1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109 #include <openssl/bn.h>
110
111 #include <assert.h>
112 #include <string.h>
113
114 #include <openssl/cpu.h>
115 #include <openssl/err.h>
116 #include <openssl/mem.h>
117
118 #include "internal.h"
119
120
121 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
122 #define OPENSSL_BN_ASM_MONT5
123 #define RSAZ_ENABLED
124
125 #include "rsaz_exp.h"
126
127 void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
128 const BN_ULONG *np, const BN_ULONG *n0, int num,
129 int power);
130 void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power);
131 void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
132 void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
133 const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
134 int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
135 const BN_ULONG *not_used, const BN_ULONG *np,
136 const BN_ULONG *n0, int num);
137 #endif
138
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)139 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
140 int i, bits, ret = 0;
141 BIGNUM *v, *rr;
142
143 BN_CTX_start(ctx);
144 if (r == a || r == p) {
145 rr = BN_CTX_get(ctx);
146 } else {
147 rr = r;
148 }
149
150 v = BN_CTX_get(ctx);
151 if (rr == NULL || v == NULL) {
152 goto err;
153 }
154
155 if (BN_copy(v, a) == NULL) {
156 goto err;
157 }
158 bits = BN_num_bits(p);
159
160 if (BN_is_odd(p)) {
161 if (BN_copy(rr, a) == NULL) {
162 goto err;
163 }
164 } else {
165 if (!BN_one(rr)) {
166 goto err;
167 }
168 }
169
170 for (i = 1; i < bits; i++) {
171 if (!BN_sqr(v, v, ctx)) {
172 goto err;
173 }
174 if (BN_is_bit_set(p, i)) {
175 if (!BN_mul(rr, rr, v, ctx)) {
176 goto err;
177 }
178 }
179 }
180
181 if (r != rr && !BN_copy(r, rr)) {
182 goto err;
183 }
184 ret = 1;
185
186 err:
187 BN_CTX_end(ctx);
188 return ret;
189 }
190
191 /* maximum precomputation table size for *variable* sliding windows */
192 #define TABLE_SIZE 32
193
194 typedef struct bn_recp_ctx_st {
195 BIGNUM N; /* the divisor */
196 BIGNUM Nr; /* the reciprocal */
197 int num_bits;
198 int shift;
199 int flags;
200 } BN_RECP_CTX;
201
BN_RECP_CTX_init(BN_RECP_CTX * recp)202 static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
203 BN_init(&recp->N);
204 BN_init(&recp->Nr);
205 recp->num_bits = 0;
206 recp->shift = 0;
207 recp->flags = 0;
208 }
209
BN_RECP_CTX_free(BN_RECP_CTX * recp)210 static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
211 if (recp == NULL) {
212 return;
213 }
214
215 BN_free(&recp->N);
216 BN_free(&recp->Nr);
217 }
218
BN_RECP_CTX_set(BN_RECP_CTX * recp,const BIGNUM * d,BN_CTX * ctx)219 static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
220 if (!BN_copy(&(recp->N), d)) {
221 return 0;
222 }
223 BN_zero(&recp->Nr);
224 recp->num_bits = BN_num_bits(d);
225 recp->shift = 0;
226
227 return 1;
228 }
229
230 /* len is the expected size of the result We actually calculate with an extra
231 * word of precision, so we can do faster division if the remainder is not
232 * required.
233 * r := 2^len / m */
BN_reciprocal(BIGNUM * r,const BIGNUM * m,int len,BN_CTX * ctx)234 static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
235 int ret = -1;
236 BIGNUM *t;
237
238 BN_CTX_start(ctx);
239 t = BN_CTX_get(ctx);
240 if (t == NULL) {
241 goto err;
242 }
243
244 if (!BN_set_bit(t, len)) {
245 goto err;
246 }
247
248 if (!BN_div(r, NULL, t, m, ctx)) {
249 goto err;
250 }
251
252 ret = len;
253
254 err:
255 BN_CTX_end(ctx);
256 return ret;
257 }
258
BN_div_recp(BIGNUM * dv,BIGNUM * rem,const BIGNUM * m,BN_RECP_CTX * recp,BN_CTX * ctx)259 static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
260 BN_RECP_CTX *recp, BN_CTX *ctx) {
261 int i, j, ret = 0;
262 BIGNUM *a, *b, *d, *r;
263
264 BN_CTX_start(ctx);
265 a = BN_CTX_get(ctx);
266 b = BN_CTX_get(ctx);
267 if (dv != NULL) {
268 d = dv;
269 } else {
270 d = BN_CTX_get(ctx);
271 }
272
273 if (rem != NULL) {
274 r = rem;
275 } else {
276 r = BN_CTX_get(ctx);
277 }
278
279 if (a == NULL || b == NULL || d == NULL || r == NULL) {
280 goto err;
281 }
282
283 if (BN_ucmp(m, &recp->N) < 0) {
284 BN_zero(d);
285 if (!BN_copy(r, m)) {
286 goto err;
287 }
288 BN_CTX_end(ctx);
289 return 1;
290 }
291
292 /* We want the remainder
293 * Given input of ABCDEF / ab
294 * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
295
296 /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
297 i = BN_num_bits(m);
298 j = recp->num_bits << 1;
299 if (j > i) {
300 i = j;
301 }
302
303 /* Nr := round(2^i / N) */
304 if (i != recp->shift) {
305 recp->shift =
306 BN_reciprocal(&(recp->Nr), &(recp->N), i,
307 ctx); /* BN_reciprocal returns i, or -1 for an error */
308 }
309
310 if (recp->shift == -1) {
311 goto err;
312 }
313
314 /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
315 * BN_num_bits(N)))|
316 * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
317 * BN_num_bits(N)))|
318 * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
319 * = |m/N| */
320 if (!BN_rshift(a, m, recp->num_bits)) {
321 goto err;
322 }
323 if (!BN_mul(b, a, &(recp->Nr), ctx)) {
324 goto err;
325 }
326 if (!BN_rshift(d, b, i - recp->num_bits)) {
327 goto err;
328 }
329 d->neg = 0;
330
331 if (!BN_mul(b, &(recp->N), d, ctx)) {
332 goto err;
333 }
334 if (!BN_usub(r, m, b)) {
335 goto err;
336 }
337 r->neg = 0;
338
339 j = 0;
340 while (BN_ucmp(r, &(recp->N)) >= 0) {
341 if (j++ > 2) {
342 OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
343 goto err;
344 }
345 if (!BN_usub(r, r, &(recp->N))) {
346 goto err;
347 }
348 if (!BN_add_word(d, 1)) {
349 goto err;
350 }
351 }
352
353 r->neg = BN_is_zero(r) ? 0 : m->neg;
354 d->neg = m->neg ^ recp->N.neg;
355 ret = 1;
356
357 err:
358 BN_CTX_end(ctx);
359 return ret;
360 }
361
BN_mod_mul_reciprocal(BIGNUM * r,const BIGNUM * x,const BIGNUM * y,BN_RECP_CTX * recp,BN_CTX * ctx)362 static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
363 BN_RECP_CTX *recp, BN_CTX *ctx) {
364 int ret = 0;
365 BIGNUM *a;
366 const BIGNUM *ca;
367
368 BN_CTX_start(ctx);
369 a = BN_CTX_get(ctx);
370 if (a == NULL) {
371 goto err;
372 }
373
374 if (y != NULL) {
375 if (x == y) {
376 if (!BN_sqr(a, x, ctx)) {
377 goto err;
378 }
379 } else {
380 if (!BN_mul(a, x, y, ctx)) {
381 goto err;
382 }
383 }
384 ca = a;
385 } else {
386 ca = x; /* Just do the mod */
387 }
388
389 ret = BN_div_recp(NULL, r, ca, recp, ctx);
390
391 err:
392 BN_CTX_end(ctx);
393 return ret;
394 }
395
396 /* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
397 * functions
398 *
399 * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
400 * multiplications is a constant plus on average
401 *
402 * 2^(w-1) + (b-w)/(w+1);
403 *
404 * here 2^(w-1) is for precomputing the table (we actually need entries only
405 * for windows that have the lowest bit set), and (b-w)/(w+1) is an
406 * approximation for the expected number of w-bit windows, not counting the
407 * first one.
408 *
409 * Thus we should use
410 *
411 * w >= 6 if b > 671
412 * w = 5 if 671 > b > 239
413 * w = 4 if 239 > b > 79
414 * w = 3 if 79 > b > 23
415 * w <= 2 if 23 > b
416 *
417 * (with draws in between). Very small exponents are often selected
418 * with low Hamming weight, so we use w = 1 for b <= 23. */
419 #define BN_window_bits_for_exponent_size(b) \
420 ((b) > 671 ? 6 : \
421 (b) > 239 ? 5 : \
422 (b) > 79 ? 4 : \
423 (b) > 23 ? 3 : 1)
424
mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)425 static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
426 const BIGNUM *m, BN_CTX *ctx) {
427 int i, j, bits, ret = 0, wstart, window;
428 int start = 1;
429 BIGNUM *aa;
430 /* Table of variables obtained from 'ctx' */
431 BIGNUM *val[TABLE_SIZE];
432 BN_RECP_CTX recp;
433
434 bits = BN_num_bits(p);
435
436 if (bits == 0) {
437 /* x**0 mod 1 is still zero. */
438 if (BN_is_one(m)) {
439 BN_zero(r);
440 return 1;
441 }
442 return BN_one(r);
443 }
444
445 BN_CTX_start(ctx);
446 aa = BN_CTX_get(ctx);
447 val[0] = BN_CTX_get(ctx);
448 if (!aa || !val[0]) {
449 goto err;
450 }
451
452 BN_RECP_CTX_init(&recp);
453 if (m->neg) {
454 /* ignore sign of 'm' */
455 if (!BN_copy(aa, m)) {
456 goto err;
457 }
458 aa->neg = 0;
459 if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
460 goto err;
461 }
462 } else {
463 if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
464 goto err;
465 }
466 }
467
468 if (!BN_nnmod(val[0], a, m, ctx)) {
469 goto err; /* 1 */
470 }
471 if (BN_is_zero(val[0])) {
472 BN_zero(r);
473 ret = 1;
474 goto err;
475 }
476
477 window = BN_window_bits_for_exponent_size(bits);
478 if (window > 1) {
479 if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
480 goto err; /* 2 */
481 }
482 j = 1 << (window - 1);
483 for (i = 1; i < j; i++) {
484 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
485 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
486 goto err;
487 }
488 }
489 }
490
491 start = 1; /* This is used to avoid multiplication etc
492 * when there is only the value '1' in the
493 * buffer. */
494 wstart = bits - 1; /* The top bit of the window */
495
496 if (!BN_one(r)) {
497 goto err;
498 }
499
500 for (;;) {
501 int wvalue; /* The 'value' of the window */
502 int wend; /* The bottom bit of the window */
503
504 if (BN_is_bit_set(p, wstart) == 0) {
505 if (!start) {
506 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
507 goto err;
508 }
509 }
510 if (wstart == 0) {
511 break;
512 }
513 wstart--;
514 continue;
515 }
516
517 /* We now have wstart on a 'set' bit, we now need to work out
518 * how bit a window to do. To do this we need to scan
519 * forward until the last set bit before the end of the
520 * window */
521 wvalue = 1;
522 wend = 0;
523 for (i = 1; i < window; i++) {
524 if (wstart - i < 0) {
525 break;
526 }
527 if (BN_is_bit_set(p, wstart - i)) {
528 wvalue <<= (i - wend);
529 wvalue |= 1;
530 wend = i;
531 }
532 }
533
534 /* wend is the size of the current window */
535 j = wend + 1;
536 /* add the 'bytes above' */
537 if (!start) {
538 for (i = 0; i < j; i++) {
539 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
540 goto err;
541 }
542 }
543 }
544
545 /* wvalue will be an odd number < 2^window */
546 if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
547 goto err;
548 }
549
550 /* move the 'window' down further */
551 wstart -= wend + 1;
552 start = 0;
553 if (wstart < 0) {
554 break;
555 }
556 }
557 ret = 1;
558
559 err:
560 BN_CTX_end(ctx);
561 BN_RECP_CTX_free(&recp);
562 return ret;
563 }
564
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)565 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
566 BN_CTX *ctx) {
567 if (BN_is_odd(m)) {
568 return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
569 }
570
571 return mod_exp_recp(r, a, p, m, ctx);
572 }
573
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)574 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
575 const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
576 int i, j, bits, ret = 0, wstart, window;
577 int start = 1;
578 BIGNUM *d, *r;
579 const BIGNUM *aa;
580 /* Table of variables obtained from 'ctx' */
581 BIGNUM *val[TABLE_SIZE];
582 BN_MONT_CTX *new_mont = NULL;
583
584 if (!BN_is_odd(m)) {
585 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
586 return 0;
587 }
588 bits = BN_num_bits(p);
589 if (bits == 0) {
590 /* x**0 mod 1 is still zero. */
591 if (BN_is_one(m)) {
592 BN_zero(rr);
593 return 1;
594 }
595 return BN_one(rr);
596 }
597
598 BN_CTX_start(ctx);
599 d = BN_CTX_get(ctx);
600 r = BN_CTX_get(ctx);
601 val[0] = BN_CTX_get(ctx);
602 if (!d || !r || !val[0]) {
603 goto err;
604 }
605
606 /* Allocate a montgomery context if it was not supplied by the caller. */
607 if (mont == NULL) {
608 new_mont = BN_MONT_CTX_new();
609 if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
610 goto err;
611 }
612 mont = new_mont;
613 }
614
615 if (a->neg || BN_ucmp(a, m) >= 0) {
616 if (!BN_nnmod(val[0], a, m, ctx)) {
617 goto err;
618 }
619 aa = val[0];
620 } else {
621 aa = a;
622 }
623
624 if (BN_is_zero(aa)) {
625 BN_zero(rr);
626 ret = 1;
627 goto err;
628 }
629 if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
630 goto err; /* 1 */
631 }
632
633 window = BN_window_bits_for_exponent_size(bits);
634 if (window > 1) {
635 if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
636 goto err; /* 2 */
637 }
638 j = 1 << (window - 1);
639 for (i = 1; i < j; i++) {
640 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
641 !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
642 goto err;
643 }
644 }
645 }
646
647 start = 1; /* This is used to avoid multiplication etc
648 * when there is only the value '1' in the
649 * buffer. */
650 wstart = bits - 1; /* The top bit of the window */
651
652 j = m->top; /* borrow j */
653 if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
654 if (!bn_wexpand(r, j)) {
655 goto err;
656 }
657 /* 2^(top*BN_BITS2) - m */
658 r->d[0] = (0 - m->d[0]) & BN_MASK2;
659 for (i = 1; i < j; i++) {
660 r->d[i] = (~m->d[i]) & BN_MASK2;
661 }
662 r->top = j;
663 /* Upper words will be zero if the corresponding words of 'm'
664 * were 0xfff[...], so decrement r->top accordingly. */
665 bn_correct_top(r);
666 } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
667 goto err;
668 }
669
670 for (;;) {
671 int wvalue; /* The 'value' of the window */
672 int wend; /* The bottom bit of the window */
673
674 if (BN_is_bit_set(p, wstart) == 0) {
675 if (!start && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
676 goto err;
677 }
678 if (wstart == 0) {
679 break;
680 }
681 wstart--;
682 continue;
683 }
684
685 /* We now have wstart on a 'set' bit, we now need to work out how bit a
686 * window to do. To do this we need to scan forward until the last set bit
687 * before the end of the window */
688 wvalue = 1;
689 wend = 0;
690 for (i = 1; i < window; i++) {
691 if (wstart - i < 0) {
692 break;
693 }
694 if (BN_is_bit_set(p, wstart - i)) {
695 wvalue <<= (i - wend);
696 wvalue |= 1;
697 wend = i;
698 }
699 }
700
701 /* wend is the size of the current window */
702 j = wend + 1;
703 /* add the 'bytes above' */
704 if (!start) {
705 for (i = 0; i < j; i++) {
706 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
707 goto err;
708 }
709 }
710 }
711
712 /* wvalue will be an odd number < 2^window */
713 if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
714 goto err;
715 }
716
717 /* move the 'window' down further */
718 wstart -= wend + 1;
719 start = 0;
720 if (wstart < 0) {
721 break;
722 }
723 }
724
725 if (!BN_from_montgomery(rr, r, mont, ctx)) {
726 goto err;
727 }
728 ret = 1;
729
730 err:
731 BN_MONT_CTX_free(new_mont);
732 BN_CTX_end(ctx);
733 return ret;
734 }
735
736 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
737 * layout so that accessing any of these table values shows the same access
738 * pattern as far as cache lines are concerned. The following functions are
739 * used to transfer a BIGNUM from/to that table. */
copy_to_prebuf(const BIGNUM * b,int top,unsigned char * buf,int idx,int window)740 static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
741 int window) {
742 int i, j;
743 const int width = 1 << window;
744 BN_ULONG *table = (BN_ULONG *) buf;
745
746 if (top > b->top) {
747 top = b->top; /* this works because 'buf' is explicitly zeroed */
748 }
749
750 for (i = 0, j = idx; i < top; i++, j += width) {
751 table[j] = b->d[i];
752 }
753
754 return 1;
755 }
756
copy_from_prebuf(BIGNUM * b,int top,unsigned char * buf,int idx,int window)757 static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
758 int window) {
759 int i, j;
760 const int width = 1 << window;
761 volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
762
763 if (!bn_wexpand(b, top)) {
764 return 0;
765 }
766
767 if (window <= 3) {
768 for (i = 0; i < top; i++, table += width) {
769 BN_ULONG acc = 0;
770
771 for (j = 0; j < width; j++) {
772 acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
773 }
774
775 b->d[i] = acc;
776 }
777 } else {
778 int xstride = 1 << (window - 2);
779 BN_ULONG y0, y1, y2, y3;
780
781 i = idx >> (window - 2); /* equivalent of idx / xstride */
782 idx &= xstride - 1; /* equivalent of idx % xstride */
783
784 y0 = (BN_ULONG)0 - (constant_time_eq_int(i, 0) & 1);
785 y1 = (BN_ULONG)0 - (constant_time_eq_int(i, 1) & 1);
786 y2 = (BN_ULONG)0 - (constant_time_eq_int(i, 2) & 1);
787 y3 = (BN_ULONG)0 - (constant_time_eq_int(i, 3) & 1);
788
789 for (i = 0; i < top; i++, table += width) {
790 BN_ULONG acc = 0;
791
792 for (j = 0; j < xstride; j++) {
793 acc |= ((table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) |
794 (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3)) &
795 ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
796 }
797
798 b->d[i] = acc;
799 }
800 }
801
802 b->top = top;
803 bn_correct_top(b);
804 return 1;
805 }
806
807 /* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
808 * line width of the target processor is at least the following value. */
809 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
810 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
811 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
812
813 /* Window sizes optimized for fixed window size modular exponentiation
814 * algorithm (BN_mod_exp_mont_consttime).
815 *
816 * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
817 * size of the window must not exceed
818 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
819 *
820 * Window size thresholds are defined for cache line sizes of 32 and 64, cache
821 * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
822 * 7 should only be used on processors that have a 128 byte or greater cache
823 * line size. */
824 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
825
826 #define BN_window_bits_for_ctime_exponent_size(b) \
827 ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
828 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
829
830 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
831
832 #define BN_window_bits_for_ctime_exponent_size(b) \
833 ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
834 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
835
836 #endif
837
838 /* Given a pointer value, compute the next address that is a cache line
839 * multiple. */
840 #define MOD_EXP_CTIME_ALIGN(x_) \
841 ((unsigned char *)(x_) + \
842 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
843 (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
844
845 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
846 * precomputation memory layout to limit data-dependency to a minimum
847 * to protect secret exponents (cf. the hyper-threading timing attacks
848 * pointed out by Colin Percival,
849 * http://www.daemonology.net/hyperthreading-considered-harmful/)
850 */
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)851 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
852 const BIGNUM *m, BN_CTX *ctx,
853 const BN_MONT_CTX *mont) {
854 int i, bits, ret = 0, window, wvalue;
855 int top;
856 BN_MONT_CTX *new_mont = NULL;
857
858 int numPowers;
859 unsigned char *powerbufFree = NULL;
860 int powerbufLen = 0;
861 unsigned char *powerbuf = NULL;
862 BIGNUM tmp, am;
863 BIGNUM *new_a = NULL;
864
865 if (!BN_is_odd(m)) {
866 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
867 return 0;
868 }
869
870 top = m->top;
871
872 bits = BN_num_bits(p);
873 if (bits == 0) {
874 /* x**0 mod 1 is still zero. */
875 if (BN_is_one(m)) {
876 BN_zero(rr);
877 return 1;
878 }
879 return BN_one(rr);
880 }
881
882 /* Allocate a montgomery context if it was not supplied by the caller. */
883 if (mont == NULL) {
884 new_mont = BN_MONT_CTX_new();
885 if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
886 goto err;
887 }
888 mont = new_mont;
889 }
890
891 if (a->neg || BN_ucmp(a, m) >= 0) {
892 new_a = BN_new();
893 if (new_a == NULL ||
894 !BN_nnmod(new_a, a, m, ctx)) {
895 goto err;
896 }
897 a = new_a;
898 }
899
900 #ifdef RSAZ_ENABLED
901 /* If the size of the operands allow it, perform the optimized
902 * RSAZ exponentiation. For further information see
903 * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
904 if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
905 rsaz_avx2_eligible()) {
906 if (!bn_wexpand(rr, 16)) {
907 goto err;
908 }
909 RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
910 rr->top = 16;
911 rr->neg = 0;
912 bn_correct_top(rr);
913 ret = 1;
914 goto err;
915 }
916 #endif
917
918 /* Get the window size to use with size of p. */
919 window = BN_window_bits_for_ctime_exponent_size(bits);
920 #if defined(OPENSSL_BN_ASM_MONT5)
921 if (window >= 5) {
922 window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
923 /* reserve space for mont->N.d[] copy */
924 powerbufLen += top * sizeof(mont->N.d[0]);
925 }
926 #endif
927
928 /* Allocate a buffer large enough to hold all of the pre-computed
929 * powers of am, am itself and tmp.
930 */
931 numPowers = 1 << window;
932 powerbufLen +=
933 sizeof(m->d[0]) *
934 (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
935 #ifdef alloca
936 if (powerbufLen < 3072) {
937 powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
938 } else
939 #endif
940 {
941 if ((powerbufFree = OPENSSL_malloc(
942 powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
943 goto err;
944 }
945 }
946
947 powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
948 OPENSSL_memset(powerbuf, 0, powerbufLen);
949
950 #ifdef alloca
951 if (powerbufLen < 3072) {
952 powerbufFree = NULL;
953 }
954 #endif
955
956 /* lay down tmp and am right after powers table */
957 tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
958 am.d = tmp.d + top;
959 tmp.top = am.top = 0;
960 tmp.dmax = am.dmax = top;
961 tmp.neg = am.neg = 0;
962 tmp.flags = am.flags = BN_FLG_STATIC_DATA;
963
964 /* prepare a^0 in Montgomery domain */
965 /* by Shay Gueron's suggestion */
966 if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
967 /* 2^(top*BN_BITS2) - m */
968 tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
969 for (i = 1; i < top; i++) {
970 tmp.d[i] = (~m->d[i]) & BN_MASK2;
971 }
972 tmp.top = top;
973 } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) {
974 goto err;
975 }
976
977 /* prepare a^1 in Montgomery domain */
978 assert(!a->neg);
979 assert(BN_ucmp(a, m) < 0);
980 if (!BN_to_montgomery(&am, a, mont, ctx)) {
981 goto err;
982 }
983
984 #if defined(OPENSSL_BN_ASM_MONT5)
985 /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
986 * specifically optimization of cache-timing attack countermeasures
987 * and pre-computation optimization. */
988
989 /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
990 * 512-bit RSA is hardly relevant, we omit it to spare size... */
991 if (window == 5 && top > 1) {
992 const BN_ULONG *n0 = mont->n0;
993 BN_ULONG *np;
994
995 /* BN_to_montgomery can contaminate words above .top
996 * [in BN_DEBUG[_DEBUG] build]... */
997 for (i = am.top; i < top; i++) {
998 am.d[i] = 0;
999 }
1000 for (i = tmp.top; i < top; i++) {
1001 tmp.d[i] = 0;
1002 }
1003
1004 /* copy mont->N.d[] to improve cache locality */
1005 for (np = am.d + top, i = 0; i < top; i++) {
1006 np[i] = mont->N.d[i];
1007 }
1008
1009 bn_scatter5(tmp.d, top, powerbuf, 0);
1010 bn_scatter5(am.d, am.top, powerbuf, 1);
1011 bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1012 bn_scatter5(tmp.d, top, powerbuf, 2);
1013
1014 /* same as above, but uses squaring for 1/2 of operations */
1015 for (i = 4; i < 32; i *= 2) {
1016 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1017 bn_scatter5(tmp.d, top, powerbuf, i);
1018 }
1019 for (i = 3; i < 8; i += 2) {
1020 int j;
1021 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1022 bn_scatter5(tmp.d, top, powerbuf, i);
1023 for (j = 2 * i; j < 32; j *= 2) {
1024 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1025 bn_scatter5(tmp.d, top, powerbuf, j);
1026 }
1027 }
1028 for (; i < 16; i += 2) {
1029 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1030 bn_scatter5(tmp.d, top, powerbuf, i);
1031 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1032 bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1033 }
1034 for (; i < 32; i += 2) {
1035 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1036 bn_scatter5(tmp.d, top, powerbuf, i);
1037 }
1038
1039 bits--;
1040 for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
1041 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1042 }
1043 bn_gather5(tmp.d, top, powerbuf, wvalue);
1044
1045 /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1046 * that has not been read yet.) */
1047 assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1048
1049 /* Scan the exponent one window at a time starting from the most
1050 * significant bits.
1051 */
1052 if (top & 7) {
1053 while (bits >= 0) {
1054 for (wvalue = 0, i = 0; i < 5; i++, bits--) {
1055 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1056 }
1057
1058 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1059 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1060 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1061 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1062 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1063 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1064 }
1065 } else {
1066 const uint8_t *p_bytes = (const uint8_t *)p->d;
1067 int max_bits = p->top * BN_BITS2;
1068 assert(bits < max_bits);
1069 /* |p = 0| has been handled as a special case, so |max_bits| is at least
1070 * one word. */
1071 assert(max_bits >= 64);
1072
1073 /* If the first bit to be read lands in the last byte, unroll the first
1074 * iteration to avoid reading past the bounds of |p->d|. (After the first
1075 * iteration, we are guaranteed to be past the last byte.) Note |bits|
1076 * here is the top bit, inclusive. */
1077 if (bits - 4 >= max_bits - 8) {
1078 /* Read five bits from |bits-4| through |bits|, inclusive. */
1079 wvalue = p_bytes[p->top * BN_BYTES - 1];
1080 wvalue >>= (bits - 4) & 7;
1081 wvalue &= 0x1f;
1082 bits -= 5;
1083 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1084 }
1085 while (bits >= 0) {
1086 /* Read five bits from |bits-4| through |bits|, inclusive. */
1087 int first_bit = bits - 4;
1088 uint16_t val;
1089 OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
1090 val >>= first_bit & 7;
1091 val &= 0x1f;
1092 bits -= 5;
1093 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
1094 }
1095 }
1096
1097 ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
1098 tmp.top = top;
1099 bn_correct_top(&tmp);
1100 if (ret) {
1101 if (!BN_copy(rr, &tmp)) {
1102 ret = 0;
1103 }
1104 goto err; /* non-zero ret means it's not error */
1105 }
1106 } else
1107 #endif
1108 {
1109 if (!copy_to_prebuf(&tmp, top, powerbuf, 0, window) ||
1110 !copy_to_prebuf(&am, top, powerbuf, 1, window)) {
1111 goto err;
1112 }
1113
1114 /* If the window size is greater than 1, then calculate
1115 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1116 * (even powers could instead be computed as (a^(i/2))^2
1117 * to use the slight performance advantage of sqr over mul).
1118 */
1119 if (window > 1) {
1120 if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx) ||
1121 !copy_to_prebuf(&tmp, top, powerbuf, 2, window)) {
1122 goto err;
1123 }
1124 for (i = 3; i < numPowers; i++) {
1125 /* Calculate a^i = a^(i-1) * a */
1126 if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx) ||
1127 !copy_to_prebuf(&tmp, top, powerbuf, i, window)) {
1128 goto err;
1129 }
1130 }
1131 }
1132
1133 bits--;
1134 for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
1135 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1136 }
1137 if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
1138 goto err;
1139 }
1140
1141 /* Scan the exponent one window at a time starting from the most
1142 * significant bits.
1143 */
1144 while (bits >= 0) {
1145 wvalue = 0; /* The 'value' of the window */
1146
1147 /* Scan the window, squaring the result as we go */
1148 for (i = 0; i < window; i++, bits--) {
1149 if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
1150 goto err;
1151 }
1152 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1153 }
1154
1155 /* Fetch the appropriate pre-computed value from the pre-buf */
1156 if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
1157 goto err;
1158 }
1159
1160 /* Multiply the result into the intermediate result */
1161 if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
1162 goto err;
1163 }
1164 }
1165 }
1166
1167 /* Convert the final result from montgomery to standard format */
1168 if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
1169 goto err;
1170 }
1171 ret = 1;
1172
1173 err:
1174 BN_MONT_CTX_free(new_mont);
1175 BN_clear_free(new_a);
1176 if (powerbuf != NULL) {
1177 OPENSSL_cleanse(powerbuf, powerbufLen);
1178 OPENSSL_free(powerbufFree);
1179 }
1180 return (ret);
1181 }
1182
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1183 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1184 const BIGNUM *m, BN_CTX *ctx,
1185 const BN_MONT_CTX *mont) {
1186 BIGNUM a_bignum;
1187 BN_init(&a_bignum);
1188
1189 int ret = 0;
1190
1191 if (!BN_set_word(&a_bignum, a)) {
1192 OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
1193 goto err;
1194 }
1195
1196 ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
1197
1198 err:
1199 BN_free(&a_bignum);
1200
1201 return ret;
1202 }
1203
1204 #define TABLE_SIZE 32
1205
BN_mod_exp2_mont(BIGNUM * rr,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1206 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1207 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1208 BN_CTX *ctx, const BN_MONT_CTX *mont) {
1209 BIGNUM tmp;
1210 BN_init(&tmp);
1211
1212 int ret = 0;
1213 BN_MONT_CTX *new_mont = NULL;
1214
1215 /* Allocate a montgomery context if it was not supplied by the caller. */
1216 if (mont == NULL) {
1217 new_mont = BN_MONT_CTX_new();
1218 if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
1219 goto err;
1220 }
1221 mont = new_mont;
1222 }
1223
1224 /* BN_mod_mul_montgomery removes one Montgomery factor, so passing one
1225 * Montgomery-encoded and one non-Montgomery-encoded value gives a
1226 * non-Montgomery-encoded result. */
1227 if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
1228 !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
1229 !BN_to_montgomery(rr, rr, mont, ctx) ||
1230 !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
1231 goto err;
1232 }
1233
1234 ret = 1;
1235
1236 err:
1237 BN_MONT_CTX_free(new_mont);
1238 BN_free(&tmp);
1239
1240 return ret;
1241 }
1242