• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
2  * Use of this source code is governed by a BSD-style license that can be
3  * found in the LICENSE file.
4  */
5 
6 #define _BSD_SOURCE
7 #define _DEFAULT_SOURCE
8 #define _GNU_SOURCE
9 
10 #include <asm/unistd.h>
11 #include <dirent.h>
12 #include <errno.h>
13 #include <fcntl.h>
14 #include <grp.h>
15 #include <linux/capability.h>
16 #include <pwd.h>
17 #include <sched.h>
18 #include <signal.h>
19 #include <stdbool.h>
20 #include <stddef.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/capability.h>
25 #include <sys/mount.h>
26 #include <sys/param.h>
27 #include <sys/prctl.h>
28 #include <sys/resource.h>
29 #include <sys/stat.h>
30 #include <sys/types.h>
31 #include <sys/user.h>
32 #include <sys/wait.h>
33 #include <syscall.h>
34 #include <unistd.h>
35 
36 #include "libminijail.h"
37 #include "libminijail-private.h"
38 
39 #include "signal_handler.h"
40 #include "syscall_filter.h"
41 #include "syscall_wrapper.h"
42 #include "system.h"
43 #include "util.h"
44 
45 /* Until these are reliably available in linux/prctl.h. */
46 #ifndef PR_ALT_SYSCALL
47 # define PR_ALT_SYSCALL 0x43724f53
48 #endif
49 
50 /* Seccomp filter related flags. */
51 #ifndef PR_SET_NO_NEW_PRIVS
52 # define PR_SET_NO_NEW_PRIVS 38
53 #endif
54 
55 #ifndef SECCOMP_MODE_FILTER
56 #define SECCOMP_MODE_FILTER 2 /* Uses user-supplied filter. */
57 #endif
58 
59 #ifndef SECCOMP_SET_MODE_STRICT
60 # define SECCOMP_SET_MODE_STRICT 0
61 #endif
62 #ifndef SECCOMP_SET_MODE_FILTER
63 # define SECCOMP_SET_MODE_FILTER 1
64 #endif
65 
66 #ifndef SECCOMP_FILTER_FLAG_TSYNC
67 # define SECCOMP_FILTER_FLAG_TSYNC 1
68 #endif
69 /* End seccomp filter related flags. */
70 
71 /* New cgroup namespace might not be in linux-headers yet. */
72 #ifndef CLONE_NEWCGROUP
73 # define CLONE_NEWCGROUP 0x02000000
74 #endif
75 
76 #define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */
77 
78 #define MAX_RLIMITS 32 /* Currently there are 15 supported by Linux. */
79 
80 /* Keyctl commands. */
81 #define KEYCTL_JOIN_SESSION_KEYRING 1
82 
83 struct minijail_rlimit {
84 	int type;
85 	uint32_t cur;
86 	uint32_t max;
87 };
88 
89 struct mountpoint {
90 	char *src;
91 	char *dest;
92 	char *type;
93 	char *data;
94 	int has_data;
95 	unsigned long flags;
96 	struct mountpoint *next;
97 };
98 
99 struct minijail {
100 	/*
101 	 * WARNING: if you add a flag here you need to make sure it's
102 	 * accounted for in minijail_pre{enter|exec}() below.
103 	 */
104 	struct {
105 		int uid : 1;
106 		int gid : 1;
107 		int inherit_suppl_gids : 1;
108 		int set_suppl_gids : 1;
109 		int keep_suppl_gids : 1;
110 		int use_caps : 1;
111 		int capbset_drop : 1;
112 		int set_ambient_caps : 1;
113 		int vfs : 1;
114 		int enter_vfs : 1;
115 		int skip_remount_private : 1;
116 		int pids : 1;
117 		int ipc : 1;
118 		int uts : 1;
119 		int net : 1;
120 		int enter_net : 1;
121 		int ns_cgroups : 1;
122 		int userns : 1;
123 		int disable_setgroups : 1;
124 		int seccomp : 1;
125 		int remount_proc_ro : 1;
126 		int no_new_privs : 1;
127 		int seccomp_filter : 1;
128 		int seccomp_filter_tsync : 1;
129 		int seccomp_filter_logging : 1;
130 		int chroot : 1;
131 		int pivot_root : 1;
132 		int mount_tmp : 1;
133 		int do_init : 1;
134 		int pid_file : 1;
135 		int cgroups : 1;
136 		int alt_syscall : 1;
137 		int reset_signal_mask : 1;
138 		int close_open_fds : 1;
139 		int new_session_keyring : 1;
140 		int forward_signals : 1;
141 	} flags;
142 	uid_t uid;
143 	gid_t gid;
144 	gid_t usergid;
145 	char *user;
146 	size_t suppl_gid_count;
147 	gid_t *suppl_gid_list;
148 	uint64_t caps;
149 	uint64_t cap_bset;
150 	pid_t initpid;
151 	int mountns_fd;
152 	int netns_fd;
153 	char *chrootdir;
154 	char *pid_file_path;
155 	char *uidmap;
156 	char *gidmap;
157 	char *hostname;
158 	size_t filter_len;
159 	struct sock_fprog *filter_prog;
160 	char *alt_syscall_table;
161 	struct mountpoint *mounts_head;
162 	struct mountpoint *mounts_tail;
163 	size_t mounts_count;
164 	size_t tmpfs_size;
165 	char *cgroups[MAX_CGROUPS];
166 	size_t cgroup_count;
167 	struct minijail_rlimit rlimits[MAX_RLIMITS];
168 	size_t rlimit_count;
169 	uint64_t securebits_skip_mask;
170 };
171 
172 /*
173  * Strip out flags meant for the parent.
174  * We keep things that are not inherited across execve(2) (e.g. capabilities),
175  * or are easier to set after execve(2) (e.g. seccomp filters).
176  */
minijail_preenter(struct minijail * j)177 void minijail_preenter(struct minijail *j)
178 {
179 	j->flags.vfs = 0;
180 	j->flags.enter_vfs = 0;
181 	j->flags.skip_remount_private = 0;
182 	j->flags.remount_proc_ro = 0;
183 	j->flags.pids = 0;
184 	j->flags.do_init = 0;
185 	j->flags.pid_file = 0;
186 	j->flags.cgroups = 0;
187 	j->flags.forward_signals = 0;
188 }
189 
190 /*
191  * Strip out flags meant for the child.
192  * We keep things that are inherited across execve(2).
193  */
minijail_preexec(struct minijail * j)194 void minijail_preexec(struct minijail *j)
195 {
196 	int vfs = j->flags.vfs;
197 	int enter_vfs = j->flags.enter_vfs;
198 	int skip_remount_private = j->flags.skip_remount_private;
199 	int remount_proc_ro = j->flags.remount_proc_ro;
200 	int userns = j->flags.userns;
201 	if (j->user)
202 		free(j->user);
203 	j->user = NULL;
204 	if (j->suppl_gid_list)
205 		free(j->suppl_gid_list);
206 	j->suppl_gid_list = NULL;
207 	memset(&j->flags, 0, sizeof(j->flags));
208 	/* Now restore anything we meant to keep. */
209 	j->flags.vfs = vfs;
210 	j->flags.enter_vfs = enter_vfs;
211 	j->flags.skip_remount_private = skip_remount_private;
212 	j->flags.remount_proc_ro = remount_proc_ro;
213 	j->flags.userns = userns;
214 	/* Note, |pids| will already have been used before this call. */
215 }
216 
217 /* Minijail API. */
218 
minijail_new(void)219 struct minijail API *minijail_new(void)
220 {
221 	return calloc(1, sizeof(struct minijail));
222 }
223 
minijail_change_uid(struct minijail * j,uid_t uid)224 void API minijail_change_uid(struct minijail *j, uid_t uid)
225 {
226 	if (uid == 0)
227 		die("useless change to uid 0");
228 	j->uid = uid;
229 	j->flags.uid = 1;
230 }
231 
minijail_change_gid(struct minijail * j,gid_t gid)232 void API minijail_change_gid(struct minijail *j, gid_t gid)
233 {
234 	if (gid == 0)
235 		die("useless change to gid 0");
236 	j->gid = gid;
237 	j->flags.gid = 1;
238 }
239 
minijail_set_supplementary_gids(struct minijail * j,size_t size,const gid_t * list)240 void API minijail_set_supplementary_gids(struct minijail *j, size_t size,
241 					 const gid_t *list)
242 {
243 	size_t i;
244 
245 	if (j->flags.inherit_suppl_gids)
246 		die("cannot inherit *and* set supplementary groups");
247 	if (j->flags.keep_suppl_gids)
248 		die("cannot keep *and* set supplementary groups");
249 
250 	if (size == 0) {
251 		/* Clear supplementary groups. */
252 		j->suppl_gid_list = NULL;
253 		j->suppl_gid_count = 0;
254 		j->flags.set_suppl_gids = 1;
255 		return;
256 	}
257 
258 	/* Copy the gid_t array. */
259 	j->suppl_gid_list = calloc(size, sizeof(gid_t));
260 	if (!j->suppl_gid_list) {
261 		die("failed to allocate internal supplementary group array");
262 	}
263 	for (i = 0; i < size; i++) {
264 		j->suppl_gid_list[i] = list[i];
265 	}
266 	j->suppl_gid_count = size;
267 	j->flags.set_suppl_gids = 1;
268 }
269 
minijail_keep_supplementary_gids(struct minijail * j)270 void API minijail_keep_supplementary_gids(struct minijail *j) {
271 	j->flags.keep_suppl_gids = 1;
272 }
273 
minijail_change_user(struct minijail * j,const char * user)274 int API minijail_change_user(struct minijail *j, const char *user)
275 {
276 	char *buf = NULL;
277 	struct passwd pw;
278 	struct passwd *ppw = NULL;
279 	ssize_t sz = sysconf(_SC_GETPW_R_SIZE_MAX);
280 	if (sz == -1)
281 		sz = 65536;	/* your guess is as good as mine... */
282 
283 	/*
284 	 * sysconf(_SC_GETPW_R_SIZE_MAX), under glibc, is documented to return
285 	 * the maximum needed size of the buffer, so we don't have to search.
286 	 */
287 	buf = malloc(sz);
288 	if (!buf)
289 		return -ENOMEM;
290 	getpwnam_r(user, &pw, buf, sz, &ppw);
291 	/*
292 	 * We're safe to free the buffer here. The strings inside |pw| point
293 	 * inside |buf|, but we don't use any of them; this leaves the pointers
294 	 * dangling but it's safe. |ppw| points at |pw| if getpwnam_r(3)
295 	 * succeeded.
296 	 */
297 	free(buf);
298 	/* getpwnam_r(3) does *not* set errno when |ppw| is NULL. */
299 	if (!ppw)
300 		return -1;
301 	minijail_change_uid(j, ppw->pw_uid);
302 	j->user = strdup(user);
303 	if (!j->user)
304 		return -ENOMEM;
305 	j->usergid = ppw->pw_gid;
306 	return 0;
307 }
308 
minijail_change_group(struct minijail * j,const char * group)309 int API minijail_change_group(struct minijail *j, const char *group)
310 {
311 	char *buf = NULL;
312 	struct group gr;
313 	struct group *pgr = NULL;
314 	ssize_t sz = sysconf(_SC_GETGR_R_SIZE_MAX);
315 	if (sz == -1)
316 		sz = 65536;	/* and mine is as good as yours, really */
317 
318 	/*
319 	 * sysconf(_SC_GETGR_R_SIZE_MAX), under glibc, is documented to return
320 	 * the maximum needed size of the buffer, so we don't have to search.
321 	 */
322 	buf = malloc(sz);
323 	if (!buf)
324 		return -ENOMEM;
325 	getgrnam_r(group, &gr, buf, sz, &pgr);
326 	/*
327 	 * We're safe to free the buffer here. The strings inside gr point
328 	 * inside buf, but we don't use any of them; this leaves the pointers
329 	 * dangling but it's safe. pgr points at gr if getgrnam_r succeeded.
330 	 */
331 	free(buf);
332 	/* getgrnam_r(3) does *not* set errno when |pgr| is NULL. */
333 	if (!pgr)
334 		return -1;
335 	minijail_change_gid(j, pgr->gr_gid);
336 	return 0;
337 }
338 
minijail_use_seccomp(struct minijail * j)339 void API minijail_use_seccomp(struct minijail *j)
340 {
341 	j->flags.seccomp = 1;
342 }
343 
minijail_no_new_privs(struct minijail * j)344 void API minijail_no_new_privs(struct minijail *j)
345 {
346 	j->flags.no_new_privs = 1;
347 }
348 
minijail_use_seccomp_filter(struct minijail * j)349 void API minijail_use_seccomp_filter(struct minijail *j)
350 {
351 	j->flags.seccomp_filter = 1;
352 }
353 
minijail_set_seccomp_filter_tsync(struct minijail * j)354 void API minijail_set_seccomp_filter_tsync(struct minijail *j)
355 {
356 	if (j->filter_len > 0 && j->filter_prog != NULL) {
357 		die("minijail_set_seccomp_filter_tsync() must be called "
358 		    "before minijail_parse_seccomp_filters()");
359 	}
360 	j->flags.seccomp_filter_tsync = 1;
361 }
362 
minijail_log_seccomp_filter_failures(struct minijail * j)363 void API minijail_log_seccomp_filter_failures(struct minijail *j)
364 {
365 	if (j->filter_len > 0 && j->filter_prog != NULL) {
366 		die("minijail_log_seccomp_filter_failures() must be called "
367 		    "before minijail_parse_seccomp_filters()");
368 	}
369 	j->flags.seccomp_filter_logging = 1;
370 }
371 
minijail_use_caps(struct minijail * j,uint64_t capmask)372 void API minijail_use_caps(struct minijail *j, uint64_t capmask)
373 {
374 	/*
375 	 * 'minijail_use_caps' configures a runtime-capabilities-only
376 	 * environment, including a bounding set matching the thread's runtime
377 	 * (permitted|inheritable|effective) sets.
378 	 * Therefore, it will override any existing bounding set configurations
379 	 * since the latter would allow gaining extra runtime capabilities from
380 	 * file capabilities.
381 	 */
382 	if (j->flags.capbset_drop) {
383 		warn("overriding bounding set configuration");
384 		j->cap_bset = 0;
385 		j->flags.capbset_drop = 0;
386 	}
387 	j->caps = capmask;
388 	j->flags.use_caps = 1;
389 }
390 
minijail_capbset_drop(struct minijail * j,uint64_t capmask)391 void API minijail_capbset_drop(struct minijail *j, uint64_t capmask)
392 {
393 	if (j->flags.use_caps) {
394 		/*
395 		 * 'minijail_use_caps' will have already configured a capability
396 		 * bounding set matching the (permitted|inheritable|effective)
397 		 * sets. Abort if the user tries to configure a separate
398 		 * bounding set. 'minijail_capbset_drop' and 'minijail_use_caps'
399 		 * are mutually exclusive.
400 		 */
401 		die("runtime capabilities already configured, can't drop "
402 		    "bounding set separately");
403 	}
404 	j->cap_bset = capmask;
405 	j->flags.capbset_drop = 1;
406 }
407 
minijail_set_ambient_caps(struct minijail * j)408 void API minijail_set_ambient_caps(struct minijail *j)
409 {
410 	j->flags.set_ambient_caps = 1;
411 }
412 
minijail_reset_signal_mask(struct minijail * j)413 void API minijail_reset_signal_mask(struct minijail *j)
414 {
415 	j->flags.reset_signal_mask = 1;
416 }
417 
minijail_namespace_vfs(struct minijail * j)418 void API minijail_namespace_vfs(struct minijail *j)
419 {
420 	j->flags.vfs = 1;
421 }
422 
minijail_namespace_enter_vfs(struct minijail * j,const char * ns_path)423 void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path)
424 {
425 	int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
426 	if (ns_fd < 0) {
427 		pdie("failed to open namespace '%s'", ns_path);
428 	}
429 	j->mountns_fd = ns_fd;
430 	j->flags.enter_vfs = 1;
431 }
432 
minijail_new_session_keyring(struct minijail * j)433 void API minijail_new_session_keyring(struct minijail *j)
434 {
435 	j->flags.new_session_keyring = 1;
436 }
437 
minijail_skip_setting_securebits(struct minijail * j,uint64_t securebits_skip_mask)438 void API minijail_skip_setting_securebits(struct minijail *j,
439 					  uint64_t securebits_skip_mask)
440 {
441 	j->securebits_skip_mask = securebits_skip_mask;
442 }
443 
minijail_skip_remount_private(struct minijail * j)444 void API minijail_skip_remount_private(struct minijail *j)
445 {
446 	j->flags.skip_remount_private = 1;
447 }
448 
minijail_namespace_pids(struct minijail * j)449 void API minijail_namespace_pids(struct minijail *j)
450 {
451 	j->flags.vfs = 1;
452 	j->flags.remount_proc_ro = 1;
453 	j->flags.pids = 1;
454 	j->flags.do_init = 1;
455 }
456 
minijail_namespace_ipc(struct minijail * j)457 void API minijail_namespace_ipc(struct minijail *j)
458 {
459 	j->flags.ipc = 1;
460 }
461 
minijail_namespace_uts(struct minijail * j)462 void API minijail_namespace_uts(struct minijail *j)
463 {
464 	j->flags.uts = 1;
465 }
466 
minijail_namespace_set_hostname(struct minijail * j,const char * name)467 int API minijail_namespace_set_hostname(struct minijail *j, const char *name)
468 {
469 	if (j->hostname)
470 		return -EINVAL;
471 	minijail_namespace_uts(j);
472 	j->hostname = strdup(name);
473 	if (!j->hostname)
474 		return -ENOMEM;
475 	return 0;
476 }
477 
minijail_namespace_net(struct minijail * j)478 void API minijail_namespace_net(struct minijail *j)
479 {
480 	j->flags.net = 1;
481 }
482 
minijail_namespace_enter_net(struct minijail * j,const char * ns_path)483 void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path)
484 {
485 	int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
486 	if (ns_fd < 0) {
487 		pdie("failed to open namespace '%s'", ns_path);
488 	}
489 	j->netns_fd = ns_fd;
490 	j->flags.enter_net = 1;
491 }
492 
minijail_namespace_cgroups(struct minijail * j)493 void API minijail_namespace_cgroups(struct minijail *j)
494 {
495 	j->flags.ns_cgroups = 1;
496 }
497 
minijail_close_open_fds(struct minijail * j)498 void API minijail_close_open_fds(struct minijail *j)
499 {
500 	j->flags.close_open_fds = 1;
501 }
502 
minijail_remount_proc_readonly(struct minijail * j)503 void API minijail_remount_proc_readonly(struct minijail *j)
504 {
505 	j->flags.vfs = 1;
506 	j->flags.remount_proc_ro = 1;
507 }
508 
minijail_namespace_user(struct minijail * j)509 void API minijail_namespace_user(struct minijail *j)
510 {
511 	j->flags.userns = 1;
512 }
513 
minijail_namespace_user_disable_setgroups(struct minijail * j)514 void API minijail_namespace_user_disable_setgroups(struct minijail *j)
515 {
516 	j->flags.disable_setgroups = 1;
517 }
518 
minijail_uidmap(struct minijail * j,const char * uidmap)519 int API minijail_uidmap(struct minijail *j, const char *uidmap)
520 {
521 	j->uidmap = strdup(uidmap);
522 	if (!j->uidmap)
523 		return -ENOMEM;
524 	char *ch;
525 	for (ch = j->uidmap; *ch; ch++) {
526 		if (*ch == ',')
527 			*ch = '\n';
528 	}
529 	return 0;
530 }
531 
minijail_gidmap(struct minijail * j,const char * gidmap)532 int API minijail_gidmap(struct minijail *j, const char *gidmap)
533 {
534 	j->gidmap = strdup(gidmap);
535 	if (!j->gidmap)
536 		return -ENOMEM;
537 	char *ch;
538 	for (ch = j->gidmap; *ch; ch++) {
539 		if (*ch == ',')
540 			*ch = '\n';
541 	}
542 	return 0;
543 }
544 
minijail_inherit_usergroups(struct minijail * j)545 void API minijail_inherit_usergroups(struct minijail *j)
546 {
547 	j->flags.inherit_suppl_gids = 1;
548 }
549 
minijail_run_as_init(struct minijail * j)550 void API minijail_run_as_init(struct minijail *j)
551 {
552 	/*
553 	 * Since the jailed program will become 'init' in the new PID namespace,
554 	 * Minijail does not need to fork an 'init' process.
555 	 */
556 	j->flags.do_init = 0;
557 }
558 
minijail_enter_chroot(struct minijail * j,const char * dir)559 int API minijail_enter_chroot(struct minijail *j, const char *dir)
560 {
561 	if (j->chrootdir)
562 		return -EINVAL;
563 	j->chrootdir = strdup(dir);
564 	if (!j->chrootdir)
565 		return -ENOMEM;
566 	j->flags.chroot = 1;
567 	return 0;
568 }
569 
minijail_enter_pivot_root(struct minijail * j,const char * dir)570 int API minijail_enter_pivot_root(struct minijail *j, const char *dir)
571 {
572 	if (j->chrootdir)
573 		return -EINVAL;
574 	j->chrootdir = strdup(dir);
575 	if (!j->chrootdir)
576 		return -ENOMEM;
577 	j->flags.pivot_root = 1;
578 	return 0;
579 }
580 
minijail_get_original_path(struct minijail * j,const char * path_inside_chroot)581 char API *minijail_get_original_path(struct minijail *j,
582 				     const char *path_inside_chroot)
583 {
584 	struct mountpoint *b;
585 
586 	b = j->mounts_head;
587 	while (b) {
588 		/*
589 		 * If |path_inside_chroot| is the exact destination of a
590 		 * mount, then the original path is exactly the source of
591 		 * the mount.
592 		 *  for example: "-b /some/path/exe,/chroot/path/exe"
593 		 *    mount source = /some/path/exe, mount dest =
594 		 *    /chroot/path/exe Then when getting the original path of
595 		 *    "/chroot/path/exe", the source of that mount,
596 		 *    "/some/path/exe" is what should be returned.
597 		 */
598 		if (!strcmp(b->dest, path_inside_chroot))
599 			return strdup(b->src);
600 
601 		/*
602 		 * If |path_inside_chroot| is within the destination path of a
603 		 * mount, take the suffix of the chroot path relative to the
604 		 * mount destination path, and append it to the mount source
605 		 * path.
606 		 */
607 		if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) {
608 			const char *relative_path =
609 				path_inside_chroot + strlen(b->dest);
610 			return path_join(b->src, relative_path);
611 		}
612 		b = b->next;
613 	}
614 
615 	/* If there is a chroot path, append |path_inside_chroot| to that. */
616 	if (j->chrootdir)
617 		return path_join(j->chrootdir, path_inside_chroot);
618 
619 	/* No chroot, so the path outside is the same as it is inside. */
620 	return strdup(path_inside_chroot);
621 }
622 
minijail_get_tmpfs_size(const struct minijail * j)623 size_t minijail_get_tmpfs_size(const struct minijail *j)
624 {
625 	return j->tmpfs_size;
626 }
627 
minijail_mount_tmp(struct minijail * j)628 void API minijail_mount_tmp(struct minijail *j)
629 {
630 	minijail_mount_tmp_size(j, 64 * 1024 * 1024);
631 }
632 
minijail_mount_tmp_size(struct minijail * j,size_t size)633 void API minijail_mount_tmp_size(struct minijail *j, size_t size)
634 {
635 	j->tmpfs_size = size;
636 	j->flags.mount_tmp = 1;
637 }
638 
minijail_write_pid_file(struct minijail * j,const char * path)639 int API minijail_write_pid_file(struct minijail *j, const char *path)
640 {
641 	j->pid_file_path = strdup(path);
642 	if (!j->pid_file_path)
643 		return -ENOMEM;
644 	j->flags.pid_file = 1;
645 	return 0;
646 }
647 
minijail_add_to_cgroup(struct minijail * j,const char * path)648 int API minijail_add_to_cgroup(struct minijail *j, const char *path)
649 {
650 	if (j->cgroup_count >= MAX_CGROUPS)
651 		return -ENOMEM;
652 	j->cgroups[j->cgroup_count] = strdup(path);
653 	if (!j->cgroups[j->cgroup_count])
654 		return -ENOMEM;
655 	j->cgroup_count++;
656 	j->flags.cgroups = 1;
657 	return 0;
658 }
659 
minijail_rlimit(struct minijail * j,int type,uint32_t cur,uint32_t max)660 int API minijail_rlimit(struct minijail *j, int type, uint32_t cur,
661 			uint32_t max)
662 {
663 	size_t i;
664 
665 	if (j->rlimit_count >= MAX_RLIMITS)
666 		return -ENOMEM;
667 	/* It's an error if the caller sets the same rlimit multiple times. */
668 	for (i = 0; i < j->rlimit_count; i++) {
669 		if (j->rlimits[i].type == type)
670 			return -EEXIST;
671 	}
672 
673 	j->rlimits[j->rlimit_count].type = type;
674 	j->rlimits[j->rlimit_count].cur = cur;
675 	j->rlimits[j->rlimit_count].max = max;
676 	j->rlimit_count++;
677 	return 0;
678 }
679 
minijail_forward_signals(struct minijail * j)680 int API minijail_forward_signals(struct minijail *j)
681 {
682 	j->flags.forward_signals = 1;
683 	return 0;
684 }
685 
minijail_mount_with_data(struct minijail * j,const char * src,const char * dest,const char * type,unsigned long flags,const char * data)686 int API minijail_mount_with_data(struct minijail *j, const char *src,
687 				 const char *dest, const char *type,
688 				 unsigned long flags, const char *data)
689 {
690 	struct mountpoint *m;
691 
692 	if (*dest != '/')
693 		return -EINVAL;
694 	m = calloc(1, sizeof(*m));
695 	if (!m)
696 		return -ENOMEM;
697 	m->dest = strdup(dest);
698 	if (!m->dest)
699 		goto error;
700 	m->src = strdup(src);
701 	if (!m->src)
702 		goto error;
703 	m->type = strdup(type);
704 	if (!m->type)
705 		goto error;
706 	if (data) {
707 		m->data = strdup(data);
708 		if (!m->data)
709 			goto error;
710 		m->has_data = 1;
711 	}
712 	m->flags = flags;
713 
714 	info("mount %s -> %s type '%s'", src, dest, type);
715 
716 	/*
717 	 * Force vfs namespacing so the mounts don't leak out into the
718 	 * containing vfs namespace.
719 	 */
720 	minijail_namespace_vfs(j);
721 
722 	if (j->mounts_tail)
723 		j->mounts_tail->next = m;
724 	else
725 		j->mounts_head = m;
726 	j->mounts_tail = m;
727 	j->mounts_count++;
728 
729 	return 0;
730 
731 error:
732 	free(m->type);
733 	free(m->src);
734 	free(m->dest);
735 	free(m);
736 	return -ENOMEM;
737 }
738 
minijail_mount(struct minijail * j,const char * src,const char * dest,const char * type,unsigned long flags)739 int API minijail_mount(struct minijail *j, const char *src, const char *dest,
740 		       const char *type, unsigned long flags)
741 {
742 	return minijail_mount_with_data(j, src, dest, type, flags, NULL);
743 }
744 
minijail_bind(struct minijail * j,const char * src,const char * dest,int writeable)745 int API minijail_bind(struct minijail *j, const char *src, const char *dest,
746 		      int writeable)
747 {
748 	unsigned long flags = MS_BIND;
749 
750 	if (!writeable)
751 		flags |= MS_RDONLY;
752 
753 	return minijail_mount(j, src, dest, "", flags);
754 }
755 
clear_seccomp_options(struct minijail * j)756 static void clear_seccomp_options(struct minijail *j)
757 {
758 	j->flags.seccomp_filter = 0;
759 	j->flags.seccomp_filter_tsync = 0;
760 	j->flags.seccomp_filter_logging = 0;
761 	j->filter_len = 0;
762 	j->filter_prog = NULL;
763 	j->flags.no_new_privs = 0;
764 }
765 
seccomp_should_parse_filters(struct minijail * j)766 static int seccomp_should_parse_filters(struct minijail *j)
767 {
768 	if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL) == -1) {
769 		/*
770 		 * |errno| will be set to EINVAL when seccomp has not been
771 		 * compiled into the kernel. On certain platforms and kernel
772 		 * versions this is not a fatal failure. In that case, and only
773 		 * in that case, disable seccomp and skip loading the filters.
774 		 */
775 		if ((errno == EINVAL) && seccomp_can_softfail()) {
776 			warn("not loading seccomp filters, seccomp filter not "
777 			     "supported");
778 			clear_seccomp_options(j);
779 			return 0;
780 		}
781 		/*
782 		 * If |errno| != EINVAL or seccomp_can_softfail() is false,
783 		 * we can proceed. Worst case scenario minijail_enter() will
784 		 * abort() if seccomp fails.
785 		 */
786 	}
787 	if (j->flags.seccomp_filter_tsync) {
788 		/* Are the seccomp(2) syscall and the TSYNC option supported? */
789 		if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
790 				SECCOMP_FILTER_FLAG_TSYNC, NULL) == -1) {
791 			int saved_errno = errno;
792 			if (saved_errno == ENOSYS && seccomp_can_softfail()) {
793 				warn("seccomp(2) syscall not supported");
794 				clear_seccomp_options(j);
795 				return 0;
796 			} else if (saved_errno == EINVAL &&
797 				   seccomp_can_softfail()) {
798 				warn(
799 				    "seccomp filter thread sync not supported");
800 				clear_seccomp_options(j);
801 				return 0;
802 			}
803 			/*
804 			 * Similar logic here. If seccomp_can_softfail() is
805 			 * false, or |errno| != ENOSYS, or |errno| != EINVAL,
806 			 * we can proceed. Worst case scenario minijail_enter()
807 			 * will abort() if seccomp or TSYNC fail.
808 			 */
809 		}
810 	}
811 	return 1;
812 }
813 
parse_seccomp_filters(struct minijail * j,FILE * policy_file)814 static int parse_seccomp_filters(struct minijail *j, FILE *policy_file)
815 {
816 	struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog));
817 	int use_ret_trap =
818 	    j->flags.seccomp_filter_tsync || j->flags.seccomp_filter_logging;
819 	int allow_logging = j->flags.seccomp_filter_logging;
820 
821 	if (compile_filter(policy_file, fprog, use_ret_trap, allow_logging)) {
822 		free(fprog);
823 		return -1;
824 	}
825 
826 	j->filter_len = fprog->len;
827 	j->filter_prog = fprog;
828 	return 0;
829 }
830 
minijail_parse_seccomp_filters(struct minijail * j,const char * path)831 void API minijail_parse_seccomp_filters(struct minijail *j, const char *path)
832 {
833 	if (!seccomp_should_parse_filters(j))
834 		return;
835 
836 	FILE *file = fopen(path, "r");
837 	if (!file) {
838 		pdie("failed to open seccomp filter file '%s'", path);
839 	}
840 
841 	if (parse_seccomp_filters(j, file) != 0) {
842 		die("failed to compile seccomp filter BPF program in '%s'",
843 		    path);
844 	}
845 	fclose(file);
846 }
847 
minijail_parse_seccomp_filters_from_fd(struct minijail * j,int fd)848 void API minijail_parse_seccomp_filters_from_fd(struct minijail *j, int fd)
849 {
850 	if (!seccomp_should_parse_filters(j))
851 		return;
852 
853 	FILE *file = fdopen(fd, "r");
854 	if (!file) {
855 		pdie("failed to associate stream with fd %d", fd);
856 	}
857 
858 	if (parse_seccomp_filters(j, file) != 0) {
859 		die("failed to compile seccomp filter BPF program from fd %d",
860 		    fd);
861 	}
862 	fclose(file);
863 }
864 
minijail_use_alt_syscall(struct minijail * j,const char * table)865 int API minijail_use_alt_syscall(struct minijail *j, const char *table)
866 {
867 	j->alt_syscall_table = strdup(table);
868 	if (!j->alt_syscall_table)
869 		return -ENOMEM;
870 	j->flags.alt_syscall = 1;
871 	return 0;
872 }
873 
874 struct marshal_state {
875 	size_t available;
876 	size_t total;
877 	char *buf;
878 };
879 
marshal_state_init(struct marshal_state * state,char * buf,size_t available)880 void marshal_state_init(struct marshal_state *state, char *buf,
881 			size_t available)
882 {
883 	state->available = available;
884 	state->buf = buf;
885 	state->total = 0;
886 }
887 
marshal_append(struct marshal_state * state,void * src,size_t length)888 void marshal_append(struct marshal_state *state, void *src, size_t length)
889 {
890 	size_t copy_len = MIN(state->available, length);
891 
892 	/* Up to |available| will be written. */
893 	if (copy_len) {
894 		memcpy(state->buf, src, copy_len);
895 		state->buf += copy_len;
896 		state->available -= copy_len;
897 	}
898 	/* |total| will contain the expected length. */
899 	state->total += length;
900 }
901 
marshal_mount(struct marshal_state * state,const struct mountpoint * m)902 void marshal_mount(struct marshal_state *state, const struct mountpoint *m)
903 {
904 	marshal_append(state, m->src, strlen(m->src) + 1);
905 	marshal_append(state, m->dest, strlen(m->dest) + 1);
906 	marshal_append(state, m->type, strlen(m->type) + 1);
907 	marshal_append(state, (char *)&m->has_data, sizeof(m->has_data));
908 	if (m->has_data)
909 		marshal_append(state, m->data, strlen(m->data) + 1);
910 	marshal_append(state, (char *)&m->flags, sizeof(m->flags));
911 }
912 
minijail_marshal_helper(struct marshal_state * state,const struct minijail * j)913 void minijail_marshal_helper(struct marshal_state *state,
914 			     const struct minijail *j)
915 {
916 	struct mountpoint *m = NULL;
917 	size_t i;
918 
919 	marshal_append(state, (char *)j, sizeof(*j));
920 	if (j->user)
921 		marshal_append(state, j->user, strlen(j->user) + 1);
922 	if (j->suppl_gid_list) {
923 		marshal_append(state, j->suppl_gid_list,
924 			       j->suppl_gid_count * sizeof(gid_t));
925 	}
926 	if (j->chrootdir)
927 		marshal_append(state, j->chrootdir, strlen(j->chrootdir) + 1);
928 	if (j->hostname)
929 		marshal_append(state, j->hostname, strlen(j->hostname) + 1);
930 	if (j->alt_syscall_table) {
931 		marshal_append(state, j->alt_syscall_table,
932 			       strlen(j->alt_syscall_table) + 1);
933 	}
934 	if (j->flags.seccomp_filter && j->filter_prog) {
935 		struct sock_fprog *fp = j->filter_prog;
936 		marshal_append(state, (char *)fp->filter,
937 			       fp->len * sizeof(struct sock_filter));
938 	}
939 	for (m = j->mounts_head; m; m = m->next) {
940 		marshal_mount(state, m);
941 	}
942 	for (i = 0; i < j->cgroup_count; ++i)
943 		marshal_append(state, j->cgroups[i], strlen(j->cgroups[i]) + 1);
944 }
945 
minijail_size(const struct minijail * j)946 size_t API minijail_size(const struct minijail *j)
947 {
948 	struct marshal_state state;
949 	marshal_state_init(&state, NULL, 0);
950 	minijail_marshal_helper(&state, j);
951 	return state.total;
952 }
953 
minijail_marshal(const struct minijail * j,char * buf,size_t available)954 int minijail_marshal(const struct minijail *j, char *buf, size_t available)
955 {
956 	struct marshal_state state;
957 	marshal_state_init(&state, buf, available);
958 	minijail_marshal_helper(&state, j);
959 	return (state.total > available);
960 }
961 
minijail_unmarshal(struct minijail * j,char * serialized,size_t length)962 int minijail_unmarshal(struct minijail *j, char *serialized, size_t length)
963 {
964 	size_t i;
965 	size_t count;
966 	int ret = -EINVAL;
967 
968 	if (length < sizeof(*j))
969 		goto out;
970 	memcpy((void *)j, serialized, sizeof(*j));
971 	serialized += sizeof(*j);
972 	length -= sizeof(*j);
973 
974 	/* Potentially stale pointers not used as signals. */
975 	j->pid_file_path = NULL;
976 	j->uidmap = NULL;
977 	j->gidmap = NULL;
978 	j->mounts_head = NULL;
979 	j->mounts_tail = NULL;
980 	j->filter_prog = NULL;
981 
982 	if (j->user) {		/* stale pointer */
983 		char *user = consumestr(&serialized, &length);
984 		if (!user)
985 			goto clear_pointers;
986 		j->user = strdup(user);
987 		if (!j->user)
988 			goto clear_pointers;
989 	}
990 
991 	if (j->suppl_gid_list) {	/* stale pointer */
992 		if (j->suppl_gid_count > NGROUPS_MAX) {
993 			goto bad_gid_list;
994 		}
995 		size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t);
996 		void *gid_list_bytes =
997 		    consumebytes(gid_list_size, &serialized, &length);
998 		if (!gid_list_bytes)
999 			goto bad_gid_list;
1000 
1001 		j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t));
1002 		if (!j->suppl_gid_list)
1003 			goto bad_gid_list;
1004 
1005 		memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size);
1006 	}
1007 
1008 	if (j->chrootdir) {	/* stale pointer */
1009 		char *chrootdir = consumestr(&serialized, &length);
1010 		if (!chrootdir)
1011 			goto bad_chrootdir;
1012 		j->chrootdir = strdup(chrootdir);
1013 		if (!j->chrootdir)
1014 			goto bad_chrootdir;
1015 	}
1016 
1017 	if (j->hostname) {	/* stale pointer */
1018 		char *hostname = consumestr(&serialized, &length);
1019 		if (!hostname)
1020 			goto bad_hostname;
1021 		j->hostname = strdup(hostname);
1022 		if (!j->hostname)
1023 			goto bad_hostname;
1024 	}
1025 
1026 	if (j->alt_syscall_table) {	/* stale pointer */
1027 		char *alt_syscall_table = consumestr(&serialized, &length);
1028 		if (!alt_syscall_table)
1029 			goto bad_syscall_table;
1030 		j->alt_syscall_table = strdup(alt_syscall_table);
1031 		if (!j->alt_syscall_table)
1032 			goto bad_syscall_table;
1033 	}
1034 
1035 	if (j->flags.seccomp_filter && j->filter_len > 0) {
1036 		size_t ninstrs = j->filter_len;
1037 		if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) ||
1038 		    ninstrs > USHRT_MAX)
1039 			goto bad_filters;
1040 
1041 		size_t program_len = ninstrs * sizeof(struct sock_filter);
1042 		void *program = consumebytes(program_len, &serialized, &length);
1043 		if (!program)
1044 			goto bad_filters;
1045 
1046 		j->filter_prog = malloc(sizeof(struct sock_fprog));
1047 		if (!j->filter_prog)
1048 			goto bad_filters;
1049 
1050 		j->filter_prog->len = ninstrs;
1051 		j->filter_prog->filter = malloc(program_len);
1052 		if (!j->filter_prog->filter)
1053 			goto bad_filter_prog_instrs;
1054 
1055 		memcpy(j->filter_prog->filter, program, program_len);
1056 	}
1057 
1058 	count = j->mounts_count;
1059 	j->mounts_count = 0;
1060 	for (i = 0; i < count; ++i) {
1061 		unsigned long *flags;
1062 		int *has_data;
1063 		const char *dest;
1064 		const char *type;
1065 		const char *data = NULL;
1066 		const char *src = consumestr(&serialized, &length);
1067 		if (!src)
1068 			goto bad_mounts;
1069 		dest = consumestr(&serialized, &length);
1070 		if (!dest)
1071 			goto bad_mounts;
1072 		type = consumestr(&serialized, &length);
1073 		if (!type)
1074 			goto bad_mounts;
1075 		has_data = consumebytes(sizeof(*has_data), &serialized,
1076 					&length);
1077 		if (!has_data)
1078 			goto bad_mounts;
1079 		if (*has_data) {
1080 			data = consumestr(&serialized, &length);
1081 			if (!data)
1082 				goto bad_mounts;
1083 		}
1084 		flags = consumebytes(sizeof(*flags), &serialized, &length);
1085 		if (!flags)
1086 			goto bad_mounts;
1087 		if (minijail_mount_with_data(j, src, dest, type, *flags, data))
1088 			goto bad_mounts;
1089 	}
1090 
1091 	count = j->cgroup_count;
1092 	j->cgroup_count = 0;
1093 	for (i = 0; i < count; ++i) {
1094 		char *cgroup = consumestr(&serialized, &length);
1095 		if (!cgroup)
1096 			goto bad_cgroups;
1097 		j->cgroups[i] = strdup(cgroup);
1098 		if (!j->cgroups[i])
1099 			goto bad_cgroups;
1100 		++j->cgroup_count;
1101 	}
1102 
1103 	return 0;
1104 
1105 bad_cgroups:
1106 	while (j->mounts_head) {
1107 		struct mountpoint *m = j->mounts_head;
1108 		j->mounts_head = j->mounts_head->next;
1109 		free(m->data);
1110 		free(m->type);
1111 		free(m->dest);
1112 		free(m->src);
1113 		free(m);
1114 	}
1115 	for (i = 0; i < j->cgroup_count; ++i)
1116 		free(j->cgroups[i]);
1117 bad_mounts:
1118 	if (j->flags.seccomp_filter && j->filter_len > 0) {
1119 		free(j->filter_prog->filter);
1120 		free(j->filter_prog);
1121 	}
1122 bad_filter_prog_instrs:
1123 	if (j->filter_prog)
1124 		free(j->filter_prog);
1125 bad_filters:
1126 	if (j->alt_syscall_table)
1127 		free(j->alt_syscall_table);
1128 bad_syscall_table:
1129 	if (j->chrootdir)
1130 		free(j->chrootdir);
1131 bad_chrootdir:
1132 	if (j->hostname)
1133 		free(j->hostname);
1134 bad_hostname:
1135 	if (j->suppl_gid_list)
1136 		free(j->suppl_gid_list);
1137 bad_gid_list:
1138 	if (j->user)
1139 		free(j->user);
1140 clear_pointers:
1141 	j->user = NULL;
1142 	j->suppl_gid_list = NULL;
1143 	j->chrootdir = NULL;
1144 	j->hostname = NULL;
1145 	j->alt_syscall_table = NULL;
1146 	j->cgroup_count = 0;
1147 out:
1148 	return ret;
1149 }
1150 
1151 /*
1152  * mount_one: Applies mounts from @m for @j, recursing as needed.
1153  * @j Minijail these mounts are for
1154  * @m Head of list of mounts
1155  *
1156  * Returns 0 for success.
1157  */
mount_one(const struct minijail * j,struct mountpoint * m)1158 static int mount_one(const struct minijail *j, struct mountpoint *m)
1159 {
1160 	int ret;
1161 	char *dest;
1162 	int remount_ro = 0;
1163 
1164 	/* |dest| has a leading "/". */
1165 	if (asprintf(&dest, "%s%s", j->chrootdir, m->dest) < 0)
1166 		return -ENOMEM;
1167 
1168 	if (setup_mount_destination(m->src, dest, j->uid, j->gid))
1169 		pdie("creating mount target '%s' failed", dest);
1170 
1171 	/*
1172 	 * R/O bind mounts have to be remounted since 'bind' and 'ro'
1173 	 * can't both be specified in the original bind mount.
1174 	 * Remount R/O after the initial mount.
1175 	 */
1176 	if ((m->flags & MS_BIND) && (m->flags & MS_RDONLY)) {
1177 		remount_ro = 1;
1178 		m->flags &= ~MS_RDONLY;
1179 	}
1180 
1181 	ret = mount(m->src, dest, m->type, m->flags, m->data);
1182 	if (ret)
1183 		pdie("mount: %s -> %s", m->src, dest);
1184 
1185 	if (remount_ro) {
1186 		m->flags |= MS_RDONLY;
1187 		ret = mount(m->src, dest, NULL,
1188 			    m->flags | MS_REMOUNT, m->data);
1189 		if (ret)
1190 			pdie("bind ro: %s -> %s", m->src, dest);
1191 	}
1192 
1193 	free(dest);
1194 	if (m->next)
1195 		return mount_one(j, m->next);
1196 	return ret;
1197 }
1198 
enter_chroot(const struct minijail * j)1199 static int enter_chroot(const struct minijail *j)
1200 {
1201 	int ret;
1202 
1203 	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1204 		return ret;
1205 
1206 	if (chroot(j->chrootdir))
1207 		return -errno;
1208 
1209 	if (chdir("/"))
1210 		return -errno;
1211 
1212 	return 0;
1213 }
1214 
enter_pivot_root(const struct minijail * j)1215 static int enter_pivot_root(const struct minijail *j)
1216 {
1217 	int ret, oldroot, newroot;
1218 
1219 	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1220 		return ret;
1221 
1222 	/*
1223 	 * Keep the fd for both old and new root.
1224 	 * It will be used in fchdir(2) later.
1225 	 */
1226 	oldroot = open("/", O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1227 	if (oldroot < 0)
1228 		pdie("failed to open / for fchdir");
1229 	newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1230 	if (newroot < 0)
1231 		pdie("failed to open %s for fchdir", j->chrootdir);
1232 
1233 	/*
1234 	 * To ensure j->chrootdir is the root of a filesystem,
1235 	 * do a self bind mount.
1236 	 */
1237 	if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, ""))
1238 		pdie("failed to bind mount '%s'", j->chrootdir);
1239 	if (chdir(j->chrootdir))
1240 		return -errno;
1241 	if (syscall(SYS_pivot_root, ".", "."))
1242 		pdie("pivot_root");
1243 
1244 	/*
1245 	 * Now the old root is mounted on top of the new root. Use fchdir(2) to
1246 	 * change to the old root and unmount it.
1247 	 */
1248 	if (fchdir(oldroot))
1249 		pdie("failed to fchdir to old /");
1250 
1251 	/*
1252 	 * If j->flags.skip_remount_private was enabled for minijail_enter(),
1253 	 * there could be a shared mount point under |oldroot|. In that case,
1254 	 * mounts under this shared mount point will be unmounted below, and
1255 	 * this unmounting will propagate to the original mount namespace
1256 	 * (because the mount point is shared). To prevent this unexpected
1257 	 * unmounting, remove these mounts from their peer groups by recursively
1258 	 * remounting them as MS_PRIVATE.
1259 	 */
1260 	if (mount(NULL, ".", NULL, MS_REC | MS_PRIVATE, NULL))
1261 		pdie("failed to mount(/, private) before umount(/)");
1262 	/* The old root might be busy, so use lazy unmount. */
1263 	if (umount2(".", MNT_DETACH))
1264 		pdie("umount(/)");
1265 	/* Change back to the new root. */
1266 	if (fchdir(newroot))
1267 		return -errno;
1268 	if (close(oldroot))
1269 		return -errno;
1270 	if (close(newroot))
1271 		return -errno;
1272 	if (chroot("/"))
1273 		return -errno;
1274 	/* Set correct CWD for getcwd(3). */
1275 	if (chdir("/"))
1276 		return -errno;
1277 
1278 	return 0;
1279 }
1280 
mount_tmp(const struct minijail * j)1281 static int mount_tmp(const struct minijail *j)
1282 {
1283 	const char fmt[] = "size=%zu,mode=1777";
1284 	/* Count for the user storing ULLONG_MAX literally + extra space. */
1285 	char data[sizeof(fmt) + sizeof("18446744073709551615ULL")];
1286 	int ret;
1287 
1288 	ret = snprintf(data, sizeof(data), fmt, j->tmpfs_size);
1289 
1290 	if (ret <= 0)
1291 		pdie("tmpfs size spec error");
1292 	else if ((size_t)ret >= sizeof(data))
1293 		pdie("tmpfs size spec too large");
1294 	return mount("none", "/tmp", "tmpfs", MS_NODEV | MS_NOEXEC | MS_NOSUID,
1295 		     data);
1296 }
1297 
remount_proc_readonly(const struct minijail * j)1298 static int remount_proc_readonly(const struct minijail *j)
1299 {
1300 	const char *kProcPath = "/proc";
1301 	const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID;
1302 	/*
1303 	 * Right now, we're holding a reference to our parent's old mount of
1304 	 * /proc in our namespace, which means using MS_REMOUNT here would
1305 	 * mutate our parent's mount as well, even though we're in a VFS
1306 	 * namespace (!). Instead, remove their mount from our namespace lazily
1307 	 * (MNT_DETACH) and make our own.
1308 	 */
1309 	if (umount2(kProcPath, MNT_DETACH)) {
1310 		/*
1311 		 * If we are in a new user namespace, umount(2) will fail.
1312 		 * See http://man7.org/linux/man-pages/man7/user_namespaces.7.html
1313 		 */
1314 		if (j->flags.userns) {
1315 			info("umount(/proc, MNT_DETACH) failed, "
1316 			     "this is expected when using user namespaces");
1317 		} else {
1318 			return -errno;
1319 		}
1320 	}
1321 	if (mount("proc", kProcPath, "proc", kSafeFlags | MS_RDONLY, ""))
1322 		return -errno;
1323 	return 0;
1324 }
1325 
kill_child_and_die(const struct minijail * j,const char * msg)1326 static void kill_child_and_die(const struct minijail *j, const char *msg)
1327 {
1328 	kill(j->initpid, SIGKILL);
1329 	die("%s", msg);
1330 }
1331 
write_pid_file_or_die(const struct minijail * j)1332 static void write_pid_file_or_die(const struct minijail *j)
1333 {
1334 	if (write_pid_to_path(j->initpid, j->pid_file_path))
1335 		kill_child_and_die(j, "failed to write pid file");
1336 }
1337 
add_to_cgroups_or_die(const struct minijail * j)1338 static void add_to_cgroups_or_die(const struct minijail *j)
1339 {
1340 	size_t i;
1341 
1342 	for (i = 0; i < j->cgroup_count; ++i) {
1343 		if (write_pid_to_path(j->initpid, j->cgroups[i]))
1344 			kill_child_and_die(j, "failed to add to cgroups");
1345 	}
1346 }
1347 
set_rlimits_or_die(const struct minijail * j)1348 static void set_rlimits_or_die(const struct minijail *j)
1349 {
1350 	size_t i;
1351 
1352 	for (i = 0; i < j->rlimit_count; ++i) {
1353 		struct rlimit limit;
1354 		limit.rlim_cur = j->rlimits[i].cur;
1355 		limit.rlim_max = j->rlimits[i].max;
1356 		if (prlimit(j->initpid, j->rlimits[i].type, &limit, NULL))
1357 			kill_child_and_die(j, "failed to set rlimit");
1358 	}
1359 }
1360 
write_ugid_maps_or_die(const struct minijail * j)1361 static void write_ugid_maps_or_die(const struct minijail *j)
1362 {
1363 	if (j->uidmap && write_proc_file(j->initpid, j->uidmap, "uid_map") != 0)
1364 		kill_child_and_die(j, "failed to write uid_map");
1365 	if (j->gidmap && j->flags.disable_setgroups) {
1366 		/* Older kernels might not have the /proc/<pid>/setgroups files. */
1367 		int ret = write_proc_file(j->initpid, "deny", "setgroups");
1368 		if (ret != 0) {
1369 			if (ret == -ENOENT) {
1370 				/* See http://man7.org/linux/man-pages/man7/user_namespaces.7.html. */
1371 				warn("could not disable setgroups(2)");
1372 			} else
1373 				kill_child_and_die(j, "failed to disable setgroups(2)");
1374 		}
1375 	}
1376 	if (j->gidmap && write_proc_file(j->initpid, j->gidmap, "gid_map") != 0)
1377 		kill_child_and_die(j, "failed to write gid_map");
1378 }
1379 
enter_user_namespace(const struct minijail * j)1380 static void enter_user_namespace(const struct minijail *j)
1381 {
1382 	if (j->uidmap && setresuid(0, 0, 0))
1383 		pdie("user_namespaces: setresuid(0, 0, 0) failed");
1384 	if (j->gidmap && setresgid(0, 0, 0))
1385 		pdie("user_namespaces: setresgid(0, 0, 0) failed");
1386 }
1387 
parent_setup_complete(int * pipe_fds)1388 static void parent_setup_complete(int *pipe_fds)
1389 {
1390 	close(pipe_fds[0]);
1391 	close(pipe_fds[1]);
1392 }
1393 
1394 /*
1395  * wait_for_parent_setup: Called by the child process to wait for any
1396  * further parent-side setup to complete before continuing.
1397  */
wait_for_parent_setup(int * pipe_fds)1398 static void wait_for_parent_setup(int *pipe_fds)
1399 {
1400 	char buf;
1401 
1402 	close(pipe_fds[1]);
1403 
1404 	/* Wait for parent to complete setup and close the pipe. */
1405 	if (read(pipe_fds[0], &buf, 1) != 0)
1406 		die("failed to sync with parent");
1407 	close(pipe_fds[0]);
1408 }
1409 
drop_ugid(const struct minijail * j)1410 static void drop_ugid(const struct minijail *j)
1411 {
1412 	if (j->flags.inherit_suppl_gids + j->flags.keep_suppl_gids +
1413 	    j->flags.set_suppl_gids > 1) {
1414 		die("can only do one of inherit, keep, or set supplementary "
1415 		    "groups");
1416 	}
1417 
1418 	if (j->flags.inherit_suppl_gids) {
1419 		if (initgroups(j->user, j->usergid))
1420 			pdie("initgroups(%s, %d) failed", j->user, j->usergid);
1421 	} else if (j->flags.set_suppl_gids) {
1422 		if (setgroups(j->suppl_gid_count, j->suppl_gid_list))
1423 			pdie("setgroups(suppl_gids) failed");
1424 	} else if (!j->flags.keep_suppl_gids) {
1425 		/*
1426 		 * Only attempt to clear supplementary groups if we are changing
1427 		 * users or groups.
1428 		 */
1429 		if ((j->flags.uid || j->flags.gid) && setgroups(0, NULL))
1430 			pdie("setgroups(0, NULL) failed");
1431 	}
1432 
1433 	if (j->flags.gid && setresgid(j->gid, j->gid, j->gid))
1434 		pdie("setresgid(%d, %d, %d) failed", j->gid, j->gid, j->gid);
1435 
1436 	if (j->flags.uid && setresuid(j->uid, j->uid, j->uid))
1437 		pdie("setresuid(%d, %d, %d) failed", j->uid, j->uid, j->uid);
1438 }
1439 
drop_capbset(uint64_t keep_mask,unsigned int last_valid_cap)1440 static void drop_capbset(uint64_t keep_mask, unsigned int last_valid_cap)
1441 {
1442 	const uint64_t one = 1;
1443 	unsigned int i;
1444 	for (i = 0; i < sizeof(keep_mask) * 8 && i <= last_valid_cap; ++i) {
1445 		if (keep_mask & (one << i))
1446 			continue;
1447 		if (prctl(PR_CAPBSET_DROP, i))
1448 			pdie("could not drop capability from bounding set");
1449 	}
1450 }
1451 
drop_caps(const struct minijail * j,unsigned int last_valid_cap)1452 static void drop_caps(const struct minijail *j, unsigned int last_valid_cap)
1453 {
1454 	if (!j->flags.use_caps)
1455 		return;
1456 
1457 	cap_t caps = cap_get_proc();
1458 	cap_value_t flag[1];
1459 	const size_t ncaps = sizeof(j->caps) * 8;
1460 	const uint64_t one = 1;
1461 	unsigned int i;
1462 	if (!caps)
1463 		die("can't get process caps");
1464 	if (cap_clear(caps))
1465 		die("can't clear caps");
1466 
1467 	for (i = 0; i < ncaps && i <= last_valid_cap; ++i) {
1468 		/* Keep CAP_SETPCAP for dropping bounding set bits. */
1469 		if (i != CAP_SETPCAP && !(j->caps & (one << i)))
1470 			continue;
1471 		flag[0] = i;
1472 		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET))
1473 			die("can't add effective cap");
1474 		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET))
1475 			die("can't add permitted cap");
1476 		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET))
1477 			die("can't add inheritable cap");
1478 	}
1479 	if (cap_set_proc(caps))
1480 		die("can't apply initial cleaned capset");
1481 
1482 	/*
1483 	 * Instead of dropping bounding set first, do it here in case
1484 	 * the caller had a more permissive bounding set which could
1485 	 * have been used above to raise a capability that wasn't already
1486 	 * present. This requires CAP_SETPCAP, so we raised/kept it above.
1487 	 */
1488 	drop_capbset(j->caps, last_valid_cap);
1489 
1490 	/* If CAP_SETPCAP wasn't specifically requested, now we remove it. */
1491 	if ((j->caps & (one << CAP_SETPCAP)) == 0) {
1492 		flag[0] = CAP_SETPCAP;
1493 		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR))
1494 			die("can't clear effective cap");
1495 		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR))
1496 			die("can't clear permitted cap");
1497 		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR))
1498 			die("can't clear inheritable cap");
1499 	}
1500 
1501 	if (cap_set_proc(caps))
1502 		die("can't apply final cleaned capset");
1503 
1504 	/*
1505 	 * If ambient capabilities are supported, clear all capabilities first,
1506 	 * then raise the requested ones.
1507 	 */
1508 	if (j->flags.set_ambient_caps) {
1509 		if (!cap_ambient_supported()) {
1510 			pdie("ambient capabilities not supported");
1511 		}
1512 		if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0, 0, 0) !=
1513 		    0) {
1514 			pdie("can't clear ambient capabilities");
1515 		}
1516 
1517 		for (i = 0; i < ncaps && i <= last_valid_cap; ++i) {
1518 			if (!(j->caps & (one << i)))
1519 				continue;
1520 
1521 			if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, i, 0,
1522 				  0) != 0) {
1523 				pdie("prctl(PR_CAP_AMBIENT, "
1524 				     "PR_CAP_AMBIENT_RAISE, %u) failed",
1525 				     i);
1526 			}
1527 		}
1528 	}
1529 
1530 	cap_free(caps);
1531 }
1532 
set_seccomp_filter(const struct minijail * j)1533 static void set_seccomp_filter(const struct minijail *j)
1534 {
1535 	/*
1536 	 * Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c>
1537 	 * in the kernel source tree for an explanation of the parameters.
1538 	 */
1539 	if (j->flags.no_new_privs) {
1540 		if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
1541 			pdie("prctl(PR_SET_NO_NEW_PRIVS)");
1542 	}
1543 
1544 	/*
1545 	 * Code running with ASan
1546 	 * (https://github.com/google/sanitizers/wiki/AddressSanitizer)
1547 	 * will make system calls not included in the syscall filter policy,
1548 	 * which will likely crash the program. Skip setting seccomp filter in
1549 	 * that case.
1550 	 * 'running_with_asan()' has no inputs and is completely defined at
1551 	 * build time, so this cannot be used by an attacker to skip setting
1552 	 * seccomp filter.
1553 	 */
1554 	if (j->flags.seccomp_filter && running_with_asan()) {
1555 		warn("running with ASan, not setting seccomp filter");
1556 		return;
1557 	}
1558 
1559 	if (j->flags.seccomp_filter) {
1560 		if (j->flags.seccomp_filter_logging) {
1561 			/*
1562 			 * If logging seccomp filter failures,
1563 			 * install the SIGSYS handler first.
1564 			 */
1565 			if (install_sigsys_handler())
1566 				pdie("failed to install SIGSYS handler");
1567 			warn("logging seccomp filter failures");
1568 		} else if (j->flags.seccomp_filter_tsync) {
1569 			/*
1570 			 * If setting thread sync,
1571 			 * reset the SIGSYS signal handler so that
1572 			 * the entire thread group is killed.
1573 			 */
1574 			if (signal(SIGSYS, SIG_DFL) == SIG_ERR)
1575 				pdie("failed to reset SIGSYS disposition");
1576 			info("reset SIGSYS disposition");
1577 		}
1578 	}
1579 
1580 	/*
1581 	 * Install the syscall filter.
1582 	 */
1583 	if (j->flags.seccomp_filter) {
1584 		if (j->flags.seccomp_filter_tsync) {
1585 			if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
1586 					SECCOMP_FILTER_FLAG_TSYNC,
1587 					j->filter_prog)) {
1588 				pdie("seccomp(tsync) failed");
1589 			}
1590 		} else {
1591 			if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
1592 				  j->filter_prog)) {
1593 				pdie("prctl(seccomp_filter) failed");
1594 			}
1595 		}
1596 	}
1597 }
1598 
1599 static pid_t forward_pid = -1;
1600 
forward_signal(int nr,siginfo_t * siginfo,void * void_context)1601 static void forward_signal(__attribute__((unused)) int nr,
1602 			   __attribute__((unused)) siginfo_t *siginfo,
1603 			   __attribute__((unused)) void *void_context)
1604 {
1605 	if (forward_pid != -1) {
1606 		kill(forward_pid, nr);
1607 	}
1608 }
1609 
install_signal_handlers(void)1610 static void install_signal_handlers(void)
1611 {
1612 	struct sigaction act;
1613 
1614 	memset(&act, 0, sizeof(act));
1615 	act.sa_sigaction = &forward_signal;
1616 	act.sa_flags = SA_SIGINFO | SA_RESTART;
1617 
1618 	/* Handle all signals, except SIGCHLD. */
1619 	for (int nr = 1; nr < NSIG; nr++) {
1620 		/*
1621 		 * We don't care if we get EINVAL: that just means that we
1622 		 * can't handle this signal, so let's skip it and continue.
1623 		 */
1624 		sigaction(nr, &act, NULL);
1625 	}
1626 	/* Reset SIGCHLD's handler. */
1627 	signal(SIGCHLD, SIG_DFL);
1628 
1629 	/* Handle real-time signals. */
1630 	for (int nr = SIGRTMIN; nr <= SIGRTMAX; nr++) {
1631 		sigaction(nr, &act, NULL);
1632 	}
1633 }
1634 
minijail_enter(const struct minijail * j)1635 void API minijail_enter(const struct minijail *j)
1636 {
1637 	/*
1638 	 * If we're dropping caps, get the last valid cap from /proc now,
1639 	 * since /proc can be unmounted before drop_caps() is called.
1640 	 */
1641 	unsigned int last_valid_cap = 0;
1642 	if (j->flags.capbset_drop || j->flags.use_caps)
1643 		last_valid_cap = get_last_valid_cap();
1644 
1645 	if (j->flags.pids)
1646 		die("tried to enter a pid-namespaced jail;"
1647 		    " try minijail_run()?");
1648 
1649 	if (j->flags.inherit_suppl_gids && !j->user)
1650 		die("cannot inherit supplementary groups without setting a "
1651 		    "username");
1652 
1653 	/*
1654 	 * We can't recover from failures if we've dropped privileges partially,
1655 	 * so we don't even try. If any of our operations fail, we abort() the
1656 	 * entire process.
1657 	 */
1658 	if (j->flags.enter_vfs && setns(j->mountns_fd, CLONE_NEWNS))
1659 		pdie("setns(CLONE_NEWNS) failed");
1660 
1661 	if (j->flags.vfs) {
1662 		if (unshare(CLONE_NEWNS))
1663 			pdie("unshare(CLONE_NEWNS) failed");
1664 		/*
1665 		 * Unless asked not to, remount all filesystems as private.
1666 		 * If they are shared, new bind mounts will creep out of our
1667 		 * namespace.
1668 		 * https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
1669 		 */
1670 		if (!j->flags.skip_remount_private) {
1671 			if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL))
1672 				pdie("mount(NULL, /, NULL, MS_REC | MS_PRIVATE,"
1673 				     " NULL) failed");
1674 		}
1675 	}
1676 
1677 	if (j->flags.ipc && unshare(CLONE_NEWIPC)) {
1678 		pdie("unshare(CLONE_NEWIPC) failed");
1679 	}
1680 
1681 	if (j->flags.uts) {
1682 		if (unshare(CLONE_NEWUTS))
1683 			pdie("unshare(CLONE_NEWUTS) failed");
1684 
1685 		if (j->hostname && sethostname(j->hostname, strlen(j->hostname)))
1686 			pdie("sethostname(%s) failed", j->hostname);
1687 	}
1688 
1689 	if (j->flags.enter_net) {
1690 		if (setns(j->netns_fd, CLONE_NEWNET))
1691 			pdie("setns(CLONE_NEWNET) failed");
1692 	} else if (j->flags.net) {
1693 		if (unshare(CLONE_NEWNET))
1694 			pdie("unshare(CLONE_NEWNET) failed");
1695 		config_net_loopback();
1696 	}
1697 
1698 	if (j->flags.ns_cgroups && unshare(CLONE_NEWCGROUP))
1699 		pdie("unshare(CLONE_NEWCGROUP) failed");
1700 
1701 	if (j->flags.new_session_keyring) {
1702 		if (syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING, NULL) < 0)
1703 			pdie("keyctl(KEYCTL_JOIN_SESSION_KEYRING) failed");
1704 	}
1705 
1706 	if (j->flags.chroot && enter_chroot(j))
1707 		pdie("chroot");
1708 
1709 	if (j->flags.pivot_root && enter_pivot_root(j))
1710 		pdie("pivot_root");
1711 
1712 	if (j->flags.mount_tmp && mount_tmp(j))
1713 		pdie("mount_tmp");
1714 
1715 	if (j->flags.remount_proc_ro && remount_proc_readonly(j))
1716 		pdie("remount");
1717 
1718 	/*
1719 	 * If we're only dropping capabilities from the bounding set, but not
1720 	 * from the thread's (permitted|inheritable|effective) sets, do it now.
1721 	 */
1722 	if (j->flags.capbset_drop) {
1723 		drop_capbset(j->cap_bset, last_valid_cap);
1724 	}
1725 
1726 	if (j->flags.use_caps) {
1727 		/*
1728 		 * POSIX capabilities are a bit tricky. If we drop our
1729 		 * capability to change uids, our attempt to use setuid()
1730 		 * below will fail. Hang on to root caps across setuid(), then
1731 		 * lock securebits.
1732 		 */
1733 		if (prctl(PR_SET_KEEPCAPS, 1))
1734 			pdie("prctl(PR_SET_KEEPCAPS) failed");
1735 
1736 		if (lock_securebits(j->securebits_skip_mask) < 0) {
1737 			pdie("locking securebits failed");
1738 		}
1739 	}
1740 
1741 	if (j->flags.no_new_privs) {
1742 		/*
1743 		 * If we're setting no_new_privs, we can drop privileges
1744 		 * before setting seccomp filter. This way filter policies
1745 		 * don't need to allow privilege-dropping syscalls.
1746 		 */
1747 		drop_ugid(j);
1748 		drop_caps(j, last_valid_cap);
1749 		set_seccomp_filter(j);
1750 	} else {
1751 		/*
1752 		 * If we're not setting no_new_privs,
1753 		 * we need to set seccomp filter *before* dropping privileges.
1754 		 * WARNING: this means that filter policies *must* allow
1755 		 * setgroups()/setresgid()/setresuid() for dropping root and
1756 		 * capget()/capset()/prctl() for dropping caps.
1757 		 */
1758 		set_seccomp_filter(j);
1759 		drop_ugid(j);
1760 		drop_caps(j, last_valid_cap);
1761 	}
1762 
1763 	/*
1764 	 * Select the specified alternate syscall table.  The table must not
1765 	 * block prctl(2) if we're using seccomp as well.
1766 	 */
1767 	if (j->flags.alt_syscall) {
1768 		if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table))
1769 			pdie("prctl(PR_ALT_SYSCALL) failed");
1770 	}
1771 
1772 	/*
1773 	 * seccomp has to come last since it cuts off all the other
1774 	 * privilege-dropping syscalls :)
1775 	 */
1776 	if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) {
1777 		if ((errno == EINVAL) && seccomp_can_softfail()) {
1778 			warn("seccomp not supported");
1779 			return;
1780 		}
1781 		pdie("prctl(PR_SET_SECCOMP) failed");
1782 	}
1783 }
1784 
1785 /* TODO(wad): will visibility affect this variable? */
1786 static int init_exitstatus = 0;
1787 
init_term(int sig)1788 void init_term(int __attribute__ ((unused)) sig)
1789 {
1790 	_exit(init_exitstatus);
1791 }
1792 
init(pid_t rootpid)1793 void init(pid_t rootpid)
1794 {
1795 	pid_t pid;
1796 	int status;
1797 	/* So that we exit with the right status. */
1798 	signal(SIGTERM, init_term);
1799 	/* TODO(wad): self jail with seccomp filters here. */
1800 	while ((pid = wait(&status)) > 0) {
1801 		/*
1802 		 * This loop will only end when either there are no processes
1803 		 * left inside our pid namespace or we get a signal.
1804 		 */
1805 		if (pid == rootpid)
1806 			init_exitstatus = status;
1807 	}
1808 	if (!WIFEXITED(init_exitstatus))
1809 		_exit(MINIJAIL_ERR_INIT);
1810 	_exit(WEXITSTATUS(init_exitstatus));
1811 }
1812 
minijail_from_fd(int fd,struct minijail * j)1813 int API minijail_from_fd(int fd, struct minijail *j)
1814 {
1815 	size_t sz = 0;
1816 	size_t bytes = read(fd, &sz, sizeof(sz));
1817 	char *buf;
1818 	int r;
1819 	if (sizeof(sz) != bytes)
1820 		return -EINVAL;
1821 	if (sz > USHRT_MAX)	/* arbitrary sanity check */
1822 		return -E2BIG;
1823 	buf = malloc(sz);
1824 	if (!buf)
1825 		return -ENOMEM;
1826 	bytes = read(fd, buf, sz);
1827 	if (bytes != sz) {
1828 		free(buf);
1829 		return -EINVAL;
1830 	}
1831 	r = minijail_unmarshal(j, buf, sz);
1832 	free(buf);
1833 	return r;
1834 }
1835 
minijail_to_fd(struct minijail * j,int fd)1836 int API minijail_to_fd(struct minijail *j, int fd)
1837 {
1838 	char *buf;
1839 	size_t sz = minijail_size(j);
1840 	ssize_t written;
1841 	int r;
1842 
1843 	if (!sz)
1844 		return -EINVAL;
1845 	buf = malloc(sz);
1846 	r = minijail_marshal(j, buf, sz);
1847 	if (r) {
1848 		free(buf);
1849 		return r;
1850 	}
1851 	/* Sends [size][minijail]. */
1852 	written = write(fd, &sz, sizeof(sz));
1853 	if (written != sizeof(sz)) {
1854 		free(buf);
1855 		return -EFAULT;
1856 	}
1857 	written = write(fd, buf, sz);
1858 	if (written < 0 || (size_t) written != sz) {
1859 		free(buf);
1860 		return -EFAULT;
1861 	}
1862 	free(buf);
1863 	return 0;
1864 }
1865 
setup_preload(void)1866 int setup_preload(void)
1867 {
1868 #if defined(__ANDROID__)
1869 	/* Don't use LDPRELOAD on Android. */
1870 	return 0;
1871 #else
1872 	char *oldenv = getenv(kLdPreloadEnvVar) ? : "";
1873 	char *newenv = malloc(strlen(oldenv) + 2 + strlen(PRELOADPATH));
1874 	if (!newenv)
1875 		return -ENOMEM;
1876 
1877 	/* Only insert a separating space if we have something to separate... */
1878 	sprintf(newenv, "%s%s%s", oldenv, strlen(oldenv) ? " " : "",
1879 		PRELOADPATH);
1880 
1881 	/* setenv() makes a copy of the string we give it. */
1882 	setenv(kLdPreloadEnvVar, newenv, 1);
1883 	free(newenv);
1884 	return 0;
1885 #endif
1886 }
1887 
setup_pipe(int fds[2])1888 static int setup_pipe(int fds[2])
1889 {
1890 	int r = pipe(fds);
1891 	char fd_buf[11];
1892 	if (r)
1893 		return r;
1894 	r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]);
1895 	if (r <= 0)
1896 		return -EINVAL;
1897 	setenv(kFdEnvVar, fd_buf, 1);
1898 	return 0;
1899 }
1900 
close_open_fds(int * inheritable_fds,size_t size)1901 static int close_open_fds(int *inheritable_fds, size_t size)
1902 {
1903 	const char *kFdPath = "/proc/self/fd";
1904 
1905 	DIR *d = opendir(kFdPath);
1906 	struct dirent *dir_entry;
1907 
1908 	if (d == NULL)
1909 		return -1;
1910 	int dir_fd = dirfd(d);
1911 	while ((dir_entry = readdir(d)) != NULL) {
1912 		size_t i;
1913 		char *end;
1914 		bool should_close = true;
1915 		const int fd = strtol(dir_entry->d_name, &end, 10);
1916 
1917 		if ((*end) != '\0') {
1918 			continue;
1919 		}
1920 		/*
1921 		 * We might have set up some pipes that we want to share with
1922 		 * the parent process, and should not be closed.
1923 		 */
1924 		for (i = 0; i < size; ++i) {
1925 			if (fd == inheritable_fds[i]) {
1926 				should_close = false;
1927 				break;
1928 			}
1929 		}
1930 		/* Also avoid closing the directory fd. */
1931 		if (should_close && fd != dir_fd)
1932 			close(fd);
1933 	}
1934 	closedir(d);
1935 	return 0;
1936 }
1937 
1938 int minijail_run_internal(struct minijail *j, const char *filename,
1939 			  char *const argv[], pid_t *pchild_pid,
1940 			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1941 			  int use_preload);
1942 
minijail_run(struct minijail * j,const char * filename,char * const argv[])1943 int API minijail_run(struct minijail *j, const char *filename,
1944 		     char *const argv[])
1945 {
1946 	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1947 				     true);
1948 }
1949 
minijail_run_pid(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid)1950 int API minijail_run_pid(struct minijail *j, const char *filename,
1951 			 char *const argv[], pid_t *pchild_pid)
1952 {
1953 	return minijail_run_internal(j, filename, argv, pchild_pid,
1954 				     NULL, NULL, NULL, true);
1955 }
1956 
minijail_run_pipe(struct minijail * j,const char * filename,char * const argv[],int * pstdin_fd)1957 int API minijail_run_pipe(struct minijail *j, const char *filename,
1958 			  char *const argv[], int *pstdin_fd)
1959 {
1960 	return minijail_run_internal(j, filename, argv, NULL, pstdin_fd,
1961 				     NULL, NULL, true);
1962 }
1963 
minijail_run_pid_pipes(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1964 int API minijail_run_pid_pipes(struct minijail *j, const char *filename,
1965 			       char *const argv[], pid_t *pchild_pid,
1966 			       int *pstdin_fd, int *pstdout_fd, int *pstderr_fd)
1967 {
1968 	return minijail_run_internal(j, filename, argv, pchild_pid,
1969 				     pstdin_fd, pstdout_fd, pstderr_fd, true);
1970 }
1971 
minijail_run_no_preload(struct minijail * j,const char * filename,char * const argv[])1972 int API minijail_run_no_preload(struct minijail *j, const char *filename,
1973 				char *const argv[])
1974 {
1975 	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1976 				     false);
1977 }
1978 
minijail_run_pid_pipes_no_preload(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd)1979 int API minijail_run_pid_pipes_no_preload(struct minijail *j,
1980 					  const char *filename,
1981 					  char *const argv[],
1982 					  pid_t *pchild_pid,
1983 					  int *pstdin_fd, int *pstdout_fd,
1984 					  int *pstderr_fd)
1985 {
1986 	return minijail_run_internal(j, filename, argv, pchild_pid,
1987 				     pstdin_fd, pstdout_fd, pstderr_fd, false);
1988 }
1989 
minijail_run_internal(struct minijail * j,const char * filename,char * const argv[],pid_t * pchild_pid,int * pstdin_fd,int * pstdout_fd,int * pstderr_fd,int use_preload)1990 int minijail_run_internal(struct minijail *j, const char *filename,
1991 			  char *const argv[], pid_t *pchild_pid,
1992 			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1993 			  int use_preload)
1994 {
1995 	char *oldenv, *oldenv_copy = NULL;
1996 	pid_t child_pid;
1997 	int pipe_fds[2];
1998 	int stdin_fds[2];
1999 	int stdout_fds[2];
2000 	int stderr_fds[2];
2001 	int child_sync_pipe_fds[2];
2002 	int sync_child = 0;
2003 	int ret;
2004 	/* We need to remember this across the minijail_preexec() call. */
2005 	int pid_namespace = j->flags.pids;
2006 	int do_init = j->flags.do_init;
2007 
2008 	if (use_preload) {
2009 		oldenv = getenv(kLdPreloadEnvVar);
2010 		if (oldenv) {
2011 			oldenv_copy = strdup(oldenv);
2012 			if (!oldenv_copy)
2013 				return -ENOMEM;
2014 		}
2015 
2016 		if (setup_preload())
2017 			return -EFAULT;
2018 	}
2019 
2020 	if (!use_preload) {
2021 		if (j->flags.use_caps && j->caps != 0 &&
2022 		    !j->flags.set_ambient_caps) {
2023 			die("non-empty, non-ambient capabilities are not "
2024 			    "supported without LD_PRELOAD");
2025 		}
2026 	}
2027 
2028 	/*
2029 	 * Make the process group ID of this process equal to its PID.
2030 	 * In the non-interactive case (e.g. when the parent process is started
2031 	 * from init) this ensures the parent process and the jailed process
2032 	 * can be killed together.
2033 	 * When the parent process is started from the console this ensures
2034 	 * the call to setsid(2) in the jailed process succeeds.
2035 	 *
2036 	 * Don't fail on EPERM, since setpgid(0, 0) can only EPERM when
2037 	 * the process is already a process group leader.
2038 	 */
2039 	if (setpgid(0 /* use calling PID */, 0 /* make PGID = PID */)) {
2040 		if (errno != EPERM) {
2041 			pdie("setpgid(0, 0) failed");
2042 		}
2043 	}
2044 
2045 	if (use_preload) {
2046 		/*
2047 		 * Before we fork(2) and execve(2) the child process, we need
2048 		 * to open a pipe(2) to send the minijail configuration over.
2049 		 */
2050 		if (setup_pipe(pipe_fds))
2051 			return -EFAULT;
2052 	}
2053 
2054 	/*
2055 	 * If we want to write to the child process' standard input,
2056 	 * create the pipe(2) now.
2057 	 */
2058 	if (pstdin_fd) {
2059 		if (pipe(stdin_fds))
2060 			return -EFAULT;
2061 	}
2062 
2063 	/*
2064 	 * If we want to read from the child process' standard output,
2065 	 * create the pipe(2) now.
2066 	 */
2067 	if (pstdout_fd) {
2068 		if (pipe(stdout_fds))
2069 			return -EFAULT;
2070 	}
2071 
2072 	/*
2073 	 * If we want to read from the child process' standard error,
2074 	 * create the pipe(2) now.
2075 	 */
2076 	if (pstderr_fd) {
2077 		if (pipe(stderr_fds))
2078 			return -EFAULT;
2079 	}
2080 
2081 	/*
2082 	 * If we want to set up a new uid/gid map in the user namespace,
2083 	 * or if we need to add the child process to cgroups, create the pipe(2)
2084 	 * to sync between parent and child.
2085 	 */
2086 	if (j->flags.userns || j->flags.cgroups) {
2087 		sync_child = 1;
2088 		if (pipe(child_sync_pipe_fds))
2089 			return -EFAULT;
2090 	}
2091 
2092 	/*
2093 	 * Use sys_clone() if and only if we're creating a pid namespace.
2094 	 *
2095 	 * tl;dr: WARNING: do not mix pid namespaces and multithreading.
2096 	 *
2097 	 * In multithreaded programs, there are a bunch of locks inside libc,
2098 	 * some of which may be held by other threads at the time that we call
2099 	 * minijail_run_pid(). If we call fork(), glibc does its level best to
2100 	 * ensure that we hold all of these locks before it calls clone()
2101 	 * internally and drop them after clone() returns, but when we call
2102 	 * sys_clone(2) directly, all that gets bypassed and we end up with a
2103 	 * child address space where some of libc's important locks are held by
2104 	 * other threads (which did not get cloned, and hence will never release
2105 	 * those locks). This is okay so long as we call exec() immediately
2106 	 * after, but a bunch of seemingly-innocent libc functions like setenv()
2107 	 * take locks.
2108 	 *
2109 	 * Hence, only call sys_clone() if we need to, in order to get at pid
2110 	 * namespacing. If we follow this path, the child's address space might
2111 	 * have broken locks; you may only call functions that do not acquire
2112 	 * any locks.
2113 	 *
2114 	 * Unfortunately, fork() acquires every lock it can get its hands on, as
2115 	 * previously detailed, so this function is highly likely to deadlock
2116 	 * later on (see "deadlock here") if we're multithreaded.
2117 	 *
2118 	 * We might hack around this by having the clone()d child (init of the
2119 	 * pid namespace) return directly, rather than leaving the clone()d
2120 	 * process hanging around to be init for the new namespace (and having
2121 	 * its fork()ed child return in turn), but that process would be
2122 	 * crippled with its libc locks potentially broken. We might try
2123 	 * fork()ing in the parent before we clone() to ensure that we own all
2124 	 * the locks, but then we have to have the forked child hanging around
2125 	 * consuming resources (and possibly having file descriptors / shared
2126 	 * memory regions / etc attached). We'd need to keep the child around to
2127 	 * avoid having its children get reparented to init.
2128 	 *
2129 	 * TODO(ellyjones): figure out if the "forked child hanging around"
2130 	 * problem is fixable or not. It would be nice if we worked in this
2131 	 * case.
2132 	 */
2133 	if (pid_namespace) {
2134 		int clone_flags = CLONE_NEWPID | SIGCHLD;
2135 		if (j->flags.userns)
2136 			clone_flags |= CLONE_NEWUSER;
2137 		child_pid = syscall(SYS_clone, clone_flags, NULL);
2138 	} else {
2139 		child_pid = fork();
2140 	}
2141 
2142 	if (child_pid < 0) {
2143 		if (use_preload) {
2144 			free(oldenv_copy);
2145 		}
2146 		die("failed to fork child");
2147 	}
2148 
2149 	if (child_pid) {
2150 		if (use_preload) {
2151 			/* Restore parent's LD_PRELOAD. */
2152 			if (oldenv_copy) {
2153 				setenv(kLdPreloadEnvVar, oldenv_copy, 1);
2154 				free(oldenv_copy);
2155 			} else {
2156 				unsetenv(kLdPreloadEnvVar);
2157 			}
2158 			unsetenv(kFdEnvVar);
2159 		}
2160 
2161 		j->initpid = child_pid;
2162 
2163 		if (j->flags.forward_signals) {
2164 			forward_pid = child_pid;
2165 			install_signal_handlers();
2166 		}
2167 
2168 		if (j->flags.pid_file)
2169 			write_pid_file_or_die(j);
2170 
2171 		if (j->flags.cgroups)
2172 			add_to_cgroups_or_die(j);
2173 
2174 		if (j->rlimit_count)
2175 			set_rlimits_or_die(j);
2176 
2177 		if (j->flags.userns)
2178 			write_ugid_maps_or_die(j);
2179 
2180 		if (sync_child)
2181 			parent_setup_complete(child_sync_pipe_fds);
2182 
2183 		if (use_preload) {
2184 			/* Send marshalled minijail. */
2185 			close(pipe_fds[0]);	/* read endpoint */
2186 			ret = minijail_to_fd(j, pipe_fds[1]);
2187 			close(pipe_fds[1]);	/* write endpoint */
2188 			if (ret) {
2189 				kill(j->initpid, SIGKILL);
2190 				die("failed to send marshalled minijail");
2191 			}
2192 		}
2193 
2194 		if (pchild_pid)
2195 			*pchild_pid = child_pid;
2196 
2197 		/*
2198 		 * If we want to write to the child process' standard input,
2199 		 * set up the write end of the pipe.
2200 		 */
2201 		if (pstdin_fd)
2202 			*pstdin_fd = setup_pipe_end(stdin_fds,
2203 						    1 /* write end */);
2204 
2205 		/*
2206 		 * If we want to read from the child process' standard output,
2207 		 * set up the read end of the pipe.
2208 		 */
2209 		if (pstdout_fd)
2210 			*pstdout_fd = setup_pipe_end(stdout_fds,
2211 						     0 /* read end */);
2212 
2213 		/*
2214 		 * If we want to read from the child process' standard error,
2215 		 * set up the read end of the pipe.
2216 		 */
2217 		if (pstderr_fd)
2218 			*pstderr_fd = setup_pipe_end(stderr_fds,
2219 						     0 /* read end */);
2220 
2221 		return 0;
2222 	}
2223 	/* Child process. */
2224 	free(oldenv_copy);
2225 
2226 	if (j->flags.reset_signal_mask) {
2227 		sigset_t signal_mask;
2228 		if (sigemptyset(&signal_mask) != 0)
2229 			pdie("sigemptyset failed");
2230 		if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0)
2231 			pdie("sigprocmask failed");
2232 	}
2233 
2234 	if (j->flags.close_open_fds) {
2235 		const size_t kMaxInheritableFdsSize = 10;
2236 		int inheritable_fds[kMaxInheritableFdsSize];
2237 		size_t size = 0;
2238 		if (use_preload) {
2239 			inheritable_fds[size++] = pipe_fds[0];
2240 			inheritable_fds[size++] = pipe_fds[1];
2241 		}
2242 		if (sync_child) {
2243 			inheritable_fds[size++] = child_sync_pipe_fds[0];
2244 			inheritable_fds[size++] = child_sync_pipe_fds[1];
2245 		}
2246 		if (pstdin_fd) {
2247 			inheritable_fds[size++] = stdin_fds[0];
2248 			inheritable_fds[size++] = stdin_fds[1];
2249 		}
2250 		if (pstdout_fd) {
2251 			inheritable_fds[size++] = stdout_fds[0];
2252 			inheritable_fds[size++] = stdout_fds[1];
2253 		}
2254 		if (pstderr_fd) {
2255 			inheritable_fds[size++] = stderr_fds[0];
2256 			inheritable_fds[size++] = stderr_fds[1];
2257 		}
2258 
2259 		if (close_open_fds(inheritable_fds, size) < 0)
2260 			die("failed to close open file descriptors");
2261 	}
2262 
2263 	if (sync_child)
2264 		wait_for_parent_setup(child_sync_pipe_fds);
2265 
2266 	if (j->flags.userns)
2267 		enter_user_namespace(j);
2268 
2269 	/*
2270 	 * If we want to write to the jailed process' standard input,
2271 	 * set up the read end of the pipe.
2272 	 */
2273 	if (pstdin_fd) {
2274 		if (setup_and_dupe_pipe_end(stdin_fds, 0 /* read end */,
2275 					    STDIN_FILENO) < 0)
2276 			die("failed to set up stdin pipe");
2277 	}
2278 
2279 	/*
2280 	 * If we want to read from the jailed process' standard output,
2281 	 * set up the write end of the pipe.
2282 	 */
2283 	if (pstdout_fd) {
2284 		if (setup_and_dupe_pipe_end(stdout_fds, 1 /* write end */,
2285 					    STDOUT_FILENO) < 0)
2286 			die("failed to set up stdout pipe");
2287 	}
2288 
2289 	/*
2290 	 * If we want to read from the jailed process' standard error,
2291 	 * set up the write end of the pipe.
2292 	 */
2293 	if (pstderr_fd) {
2294 		if (setup_and_dupe_pipe_end(stderr_fds, 1 /* write end */,
2295 					    STDERR_FILENO) < 0)
2296 			die("failed to set up stderr pipe");
2297 	}
2298 
2299 	/*
2300 	 * If any of stdin, stdout, or stderr are TTYs, create a new session.
2301 	 * This prevents the jailed process from using the TIOCSTI ioctl
2302 	 * to push characters into the parent process terminal's input buffer,
2303 	 * therefore escaping the jail.
2304 	 */
2305 	if (isatty(STDIN_FILENO) || isatty(STDOUT_FILENO) ||
2306 	    isatty(STDERR_FILENO)) {
2307 		if (setsid() < 0) {
2308 			pdie("setsid() failed");
2309 		}
2310 	}
2311 
2312 	/* If running an init program, let it decide when/how to mount /proc. */
2313 	if (pid_namespace && !do_init)
2314 		j->flags.remount_proc_ro = 0;
2315 
2316 	if (use_preload) {
2317 		/* Strip out flags that cannot be inherited across execve(2). */
2318 		minijail_preexec(j);
2319 	} else {
2320 		/*
2321 		 * If not using LD_PRELOAD, do all jailing before execve(2).
2322 		 * Note that PID namespaces can only be entered on fork(2),
2323 		 * so that flag is still cleared.
2324 		 */
2325 		j->flags.pids = 0;
2326 	}
2327 	/* Jail this process, then execve(2) the target. */
2328 	minijail_enter(j);
2329 
2330 	if (pid_namespace && do_init) {
2331 		/*
2332 		 * pid namespace: this process will become init inside the new
2333 		 * namespace. We don't want all programs we might exec to have
2334 		 * to know how to be init. Normally (do_init == 1) we fork off
2335 		 * a child to actually run the program. If |do_init == 0|, we
2336 		 * let the program keep pid 1 and be init.
2337 		 *
2338 		 * If we're multithreaded, we'll probably deadlock here. See
2339 		 * WARNING above.
2340 		 */
2341 		child_pid = fork();
2342 		if (child_pid < 0) {
2343 			_exit(child_pid);
2344 		} else if (child_pid > 0) {
2345 			/*
2346 			 * Best effort. Don't bother checking the return value.
2347 			 */
2348 			prctl(PR_SET_NAME, "minijail-init");
2349 			init(child_pid);	/* Never returns. */
2350 		}
2351 	}
2352 
2353 	/*
2354 	 * If we aren't pid-namespaced, or the jailed program asked to be init:
2355 	 *   calling process
2356 	 *   -> execve()-ing process
2357 	 * If we are:
2358 	 *   calling process
2359 	 *   -> init()-ing process
2360 	 *      -> execve()-ing process
2361 	 */
2362 	ret = execve(filename, argv, environ);
2363 	if (ret == -1) {
2364 		pwarn("execve(%s) failed", filename);
2365 	}
2366 	_exit(ret);
2367 }
2368 
minijail_kill(struct minijail * j)2369 int API minijail_kill(struct minijail *j)
2370 {
2371 	int st;
2372 	if (kill(j->initpid, SIGTERM))
2373 		return -errno;
2374 	if (waitpid(j->initpid, &st, 0) < 0)
2375 		return -errno;
2376 	return st;
2377 }
2378 
minijail_wait(struct minijail * j)2379 int API minijail_wait(struct minijail *j)
2380 {
2381 	int st;
2382 	if (waitpid(j->initpid, &st, 0) < 0)
2383 		return -errno;
2384 
2385 	if (!WIFEXITED(st)) {
2386 		int error_status = st;
2387 		if (WIFSIGNALED(st)) {
2388 			int signum = WTERMSIG(st);
2389 			warn("child process %d received signal %d",
2390 			     j->initpid, signum);
2391 			/*
2392 			 * We return MINIJAIL_ERR_JAIL if the process received
2393 			 * SIGSYS, which happens when a syscall is blocked by
2394 			 * seccomp filters.
2395 			 * If not, we do what bash(1) does:
2396 			 * $? = 128 + signum
2397 			 */
2398 			if (signum == SIGSYS) {
2399 				error_status = MINIJAIL_ERR_JAIL;
2400 			} else {
2401 				error_status = 128 + signum;
2402 			}
2403 		}
2404 		return error_status;
2405 	}
2406 
2407 	int exit_status = WEXITSTATUS(st);
2408 	if (exit_status != 0)
2409 		info("child process %d exited with status %d",
2410 		     j->initpid, exit_status);
2411 
2412 	return exit_status;
2413 }
2414 
minijail_destroy(struct minijail * j)2415 void API minijail_destroy(struct minijail *j)
2416 {
2417 	size_t i;
2418 
2419 	if (j->flags.seccomp_filter && j->filter_prog) {
2420 		free(j->filter_prog->filter);
2421 		free(j->filter_prog);
2422 	}
2423 	while (j->mounts_head) {
2424 		struct mountpoint *m = j->mounts_head;
2425 		j->mounts_head = j->mounts_head->next;
2426 		free(m->data);
2427 		free(m->type);
2428 		free(m->dest);
2429 		free(m->src);
2430 		free(m);
2431 	}
2432 	j->mounts_tail = NULL;
2433 	if (j->user)
2434 		free(j->user);
2435 	if (j->suppl_gid_list)
2436 		free(j->suppl_gid_list);
2437 	if (j->chrootdir)
2438 		free(j->chrootdir);
2439 	if (j->pid_file_path)
2440 		free(j->pid_file_path);
2441 	if (j->uidmap)
2442 		free(j->uidmap);
2443 	if (j->gidmap)
2444 		free(j->gidmap);
2445 	if (j->hostname)
2446 		free(j->hostname);
2447 	if (j->alt_syscall_table)
2448 		free(j->alt_syscall_table);
2449 	for (i = 0; i < j->cgroup_count; ++i)
2450 		free(j->cgroups[i]);
2451 	free(j);
2452 }
2453