672
673 j->rlimits[j->rlimit_count].type = type;
674 j->rlimits[j->rlimit_count].cur = cur;
675 j->rlimits[j->rlimit_count].max = max;
676 j->rlimit_count++;
677 return 0;
678 }
679
minijail_forward_signals(struct minijail * j)680 int API minijail_forward_signals(struct minijail *j)
681 {
682 j->flags.forward_signals = 1;
683 return 0;
684 }
685
minijail_mount_with_data(struct minijail * j,const char * src,const char * dest,const char * type,unsigned long flags,const char * data)686 int API minijail_mount_with_data(struct minijail *j, const char *src,
687 const char *dest, const char *type,
688 unsigned long flags, const char *data)
689 {
690 struct mountpoint *m;
691
692 if (*dest != '/')
693 return -EINVAL;
694 m = calloc(1, sizeof(*m));
695 if (!m)
696 return -ENOMEM;
697 m->dest = strdup(dest);
698 if (!m->dest)
699 goto error;
700 m->src = strdup(src);
701 if (!m->src)
702 goto error;
703 m->type = strdup(type);
704 if (!m->type)
705 goto error;
706 if (data) {
707 m->data = strdup(data);
708 if (!m->data)
709 goto error;
710 m->has_data = 1;
711 }
712 m->flags = flags;
713
714 info("mount %s -> %s type '%s'", src, dest, type);
715
716 /*
717 * Force vfs namespacing so the mounts don't leak out into the
718 * containing vfs namespace.
719 */
720 minijail_namespace_vfs(j);
721
722 if (j->mounts_tail)
723 j->mounts_tail->next = m;
724 else
725 j->mounts_head = m;
726 j->mounts_tail = m;
727 j->mounts_count++;
728
729 return 0;
730
731 error:
732 free(m->type);
733 free(m->src);
734 free(m->dest);
735 free(m);
736 return -ENOMEM;
737 }
738
minijail_mount(struct minijail * j,const char * src,const char * dest,const char * type,unsigned long flags)739 int API minijail_mount(struct minijail *j, const char *src, const char *dest,
740 const char *type, unsigned long flags)
741 {
742 return minijail_mount_with_data(j, src, dest, type, flags, NULL);
743 }
744
minijail_bind(struct minijail * j,const char * src,const char * dest,int writeable)745 int API minijail_bind(struct minijail *j, const char *src, const char *dest,
746 int writeable)
747 {
748 unsigned long flags = MS_BIND;
749
750 if (!writeable)
751 flags |= MS_RDONLY;
752
753 return minijail_mount(j, src, dest, "", flags);
754 }
755
clear_seccomp_options(struct minijail * j)756 static void clear_seccomp_options(struct minijail *j)
757 {
758 j->flags.seccomp_filter = 0;
759 j->flags.seccomp_filter_tsync = 0;
760 j->flags.seccomp_filter_logging = 0;
761 j->filter_len = 0;
762 j->filter_prog = NULL;
763 j->flags.no_new_privs = 0;
764 }
765
seccomp_should_parse_filters(struct minijail * j)766 static int seccomp_should_parse_filters(struct minijail *j)
767 {
768 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL) == -1) {
769 /*
770 * |errno| will be set to EINVAL when seccomp has not been
771 * compiled into the kernel. On certain platforms and kernel
772 * versions this is not a fatal failure. In that case, and only
773 * in that case, disable seccomp and skip loading the filters.
774 */
775 if ((errno == EINVAL) && seccomp_can_softfail()) {
776 warn("not loading seccomp filters, seccomp filter not "
777 "supported");
778 clear_seccomp_options(j);
779 return 0;
780 }
781 /*
782 * If |errno| != EINVAL or seccomp_can_softfail() is false,
783 * we can proceed. Worst case scenario minijail_enter() will
784 * abort() if seccomp fails.
785 */
786 }
787 if (j->flags.seccomp_filter_tsync) {
788 /* Are the seccomp(2) syscall and the TSYNC option supported? */
789 if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
790 SECCOMP_FILTER_FLAG_TSYNC, NULL) == -1) {
791 int saved_errno = errno;
792 if (saved_errno == ENOSYS && seccomp_can_softfail()) {
793 warn("seccomp(2) syscall not supported");
794 clear_seccomp_options(j);
795 return 0;
796 } else if (saved_errno == EINVAL &&
797 seccomp_can_softfail()) {
798 warn(
799 "seccomp filter thread sync not supported");
800 clear_seccomp_options(j);
801 return 0;
802 }
803 /*
804 * Similar logic here. If seccomp_can_softfail() is
805 * false, or |errno| != ENOSYS, or |errno| != EINVAL,
806 * we can proceed. Worst case scenario minijail_enter()
807 * will abort() if seccomp or TSYNC fail.
808 */
809 }
810 }
811 return 1;
812 }
813
parse_seccomp_filters(struct minijail * j,FILE * policy_file)814 static int parse_seccomp_filters(struct minijail *j, FILE *policy_file)
815 {
816 struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog));
817 int use_ret_trap =
818 j->flags.seccomp_filter_tsync || j->flags.seccomp_filter_logging;
819 int allow_logging = j->flags.seccomp_filter_logging;
820
821 if (compile_filter(policy_file, fprog, use_ret_trap, allow_logging)) {
822 free(fprog);
823 return -1;
824 }
825
826 j->filter_len = fprog->len;
827 j->filter_prog = fprog;
828 return 0;
829 }
830
minijail_parse_seccomp_filters(struct minijail * j,const char * path)831 void API minijail_parse_seccomp_filters(struct minijail *j, const char *path)
832 {
833 if (!seccomp_should_parse_filters(j))
834 return;
835
836 FILE *file = fopen(path, "r");
837 if (!file) {
838 pdie("failed to open seccomp filter file '%s'", path);
839 }
840
841 if (parse_seccomp_filters(j, file) != 0) {
842 die("failed to compile seccomp filter BPF program in '%s'",
843 path);
844 }
845 fclose(file);
846 }
847
minijail_parse_seccomp_filters_from_fd(struct minijail * j,int fd)848 void API minijail_parse_seccomp_filters_from_fd(struct minijail *j, int fd)
849 {
850 if (!seccomp_should_parse_filters(j))
851 return;
852
853 FILE *file = fdopen(fd, "r");
854 if (!file) {
855 pdie("failed to associate stream with fd %d", fd);
856 }
857
858 if (parse_seccomp_filters(j, file) != 0) {
859 die("failed to compile seccomp filter BPF program from fd %d",
860 fd);
861 }
862 fclose(file);
863 }
864
minijail_use_alt_syscall(struct minijail * j,const char * table)865 int API minijail_use_alt_syscall(struct minijail *j, const char *table)
866 {
867 j->alt_syscall_table = strdup(table);
868 if (!j->alt_syscall_table)
869 return -ENOMEM;
870 j->flags.alt_syscall = 1;
871 return 0;
872 }
873
874 struct marshal_state {
875 size_t available;
876 size_t total;
877 char *buf;
878 };
879
marshal_state_init(struct marshal_state * state,char * buf,size_t available)880 void marshal_state_init(struct marshal_state *state, char *buf,
881 size_t available)
882 {
883 state->available = available;
884 state->buf = buf;
885 state->total = 0;
886 }
887
marshal_append(struct marshal_state * state,void * src,size_t length)888 void marshal_append(struct marshal_state *state, void *src, size_t length)
889 {
890 size_t copy_len = MIN(state->available, length);
891
892 /* Up to |available| will be written. */
893 if (copy_len) {
894 memcpy(state->buf, src, copy_len);
895 state->buf += copy_len;
896 state->available -= copy_len;
897 }
898 /* |total| will contain the expected length. */
899 state->total += length;
900 }
901
marshal_mount(struct marshal_state * state,const struct mountpoint * m)902 void marshal_mount(struct marshal_state *state, const struct mountpoint *m)
903 {
904 marshal_append(state, m->src, strlen(m->src) + 1);
905 marshal_append(state, m->dest, strlen(m->dest) + 1);
906 marshal_append(state, m->type, strlen(m->type) + 1);
907 marshal_append(state, (char *)&m->has_data, sizeof(m->has_data));
908 if (m->has_data)
909 marshal_append(state, m->data, strlen(m->data) + 1);
910 marshal_append(state, (char *)&m->flags, sizeof(m->flags));
911 }
912
minijail_marshal_helper(struct marshal_state * state,const struct minijail * j)913 void minijail_marshal_helper(struct marshal_state *state,
914 const struct minijail *j)
915 {
916 struct mountpoint *m = NULL;
917 size_t i;
918
919 marshal_append(state, (char *)j, sizeof(*j));
920 if (j->user)
921 marshal_append(state, j->user, strlen(j->user) + 1);
922 if (j->suppl_gid_list) {
923 marshal_append(state, j->suppl_gid_list,
924 j->suppl_gid_count * sizeof(gid_t));
925 }
926 if (j->chrootdir)
927 marshal_append(state, j->chrootdir, strlen(j->chrootdir) + 1);
928 if (j->hostname)
929 marshal_append(state, j->hostname, strlen(j->hostname) + 1);
930 if (j->alt_syscall_table) {
931 marshal_append(state, j->alt_syscall_table,
932 strlen(j->alt_syscall_table) + 1);
933 }
934 if (j->flags.seccomp_filter && j->filter_prog) {
935 struct sock_fprog *fp = j->filter_prog;
936 marshal_append(state, (char *)fp->filter,
937 fp->len * sizeof(struct sock_filter));
938 }
939 for (m = j->mounts_head; m; m = m->next) {
940 marshal_mount(state, m);
941 }
942 for (i = 0; i < j->cgroup_count; ++i)
943 marshal_append(state, j->cgroups[i], strlen(j->cgroups[i]) + 1);
944 }
945
minijail_size(const struct minijail * j)946 size_t API minijail_size(const struct minijail *j)
947 {
948 struct marshal_state state;
949 marshal_state_init(&state, NULL, 0);
950 minijail_marshal_helper(&state, j);
951 return state.total;
952 }
953
minijail_marshal(const struct minijail * j,char * buf,size_t available)954 int minijail_marshal(const struct minijail *j, char *buf, size_t available)
955 {
956 struct marshal_state state;
957 marshal_state_init(&state, buf, available);
958 minijail_marshal_helper(&state, j);
959 return (state.total > available);
960 }
961
minijail_unmarshal(struct minijail * j,char * serialized,size_t length)962 int minijail_unmarshal(struct minijail *j, char *serialized, size_t length)
963 {
964 size_t i;
965 size_t count;
966 int ret = -EINVAL;
967
968 if (length < sizeof(*j))
969 goto out;
970 memcpy((void *)j, serialized, sizeof(*j));
971 serialized += sizeof(*j);
972 length -= sizeof(*j);
973
974 /* Potentially stale pointers not used as signals. */
975 j->pid_file_path = NULL;
976 j->uidmap = NULL;
977 j->gidmap = NULL;
978 j->mounts_head = NULL;
979 j->mounts_tail = NULL;
980 j->filter_prog = NULL;
981
982 if (j->user) { /* stale pointer */
983 char *user = consumestr(&serialized, &length);
984 if (!user)
985 goto clear_pointers;
986 j->user = strdup(user);
987 if (!j->user)
988 goto clear_pointers;
989 }
990
991 if (j->suppl_gid_list) { /* stale pointer */
992 if (j->suppl_gid_count > NGROUPS_MAX) {
993 goto bad_gid_list;
994 }
995 size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t);
996 void *gid_list_bytes =
997 consumebytes(gid_list_size, &serialized, &length);
998 if (!gid_list_bytes)
999 goto bad_gid_list;
1000
1001 j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t));
1002 if (!j->suppl_gid_list)
1003 goto bad_gid_list;
1004
1005 memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size);
1006 }
1007
1008 if (j->chrootdir) { /* stale pointer */
1009 char *chrootdir = consumestr(&serialized, &length);
1010 if (!chrootdir)
1011 goto bad_chrootdir;
1012 j->chrootdir = strdup(chrootdir);
1013 if (!j->chrootdir)
1014 goto bad_chrootdir;
1015 }
1016
1017 if (j->hostname) { /* stale pointer */
1018 char *hostname = consumestr(&serialized, &length);
1019 if (!hostname)
1020 goto bad_hostname;
1021 j->hostname = strdup(hostname);
1022 if (!j->hostname)
1023 goto bad_hostname;
1024 }
1025
1026 if (j->alt_syscall_table) { /* stale pointer */
1027 char *alt_syscall_table = consumestr(&serialized, &length);
1028 if (!alt_syscall_table)
1029 goto bad_syscall_table;
1030 j->alt_syscall_table = strdup(alt_syscall_table);
1031 if (!j->alt_syscall_table)
1032 goto bad_syscall_table;
1033 }
1034
1035 if (j->flags.seccomp_filter && j->filter_len > 0) {
1036 size_t ninstrs = j->filter_len;
1037 if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) ||
1038 ninstrs > USHRT_MAX)
1039 goto bad_filters;
1040
1041 size_t program_len = ninstrs * sizeof(struct sock_filter);
1042 void *program = consumebytes(program_len, &serialized, &length);
1043 if (!program)
1044 goto bad_filters;
1045
1046 j->filter_prog = malloc(sizeof(struct sock_fprog));
1047 if (!j->filter_prog)
1048 goto bad_filters;
1049
1050 j->filter_prog->len = ninstrs;
1051 j->filter_prog->filter = malloc(program_len);
1052 if (!j->filter_prog->filter)
1053 goto bad_filter_prog_instrs;
1054
1055 memcpy(j->filter_prog->filter, program, program_len);
1056 }
1057
1058 count = j->mounts_count;
1059 j->mounts_count = 0;
1060 for (i = 0; i < count; ++i) {
1061 unsigned long *flags;
1062 int *has_data;
1063 const char *dest;
1064 const char *type;
1065 const char *data = NULL;
1066 const char *src = consumestr(&serialized, &length);
1067 if (!src)
1068 goto bad_mounts;
1069 dest = consumestr(&serialized, &length);
1070 if (!dest)
1071 goto bad_mounts;
1072 type = consumestr(&serialized, &length);
1073 if (!type)
1074 goto bad_mounts;
1075 has_data = consumebytes(sizeof(*has_data), &serialized,
1076 &length);
1077 if (!has_data)
1078 goto bad_mounts;
1079 if (*has_data) {
1080 data = consumestr(&serialized, &length);
1081 if (!data)
1082 goto bad_mounts;
1083 }
1084 flags = consumebytes(sizeof(*flags), &serialized, &length);
1085 if (!flags)
1086 goto bad_mounts;
1087 if (minijail_mount_with_data(j, src, dest, type, *flags, data))
1088 goto bad_mounts;
1089 }
1090
1091 count = j->cgroup_count;
1092 j->cgroup_count = 0;
1093 for (i = 0; i < count; ++i) {
1094 char *cgroup = consumestr(&serialized, &length);
1095 if (!cgroup)
1096 goto bad_cgroups;
1097 j->cgroups[i] = strdup(cgroup);
1098 if (!j->cgroups[i])
1099 goto bad_cgroups;
1100 ++j->cgroup_count;
1101 }
1102
1103 return 0;
1104
1105 bad_cgroups:
1106 while (j->mounts_head) {
1107 struct mountpoint *m = j->mounts_head;
1108 j->mounts_head = j->mounts_head->next;
1109 free(m->data);
1110 free(m->type);
1111 free(m->dest);
1112 free(m->src);
1113 free(m);
1114 }
1115 for (i = 0; i < j->cgroup_count; ++i)
1116 free(j->cgroups[i]);
1117 bad_mounts:
1118 if (j->flags.seccomp_filter && j->filter_len > 0) {
1119 free(j->filter_prog->filter);
1120 free(j->filter_prog);
1121 }
1122 bad_filter_prog_instrs:
1123 if (j->filter_prog)
1124 free(j->filter_prog);
1125 bad_filters:
1126 if (j->alt_syscall_table)
1127 free(j->alt_syscall_table);
1128 bad_syscall_table:
1129 if (j->chrootdir)
1130 free(j->chrootdir);
1131 bad_chrootdir:
1132 if (j->hostname)
1133 free(j->hostname);
1134 bad_hostname:
1135 if (j->suppl_gid_list)
1136 free(j->suppl_gid_list);
1137 bad_gid_list:
1138 if (j->user)
1139 free(j->user);
1140 clear_pointers:
1141 j->user = NULL;
1142 j->suppl_gid_list = NULL;
1143 j->chrootdir = NULL;
1144 j->hostname = NULL;
1145 j->alt_syscall_table = NULL;
1146 j->cgroup_count = 0;
1147 out:
1148 return ret;
1149 }
1150
1151 /*
1152 * mount_one: Applies mounts from @m for @j, recursing as needed.
1153 * @j Minijail these mounts are for
1154 * @m Head of list of mounts
1155 *
1156 * Returns 0 for success.
1157 */
mount_one(const struct minijail * j,struct mountpoint * m)1158 static int mount_one(const struct minijail *j, struct mountpoint *m)
1159 {
1160 int ret;
1161 char *dest;
1162 int remount_ro = 0;
1163
1164 /* |dest| has a leading "/". */
1165 if (asprintf(&dest, "%s%s", j->chrootdir, m->dest) < 0)
1166 return -ENOMEM;
1167
1168 if (setup_mount_destination(m->src, dest, j->uid, j->gid))
1169 pdie("creating mount target '%s' failed", dest);
1170
1171 /*
1172 * R/O bind mounts have to be remounted since 'bind' and 'ro'
1173 * can't both be specified in the original bind mount.
1174 * Remount R/O after the initial mount.
1175 */
1176 if ((m->flags & MS_BIND) && (m->flags & MS_RDONLY)) {
1177 remount_ro = 1;
1178 m->flags &= ~MS_RDONLY;
1179 }
1180
1181 ret = mount(m->src, dest, m->type, m->flags, m->data);
1182 if (ret)
1183 pdie("mount: %s -> %s", m->src, dest);
1184
1185 if (remount_ro) {
1186 m->flags |= MS_RDONLY;
1187 ret = mount(m->src, dest, NULL,
1188 m->flags | MS_REMOUNT, m->data);
1189 if (ret)
1190 pdie("bind ro: %s -> %s", m->src, dest);
1191 }
1192
1193 free(dest);
1194 if (m->next)
1195 return mount_one(j, m->next);
1196 return ret;
1197 }
1198
enter_chroot(const struct minijail * j)1199 static int enter_chroot(const struct minijail *j)
1200 {
1201 int ret;
1202
1203 if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1204 return ret;
1205
1206 if (chroot(j->chrootdir))
1207 return -errno;
1208
1209 if (chdir("/"))
1210 return -errno;
1211
1212 return 0;
1213 }
1214
enter_pivot_root(const struct minijail * j)1215 static int enter_pivot_root(const struct minijail *j)
1216 {
1217 int ret, oldroot, newroot;
1218
1219 if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1220 return ret;
1221
1222 /*
1223 * Keep the fd for both old and new root.
1224 * It will be used in fchdir(2) later.
1225 */
1226 oldroot = open("/", O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1227 if (oldroot < 0)
1228 pdie("failed to open / for fchdir");
1229 newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1230 if (newroot < 0)
1231 pdie("failed to open %s for fchdir", j->chrootdir);
1232
1233 /*
1234 * To ensure j->chrootdir is the root of a filesystem,
1235 * do a self bind mount.
1236 */
1237 if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, ""))
1238 pdie("failed to bind mount '%s'", j->chrootdir);
1239 if (chdir(j->chrootdir))
1240 return -errno;
1241 if (syscall(SYS_pivot_root, ".", "."))
1242 pdie("pivot_root");
1243
1244 /*
1245 * Now the old root is mounted on top of the new root. Use fchdir(2) to
1246 * change to the old root and unmount it.
1247 */
1248 if (fchdir(oldroot))
1249 pdie("failed to fchdir to old /");
1250
1251 /*
1252 * If j->flags.skip_remount_private was enabled for minijail_enter(),
1253 * there could be a shared mount point under |oldroot|. In that case,
1254 * mounts under this shared mount point will be unmounted below, and
1255 * this unmounting will propagate to the original mount namespace
1256 * (because the mount point is shared). To prevent this unexpected
1257 * unmounting, remove these mounts from their peer groups by recursively
1258 * remounting them as MS_PRIVATE.
1259 */
1260 if (mount(NULL, ".", NULL, MS_REC | MS_PRIVATE, NULL))
1261 pdie("failed to mount(/, private) before umount(/)");
1262 /* The old root might be busy, so use lazy unmount. */
1263 if (umount2(".", MNT_DETACH))
1264 pdie("umount(/)");
1265 /* Change back to the new root. */
1266 if (fchdir(newroot))
1267 return -errno;
1268 if (close(oldroot))
1269 return -errno;
1270 if (close(newroot))
1271 return -errno;
1272 if (chroot("/"))
1273 return -errno;
1274 /* Set correct CWD for getcwd(3). */
1275 if (chdir("/"))
1276 return -errno;
1277
1278 return 0;
1279 }
1280
mount_tmp(const struct minijail * j)1281 static int mount_tmp(const struct minijail *j)
1282 {
1283 const char fmt[] = "size=%zu,mode=1777";
1284 /* Count for the user storing ULLONG_MAX literally + extra space. */
1285 char data[sizeof(fmt) + sizeof("18446744073709551615ULL")];
1286 int ret;
1287
1288 ret = snprintf(data, sizeof(data), fmt, j->tmpfs_size);
1289
1290 if (ret <= 0)
1291 pdie("tmpfs size spec error");
1292 else if ((size_t)ret >= sizeof(data))
1293 pdie("tmpfs size spec too large");
1294 return mount("none", "/tmp", "tmpfs", MS_NODEV | MS_NOEXEC | MS_NOSUID,
1295 data);
1296 }
1297
remount_proc_readonly(const struct minijail * j)1298 static int remount_proc_readonly(const struct minijail *j)
1299 {
1300 const char *kProcPath = "/proc";
1301 const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID;
1302 /*
1303 * Right now, we're holding a reference to our parent's old mount of
1304 * /proc in our namespace, which means using MS_REMOUNT here would
1305 * mutate our parent's mount as well, even though we're in a VFS
1306 * namespace (!). Instead, remove their mount from our namespace lazily
1307 * (MNT_DETACH) and make our own.
1308 */
1309 if (umount2(kProcPath, MNT_DETACH)) {
1310 /*
1311 * If we are in a new user namespace, umount(2) will fail.
1312 * See http://man7.org/linux/man-pages/man7/user_namespaces.7.html
1313 */
1314 if (j->flags.userns) {
1315 info("umount(/proc, MNT_DETACH) failed, "
1316 "this is expected when using user namespaces");
1317 } else {
1318 return -errno;
1319 }
1320 }
1321 if (mount("proc", kProcPath, "proc", kSafeFlags | MS_RDONLY, ""))
1322 return -errno;
1323 return 0;
1324 }
1325
kill_child_and_die(const struct minijail * j,const char * msg)1326 static void kill_child_and_die(const struct minijail *j, const char *msg)
1327 {
1328 kill(j->initpid, SIGKILL);
1329 die("%s", msg);
1330 }
1331
write_pid_file_or_die(const struct minijail * j)1332 static void write_pid_file_or_die(const struct minijail *j)
1333 {
1334 if (write_pid_to_path(j->initpid, j->pid_file_path))
1335 kill_child_and_die(j, "failed to write pid file");
1336 }
1337
add_to_cgroups_or_die(const struct minijail * j)1338 static void add_to_cgroups_or_die(const struct minijail *j)
1339 {
1340 size_t i;
1341
1342 for (i = 0; i < j->cgroup_count; ++i) {
1343 if (write_pid_to_path(j->initpid, j->cgroups[i]))
1344 kill_child_and_die(j, "failed to add to cgroups");
1345 }
1346 }
1347
set_rlimits_or_die(const struct minijail * j)1348 static void set_rlimits_or_die(const struct minijail *j)
1349 {
1350 size_t i;
1351
1352 for (i = 0; i < j->rlimit_count; ++i) {
1353 struct rlimit limit;
1354 limit.rlim_cur = j->rlimits[i].cur;
1355 limit.rlim_max = j->rlimits[i].max;
1356 if (prlimit(j->initpid, j->rlimits[i].type, &limit, NULL))
1357 kill_child_and_die(j, "failed to set rlimit");
1358 }
1359 }
1360
write_ugid_maps_or_die(const struct minijail * j)1361 static void write_ugid_maps_or_die(const struct minijail *j)
1362 {
1363 if (j->uidmap && write_proc_file(j->initpid, j->uidmap, "uid_map") != 0)
1364 kill_child_and_die(j, "failed to write uid_map");
1365 if (j->gidmap && j->flags.disable_setgroups) {
1366 /* Older kernels might not have the /proc/<pid>/setgroups files. */
1367 int ret = write_proc_file(j->initpid, "deny", "setgroups");
1368 if (ret != 0) {
1369 if (ret == -ENOENT) {
1370 /* See http://man7.org/linux/man-pages/man7/user_namespaces.7.html. */
1371 warn("could not disable setgroups(2)");
1372 } else
1373 kill_child_and_die(j, "failed to disable setgroups(2)");
1374 }
1375 }
1376 if (j->gidmap && write_proc_file(j->initpid, j->gidmap, "gid_map") != 0)
1377 kill_child_and_die(j, "failed to write gid_map");
1378 }
1379
enter_user_namespace(const struct minijail * j)1380 static void enter_user_namespace(const struct minijail *j)
1381 {
1382 if (j->uidmap && setresuid(0, 0, 0))
1383 pdie("user_namespaces: setresuid(0, 0, 0) failed");
1384 if (j->gidmap && setresgid(0, 0, 0))
1385 pdie("user_namespaces: setresgid(0, 0, 0) failed");
1386 }
1387
parent_setup_complete(int * pipe_fds)1388 static void parent_setup_complete(int *pipe_fds)
1389 {
1390 close(pipe_fds[0]);
1391 close(pipe_fds[1]);
1392 }
1393
1394 /*
1395 * wait_for_parent_setup: Called by the child process to wait for any
1396 * further parent-side setup to complete before continuing.
1397 */
wait_for_parent_setup(int * pipe_fds)1398 static void wait_for_parent_setup(int *pipe_fds)
1399 {
1400 char buf;
1401
1402 close(pipe_fds[1]);
1403
1404 /* Wait for parent to complete setup and close the pipe. */
1405 if (read(pipe_fds[0], &buf, 1) != 0)
1406 die("failed to sync with parent");
1407 close(pipe_fds[0]);
1408 }
1409
drop_ugid(const struct minijail * j)1410 static void drop_ugid(const struct minijail *j)
1411 {
1412 if (j->flags.inherit_suppl_gids + j->flags.keep_suppl_gids +
1413 j->flags.set_suppl_gids > 1) {
1414 die("can only do one of inherit, keep, or set supplementary "
1415 "groups");
1416 }
1417
1418 if (j->flags.inherit_suppl_gids) {
1419 if (initgroups(j->user, j->usergid))
1420 pdie("initgroups(%s, %d) failed", j->user, j->usergid);
1421 } else if (j->flags.set_suppl_gids) {
1422 if (setgroups(j->suppl_gid_count, j->suppl_gid_list))
1423 pdie("setgroups(suppl_gids) failed");
1424 } else if (!j->flags.keep_suppl_gids) {
1425 /*
1426 * Only attempt to clear supplementary groups if we are changing
1427 * users or groups.
1428 */
1429 if ((j->flags.uid || j->flags.gid) && setgroups(0, NULL))
1430 pdie("setgroups(0, NULL) failed");
1431 }
1432
1433 if (j->flags.gid && setresgid(j->gid, j->gid, j->gid))
1434 pdie("setresgid(%d, %d, %d) failed", j->gid, j->gid, j->gid);
1435
1436 if (j->flags.uid && setresuid(j->uid, j->uid, j->uid))
1437 pdie("setresuid(%d, %d, %d) failed", j->uid, j->uid, j->uid);
1438 }
1439
drop_capbset(uint64_t keep_mask,unsigned int last_valid_cap)1440 static void drop_capbset(uint64_t keep_mask, unsigned int last_valid_cap)
1441 {
1442 const uint64_t one = 1;
1443 unsigned int i;
1444 for (i = 0; i < sizeof(keep_mask) * 8 && i <= last_valid_cap; ++i) {
1445 if (keep_mask & (one << i))
1446 continue;
1447 if (prctl(PR_CAPBSET_DROP, i))
1448 pdie("could not drop capability from bounding set");
1449 }
1450 }
1451
drop_caps(const struct minijail * j,unsigned int last_valid_cap)1452 static void drop_caps(const struct minijail *j, unsigned int last_valid_cap)
1453 {
1454 if (!j->flags.use_caps)
1455 return;
1456
1457 cap_t caps = cap_get_proc();
1458 cap_value_t flag[1];
1459 const size_t ncaps = sizeof(j->caps) * 8;
1460 const uint64_t one = 1;
1461 unsigned int i;
1462 if (!caps)
1463 die("can't get process caps");
1464 if (cap_clear(caps))
1465 die("can't clear caps");
1466
1467 for (i = 0; i < ncaps && i <= last_valid_cap; ++i) {
1468 /* Keep CAP_SETPCAP for dropping bounding set bits. */
1469 if (i != CAP_SETPCAP && !(j->caps & (one << i)))
1470 continue;
1471 flag[0] = i;
1472 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET))
1473 die("can't add effective cap");
1474 if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET))
1475 die("can't add permitted cap");
1476 if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET))
1477 die("can't add inheritable cap");
1478 }
1479 if (cap_set_proc(caps))
1480 die("can't apply initial cleaned capset");
1481
1482 /*
1483 * Instead of dropping bounding set first, do it here in case
1484 * the caller had a more permissive bounding set which could
1485 * have been used above to raise a capability that wasn't already
1486 * present. This requires CAP_SETPCAP, so we raised/kept it above.
1487 */
1488 drop_capbset(j->caps, last_valid_cap);
1489
1490 /* If CAP_SETPCAP wasn't specifically requested, now we remove it. */
1491 if ((j->caps & (one << CAP_SETPCAP)) == 0) {
1492 flag[0] = CAP_SETPCAP;
1493 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR))
1494 die("can't clear effective cap");
1495 if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR))
1496 die("can't clear permitted cap");
1497 if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR))
1498 die("can't clear inheritable cap");
1499 }
1500
1501 if (cap_set_proc(caps))
1502 die("can't apply final cleaned capset");
1503
1504 /*
1505 * If ambient capabilities are supported, clear all capabilities first,
1506 * then raise the requested ones.
1507 */
1508 if (j->flags.set_ambient_caps) {
1509 if (!cap_ambient_supported()) {
1510 pdie("ambient capabilities not supported");
1511 }
1512 if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0, 0, 0) !=
1513 0) {
1514 pdie("can't clear ambient capabilities");
1515 }
1516
1517 for (i = 0; i < ncaps && i <= last_valid_cap; ++i) {
1518 if (!(j->caps & (one << i)))
1519 continue;
1520
1521 if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, i, 0,
1522 0) != 0) {
1523 pdie("prctl(PR_CAP_AMBIENT, "
1524 "PR_CAP_AMBIENT_RAISE, %u) failed",
1525 i);
1526 }
1527 }
1528 }
1529
1530 cap_free(caps);
1531 }
1532
set_seccomp_filter(const struct minijail * j)1533 static void set_seccomp_filter(const struct minijail *j)
1534 {
1535 /*
1536 * Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c>
1537 * in the kernel source tree for an explanation of the parameters.
1538 */
1539 if (j->flags.no_new_privs) {
1540 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
1541 pdie("prctl(PR_SET_NO_NEW_PRIVS)");
1542 }
1543
1544 /*
1545 * Code running with ASan
1546 * (https://github.com/google/sanitizers/wiki/AddressSanitizer)
1547 * will make system calls not included in the syscall filter policy,
1548 * which will likely crash the program. Skip setting seccomp filter in
1549 * that case.
1550 * 'running_with_asan()' has no inputs and is completely defined at
1551 * build time, so this cannot be used by an attacker to skip setting
1552 * seccomp filter.
1553 */
1554 if (j->flags.seccomp_filter && running_with_asan()) {
1555 warn("running with ASan, not setting seccomp filter");
1556 return;
1557 }
1558
1559 if (j->flags.seccomp_filter) {
1560 if (j->flags.seccomp_filter_logging) {
1561 /*
1562 * If logging seccomp filter failures,
1563 * install the SIGSYS handler first.
1564 */
1565 if (install_sigsys_handler())
1566 pdie("failed to install SIGSYS handler");
1567 warn("logging seccomp filter failures");
1568 } else if (j->flags.seccomp_filter_tsync) {
1569 /*
1570 * If setting thread sync,
1571 * reset the SIGSYS signal handler so that
1572 * the entire thread group is killed.
1573 */
1574 if (signal(SIGSYS, SIG_DFL) == SIG_ERR)
1575 pdie("failed to reset SIGSYS disposition");
1576 info("reset SIGSYS disposition");
1577 }
1578 }
1579
1580 /*
1581 * Install the syscall filter.
1582 */
1583 if (j->flags.seccomp_filter) {
1584 if (j->flags.seccomp_filter_tsync) {
1585 if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
1586 SECCOMP_FILTER_FLAG_TSYNC,
1587 j->filter_prog)) {
1588 pdie("seccomp(tsync) failed");
1589 }
1590 } else {
1591 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
1592 j->filter_prog)) {
1593 pdie("prctl(seccomp_filter) failed");
1594 }
1595 }
1596 }
1597 }
1598
1599 static pid_t forward_pid = -1;
1600
forward_signal(int nr,siginfo_t * siginfo,void * void_context)1601 static void forward_signal(__attribute__((unused)) int nr,
1602 __attribute__((unused)) siginfo_t *siginfo,
1603 __attribute__((unused)) void *void_context)
1604 {
1605 if (forward_pid != -1) {
1606 kill(forward_pid, nr);
1607 }
1608 }
1609
install_signal_handlers(void)1610 static void install_signal_handlers(void)
1611 {
1612 struct sigaction act;
1613
1614 memset(&act, 0, sizeof(act));
1615 act.sa_sigaction = &forward_signal;
1616 act.sa_flags = SA_SIGINFO | SA_RESTART;
1617
1618 /* Handle all signals, except SIGCHLD. */
1619 for (int nr = 1; nr < NSIG; nr++) {
1620 /*
1621 * We don't care if we get EINVAL: that just means that we
1622 * can't handle this signal, so let's skip it and continue.
1623 */
1624 sigaction(nr, &act, NULL);
1625 }
1626 /* Reset SIGCHLD's handler. */
1627 signal(SIGCHLD, SIG_DFL);
1628
1629 /* Handle real-time signals. */
1630 for (int nr = SIGRTMIN; nr <= SIGRTMAX; nr++) {
1631 sigaction(nr, &act, NULL);
1632 }
1633 }
1634
minijail_enter(const struct minijail * j)1635 void API minijail_enter(const struct minijail *j)
1636 {
1637 /*
1638 * If we're dropping caps, get the last valid cap from /proc now,
1639 * since /proc can be unmounted before drop_caps() is called.
1640 */
1641 unsigned int last_valid_cap = 0;
1642 if (j->flags.capbset_drop || j->flags.use_caps)
1643 last_valid_cap = get_last_valid_cap();
1644
1645 if (j->flags.pids)
1646 die("tried to enter a pid-namespaced jail;"
1647 " try minijail_run()?");
1648
1649 if (j->flags.inherit_suppl_gids && !j->user)
1650 die("cannot inherit supplementary groups without setting a "
1651 "username");
1652
1653 /*
1654 * We can't recover from failures if we've dropped privileges partially,
1655 * so we don't even try. If any of our operations fail, we abort() the
1656 * entire process.
1657 */
1658 if (j->flags.enter_vfs && setns(j->mountns_fd, CLONE_NEWNS))
1659 pdie("setns(CLONE_NEWNS) failed");
1660
1661 if (j->flags.vfs) {
1662 if (unshare(CLONE_NEWNS))
1663 pdie("unshare(CLONE_NEWNS) failed");
1664 /*
1665 * Unless asked not to, remount all filesystems as private.
1666 * If they are shared, new bind mounts will creep out of our
1667 * namespace.
1668 * https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
1669 */
1670 if (!j->flags.skip_remount_private) {
1671 if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL))
1672 pdie("mount(NULL, /, NULL, MS_REC | MS_PRIVATE,"
1673 " NULL) failed");
1674 }
1675 }
1676
1677 if (j->flags.ipc && unshare(CLONE_NEWIPC)) {
1678 pdie("unshare(CLONE_NEWIPC) failed");
1679 }
1680
1681 if (j->flags.uts) {
1682 if (unshare(CLONE_NEWUTS))
1683 pdie("unshare(CLONE_NEWUTS) failed");
1684
1685 if (j->hostname && sethostname(j->hostname, strlen(j->hostname)))
1686 pdie("sethostname(%s) failed", j->hostname);
1687 }
1688
1689 if (j->flags.enter_net) {
1690 if (setns(j->netns_fd, CLONE_NEWNET))
1691 pdie("setns(CLONE_NEWNET) failed");
1692 } else if (j->flags.net) {
1693 if (unshare(CLONE_NEWNET))
1694 pdie("unshare(CLONE_NEWNET) failed");
1695 config_net_loopback();
1696 }
1697
1698 if (j->flags.ns_cgroups && unshare(CLONE_NEWCGROUP))
1699 pdie("unshare(CLONE_NEWCGROUP) failed");
1700
1701 if (j->flags.new_session_keyring) {
1702 if (syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING, NULL) < 0)
1703 pdie("keyctl(KEYCTL_JOIN_SESSION_KEYRING) failed");
1704 }
1705
1706 if (j->flags.chroot && enter_chroot(j))
1707 pdie("chroot");
1708
1709 if (j->flags.pivot_root && enter_pivot_root(j))
1710 pdie("pivot_root");
1711
1712 if (j->flags.mount_tmp && mount_tmp(j))
1713 pdie("mount_tmp");
1714
1715 if (j->flags.remount_proc_ro && remount_proc_readonly(j))
1716 pdie("remount");
1717
1718 /*
1719 * If we're only dropping capabilities from the bounding set, but not
1720 * from the thread's (permitted|inheritable|effective) sets, do it now.
1721 */
1722 if (j->flags.capbset_drop) {
1723 drop_capbset(j->cap_bset, last_valid_cap);
1724 }
1725
1726 if (j->flags.use_caps) {
1727 /*
1728 * POSIX capabilities are a bit tricky. If we drop our
1729 * capability to change uids, our attempt to use setuid()
1730 * below will fail. Hang on to root caps across setuid(), then
1731 * lock securebits.
1732 */
1733 if (prctl(PR_SET_KEEPCAPS, 1))
1734 pdie("prctl(PR_SET_KEEPCAPS) failed");
1735
1736 if (lock_securebits(j->securebits_skip_mask) < 0) {
1737 pdie("locking securebits failed");
1738 }
1739 }
1740
1741 if (j->flags.no_new_privs) {
1742 /*
1743 * If we're setting no_new_privs, we can drop privileges
1744 * before setting seccomp filter. This way filter policies
1745 * don't need to allow privilege-dropping syscalls.
1746 */
1747 drop_ugid(j);
1748 drop_caps(j, last_valid_cap);
1749 set_seccomp_filter(j);
1750 } else {
1751 /*
1752 * If we're not setting no_new_privs,
1753 * we need to set seccomp filter *before* dropping privileges.
1754 * WARNING: this means that filter policies *must* allow
1755 * setgroups()/setresgid()/setresuid() for dropping root and
1756 * capget()/capset()/prctl() for dropping caps.
1757 */
1758 set_seccomp_filter(j);
1759 drop_ugid(j);
1760 drop_caps(j, last_valid_cap);
1761 }
1762
1763 /*
1764 * Select the specified alternate syscall table. The table must not
1765 * block prctl(2) if we're using seccomp as well.
1766 */
1767 if (j->flags.alt_syscall) {
1768 if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table))
1769 pdie("prctl(PR_ALT_SYSCALL) failed");
1770 }
1771
1772 /*
1773 * seccomp has to come last since it cuts off all the other
1774 * privilege-dropping syscalls :)
1775 */
1776 if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) {
1777 if ((errno == EINVAL) && seccomp_can_softfail()) {
1778 warn("seccomp not supported");
1779 return;
1780 }
1781 pdie("prctl(PR_SET_SECCOMP) failed");
1782 }
1783 }
1784
1785 /* TODO(wad): will visibility affect this variable? */
1786 static int init_exitstatus = 0;
1787
init_term(int sig)1788 void init_term(int __attribute__ ((unused)) sig)
1789 {
1790 _exit(init_exitstatus);
1791 }
1792
init(pid_t rootpid)1793 void init(pid_t rootpid)
1794 {
1795 pid_t pid;
1796 int status;
1797 /* So that we exit with the right status. */
1798 signal(SIGTERM, init_term);
1799 /* TODO(wad): self jail with seccomp filters here. */
1800 while ((pid = wait(&status)) > 0) {
1801 /*
1802 * This loop will only end when either there are no processes
1803 * left inside our pid namespace or we get a signal.
1804 */
1805 if (pid == rootpid)
1806 init_exitstatus = status;
1807 }
1808 if (!WIFEXITED(init_exitstatus))
1809 _exit(MINIJAIL_ERR_INIT);
1810 _exit(WEXITSTATUS(init_exitstatus));
1811 }
1812
minijail_from_fd(int fd,struct minijail * j)1813 int API minijail_from_fd(int fd, struct minijail *j)
1814 {
1815 size_t sz = 0;
1816 size_t bytes = read(fd, &sz, sizeof(sz));
1817 char *buf;
1818 int r;
1819 if (sizeof(sz) != bytes)
1820 return -EINVAL;
1821 if (sz > USHRT_MAX) /* arbitrary sanity check */
1822 return -E2BIG;
1823 buf = malloc(sz);
1824 if (!buf)
1825 return -ENOMEM;
1826 bytes = read(fd, buf, sz);
1827 if (bytes != sz) {
1828 free(buf);
1829 return -EINVAL;
1830 }
1831 r = minijail_unmarshal(j, buf, sz);
1832 free(buf);
1833 return r;
1834 }
1835
minijail_to_fd(struct minijail * j,int fd)1836 int API minijail_to_fd(struct minijail *j, int fd)
1837 {
1838 char *buf;
1839 size_t sz = minijail_size(j);
1840 ssize_t written;
1841 int r;
1842
1843 if (!sz)
1844 return -EINVAL;
1845 buf = malloc(sz);
1846 r = minijail_marshal(j, buf, sz);
1847 if (r) {
1848 free(buf);
1849 return r;
1850 }
1851 /* Sends [size][minijail]. */
1852 written = write(fd, &sz, sizeof(sz));
1853 if (written != sizeof(sz)) {
1854 free(buf);
1855 return -EFAULT;
1856 }
1857 written = write(fd, buf, sz);
1858 if (written < 0 || (size_t) written != sz) {
1859 free(buf);
1860 return -EFAULT;
1861 }
1862 free(buf);
1863 return 0;
1864 }
1865
setup_preload(void)1866 int setup_preload(void)
1867 {
1868 #if defined(__ANDROID__)
1869 /* Don't use LDPRELOAD on Android. */
1870 return 0;
1871 #else
1872 char *oldenv = getenv(kLdPreloadEnvVar) ? : "";
1873 char *newenv = malloc(strlen(oldenv) + 2 + strlen(PRELOADPATH));
1874 if (!newenv)
1875 return -ENOMEM;
1876
1877 /* Only insert a separating space if we have something to separate... */
1878 sprintf(newenv, "%s%s%s", oldenv, strlen(oldenv) ? " " : "",
1879 PRELOADPATH);
1880
1881 /* setenv() makes a copy of the string we give it. */
1882 setenv(kLdPreloadEnvVar, newenv, 1);
1883 free(newenv);
1884 return 0;
1885 #endif
1886 }
1887
setup_pipe(int fds[2])1888 static int setup_pipe(int fds[2])
1889 {
1890 int r = pipe(fds);
1891 char fd_buf[11];
1892 if (r)
1893 return r;
1894 r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]);
1895 if (r <= 0)
1896 return -EINVAL;
1897 setenv(kFdEnvVar, fd_buf, 1);
1898 return 0;
1899 }
1900
close_open_fds(int * inheritable_fds,size_t size)1901 static int close_open_fds(int *inheritable_fds, size_t size)
1902 {
1903 const char *kFdPath = "/proc/self/fd";
1904
1905 DIR *d = opendir(kFdPath);
1906 struct dirent *dir_entry;
1907
1908 if (d == NULL)
1909 return -1;
1910 int dir_fd = dirfd(d);
1911 while ((dir_entry = readdir(d)) != NULL) {
1912 size_t i;
1913 char *end;
1914 bool should_close = true;
1915 const int fd = strtol(dir_entry->d_name, &end, 10);
1916
1917 if ((*end) != '\0') {
1918 continue;
1919 }
1920 /*
1921 * We might have set up some pipes that we want to share with
1922 * the parent process, and should not be closed.
1923 */
1924 for (i = 0; i < size; ++i) {
1925 if (fd == inheritable_fds[i]) {
1926 should_close = false;
1927 break;
1928 }
1929 }
1930 /* Also avoid closing the directory fd. */
1931 if (should_close && fd != dir_fd)
1932 close(fd);
1933 }
1934 closedir(d);
1935 return 0;
1936 }
1937
1938 int minijail_run_internal(struct minijail *j, const char *filename,
1939 char *const argv[], pid_t *pchild_pid,
1940 int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1941 int use_preload);
1942
minijail_run(struct minijail * j,const char * filename,char * const argv[])1943 int API minijail_run(struct minijail *j, const char *filename,
1944 char *const argv[])
1945 {
1946 return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1947 true);
1948 }
1949
minijail_run_pid(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid)1950 int API minijail_run_pid(struct minijail *j, const char *filename,
1951 char *const argv[], pid_t *pchild_pid)
1952 {
1953 return minijail_run_internal(j, filename, argv, pchild_pid,
1954 NULL, NULL, NULL, true);
1955 }
1956
minijail_run_pipe(struct minijail * j,const char * filename,char * const argv[],int * pstdin_fd)1957 int API minijail_run_pipe(struct minijail *j, const char *filename,
1958 char *const argv[], int *pstdin_fd)
1959 {
1960 return minijail_run_internal(j, filename, argv, NULL, pstdin_fd,
1961 NULL, NULL, true);
1962 }
1963
minijail_run_pid_pipes(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1964 int API minijail_run_pid_pipes(struct minijail *j, const char *filename,
1965 char *const argv[], pid_t *pchild_pid,
1966 int *pstdin_fd, int *pstdout_fd, int *pstderr_fd)
1967 {
1968 return minijail_run_internal(j, filename, argv, pchild_pid,
1969 pstdin_fd, pstdout_fd, pstderr_fd, true);
1970 }
1971
minijail_run_no_preload(struct minijail * j,const char * filename,char * const argv[])1972 int API minijail_run_no_preload(struct minijail *j, const char *filename,
1973 char *const argv[])
1974 {
1975 return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1976 false);
1977 }
1978
minijail_run_pid_pipes_no_preload(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1979 int API minijail_run_pid_pipes_no_preload(struct minijail *j,
1980 const char *filename,
1981 char *const argv[],
1982 pid_t *pchild_pid,
1983 int *pstdin_fd, int *pstdout_fd,
1984 int *pstderr_fd)
1985 {
1986 return minijail_run_internal(j, filename, argv, pchild_pid,
1987 pstdin_fd, pstdout_fd, pstderr_fd, false);
1988 }
1989
minijail_run_internal(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd,int use_preload)1990 int minijail_run_internal(struct minijail *j, const char *filename,
1991 char *const argv[], pid_t *pchild_pid,
1992 int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1993 int use_preload)
1994 {
1995 char *oldenv, *oldenv_copy = NULL;
1996 pid_t child_pid;
1997 int pipe_fds[2];
1998 int stdin_fds[2];
1999 int stdout_fds[2];
2000 int stderr_fds[2];
2001 int child_sync_pipe_fds[2];
2002 int sync_child = 0;
2003 int ret;
2004 /* We need to remember this across the minijail_preexec() call. */
2005 int pid_namespace = j->flags.pids;
2006 int do_init = j->flags.do_init;
2007
2008 if (use_preload) {
2009 oldenv = getenv(kLdPreloadEnvVar);
2010 if (oldenv) {
2011 oldenv_copy = strdup(oldenv);
2012 if (!oldenv_copy)
2013 return -ENOMEM;
2014 }
2015
2016 if (setup_preload())
2017 return -EFAULT;
2018 }
2019
2020 if (!use_preload) {
2021 if (j->flags.use_caps && j->caps != 0 &&
2022 !j->flags.set_ambient_caps) {
2023 die("non-empty, non-ambient capabilities are not "
2024 "supported without LD_PRELOAD");
2025 }
2026 }
2027
2028 /*
2029 * Make the process group ID of this process equal to its PID.
2030 * In the non-interactive case (e.g. when the parent process is started
2031 * from init) this ensures the parent process and the jailed process
2032 * can be killed together.
2033 * When the parent process is started from the console this ensures
2034 * the call to setsid(2) in the jailed process succeeds.
2035 *
2036 * Don't fail on EPERM, since setpgid(0, 0) can only EPERM when
2037 * the process is already a process group leader.
2038 */
2039 if (setpgid(0 /* use calling PID */, 0 /* make PGID = PID */)) {
2040 if (errno != EPERM) {
2041 pdie("setpgid(0, 0) failed");
2042 }
2043 }
2044
2045 if (use_preload) {
2046 /*
2047 * Before we fork(2) and execve(2) the child process, we need
2048 * to open a pipe(2) to send the minijail configuration over.
2049 */
2050 if (setup_pipe(pipe_fds))
2051 return -EFAULT;
2052 }
2053
2054 /*
2055 * If we want to write to the child process' standard input,
2056 * create the pipe(2) now.
2057 */
2058 if (pstdin_fd) {
2059 if (pipe(stdin_fds))
2060 return -EFAULT;
2061 }
2062
2063 /*
2064 * If we want to read from the child process' standard output,
2065 * create the pipe(2) now.
2066 */
2067 if (pstdout_fd) {
2068 if (pipe(stdout_fds))
2069 return -EFAULT;
2070 }
2071
2072 /*
2073 * If we want to read from the child process' standard error,
2074 * create the pipe(2) now.
2075 */
2076 if (pstderr_fd) {
2077 if (pipe(stderr_fds))
2078 return -EFAULT;
2079 }
2080
2081 /*
2082 * If we want to set up a new uid/gid map in the user namespace,
2083 * or if we need to add the child process to cgroups, create the pipe(2)
2084 * to sync between parent and child.
2085 */
2086 if (j->flags.userns || j->flags.cgroups) {
2087 sync_child = 1;
2088 if (pipe(child_sync_pipe_fds))
2089 return -EFAULT;
2090 }
2091
2092 /*
2093 * Use sys_clone() if and only if we're creating a pid namespace.
2094 *
2095 * tl;dr: WARNING: do not mix pid namespaces and multithreading.
2096 *
2097 * In multithreaded programs, there are a bunch of locks inside libc,
2098 * some of which may be held by other threads at the time that we call
2099 * minijail_run_pid(). If we call fork(), glibc does its level best to
2100 * ensure that we hold all of these locks before it calls clone()
2101 * internally and drop them after clone() returns, but when we call
2102 * sys_clone(2) directly, all that gets bypassed and we end up with a
2103 * child address space where some of libc's important locks are held by
2104 * other threads (which did not get cloned, and hence will never release
2105 * those locks). This is okay so long as we call exec() immediately
2106 * after, but a bunch of seemingly-innocent libc functions like setenv()
2107 * take locks.
2108 *
2109 * Hence, only call sys_clone() if we need to, in order to get at pid
2110 * namespacing. If we follow this path, the child's address space might
2111 * have broken locks; you may only call functions that do not acquire
2112 * any locks.
2113 *
2114 * Unfortunately, fork() acquires every lock it can get its hands on, as
2115 * previously detailed, so this function is highly likely to deadlock
2116 * later on (see "deadlock here") if we're multithreaded.
2117 *
2118 * We might hack around this by having the clone()d child (init of the
2119 * pid namespace) return directly, rather than leaving the clone()d
2120 * process hanging around to be init for the new namespace (and having
2121 * its fork()ed child return in turn), but that process would be
2122 * crippled with its libc locks potentially broken. We might try
2123 * fork()ing in the parent before we clone() to ensure that we own all
2124 * the locks, but then we have to have the forked child hanging around
2125 * consuming resources (and possibly having file descriptors / shared
2126 * memory regions / etc attached). We'd need to keep the child around to
2127 * avoid having its children get reparented to init.
2128 *
2129 * TODO(ellyjones): figure out if the "forked child hanging around"
2130 * problem is fixable or not. It would be nice if we worked in this
2131 * case.
2132 */
2133 if (pid_namespace) {
2134 int clone_flags = CLONE_NEWPID | SIGCHLD;
2135 if (j->flags.userns)
2136 clone_flags |= CLONE_NEWUSER;
2137 child_pid = syscall(SYS_clone, clone_flags, NULL);
2138 } else {
2139 child_pid = fork();
2140 }
2141
2142 if (child_pid < 0) {
2143 if (use_preload) {
2144 free(oldenv_copy);
2145 }
2146 die("failed to fork child");
2147 }
2148
2149 if (child_pid) {
2150 if (use_preload) {
2151 /* Restore parent's LD_PRELOAD. */
2152 if (oldenv_copy) {
2153 setenv(kLdPreloadEnvVar, oldenv_copy, 1);
2154 free(oldenv_copy);
2155 } else {
2156 unsetenv(kLdPreloadEnvVar);
2157 }
2158 unsetenv(kFdEnvVar);
2159 }
2160
2161 j->initpid = child_pid;
2162
2163 if (j->flags.forward_signals) {
2164 forward_pid = child_pid;
2165 install_signal_handlers();
2166 }
2167
2168 if (j->flags.pid_file)
2169 write_pid_file_or_die(j);
2170
2171 if (j->flags.cgroups)
2172 add_to_cgroups_or_die(j);
2173
2174 if (j->rlimit_count)
2175 set_rlimits_or_die(j);
2176
2177 if (j->flags.userns)
2178 write_ugid_maps_or_die(j);
2179
2180 if (sync_child)
2181 parent_setup_complete(child_sync_pipe_fds);
2182
2183 if (use_preload) {
2184 /* Send marshalled minijail. */
2185 close(pipe_fds[0]); /* read endpoint */
2186 ret = minijail_to_fd(j, pipe_fds[1]);
2187 close(pipe_fds[1]); /* write endpoint */
2188 if (ret) {
2189 kill(j->initpid, SIGKILL);
2190 die("failed to send marshalled minijail");
2191 }
2192 }
2193
2194 if (pchild_pid)
2195 *pchild_pid = child_pid;
2196
2197 /*
2198 * If we want to write to the child process' standard input,
2199 * set up the write end of the pipe.
2200 */
2201 if (pstdin_fd)
2202 *pstdin_fd = setup_pipe_end(stdin_fds,
2203 1 /* write end */);
2204
2205 /*
2206 * If we want to read from the child process' standard output,
2207 * set up the read end of the pipe.
2208 */
2209 if (pstdout_fd)
2210 *pstdout_fd = setup_pipe_end(stdout_fds,
2211 0 /* read end */);
2212
2213 /*
2214 * If we want to read from the child process' standard error,
2215 * set up the read end of the pipe.
2216 */
2217 if (pstderr_fd)
2218 *pstderr_fd = setup_pipe_end(stderr_fds,
2219 0 /* read end */);
2220
2221 return 0;
2222 }
2223 /* Child process. */
2224 free(oldenv_copy);
2225
2226 if (j->flags.reset_signal_mask) {
2227 sigset_t signal_mask;
2228 if (sigemptyset(&signal_mask) != 0)
2229 pdie("sigemptyset failed");
2230 if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0)
2231 pdie("sigprocmask failed");
2232 }
2233
2234 if (j->flags.close_open_fds) {
2235 const size_t kMaxInheritableFdsSize = 10;
2236 int inheritable_fds[kMaxInheritableFdsSize];
2237 size_t size = 0;
2238 if (use_preload) {
2239 inheritable_fds[size++] = pipe_fds[0];
2240 inheritable_fds[size++] = pipe_fds[1];
2241 }
2242 if (sync_child) {
2243 inheritable_fds[size++] = child_sync_pipe_fds[0];
2244 inheritable_fds[size++] = child_sync_pipe_fds[1];
2245 }
2246 if (pstdin_fd) {
2247 inheritable_fds[size++] = stdin_fds[0];
2248 inheritable_fds[size++] = stdin_fds[1];
2249 }
2250 if (pstdout_fd) {
2251 inheritable_fds[size++] = stdout_fds[0];
2252 inheritable_fds[size++] = stdout_fds[1];
2253 }
2254 if (pstderr_fd) {
2255 inheritable_fds[size++] = stderr_fds[0];
2256 inheritable_fds[size++] = stderr_fds[1];
2257 }
2258
2259 if (close_open_fds(inheritable_fds, size) < 0)
2260 die("failed to close open file descriptors");
2261 }
2262
2263 if (sync_child)
2264 wait_for_parent_setup(child_sync_pipe_fds);
2265
2266 if (j->flags.userns)
2267 enter_user_namespace(j);
2268
2269 /*
2270 * If we want to write to the jailed process' standard input,
2271 * set up the read end of the pipe.
2272 */
2273 if (pstdin_fd) {
2274 if (setup_and_dupe_pipe_end(stdin_fds, 0 /* read end */,
2275 STDIN_FILENO) < 0)
2276 die("failed to set up stdin pipe");
2277 }
2278
2279 /*
2280 * If we want to read from the jailed process' standard output,
2281 * set up the write end of the pipe.
2282 */
2283 if (pstdout_fd) {
2284 if (setup_and_dupe_pipe_end(stdout_fds, 1 /* write end */,
2285 STDOUT_FILENO) < 0)
2286 die("failed to set up stdout pipe");
2287 }
2288
2289 /*
2290 * If we want to read from the jailed process' standard error,
2291 * set up the write end of the pipe.
2292 */
2293 if (pstderr_fd) {
2294 if (setup_and_dupe_pipe_end(stderr_fds, 1 /* write end */,
2295 STDERR_FILENO) < 0)
2296 die("failed to set up stderr pipe");
2297 }
2298
2299 /*
2300 * If any of stdin, stdout, or stderr are TTYs, create a new session.
2301 * This prevents the jailed process from using the TIOCSTI ioctl
2302 * to push characters into the parent process terminal's input buffer,
2303 * therefore escaping the jail.
2304 */
2305 if (isatty(STDIN_FILENO) || isatty(STDOUT_FILENO) ||
2306 isatty(STDERR_FILENO)) {
2307 if (setsid() < 0) {
2308 pdie("setsid() failed");
2309 }
2310 }
2311
2312 /* If running an init program, let it decide when/how to mount /proc. */
2313 if (pid_namespace && !do_init)
2314 j->flags.remount_proc_ro = 0;
2315
2316 if (use_preload) {
2317 /* Strip out flags that cannot be inherited across execve(2). */
2318 minijail_preexec(j);
2319 } else {
2320 /*
2321 * If not using LD_PRELOAD, do all jailing before execve(2).
2322 * Note that PID namespaces can only be entered on fork(2),
2323 * so that flag is still cleared.
2324 */
2325 j->flags.pids = 0;
2326 }
2327 /* Jail this process, then execve(2) the target. */
2328 minijail_enter(j);
2329
2330 if (pid_namespace && do_init) {
2331 /*
2332 * pid namespace: this process will become init inside the new
2333 * namespace. We don't want all programs we might exec to have
2334 * to know how to be init. Normally (do_init == 1) we fork off
2335 * a child to actually run the program. If |do_init == 0|, we
2336 * let the program keep pid 1 and be init.
2337 *
2338 * If we're multithreaded, we'll probably deadlock here. See
2339 * WARNING above.
2340 */
2341 child_pid = fork();
2342 if (child_pid < 0) {
2343 _exit(child_pid);
2344 } else if (child_pid > 0) {
2345 /*
2346 * Best effort. Don't bother checking the return value.
2347 */
2348 prctl(PR_SET_NAME, "minijail-init");
2349 init(child_pid); /* Never returns. */
2350 }
2351 }
2352
2353 /*
2354 * If we aren't pid-namespaced, or the jailed program asked to be init:
2355 * calling process
2356 * -> execve()-ing process
2357 * If we are:
2358 * calling process
2359 * -> init()-ing process
2360 * -> execve()-ing process
2361 */
2362 ret = execve(filename, argv, environ);
2363 if (ret == -1) {
2364 pwarn("execve(%s) failed", filename);
2365 }
2366 _exit(ret);
2367 }
2368
minijail_kill(struct minijail * j)2369 int API minijail_kill(struct minijail *j)
2370 {
2371 int st;
2372 if (kill(j->initpid, SIGTERM))
2373 return -errno;
2374 if (waitpid(j->initpid, &st, 0) < 0)
2375 return -errno;
2376 return st;
2377 }
2378
minijail_wait(struct minijail * j)2379 int API minijail_wait(struct minijail *j)
2380 {
2381 int st;
2382 if (waitpid(j->initpid, &st, 0) < 0)
2383 return -errno;
2384
2385 if (!WIFEXITED(st)) {
2386 int error_status = st;
2387 if (WIFSIGNALED(st)) {
2388 int signum = WTERMSIG(st);
2389 warn("child process %d received signal %d",
2390 j->initpid, signum);
2391 /*
2392 * We return MINIJAIL_ERR_JAIL if the process received
2393 * SIGSYS, which happens when a syscall is blocked by
2394 * seccomp filters.
2395 * If not, we do what bash(1) does:
2396 * $? = 128 + signum
2397 */
2398 if (signum == SIGSYS) {
2399 error_status = MINIJAIL_ERR_JAIL;
2400 } else {
2401 error_status = 128 + signum;
2402 }
2403 }
2404 return error_status;
2405 }
2406
2407 int exit_status = WEXITSTATUS(st);
2408 if (exit_status != 0)
2409 info("child process %d exited with status %d",
2410 j->initpid, exit_status);
2411
2412 return exit_status;
2413 }
2414
minijail_destroy(struct minijail * j)2415 void API minijail_destroy(struct minijail *j)
2416 {
2417 size_t i;
2418
2419 if (j->flags.seccomp_filter && j->filter_prog) {
2420 free(j->filter_prog->filter);
2421 free(j->filter_prog);
2422 }
2423 while (j->mounts_head) {
2424 struct mountpoint *m = j->mounts_head;
2425 j->mounts_head = j->mounts_head->next;
2426 free(m->data);
2427 free(m->type);
2428 free(m->dest);
2429 free(m->src);
2430 free(m);
2431 }
2432 j->mounts_tail = NULL;
2433 if (j->user)
2434 free(j->user);
2435 if (j->suppl_gid_list)
2436 free(j->suppl_gid_list);
2437 if (j->chrootdir)
2438 free(j->chrootdir);
2439 if (j->pid_file_path)
2440 free(j->pid_file_path);
2441 if (j->uidmap)
2442 free(j->uidmap);
2443 if (j->gidmap)
2444 free(j->gidmap);
2445 if (j->hostname)
2446 free(j->hostname);
2447 if (j->alt_syscall_table)
2448 free(j->alt_syscall_table);
2449 for (i = 0; i < j->cgroup_count; ++i)
2450 free(j->cgroups[i]);
2451 free(j);
2452 }
2453