1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74
75 #include "ralloc.h"
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "main/mtypes.h"
79 #include "util/bitset.h"
80 #include "register_allocate.h"
81
82 #define NO_REG ~0U
83
84 struct ra_reg {
85 BITSET_WORD *conflicts;
86 unsigned int *conflict_list;
87 unsigned int conflict_list_size;
88 unsigned int num_conflicts;
89 };
90
91 struct ra_regs {
92 struct ra_reg *regs;
93 unsigned int count;
94
95 struct ra_class **classes;
96 unsigned int class_count;
97
98 bool round_robin;
99 };
100
101 struct ra_class {
102 /**
103 * Bitset indicating which registers belong to this class.
104 *
105 * (If bit N is set, then register N belongs to this class.)
106 */
107 BITSET_WORD *regs;
108
109 /**
110 * p(B) in Runeson/Nyström paper.
111 *
112 * This is "how many regs are in the set."
113 */
114 unsigned int p;
115
116 /**
117 * q(B,C) (indexed by C, B is this register class) in
118 * Runeson/Nyström paper. This is "how many registers of B could
119 * the worst choice register from C conflict with".
120 */
121 unsigned int *q;
122 };
123
124 struct ra_node {
125 /** @{
126 *
127 * List of which nodes this node interferes with. This should be
128 * symmetric with the other node.
129 */
130 BITSET_WORD *adjacency;
131 unsigned int *adjacency_list;
132 unsigned int adjacency_list_size;
133 unsigned int adjacency_count;
134 /** @} */
135
136 unsigned int class;
137
138 /* Register, if assigned, or NO_REG. */
139 unsigned int reg;
140
141 /**
142 * Set when the node is in the trivially colorable stack. When
143 * set, the adjacency to this node is ignored, to implement the
144 * "remove the edge from the graph" in simplification without
145 * having to actually modify the adjacency_list.
146 */
147 bool in_stack;
148
149 /**
150 * The q total, as defined in the Runeson/Nyström paper, for all the
151 * interfering nodes not in the stack.
152 */
153 unsigned int q_total;
154
155 /* For an implementation that needs register spilling, this is the
156 * approximate cost of spilling this node.
157 */
158 float spill_cost;
159 };
160
161 struct ra_graph {
162 struct ra_regs *regs;
163 /**
164 * the variables that need register allocation.
165 */
166 struct ra_node *nodes;
167 unsigned int count; /**< count of nodes. */
168
169 unsigned int *stack;
170 unsigned int stack_count;
171
172 /**
173 * Tracks the start of the set of optimistically-colored registers in the
174 * stack.
175 */
176 unsigned int stack_optimistic_start;
177 };
178
179 /**
180 * Creates a set of registers for the allocator.
181 *
182 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
183 * using ralloc_free().
184 */
185 struct ra_regs *
ra_alloc_reg_set(void * mem_ctx,unsigned int count,bool need_conflict_lists)186 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
187 {
188 unsigned int i;
189 struct ra_regs *regs;
190
191 regs = rzalloc(mem_ctx, struct ra_regs);
192 regs->count = count;
193 regs->regs = rzalloc_array(regs, struct ra_reg, count);
194
195 for (i = 0; i < count; i++) {
196 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
197 BITSET_WORDS(count));
198 BITSET_SET(regs->regs[i].conflicts, i);
199
200 if (need_conflict_lists) {
201 regs->regs[i].conflict_list = ralloc_array(regs->regs,
202 unsigned int, 4);
203 regs->regs[i].conflict_list_size = 4;
204 regs->regs[i].conflict_list[0] = i;
205 } else {
206 regs->regs[i].conflict_list = NULL;
207 regs->regs[i].conflict_list_size = 0;
208 }
209 regs->regs[i].num_conflicts = 1;
210 }
211
212 return regs;
213 }
214
215 /**
216 * The register allocator by default prefers to allocate low register numbers,
217 * since it was written for hardware (gen4/5 Intel) that is limited in its
218 * multithreadedness by the number of registers used in a given shader.
219 *
220 * However, for hardware without that restriction, densely packed register
221 * allocation can put serious constraints on instruction scheduling. This
222 * function tells the allocator to rotate around the registers if possible as
223 * it allocates the nodes.
224 */
225 void
ra_set_allocate_round_robin(struct ra_regs * regs)226 ra_set_allocate_round_robin(struct ra_regs *regs)
227 {
228 regs->round_robin = true;
229 }
230
231 static void
ra_add_conflict_list(struct ra_regs * regs,unsigned int r1,unsigned int r2)232 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
233 {
234 struct ra_reg *reg1 = ®s->regs[r1];
235
236 if (reg1->conflict_list) {
237 if (reg1->conflict_list_size == reg1->num_conflicts) {
238 reg1->conflict_list_size *= 2;
239 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
240 unsigned int, reg1->conflict_list_size);
241 }
242 reg1->conflict_list[reg1->num_conflicts++] = r2;
243 }
244 BITSET_SET(reg1->conflicts, r2);
245 }
246
247 void
ra_add_reg_conflict(struct ra_regs * regs,unsigned int r1,unsigned int r2)248 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
249 {
250 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
251 ra_add_conflict_list(regs, r1, r2);
252 ra_add_conflict_list(regs, r2, r1);
253 }
254 }
255
256 /**
257 * Adds a conflict between base_reg and reg, and also between reg and
258 * anything that base_reg conflicts with.
259 *
260 * This can simplify code for setting up multiple register classes
261 * which are aggregates of some base hardware registers, compared to
262 * explicitly using ra_add_reg_conflict.
263 */
264 void
ra_add_transitive_reg_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg)265 ra_add_transitive_reg_conflict(struct ra_regs *regs,
266 unsigned int base_reg, unsigned int reg)
267 {
268 unsigned int i;
269
270 ra_add_reg_conflict(regs, reg, base_reg);
271
272 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
273 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
274 }
275 }
276
277 /**
278 * Makes every conflict on the given register transitive. In other words,
279 * every register that conflicts with r will now conflict with every other
280 * register conflicting with r.
281 *
282 * This can simplify code for setting up multiple register classes
283 * which are aggregates of some base hardware registers, compared to
284 * explicitly using ra_add_reg_conflict.
285 */
286 void
ra_make_reg_conflicts_transitive(struct ra_regs * regs,unsigned int r)287 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
288 {
289 struct ra_reg *reg = ®s->regs[r];
290 BITSET_WORD tmp;
291 int c;
292
293 BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
294 struct ra_reg *other = ®s->regs[c];
295 unsigned i;
296 for (i = 0; i < BITSET_WORDS(regs->count); i++)
297 other->conflicts[i] |= reg->conflicts[i];
298 }
299 }
300
301 unsigned int
ra_alloc_reg_class(struct ra_regs * regs)302 ra_alloc_reg_class(struct ra_regs *regs)
303 {
304 struct ra_class *class;
305
306 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
307 regs->class_count + 1);
308
309 class = rzalloc(regs, struct ra_class);
310 regs->classes[regs->class_count] = class;
311
312 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
313
314 return regs->class_count++;
315 }
316
317 void
ra_class_add_reg(struct ra_regs * regs,unsigned int c,unsigned int r)318 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
319 {
320 struct ra_class *class = regs->classes[c];
321
322 BITSET_SET(class->regs, r);
323 class->p++;
324 }
325
326 /**
327 * Returns true if the register belongs to the given class.
328 */
329 static bool
reg_belongs_to_class(unsigned int r,struct ra_class * c)330 reg_belongs_to_class(unsigned int r, struct ra_class *c)
331 {
332 return BITSET_TEST(c->regs, r);
333 }
334
335 /**
336 * Must be called after all conflicts and register classes have been
337 * set up and before the register set is used for allocation.
338 * To avoid costly q value computation, use the q_values paramater
339 * to pass precomputed q values to this function.
340 */
341 void
ra_set_finalize(struct ra_regs * regs,unsigned int ** q_values)342 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
343 {
344 unsigned int b, c;
345
346 for (b = 0; b < regs->class_count; b++) {
347 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
348 }
349
350 if (q_values) {
351 for (b = 0; b < regs->class_count; b++) {
352 for (c = 0; c < regs->class_count; c++) {
353 regs->classes[b]->q[c] = q_values[b][c];
354 }
355 }
356 } else {
357 /* Compute, for each class B and C, how many regs of B an
358 * allocation to C could conflict with.
359 */
360 for (b = 0; b < regs->class_count; b++) {
361 for (c = 0; c < regs->class_count; c++) {
362 unsigned int rc;
363 int max_conflicts = 0;
364
365 for (rc = 0; rc < regs->count; rc++) {
366 int conflicts = 0;
367 unsigned int i;
368
369 if (!reg_belongs_to_class(rc, regs->classes[c]))
370 continue;
371
372 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
373 unsigned int rb = regs->regs[rc].conflict_list[i];
374 if (reg_belongs_to_class(rb, regs->classes[b]))
375 conflicts++;
376 }
377 max_conflicts = MAX2(max_conflicts, conflicts);
378 }
379 regs->classes[b]->q[c] = max_conflicts;
380 }
381 }
382 }
383
384 for (b = 0; b < regs->count; b++) {
385 ralloc_free(regs->regs[b].conflict_list);
386 regs->regs[b].conflict_list = NULL;
387 }
388 }
389
390 static void
ra_add_node_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)391 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
392 {
393 BITSET_SET(g->nodes[n1].adjacency, n2);
394
395 if (n1 != n2) {
396 int n1_class = g->nodes[n1].class;
397 int n2_class = g->nodes[n2].class;
398 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
399 }
400
401 if (g->nodes[n1].adjacency_count >=
402 g->nodes[n1].adjacency_list_size) {
403 g->nodes[n1].adjacency_list_size *= 2;
404 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
405 unsigned int,
406 g->nodes[n1].adjacency_list_size);
407 }
408
409 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
410 g->nodes[n1].adjacency_count++;
411 }
412
413 struct ra_graph *
ra_alloc_interference_graph(struct ra_regs * regs,unsigned int count)414 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
415 {
416 struct ra_graph *g;
417 unsigned int i;
418
419 g = rzalloc(NULL, struct ra_graph);
420 g->regs = regs;
421 g->nodes = rzalloc_array(g, struct ra_node, count);
422 g->count = count;
423
424 g->stack = rzalloc_array(g, unsigned int, count);
425
426 for (i = 0; i < count; i++) {
427 int bitset_count = BITSET_WORDS(count);
428 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
429
430 g->nodes[i].adjacency_list_size = 4;
431 g->nodes[i].adjacency_list =
432 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
433 g->nodes[i].adjacency_count = 0;
434 g->nodes[i].q_total = 0;
435
436 ra_add_node_adjacency(g, i, i);
437 g->nodes[i].reg = NO_REG;
438 }
439
440 return g;
441 }
442
443 void
ra_set_node_class(struct ra_graph * g,unsigned int n,unsigned int class)444 ra_set_node_class(struct ra_graph *g,
445 unsigned int n, unsigned int class)
446 {
447 g->nodes[n].class = class;
448 }
449
450 void
ra_add_node_interference(struct ra_graph * g,unsigned int n1,unsigned int n2)451 ra_add_node_interference(struct ra_graph *g,
452 unsigned int n1, unsigned int n2)
453 {
454 if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
455 ra_add_node_adjacency(g, n1, n2);
456 ra_add_node_adjacency(g, n2, n1);
457 }
458 }
459
460 static bool
pq_test(struct ra_graph * g,unsigned int n)461 pq_test(struct ra_graph *g, unsigned int n)
462 {
463 int n_class = g->nodes[n].class;
464
465 return g->nodes[n].q_total < g->regs->classes[n_class]->p;
466 }
467
468 static void
decrement_q(struct ra_graph * g,unsigned int n)469 decrement_q(struct ra_graph *g, unsigned int n)
470 {
471 unsigned int i;
472 int n_class = g->nodes[n].class;
473
474 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
475 unsigned int n2 = g->nodes[n].adjacency_list[i];
476 unsigned int n2_class = g->nodes[n2].class;
477
478 if (n != n2 && !g->nodes[n2].in_stack) {
479 assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
480 g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
481 }
482 }
483 }
484
485 /**
486 * Simplifies the interference graph by pushing all
487 * trivially-colorable nodes into a stack of nodes to be colored,
488 * removing them from the graph, and rinsing and repeating.
489 *
490 * If we encounter a case where we can't push any nodes on the stack, then
491 * we optimistically choose a node and push it on the stack. We heuristically
492 * push the node with the lowest total q value, since it has the fewest
493 * neighbors and therefore is most likely to be allocated.
494 */
495 static void
ra_simplify(struct ra_graph * g)496 ra_simplify(struct ra_graph *g)
497 {
498 bool progress = true;
499 unsigned int stack_optimistic_start = UINT_MAX;
500 int i;
501
502 while (progress) {
503 unsigned int best_optimistic_node = ~0;
504 unsigned int lowest_q_total = ~0;
505
506 progress = false;
507
508 for (i = g->count - 1; i >= 0; i--) {
509 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
510 continue;
511
512 if (pq_test(g, i)) {
513 decrement_q(g, i);
514 g->stack[g->stack_count] = i;
515 g->stack_count++;
516 g->nodes[i].in_stack = true;
517 progress = true;
518 } else {
519 unsigned int new_q_total = g->nodes[i].q_total;
520 if (new_q_total < lowest_q_total) {
521 best_optimistic_node = i;
522 lowest_q_total = new_q_total;
523 }
524 }
525 }
526
527 if (!progress && best_optimistic_node != ~0U) {
528 if (stack_optimistic_start == UINT_MAX)
529 stack_optimistic_start = g->stack_count;
530
531 decrement_q(g, best_optimistic_node);
532 g->stack[g->stack_count] = best_optimistic_node;
533 g->stack_count++;
534 g->nodes[best_optimistic_node].in_stack = true;
535 progress = true;
536 }
537 }
538
539 g->stack_optimistic_start = stack_optimistic_start;
540 }
541
542 /**
543 * Pops nodes from the stack back into the graph, coloring them with
544 * registers as they go.
545 *
546 * If all nodes were trivially colorable, then this must succeed. If
547 * not (optimistic coloring), then it may return false;
548 */
549 static bool
ra_select(struct ra_graph * g)550 ra_select(struct ra_graph *g)
551 {
552 int start_search_reg = 0;
553
554 while (g->stack_count != 0) {
555 unsigned int i;
556 unsigned int ri;
557 unsigned int r = -1;
558 int n = g->stack[g->stack_count - 1];
559 struct ra_class *c = g->regs->classes[g->nodes[n].class];
560
561 /* Find the lowest-numbered reg which is not used by a member
562 * of the graph adjacent to us.
563 */
564 for (ri = 0; ri < g->regs->count; ri++) {
565 r = (start_search_reg + ri) % g->regs->count;
566 if (!reg_belongs_to_class(r, c))
567 continue;
568
569 /* Check if any of our neighbors conflict with this register choice. */
570 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
571 unsigned int n2 = g->nodes[n].adjacency_list[i];
572
573 if (!g->nodes[n2].in_stack &&
574 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
575 break;
576 }
577 }
578 if (i == g->nodes[n].adjacency_count)
579 break;
580 }
581
582 /* set this to false even if we return here so that
583 * ra_get_best_spill_node() considers this node later.
584 */
585 g->nodes[n].in_stack = false;
586
587 if (ri == g->regs->count)
588 return false;
589
590 g->nodes[n].reg = r;
591 g->stack_count--;
592
593 /* Rotate the starting point except for any nodes above the lowest
594 * optimistically colorable node. The likelihood that we will succeed
595 * at allocating optimistically colorable nodes is highly dependent on
596 * the way that the previous nodes popped off the stack are laid out.
597 * The round-robin strategy increases the fragmentation of the register
598 * file and decreases the number of nearby nodes assigned to the same
599 * color, what increases the likelihood of spilling with respect to the
600 * dense packing strategy.
601 */
602 if (g->regs->round_robin &&
603 g->stack_count - 1 <= g->stack_optimistic_start)
604 start_search_reg = r + 1;
605 }
606
607 return true;
608 }
609
610 bool
ra_allocate(struct ra_graph * g)611 ra_allocate(struct ra_graph *g)
612 {
613 ra_simplify(g);
614 return ra_select(g);
615 }
616
617 unsigned int
ra_get_node_reg(struct ra_graph * g,unsigned int n)618 ra_get_node_reg(struct ra_graph *g, unsigned int n)
619 {
620 return g->nodes[n].reg;
621 }
622
623 /**
624 * Forces a node to a specific register. This can be used to avoid
625 * creating a register class containing one node when handling data
626 * that must live in a fixed location and is known to not conflict
627 * with other forced register assignment (as is common with shader
628 * input data). These nodes do not end up in the stack during
629 * ra_simplify(), and thus at ra_select() time it is as if they were
630 * the first popped off the stack and assigned their fixed locations.
631 * Nodes that use this function do not need to be assigned a register
632 * class.
633 *
634 * Must be called before ra_simplify().
635 */
636 void
ra_set_node_reg(struct ra_graph * g,unsigned int n,unsigned int reg)637 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
638 {
639 g->nodes[n].reg = reg;
640 g->nodes[n].in_stack = false;
641 }
642
643 static float
ra_get_spill_benefit(struct ra_graph * g,unsigned int n)644 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
645 {
646 unsigned int j;
647 float benefit = 0;
648 int n_class = g->nodes[n].class;
649
650 /* Define the benefit of eliminating an interference between n, n2
651 * through spilling as q(C, B) / p(C). This is similar to the
652 * "count number of edges" approach of traditional graph coloring,
653 * but takes classes into account.
654 */
655 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
656 unsigned int n2 = g->nodes[n].adjacency_list[j];
657 if (n != n2) {
658 unsigned int n2_class = g->nodes[n2].class;
659 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
660 g->regs->classes[n_class]->p);
661 }
662 }
663
664 return benefit;
665 }
666
667 /**
668 * Returns a node number to be spilled according to the cost/benefit using
669 * the pq test, or -1 if there are no spillable nodes.
670 */
671 int
ra_get_best_spill_node(struct ra_graph * g)672 ra_get_best_spill_node(struct ra_graph *g)
673 {
674 unsigned int best_node = -1;
675 float best_benefit = 0.0;
676 unsigned int n;
677
678 /* Consider any nodes that we colored successfully or the node we failed to
679 * color for spilling. When we failed to color a node in ra_select(), we
680 * only considered these nodes, so spilling any other ones would not result
681 * in us making progress.
682 */
683 for (n = 0; n < g->count; n++) {
684 float cost = g->nodes[n].spill_cost;
685 float benefit;
686
687 if (cost <= 0.0f)
688 continue;
689
690 if (g->nodes[n].in_stack)
691 continue;
692
693 benefit = ra_get_spill_benefit(g, n);
694
695 if (benefit / cost > best_benefit) {
696 best_benefit = benefit / cost;
697 best_node = n;
698 }
699 }
700
701 return best_node;
702 }
703
704 /**
705 * Only nodes with a spill cost set (cost != 0.0) will be considered
706 * for register spilling.
707 */
708 void
ra_set_node_spill_cost(struct ra_graph * g,unsigned int n,float cost)709 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
710 {
711 g->nodes[n].spill_cost = cost;
712 }
713