• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Connor Abbott
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott (cwabbott0@gmail.com)
25  *
26  */
27 
28 #pragma once
29 
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include "compiler/shader_info.h"
41 #include <stdio.h>
42 
43 #include "nir_opcodes.h"
44 
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48 
49 struct gl_program;
50 struct gl_shader_program;
51 
52 #define NIR_FALSE 0u
53 #define NIR_TRUE (~0u)
54 
55 /** Defines a cast function
56  *
57  * This macro defines a cast function from in_type to out_type where
58  * out_type is some structure type that contains a field of type out_type.
59  *
60  * Note that you have to be a bit careful as the generated cast function
61  * destroys constness.
62  */
63 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
64                         type_field, type_value)         \
65 static inline out_type *                                \
66 name(const in_type *parent)                             \
67 {                                                       \
68    assert(parent && parent->type_field == type_value);  \
69    return exec_node_data(out_type, parent, field);      \
70 }
71 
72 struct nir_function;
73 struct nir_shader;
74 struct nir_instr;
75 
76 
77 /**
78  * Description of built-in state associated with a uniform
79  *
80  * \sa nir_variable::state_slots
81  */
82 typedef struct {
83    int tokens[5];
84    int swizzle;
85 } nir_state_slot;
86 
87 typedef enum {
88    nir_var_shader_in       = (1 << 0),
89    nir_var_shader_out      = (1 << 1),
90    nir_var_global          = (1 << 2),
91    nir_var_local           = (1 << 3),
92    nir_var_uniform         = (1 << 4),
93    nir_var_shader_storage  = (1 << 5),
94    nir_var_system_value    = (1 << 6),
95    nir_var_param           = (1 << 7),
96    nir_var_shared          = (1 << 8),
97    nir_var_all             = ~0,
98 } nir_variable_mode;
99 
100 
101 typedef union {
102    float f32[4];
103    double f64[4];
104    int32_t i32[4];
105    uint32_t u32[4];
106    int64_t i64[4];
107    uint64_t u64[4];
108 } nir_const_value;
109 
110 typedef struct nir_constant {
111    /**
112     * Value of the constant.
113     *
114     * The field used to back the values supplied by the constant is determined
115     * by the type associated with the \c nir_variable.  Constants may be
116     * scalars, vectors, or matrices.
117     */
118    nir_const_value values[4];
119 
120    /* we could get this from the var->type but makes clone *much* easier to
121     * not have to care about the type.
122     */
123    unsigned num_elements;
124 
125    /* Array elements / Structure Fields */
126    struct nir_constant **elements;
127 } nir_constant;
128 
129 /**
130  * \brief Layout qualifiers for gl_FragDepth.
131  *
132  * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
133  * with a layout qualifier.
134  */
135 typedef enum {
136     nir_depth_layout_none, /**< No depth layout is specified. */
137     nir_depth_layout_any,
138     nir_depth_layout_greater,
139     nir_depth_layout_less,
140     nir_depth_layout_unchanged
141 } nir_depth_layout;
142 
143 /**
144  * Either a uniform, global variable, shader input, or shader output. Based on
145  * ir_variable - it should be easy to translate between the two.
146  */
147 
148 typedef struct nir_variable {
149    struct exec_node node;
150 
151    /**
152     * Declared type of the variable
153     */
154    const struct glsl_type *type;
155 
156    /**
157     * Declared name of the variable
158     */
159    char *name;
160 
161    struct nir_variable_data {
162       /**
163        * Storage class of the variable.
164        *
165        * \sa nir_variable_mode
166        */
167       nir_variable_mode mode;
168 
169       /**
170        * Is the variable read-only?
171        *
172        * This is set for variables declared as \c const, shader inputs,
173        * and uniforms.
174        */
175       unsigned read_only:1;
176       unsigned centroid:1;
177       unsigned sample:1;
178       unsigned patch:1;
179       unsigned invariant:1;
180 
181       /**
182        * Interpolation mode for shader inputs / outputs
183        *
184        * \sa glsl_interp_mode
185        */
186       unsigned interpolation:2;
187 
188       /**
189        * \name ARB_fragment_coord_conventions
190        * @{
191        */
192       unsigned origin_upper_left:1;
193       unsigned pixel_center_integer:1;
194       /*@}*/
195 
196       /**
197        * If non-zero, then this variable may be packed along with other variables
198        * into a single varying slot, so this offset should be applied when
199        * accessing components.  For example, an offset of 1 means that the x
200        * component of this variable is actually stored in component y of the
201        * location specified by \c location.
202        */
203       unsigned location_frac:2;
204 
205       /**
206        * If true, this variable represents an array of scalars that should
207        * be tightly packed.  In other words, consecutive array elements
208        * should be stored one component apart, rather than one slot apart.
209        */
210       bool compact:1;
211 
212       /**
213        * Whether this is a fragment shader output implicitly initialized with
214        * the previous contents of the specified render target at the
215        * framebuffer location corresponding to this shader invocation.
216        */
217       unsigned fb_fetch_output:1;
218 
219       /**
220        * \brief Layout qualifier for gl_FragDepth.
221        *
222        * This is not equal to \c ir_depth_layout_none if and only if this
223        * variable is \c gl_FragDepth and a layout qualifier is specified.
224        */
225       nir_depth_layout depth_layout;
226 
227       /**
228        * Storage location of the base of this variable
229        *
230        * The precise meaning of this field depends on the nature of the variable.
231        *
232        *   - Vertex shader input: one of the values from \c gl_vert_attrib.
233        *   - Vertex shader output: one of the values from \c gl_varying_slot.
234        *   - Geometry shader input: one of the values from \c gl_varying_slot.
235        *   - Geometry shader output: one of the values from \c gl_varying_slot.
236        *   - Fragment shader input: one of the values from \c gl_varying_slot.
237        *   - Fragment shader output: one of the values from \c gl_frag_result.
238        *   - Uniforms: Per-stage uniform slot number for default uniform block.
239        *   - Uniforms: Index within the uniform block definition for UBO members.
240        *   - Non-UBO Uniforms: uniform slot number.
241        *   - Other: This field is not currently used.
242        *
243        * If the variable is a uniform, shader input, or shader output, and the
244        * slot has not been assigned, the value will be -1.
245        */
246       int location;
247 
248       /**
249        * The actual location of the variable in the IR. Only valid for inputs
250        * and outputs.
251        */
252       unsigned int driver_location;
253 
254       /**
255        * output index for dual source blending.
256        */
257       int index;
258 
259       /**
260        * Descriptor set binding for sampler or UBO.
261        */
262       int descriptor_set;
263 
264       /**
265        * Initial binding point for a sampler or UBO.
266        *
267        * For array types, this represents the binding point for the first element.
268        */
269       int binding;
270 
271       /**
272        * Location an atomic counter is stored at.
273        */
274       unsigned offset;
275 
276       /**
277        * ARB_shader_image_load_store qualifiers.
278        */
279       struct {
280          bool read_only; /**< "readonly" qualifier. */
281          bool write_only; /**< "writeonly" qualifier. */
282          bool coherent;
283          bool _volatile;
284          bool restrict_flag;
285 
286          /** Image internal format if specified explicitly, otherwise GL_NONE. */
287          GLenum format;
288       } image;
289    } data;
290 
291    /**
292     * Built-in state that backs this uniform
293     *
294     * Once set at variable creation, \c state_slots must remain invariant.
295     * This is because, ideally, this array would be shared by all clones of
296     * this variable in the IR tree.  In other words, we'd really like for it
297     * to be a fly-weight.
298     *
299     * If the variable is not a uniform, \c num_state_slots will be zero and
300     * \c state_slots will be \c NULL.
301     */
302    /*@{*/
303    unsigned num_state_slots;    /**< Number of state slots used */
304    nir_state_slot *state_slots;  /**< State descriptors. */
305    /*@}*/
306 
307    /**
308     * Constant expression assigned in the initializer of the variable
309     *
310     * This field should only be used temporarily by creators of NIR shaders
311     * and then lower_constant_initializers can be used to get rid of them.
312     * Most of the rest of NIR ignores this field or asserts that it's NULL.
313     */
314    nir_constant *constant_initializer;
315 
316    /**
317     * For variables that are in an interface block or are an instance of an
318     * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
319     *
320     * \sa ir_variable::location
321     */
322    const struct glsl_type *interface_type;
323 } nir_variable;
324 
325 #define nir_foreach_variable(var, var_list) \
326    foreach_list_typed(nir_variable, var, node, var_list)
327 
328 #define nir_foreach_variable_safe(var, var_list) \
329    foreach_list_typed_safe(nir_variable, var, node, var_list)
330 
331 static inline bool
nir_variable_is_global(const nir_variable * var)332 nir_variable_is_global(const nir_variable *var)
333 {
334    return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
335 }
336 
337 typedef struct nir_register {
338    struct exec_node node;
339 
340    unsigned num_components; /** < number of vector components */
341    unsigned num_array_elems; /** < size of array (0 for no array) */
342 
343    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
344    uint8_t bit_size;
345 
346    /** generic register index. */
347    unsigned index;
348 
349    /** only for debug purposes, can be NULL */
350    const char *name;
351 
352    /** whether this register is local (per-function) or global (per-shader) */
353    bool is_global;
354 
355    /**
356     * If this flag is set to true, then accessing channels >= num_components
357     * is well-defined, and simply spills over to the next array element. This
358     * is useful for backends that can do per-component accessing, in
359     * particular scalar backends. By setting this flag and making
360     * num_components equal to 1, structures can be packed tightly into
361     * registers and then registers can be accessed per-component to get to
362     * each structure member, even if it crosses vec4 boundaries.
363     */
364    bool is_packed;
365 
366    /** set of nir_src's where this register is used (read from) */
367    struct list_head uses;
368 
369    /** set of nir_dest's where this register is defined (written to) */
370    struct list_head defs;
371 
372    /** set of nir_if's where this register is used as a condition */
373    struct list_head if_uses;
374 } nir_register;
375 
376 #define nir_foreach_register(reg, reg_list) \
377    foreach_list_typed(nir_register, reg, node, reg_list)
378 #define nir_foreach_register_safe(reg, reg_list) \
379    foreach_list_typed_safe(nir_register, reg, node, reg_list)
380 
381 typedef enum {
382    nir_instr_type_alu,
383    nir_instr_type_call,
384    nir_instr_type_tex,
385    nir_instr_type_intrinsic,
386    nir_instr_type_load_const,
387    nir_instr_type_jump,
388    nir_instr_type_ssa_undef,
389    nir_instr_type_phi,
390    nir_instr_type_parallel_copy,
391 } nir_instr_type;
392 
393 typedef struct nir_instr {
394    struct exec_node node;
395    nir_instr_type type;
396    struct nir_block *block;
397 
398    /** generic instruction index. */
399    unsigned index;
400 
401    /* A temporary for optimization and analysis passes to use for storing
402     * flags.  For instance, DCE uses this to store the "dead/live" info.
403     */
404    uint8_t pass_flags;
405 } nir_instr;
406 
407 static inline nir_instr *
nir_instr_next(nir_instr * instr)408 nir_instr_next(nir_instr *instr)
409 {
410    struct exec_node *next = exec_node_get_next(&instr->node);
411    if (exec_node_is_tail_sentinel(next))
412       return NULL;
413    else
414       return exec_node_data(nir_instr, next, node);
415 }
416 
417 static inline nir_instr *
nir_instr_prev(nir_instr * instr)418 nir_instr_prev(nir_instr *instr)
419 {
420    struct exec_node *prev = exec_node_get_prev(&instr->node);
421    if (exec_node_is_head_sentinel(prev))
422       return NULL;
423    else
424       return exec_node_data(nir_instr, prev, node);
425 }
426 
427 static inline bool
nir_instr_is_first(nir_instr * instr)428 nir_instr_is_first(nir_instr *instr)
429 {
430    return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
431 }
432 
433 static inline bool
nir_instr_is_last(nir_instr * instr)434 nir_instr_is_last(nir_instr *instr)
435 {
436    return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
437 }
438 
439 typedef struct nir_ssa_def {
440    /** for debugging only, can be NULL */
441    const char* name;
442 
443    /** generic SSA definition index. */
444    unsigned index;
445 
446    /** Index into the live_in and live_out bitfields */
447    unsigned live_index;
448 
449    nir_instr *parent_instr;
450 
451    /** set of nir_instr's where this register is used (read from) */
452    struct list_head uses;
453 
454    /** set of nir_if's where this register is used as a condition */
455    struct list_head if_uses;
456 
457    uint8_t num_components;
458 
459    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
460    uint8_t bit_size;
461 } nir_ssa_def;
462 
463 struct nir_src;
464 
465 typedef struct {
466    nir_register *reg;
467    struct nir_src *indirect; /** < NULL for no indirect offset */
468    unsigned base_offset;
469 
470    /* TODO use-def chain goes here */
471 } nir_reg_src;
472 
473 typedef struct {
474    nir_instr *parent_instr;
475    struct list_head def_link;
476 
477    nir_register *reg;
478    struct nir_src *indirect; /** < NULL for no indirect offset */
479    unsigned base_offset;
480 
481    /* TODO def-use chain goes here */
482 } nir_reg_dest;
483 
484 struct nir_if;
485 
486 typedef struct nir_src {
487    union {
488       nir_instr *parent_instr;
489       struct nir_if *parent_if;
490    };
491 
492    struct list_head use_link;
493 
494    union {
495       nir_reg_src reg;
496       nir_ssa_def *ssa;
497    };
498 
499    bool is_ssa;
500 } nir_src;
501 
502 static inline nir_src
nir_src_init(void)503 nir_src_init(void)
504 {
505    nir_src src = { { NULL } };
506    return src;
507 }
508 
509 #define NIR_SRC_INIT nir_src_init()
510 
511 #define nir_foreach_use(src, reg_or_ssa_def) \
512    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
513 
514 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
515    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
516 
517 #define nir_foreach_if_use(src, reg_or_ssa_def) \
518    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
519 
520 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
521    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
522 
523 typedef struct {
524    union {
525       nir_reg_dest reg;
526       nir_ssa_def ssa;
527    };
528 
529    bool is_ssa;
530 } nir_dest;
531 
532 static inline nir_dest
nir_dest_init(void)533 nir_dest_init(void)
534 {
535    nir_dest dest = { { { NULL } } };
536    return dest;
537 }
538 
539 #define NIR_DEST_INIT nir_dest_init()
540 
541 #define nir_foreach_def(dest, reg) \
542    list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
543 
544 #define nir_foreach_def_safe(dest, reg) \
545    list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
546 
547 static inline nir_src
nir_src_for_ssa(nir_ssa_def * def)548 nir_src_for_ssa(nir_ssa_def *def)
549 {
550    nir_src src = NIR_SRC_INIT;
551 
552    src.is_ssa = true;
553    src.ssa = def;
554 
555    return src;
556 }
557 
558 static inline nir_src
nir_src_for_reg(nir_register * reg)559 nir_src_for_reg(nir_register *reg)
560 {
561    nir_src src = NIR_SRC_INIT;
562 
563    src.is_ssa = false;
564    src.reg.reg = reg;
565    src.reg.indirect = NULL;
566    src.reg.base_offset = 0;
567 
568    return src;
569 }
570 
571 static inline nir_dest
nir_dest_for_reg(nir_register * reg)572 nir_dest_for_reg(nir_register *reg)
573 {
574    nir_dest dest = NIR_DEST_INIT;
575 
576    dest.reg.reg = reg;
577 
578    return dest;
579 }
580 
581 static inline unsigned
nir_src_bit_size(nir_src src)582 nir_src_bit_size(nir_src src)
583 {
584    return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
585 }
586 
587 static inline unsigned
nir_dest_bit_size(nir_dest dest)588 nir_dest_bit_size(nir_dest dest)
589 {
590    return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
591 }
592 
593 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
594 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
595 
596 typedef struct {
597    nir_src src;
598 
599    /**
600     * \name input modifiers
601     */
602    /*@{*/
603    /**
604     * For inputs interpreted as floating point, flips the sign bit. For
605     * inputs interpreted as integers, performs the two's complement negation.
606     */
607    bool negate;
608 
609    /**
610     * Clears the sign bit for floating point values, and computes the integer
611     * absolute value for integers. Note that the negate modifier acts after
612     * the absolute value modifier, therefore if both are set then all inputs
613     * will become negative.
614     */
615    bool abs;
616    /*@}*/
617 
618    /**
619     * For each input component, says which component of the register it is
620     * chosen from. Note that which elements of the swizzle are used and which
621     * are ignored are based on the write mask for most opcodes - for example,
622     * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
623     * a swizzle of {2, x, 1, 0} where x means "don't care."
624     */
625    uint8_t swizzle[4];
626 } nir_alu_src;
627 
628 typedef struct {
629    nir_dest dest;
630 
631    /**
632     * \name saturate output modifier
633     *
634     * Only valid for opcodes that output floating-point numbers. Clamps the
635     * output to between 0.0 and 1.0 inclusive.
636     */
637 
638    bool saturate;
639 
640    unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
641 } nir_alu_dest;
642 
643 typedef enum {
644    nir_type_invalid = 0, /* Not a valid type */
645    nir_type_float,
646    nir_type_int,
647    nir_type_uint,
648    nir_type_bool,
649    nir_type_bool32 =    32 | nir_type_bool,
650    nir_type_int8 =      8  | nir_type_int,
651    nir_type_int16 =     16 | nir_type_int,
652    nir_type_int32 =     32 | nir_type_int,
653    nir_type_int64 =     64 | nir_type_int,
654    nir_type_uint8 =     8  | nir_type_uint,
655    nir_type_uint16 =    16 | nir_type_uint,
656    nir_type_uint32 =    32 | nir_type_uint,
657    nir_type_uint64 =    64 | nir_type_uint,
658    nir_type_float16 =   16 | nir_type_float,
659    nir_type_float32 =   32 | nir_type_float,
660    nir_type_float64 =   64 | nir_type_float,
661 } nir_alu_type;
662 
663 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
664 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
665 
666 static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)667 nir_alu_type_get_type_size(nir_alu_type type)
668 {
669    return type & NIR_ALU_TYPE_SIZE_MASK;
670 }
671 
672 static inline unsigned
nir_alu_type_get_base_type(nir_alu_type type)673 nir_alu_type_get_base_type(nir_alu_type type)
674 {
675    return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
676 }
677 
678 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)679 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
680 {
681    switch (glsl_get_base_type(type)) {
682    case GLSL_TYPE_BOOL:
683       return nir_type_bool32;
684       break;
685    case GLSL_TYPE_UINT:
686       return nir_type_uint32;
687       break;
688    case GLSL_TYPE_INT:
689       return nir_type_int32;
690       break;
691    case GLSL_TYPE_FLOAT:
692       return nir_type_float32;
693       break;
694    case GLSL_TYPE_DOUBLE:
695       return nir_type_float64;
696       break;
697    default:
698       unreachable("unknown type");
699    }
700 }
701 
702 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst);
703 
704 typedef enum {
705    NIR_OP_IS_COMMUTATIVE = (1 << 0),
706    NIR_OP_IS_ASSOCIATIVE = (1 << 1),
707 } nir_op_algebraic_property;
708 
709 typedef struct {
710    const char *name;
711 
712    unsigned num_inputs;
713 
714    /**
715     * The number of components in the output
716     *
717     * If non-zero, this is the size of the output and input sizes are
718     * explicitly given; swizzle and writemask are still in effect, but if
719     * the output component is masked out, then the input component may
720     * still be in use.
721     *
722     * If zero, the opcode acts in the standard, per-component manner; the
723     * operation is performed on each component (except the ones that are
724     * masked out) with the input being taken from the input swizzle for
725     * that component.
726     *
727     * The size of some of the inputs may be given (i.e. non-zero) even
728     * though output_size is zero; in that case, the inputs with a zero
729     * size act per-component, while the inputs with non-zero size don't.
730     */
731    unsigned output_size;
732 
733    /**
734     * The type of vector that the instruction outputs. Note that the
735     * staurate modifier is only allowed on outputs with the float type.
736     */
737 
738    nir_alu_type output_type;
739 
740    /**
741     * The number of components in each input
742     */
743    unsigned input_sizes[4];
744 
745    /**
746     * The type of vector that each input takes. Note that negate and
747     * absolute value are only allowed on inputs with int or float type and
748     * behave differently on the two.
749     */
750    nir_alu_type input_types[4];
751 
752    nir_op_algebraic_property algebraic_properties;
753 } nir_op_info;
754 
755 extern const nir_op_info nir_op_infos[nir_num_opcodes];
756 
757 typedef struct nir_alu_instr {
758    nir_instr instr;
759    nir_op op;
760 
761    /** Indicates that this ALU instruction generates an exact value
762     *
763     * This is kind of a mixture of GLSL "precise" and "invariant" and not
764     * really equivalent to either.  This indicates that the value generated by
765     * this operation is high-precision and any code transformations that touch
766     * it must ensure that the resulting value is bit-for-bit identical to the
767     * original.
768     */
769    bool exact;
770 
771    nir_alu_dest dest;
772    nir_alu_src src[];
773 } nir_alu_instr;
774 
775 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
776                       nir_alu_instr *instr);
777 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
778                        nir_alu_instr *instr);
779 
780 /* is this source channel used? */
781 static inline bool
nir_alu_instr_channel_used(nir_alu_instr * instr,unsigned src,unsigned channel)782 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
783 {
784    if (nir_op_infos[instr->op].input_sizes[src] > 0)
785       return channel < nir_op_infos[instr->op].input_sizes[src];
786 
787    return (instr->dest.write_mask >> channel) & 1;
788 }
789 
790 /*
791  * For instructions whose destinations are SSA, get the number of channels
792  * used for a source
793  */
794 static inline unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr * instr,unsigned src)795 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
796 {
797    assert(instr->dest.dest.is_ssa);
798 
799    if (nir_op_infos[instr->op].input_sizes[src] > 0)
800       return nir_op_infos[instr->op].input_sizes[src];
801 
802    return instr->dest.dest.ssa.num_components;
803 }
804 
805 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
806                         unsigned src1, unsigned src2);
807 
808 typedef enum {
809    nir_deref_type_var,
810    nir_deref_type_array,
811    nir_deref_type_struct
812 } nir_deref_type;
813 
814 typedef struct nir_deref {
815    nir_deref_type deref_type;
816    struct nir_deref *child;
817    const struct glsl_type *type;
818 } nir_deref;
819 
820 typedef struct {
821    nir_deref deref;
822 
823    nir_variable *var;
824 } nir_deref_var;
825 
826 /* This enum describes how the array is referenced.  If the deref is
827  * direct then the base_offset is used.  If the deref is indirect then
828  * offset is given by base_offset + indirect.  If the deref is a wildcard
829  * then the deref refers to all of the elements of the array at the same
830  * time.  Wildcard dereferences are only ever allowed in copy_var
831  * intrinsics and the source and destination derefs must have matching
832  * wildcards.
833  */
834 typedef enum {
835    nir_deref_array_type_direct,
836    nir_deref_array_type_indirect,
837    nir_deref_array_type_wildcard,
838 } nir_deref_array_type;
839 
840 typedef struct {
841    nir_deref deref;
842 
843    nir_deref_array_type deref_array_type;
844    unsigned base_offset;
845    nir_src indirect;
846 } nir_deref_array;
847 
848 typedef struct {
849    nir_deref deref;
850 
851    unsigned index;
852 } nir_deref_struct;
853 
NIR_DEFINE_CAST(nir_deref_as_var,nir_deref,nir_deref_var,deref,deref_type,nir_deref_type_var)854 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
855                 deref_type, nir_deref_type_var)
856 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
857                 deref_type, nir_deref_type_array)
858 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
859                 deref_type, nir_deref_type_struct)
860 
861 /* Returns the last deref in the chain. */
862 static inline nir_deref *
863 nir_deref_tail(nir_deref *deref)
864 {
865    while (deref->child)
866       deref = deref->child;
867    return deref;
868 }
869 
870 typedef struct {
871    nir_instr instr;
872 
873    unsigned num_params;
874    nir_deref_var **params;
875    nir_deref_var *return_deref;
876 
877    struct nir_function *callee;
878 } nir_call_instr;
879 
880 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
881                   num_variables, num_indices, idx0, idx1, idx2, flags) \
882    nir_intrinsic_##name,
883 
884 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
885 
886 typedef enum {
887 #include "nir_intrinsics.h"
888    nir_num_intrinsics = nir_last_intrinsic + 1
889 } nir_intrinsic_op;
890 
891 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
892 
893 /** Represents an intrinsic
894  *
895  * An intrinsic is an instruction type for handling things that are
896  * more-or-less regular operations but don't just consume and produce SSA
897  * values like ALU operations do.  Intrinsics are not for things that have
898  * special semantic meaning such as phi nodes and parallel copies.
899  * Examples of intrinsics include variable load/store operations, system
900  * value loads, and the like.  Even though texturing more-or-less falls
901  * under this category, texturing is its own instruction type because
902  * trying to represent texturing with intrinsics would lead to a
903  * combinatorial explosion of intrinsic opcodes.
904  *
905  * By having a single instruction type for handling a lot of different
906  * cases, optimization passes can look for intrinsics and, for the most
907  * part, completely ignore them.  Each intrinsic type also has a few
908  * possible flags that govern whether or not they can be reordered or
909  * eliminated.  That way passes like dead code elimination can still work
910  * on intrisics without understanding the meaning of each.
911  *
912  * Each intrinsic has some number of constant indices, some number of
913  * variables, and some number of sources.  What these sources, variables,
914  * and indices mean depends on the intrinsic and is documented with the
915  * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
916  * instructions are the only types of instruction that can operate on
917  * variables.
918  */
919 typedef struct {
920    nir_instr instr;
921 
922    nir_intrinsic_op intrinsic;
923 
924    nir_dest dest;
925 
926    /** number of components if this is a vectorized intrinsic
927     *
928     * Similarly to ALU operations, some intrinsics are vectorized.
929     * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
930     * For vectorized intrinsics, the num_components field specifies the
931     * number of destination components and the number of source components
932     * for all sources with nir_intrinsic_infos.src_components[i] == 0.
933     */
934    uint8_t num_components;
935 
936    int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
937 
938    nir_deref_var *variables[2];
939 
940    nir_src src[];
941 } nir_intrinsic_instr;
942 
943 /**
944  * \name NIR intrinsics semantic flags
945  *
946  * information about what the compiler can do with the intrinsics.
947  *
948  * \sa nir_intrinsic_info::flags
949  */
950 typedef enum {
951    /**
952     * whether the intrinsic can be safely eliminated if none of its output
953     * value is not being used.
954     */
955    NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
956 
957    /**
958     * Whether the intrinsic can be reordered with respect to any other
959     * intrinsic, i.e. whether the only reordering dependencies of the
960     * intrinsic are due to the register reads/writes.
961     */
962    NIR_INTRINSIC_CAN_REORDER = (1 << 1),
963 } nir_intrinsic_semantic_flag;
964 
965 /**
966  * \name NIR intrinsics const-index flag
967  *
968  * Indicates the usage of a const_index slot.
969  *
970  * \sa nir_intrinsic_info::index_map
971  */
972 typedef enum {
973    /**
974     * Generally instructions that take a offset src argument, can encode
975     * a constant 'base' value which is added to the offset.
976     */
977    NIR_INTRINSIC_BASE = 1,
978 
979    /**
980     * For store instructions, a writemask for the store.
981     */
982    NIR_INTRINSIC_WRMASK = 2,
983 
984    /**
985     * The stream-id for GS emit_vertex/end_primitive intrinsics.
986     */
987    NIR_INTRINSIC_STREAM_ID = 3,
988 
989    /**
990     * The clip-plane id for load_user_clip_plane intrinsic.
991     */
992    NIR_INTRINSIC_UCP_ID = 4,
993 
994    /**
995     * The amount of data, starting from BASE, that this instruction may
996     * access.  This is used to provide bounds if the offset is not constant.
997     */
998    NIR_INTRINSIC_RANGE = 5,
999 
1000    /**
1001     * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1002     */
1003    NIR_INTRINSIC_DESC_SET = 6,
1004 
1005    /**
1006     * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1007     */
1008    NIR_INTRINSIC_BINDING = 7,
1009 
1010    /**
1011     * Component offset.
1012     */
1013    NIR_INTRINSIC_COMPONENT = 8,
1014 
1015    /**
1016     * Interpolation mode (only meaningful for FS inputs).
1017     */
1018    NIR_INTRINSIC_INTERP_MODE = 9,
1019 
1020    NIR_INTRINSIC_NUM_INDEX_FLAGS,
1021 
1022 } nir_intrinsic_index_flag;
1023 
1024 #define NIR_INTRINSIC_MAX_INPUTS 4
1025 
1026 typedef struct {
1027    const char *name;
1028 
1029    unsigned num_srcs; /** < number of register/SSA inputs */
1030 
1031    /** number of components of each input register
1032     *
1033     * If this value is 0, the number of components is given by the
1034     * num_components field of nir_intrinsic_instr.
1035     */
1036    unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1037 
1038    bool has_dest;
1039 
1040    /** number of components of the output register
1041     *
1042     * If this value is 0, the number of components is given by the
1043     * num_components field of nir_intrinsic_instr.
1044     */
1045    unsigned dest_components;
1046 
1047    /** the number of inputs/outputs that are variables */
1048    unsigned num_variables;
1049 
1050    /** the number of constant indices used by the intrinsic */
1051    unsigned num_indices;
1052 
1053    /** indicates the usage of intr->const_index[n] */
1054    unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1055 
1056    /** semantic flags for calls to this intrinsic */
1057    nir_intrinsic_semantic_flag flags;
1058 } nir_intrinsic_info;
1059 
1060 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1061 
1062 
1063 #define INTRINSIC_IDX_ACCESSORS(name, flag, type)                             \
1064 static inline type                                                            \
1065 nir_intrinsic_##name(nir_intrinsic_instr *instr)                              \
1066 {                                                                             \
1067    const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
1068    assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
1069    return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1];      \
1070 }                                                                             \
1071 static inline void                                                            \
1072 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val)                \
1073 {                                                                             \
1074    const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
1075    assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
1076    instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val;       \
1077 }
1078 
1079 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1080 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1081 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1082 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1083 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1084 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1085 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1086 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1087 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1088 
1089 /**
1090  * \group texture information
1091  *
1092  * This gives semantic information about textures which is useful to the
1093  * frontend, the backend, and lowering passes, but not the optimizer.
1094  */
1095 
1096 typedef enum {
1097    nir_tex_src_coord,
1098    nir_tex_src_projector,
1099    nir_tex_src_comparator, /* shadow comparator */
1100    nir_tex_src_offset,
1101    nir_tex_src_bias,
1102    nir_tex_src_lod,
1103    nir_tex_src_ms_index, /* MSAA sample index */
1104    nir_tex_src_ms_mcs, /* MSAA compression value */
1105    nir_tex_src_ddx,
1106    nir_tex_src_ddy,
1107    nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1108    nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1109    nir_tex_src_plane,          /* < selects plane for planar textures */
1110    nir_num_tex_src_types
1111 } nir_tex_src_type;
1112 
1113 typedef struct {
1114    nir_src src;
1115    nir_tex_src_type src_type;
1116 } nir_tex_src;
1117 
1118 typedef enum {
1119    nir_texop_tex,                /**< Regular texture look-up */
1120    nir_texop_txb,                /**< Texture look-up with LOD bias */
1121    nir_texop_txl,                /**< Texture look-up with explicit LOD */
1122    nir_texop_txd,                /**< Texture look-up with partial derivatvies */
1123    nir_texop_txf,                /**< Texel fetch with explicit LOD */
1124    nir_texop_txf_ms,                /**< Multisample texture fetch */
1125    nir_texop_txf_ms_mcs,         /**< Multisample compression value fetch */
1126    nir_texop_txs,                /**< Texture size */
1127    nir_texop_lod,                /**< Texture lod query */
1128    nir_texop_tg4,                /**< Texture gather */
1129    nir_texop_query_levels,       /**< Texture levels query */
1130    nir_texop_texture_samples,    /**< Texture samples query */
1131    nir_texop_samples_identical,  /**< Query whether all samples are definitely
1132                                   * identical.
1133                                   */
1134 } nir_texop;
1135 
1136 typedef struct {
1137    nir_instr instr;
1138 
1139    enum glsl_sampler_dim sampler_dim;
1140    nir_alu_type dest_type;
1141 
1142    nir_texop op;
1143    nir_dest dest;
1144    nir_tex_src *src;
1145    unsigned num_srcs, coord_components;
1146    bool is_array, is_shadow;
1147 
1148    /**
1149     * If is_shadow is true, whether this is the old-style shadow that outputs 4
1150     * components or the new-style shadow that outputs 1 component.
1151     */
1152    bool is_new_style_shadow;
1153 
1154    /* gather component selector */
1155    unsigned component : 2;
1156 
1157    /** The texture index
1158     *
1159     * If this texture instruction has a nir_tex_src_texture_offset source,
1160     * then the texture index is given by texture_index + texture_offset.
1161     */
1162    unsigned texture_index;
1163 
1164    /** The size of the texture array or 0 if it's not an array */
1165    unsigned texture_array_size;
1166 
1167    /** The texture deref
1168     *
1169     * If this is null, use texture_index instead.
1170     */
1171    nir_deref_var *texture;
1172 
1173    /** The sampler index
1174     *
1175     * The following operations do not require a sampler and, as such, this
1176     * field should be ignored:
1177     *    - nir_texop_txf
1178     *    - nir_texop_txf_ms
1179     *    - nir_texop_txs
1180     *    - nir_texop_lod
1181     *    - nir_texop_tg4
1182     *    - nir_texop_query_levels
1183     *    - nir_texop_texture_samples
1184     *    - nir_texop_samples_identical
1185     *
1186     * If this texture instruction has a nir_tex_src_sampler_offset source,
1187     * then the sampler index is given by sampler_index + sampler_offset.
1188     */
1189    unsigned sampler_index;
1190 
1191    /** The sampler deref
1192     *
1193     * If this is null, use sampler_index instead.
1194     */
1195    nir_deref_var *sampler;
1196 } nir_tex_instr;
1197 
1198 static inline unsigned
nir_tex_instr_dest_size(nir_tex_instr * instr)1199 nir_tex_instr_dest_size(nir_tex_instr *instr)
1200 {
1201    switch (instr->op) {
1202    case nir_texop_txs: {
1203       unsigned ret;
1204       switch (instr->sampler_dim) {
1205          case GLSL_SAMPLER_DIM_1D:
1206          case GLSL_SAMPLER_DIM_BUF:
1207             ret = 1;
1208             break;
1209          case GLSL_SAMPLER_DIM_2D:
1210          case GLSL_SAMPLER_DIM_CUBE:
1211          case GLSL_SAMPLER_DIM_MS:
1212          case GLSL_SAMPLER_DIM_RECT:
1213          case GLSL_SAMPLER_DIM_EXTERNAL:
1214          case GLSL_SAMPLER_DIM_SUBPASS:
1215             ret = 2;
1216             break;
1217          case GLSL_SAMPLER_DIM_3D:
1218             ret = 3;
1219             break;
1220          default:
1221             unreachable("not reached");
1222       }
1223       if (instr->is_array)
1224          ret++;
1225       return ret;
1226    }
1227 
1228    case nir_texop_lod:
1229       return 2;
1230 
1231    case nir_texop_texture_samples:
1232    case nir_texop_query_levels:
1233    case nir_texop_samples_identical:
1234       return 1;
1235 
1236    default:
1237       if (instr->is_shadow && instr->is_new_style_shadow)
1238          return 1;
1239 
1240       return 4;
1241    }
1242 }
1243 
1244 /* Returns true if this texture operation queries something about the texture
1245  * rather than actually sampling it.
1246  */
1247 static inline bool
nir_tex_instr_is_query(nir_tex_instr * instr)1248 nir_tex_instr_is_query(nir_tex_instr *instr)
1249 {
1250    switch (instr->op) {
1251    case nir_texop_txs:
1252    case nir_texop_lod:
1253    case nir_texop_texture_samples:
1254    case nir_texop_query_levels:
1255    case nir_texop_txf_ms_mcs:
1256       return true;
1257    case nir_texop_tex:
1258    case nir_texop_txb:
1259    case nir_texop_txl:
1260    case nir_texop_txd:
1261    case nir_texop_txf:
1262    case nir_texop_txf_ms:
1263    case nir_texop_tg4:
1264       return false;
1265    default:
1266       unreachable("Invalid texture opcode");
1267    }
1268 }
1269 
1270 static inline nir_alu_type
nir_tex_instr_src_type(nir_tex_instr * instr,unsigned src)1271 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1272 {
1273    switch (instr->src[src].src_type) {
1274    case nir_tex_src_coord:
1275       switch (instr->op) {
1276       case nir_texop_txf:
1277       case nir_texop_txf_ms:
1278       case nir_texop_txf_ms_mcs:
1279       case nir_texop_samples_identical:
1280          return nir_type_int;
1281 
1282       default:
1283          return nir_type_float;
1284       }
1285 
1286    case nir_tex_src_lod:
1287       switch (instr->op) {
1288       case nir_texop_txs:
1289       case nir_texop_txf:
1290          return nir_type_int;
1291 
1292       default:
1293          return nir_type_float;
1294       }
1295 
1296    case nir_tex_src_projector:
1297    case nir_tex_src_comparator:
1298    case nir_tex_src_bias:
1299    case nir_tex_src_ddx:
1300    case nir_tex_src_ddy:
1301       return nir_type_float;
1302 
1303    case nir_tex_src_offset:
1304    case nir_tex_src_ms_index:
1305    case nir_tex_src_texture_offset:
1306    case nir_tex_src_sampler_offset:
1307       return nir_type_int;
1308 
1309    default:
1310       unreachable("Invalid texture source type");
1311    }
1312 }
1313 
1314 static inline unsigned
nir_tex_instr_src_size(nir_tex_instr * instr,unsigned src)1315 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1316 {
1317    if (instr->src[src].src_type == nir_tex_src_coord)
1318       return instr->coord_components;
1319 
1320    /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1321    if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1322       return 4;
1323 
1324    if (instr->src[src].src_type == nir_tex_src_offset ||
1325        instr->src[src].src_type == nir_tex_src_ddx ||
1326        instr->src[src].src_type == nir_tex_src_ddy) {
1327       if (instr->is_array)
1328          return instr->coord_components - 1;
1329       else
1330          return instr->coord_components;
1331    }
1332 
1333    return 1;
1334 }
1335 
1336 static inline int
nir_tex_instr_src_index(nir_tex_instr * instr,nir_tex_src_type type)1337 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1338 {
1339    for (unsigned i = 0; i < instr->num_srcs; i++)
1340       if (instr->src[i].src_type == type)
1341          return (int) i;
1342 
1343    return -1;
1344 }
1345 
1346 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1347 
1348 typedef struct {
1349    nir_instr instr;
1350 
1351    nir_const_value value;
1352 
1353    nir_ssa_def def;
1354 } nir_load_const_instr;
1355 
1356 typedef enum {
1357    nir_jump_return,
1358    nir_jump_break,
1359    nir_jump_continue,
1360 } nir_jump_type;
1361 
1362 typedef struct {
1363    nir_instr instr;
1364    nir_jump_type type;
1365 } nir_jump_instr;
1366 
1367 /* creates a new SSA variable in an undefined state */
1368 
1369 typedef struct {
1370    nir_instr instr;
1371    nir_ssa_def def;
1372 } nir_ssa_undef_instr;
1373 
1374 typedef struct {
1375    struct exec_node node;
1376 
1377    /* The predecessor block corresponding to this source */
1378    struct nir_block *pred;
1379 
1380    nir_src src;
1381 } nir_phi_src;
1382 
1383 #define nir_foreach_phi_src(phi_src, phi) \
1384    foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1385 #define nir_foreach_phi_src_safe(phi_src, phi) \
1386    foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1387 
1388 typedef struct {
1389    nir_instr instr;
1390 
1391    struct exec_list srcs; /** < list of nir_phi_src */
1392 
1393    nir_dest dest;
1394 } nir_phi_instr;
1395 
1396 typedef struct {
1397    struct exec_node node;
1398    nir_src src;
1399    nir_dest dest;
1400 } nir_parallel_copy_entry;
1401 
1402 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1403    foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1404 
1405 typedef struct {
1406    nir_instr instr;
1407 
1408    /* A list of nir_parallel_copy_entry's.  The sources of all of the
1409     * entries are copied to the corresponding destinations "in parallel".
1410     * In other words, if we have two entries: a -> b and b -> a, the values
1411     * get swapped.
1412     */
1413    struct exec_list entries;
1414 } nir_parallel_copy_instr;
1415 
1416 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1417                 type, nir_instr_type_alu)
1418 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1419                 type, nir_instr_type_call)
1420 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1421                 type, nir_instr_type_jump)
1422 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1423                 type, nir_instr_type_tex)
1424 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1425                 type, nir_instr_type_intrinsic)
1426 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1427                 type, nir_instr_type_load_const)
1428 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1429                 type, nir_instr_type_ssa_undef)
1430 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1431                 type, nir_instr_type_phi)
1432 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1433                 nir_parallel_copy_instr, instr,
1434                 type, nir_instr_type_parallel_copy)
1435 
1436 /*
1437  * Control flow
1438  *
1439  * Control flow consists of a tree of control flow nodes, which include
1440  * if-statements and loops. The leaves of the tree are basic blocks, lists of
1441  * instructions that always run start-to-finish. Each basic block also keeps
1442  * track of its successors (blocks which may run immediately after the current
1443  * block) and predecessors (blocks which could have run immediately before the
1444  * current block). Each function also has a start block and an end block which
1445  * all return statements point to (which is always empty). Together, all the
1446  * blocks with their predecessors and successors make up the control flow
1447  * graph (CFG) of the function. There are helpers that modify the tree of
1448  * control flow nodes while modifying the CFG appropriately; these should be
1449  * used instead of modifying the tree directly.
1450  */
1451 
1452 typedef enum {
1453    nir_cf_node_block,
1454    nir_cf_node_if,
1455    nir_cf_node_loop,
1456    nir_cf_node_function
1457 } nir_cf_node_type;
1458 
1459 typedef struct nir_cf_node {
1460    struct exec_node node;
1461    nir_cf_node_type type;
1462    struct nir_cf_node *parent;
1463 } nir_cf_node;
1464 
1465 typedef struct nir_block {
1466    nir_cf_node cf_node;
1467 
1468    struct exec_list instr_list; /** < list of nir_instr */
1469 
1470    /** generic block index; generated by nir_index_blocks */
1471    unsigned index;
1472 
1473    /*
1474     * Each block can only have up to 2 successors, so we put them in a simple
1475     * array - no need for anything more complicated.
1476     */
1477    struct nir_block *successors[2];
1478 
1479    /* Set of nir_block predecessors in the CFG */
1480    struct set *predecessors;
1481 
1482    /*
1483     * this node's immediate dominator in the dominance tree - set to NULL for
1484     * the start block.
1485     */
1486    struct nir_block *imm_dom;
1487 
1488    /* This node's children in the dominance tree */
1489    unsigned num_dom_children;
1490    struct nir_block **dom_children;
1491 
1492    /* Set of nir_block's on the dominance frontier of this block */
1493    struct set *dom_frontier;
1494 
1495    /*
1496     * These two indices have the property that dom_{pre,post}_index for each
1497     * child of this block in the dominance tree will always be between
1498     * dom_pre_index and dom_post_index for this block, which makes testing if
1499     * a given block is dominated by another block an O(1) operation.
1500     */
1501    unsigned dom_pre_index, dom_post_index;
1502 
1503    /* live in and out for this block; used for liveness analysis */
1504    BITSET_WORD *live_in;
1505    BITSET_WORD *live_out;
1506 } nir_block;
1507 
1508 static inline nir_instr *
nir_block_first_instr(nir_block * block)1509 nir_block_first_instr(nir_block *block)
1510 {
1511    struct exec_node *head = exec_list_get_head(&block->instr_list);
1512    return exec_node_data(nir_instr, head, node);
1513 }
1514 
1515 static inline nir_instr *
nir_block_last_instr(nir_block * block)1516 nir_block_last_instr(nir_block *block)
1517 {
1518    struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1519    return exec_node_data(nir_instr, tail, node);
1520 }
1521 
1522 #define nir_foreach_instr(instr, block) \
1523    foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1524 #define nir_foreach_instr_reverse(instr, block) \
1525    foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1526 #define nir_foreach_instr_safe(instr, block) \
1527    foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1528 #define nir_foreach_instr_reverse_safe(instr, block) \
1529    foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1530 
1531 typedef struct nir_if {
1532    nir_cf_node cf_node;
1533    nir_src condition;
1534 
1535    struct exec_list then_list; /** < list of nir_cf_node */
1536    struct exec_list else_list; /** < list of nir_cf_node */
1537 } nir_if;
1538 
1539 typedef struct {
1540    nir_if *nif;
1541 
1542    nir_instr *conditional_instr;
1543 
1544    nir_block *break_block;
1545    nir_block *continue_from_block;
1546 
1547    bool continue_from_then;
1548 
1549    struct list_head loop_terminator_link;
1550 } nir_loop_terminator;
1551 
1552 typedef struct {
1553    /* Number of instructions in the loop */
1554    unsigned num_instructions;
1555 
1556    /* How many times the loop is run (if known) */
1557    unsigned trip_count;
1558    bool is_trip_count_known;
1559 
1560    /* Unroll the loop regardless of its size */
1561    bool force_unroll;
1562 
1563    nir_loop_terminator *limiting_terminator;
1564 
1565    /* A list of loop_terminators terminating this loop. */
1566    struct list_head loop_terminator_list;
1567 } nir_loop_info;
1568 
1569 typedef struct {
1570    nir_cf_node cf_node;
1571 
1572    struct exec_list body; /** < list of nir_cf_node */
1573 
1574    nir_loop_info *info;
1575 } nir_loop;
1576 
1577 /**
1578  * Various bits of metadata that can may be created or required by
1579  * optimization and analysis passes
1580  */
1581 typedef enum {
1582    nir_metadata_none = 0x0,
1583    nir_metadata_block_index = 0x1,
1584    nir_metadata_dominance = 0x2,
1585    nir_metadata_live_ssa_defs = 0x4,
1586    nir_metadata_not_properly_reset = 0x8,
1587    nir_metadata_loop_analysis = 0x10,
1588 } nir_metadata;
1589 
1590 typedef struct {
1591    nir_cf_node cf_node;
1592 
1593    /** pointer to the function of which this is an implementation */
1594    struct nir_function *function;
1595 
1596    struct exec_list body; /** < list of nir_cf_node */
1597 
1598    nir_block *end_block;
1599 
1600    /** list for all local variables in the function */
1601    struct exec_list locals;
1602 
1603    /** array of variables used as parameters */
1604    unsigned num_params;
1605    nir_variable **params;
1606 
1607    /** variable used to hold the result of the function */
1608    nir_variable *return_var;
1609 
1610    /** list of local registers in the function */
1611    struct exec_list registers;
1612 
1613    /** next available local register index */
1614    unsigned reg_alloc;
1615 
1616    /** next available SSA value index */
1617    unsigned ssa_alloc;
1618 
1619    /* total number of basic blocks, only valid when block_index_dirty = false */
1620    unsigned num_blocks;
1621 
1622    nir_metadata valid_metadata;
1623 } nir_function_impl;
1624 
1625 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)1626 nir_start_block(nir_function_impl *impl)
1627 {
1628    return (nir_block *) impl->body.head_sentinel.next;
1629 }
1630 
1631 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)1632 nir_impl_last_block(nir_function_impl *impl)
1633 {
1634    return (nir_block *) impl->body.tail_sentinel.prev;
1635 }
1636 
1637 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)1638 nir_cf_node_next(nir_cf_node *node)
1639 {
1640    struct exec_node *next = exec_node_get_next(&node->node);
1641    if (exec_node_is_tail_sentinel(next))
1642       return NULL;
1643    else
1644       return exec_node_data(nir_cf_node, next, node);
1645 }
1646 
1647 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)1648 nir_cf_node_prev(nir_cf_node *node)
1649 {
1650    struct exec_node *prev = exec_node_get_prev(&node->node);
1651    if (exec_node_is_head_sentinel(prev))
1652       return NULL;
1653    else
1654       return exec_node_data(nir_cf_node, prev, node);
1655 }
1656 
1657 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)1658 nir_cf_node_is_first(const nir_cf_node *node)
1659 {
1660    return exec_node_is_head_sentinel(node->node.prev);
1661 }
1662 
1663 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)1664 nir_cf_node_is_last(const nir_cf_node *node)
1665 {
1666    return exec_node_is_tail_sentinel(node->node.next);
1667 }
1668 
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)1669 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1670                 type, nir_cf_node_block)
1671 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1672                 type, nir_cf_node_if)
1673 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1674                 type, nir_cf_node_loop)
1675 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1676                 nir_function_impl, cf_node, type, nir_cf_node_function)
1677 
1678 static inline nir_block *
1679 nir_if_first_then_block(nir_if *if_stmt)
1680 {
1681    struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1682    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1683 }
1684 
1685 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)1686 nir_if_last_then_block(nir_if *if_stmt)
1687 {
1688    struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1689    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1690 }
1691 
1692 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)1693 nir_if_first_else_block(nir_if *if_stmt)
1694 {
1695    struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1696    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1697 }
1698 
1699 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)1700 nir_if_last_else_block(nir_if *if_stmt)
1701 {
1702    struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1703    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1704 }
1705 
1706 static inline nir_block *
nir_loop_first_block(nir_loop * loop)1707 nir_loop_first_block(nir_loop *loop)
1708 {
1709    struct exec_node *head = exec_list_get_head(&loop->body);
1710    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1711 }
1712 
1713 static inline nir_block *
nir_loop_last_block(nir_loop * loop)1714 nir_loop_last_block(nir_loop *loop)
1715 {
1716    struct exec_node *tail = exec_list_get_tail(&loop->body);
1717    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1718 }
1719 
1720 typedef enum {
1721    nir_parameter_in,
1722    nir_parameter_out,
1723    nir_parameter_inout,
1724 } nir_parameter_type;
1725 
1726 typedef struct {
1727    nir_parameter_type param_type;
1728    const struct glsl_type *type;
1729 } nir_parameter;
1730 
1731 typedef struct nir_function {
1732    struct exec_node node;
1733 
1734    const char *name;
1735    struct nir_shader *shader;
1736 
1737    unsigned num_params;
1738    nir_parameter *params;
1739    const struct glsl_type *return_type;
1740 
1741    /** The implementation of this function.
1742     *
1743     * If the function is only declared and not implemented, this is NULL.
1744     */
1745    nir_function_impl *impl;
1746 } nir_function;
1747 
1748 typedef struct nir_shader_compiler_options {
1749    bool lower_fdiv;
1750    bool lower_ffma;
1751    bool fuse_ffma;
1752    bool lower_flrp32;
1753    /** Lowers flrp when it does not support doubles */
1754    bool lower_flrp64;
1755    bool lower_fpow;
1756    bool lower_fsat;
1757    bool lower_fsqrt;
1758    bool lower_fmod32;
1759    bool lower_fmod64;
1760    bool lower_bitfield_extract;
1761    bool lower_bitfield_insert;
1762    bool lower_uadd_carry;
1763    bool lower_usub_borrow;
1764    /** lowers fneg and ineg to fsub and isub. */
1765    bool lower_negate;
1766    /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1767    bool lower_sub;
1768 
1769    /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1770    bool lower_scmp;
1771 
1772    /** enables rules to lower idiv by power-of-two: */
1773    bool lower_idiv;
1774 
1775    /* Does the native fdot instruction replicate its result for four
1776     * components?  If so, then opt_algebraic_late will turn all fdotN
1777     * instructions into fdot_replicatedN instructions.
1778     */
1779    bool fdot_replicates;
1780 
1781    /** lowers ffract to fsub+ffloor: */
1782    bool lower_ffract;
1783 
1784    bool lower_pack_half_2x16;
1785    bool lower_pack_unorm_2x16;
1786    bool lower_pack_snorm_2x16;
1787    bool lower_pack_unorm_4x8;
1788    bool lower_pack_snorm_4x8;
1789    bool lower_unpack_half_2x16;
1790    bool lower_unpack_unorm_2x16;
1791    bool lower_unpack_snorm_2x16;
1792    bool lower_unpack_unorm_4x8;
1793    bool lower_unpack_snorm_4x8;
1794 
1795    bool lower_extract_byte;
1796    bool lower_extract_word;
1797 
1798    /**
1799     * Does the driver support real 32-bit integers?  (Otherwise, integers
1800     * are simulated by floats.)
1801     */
1802    bool native_integers;
1803 
1804    /* Indicates that the driver only has zero-based vertex id */
1805    bool vertex_id_zero_based;
1806 
1807    bool lower_cs_local_index_from_id;
1808 
1809    /**
1810     * Should nir_lower_io() create load_interpolated_input intrinsics?
1811     *
1812     * If not, it generates regular load_input intrinsics and interpolation
1813     * information must be inferred from the list of input nir_variables.
1814     */
1815    bool use_interpolated_input_intrinsics;
1816 
1817    unsigned max_unroll_iterations;
1818 } nir_shader_compiler_options;
1819 
1820 typedef struct nir_shader {
1821    /** list of uniforms (nir_variable) */
1822    struct exec_list uniforms;
1823 
1824    /** list of inputs (nir_variable) */
1825    struct exec_list inputs;
1826 
1827    /** list of outputs (nir_variable) */
1828    struct exec_list outputs;
1829 
1830    /** list of shared compute variables (nir_variable) */
1831    struct exec_list shared;
1832 
1833    /** Set of driver-specific options for the shader.
1834     *
1835     * The memory for the options is expected to be kept in a single static
1836     * copy by the driver.
1837     */
1838    const struct nir_shader_compiler_options *options;
1839 
1840    /** Various bits of compile-time information about a given shader */
1841    struct shader_info *info;
1842 
1843    /** list of global variables in the shader (nir_variable) */
1844    struct exec_list globals;
1845 
1846    /** list of system value variables in the shader (nir_variable) */
1847    struct exec_list system_values;
1848 
1849    struct exec_list functions; /** < list of nir_function */
1850 
1851    /** list of global register in the shader */
1852    struct exec_list registers;
1853 
1854    /** next available global register index */
1855    unsigned reg_alloc;
1856 
1857    /**
1858     * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1859     * access plus one
1860     */
1861    unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1862 
1863    /** The shader stage, such as MESA_SHADER_VERTEX. */
1864    gl_shader_stage stage;
1865 } nir_shader;
1866 
1867 static inline nir_function_impl *
nir_shader_get_entrypoint(nir_shader * shader)1868 nir_shader_get_entrypoint(nir_shader *shader)
1869 {
1870    assert(exec_list_length(&shader->functions) == 1);
1871    struct exec_node *func_node = exec_list_get_head(&shader->functions);
1872    nir_function *func = exec_node_data(nir_function, func_node, node);
1873    assert(func->return_type == glsl_void_type());
1874    assert(func->num_params == 0);
1875    assert(func->impl);
1876    return func->impl;
1877 }
1878 
1879 #define nir_foreach_function(func, shader) \
1880    foreach_list_typed(nir_function, func, node, &(shader)->functions)
1881 
1882 nir_shader *nir_shader_create(void *mem_ctx,
1883                               gl_shader_stage stage,
1884                               const nir_shader_compiler_options *options,
1885                               shader_info *si);
1886 
1887 /** creates a register, including assigning it an index and adding it to the list */
1888 nir_register *nir_global_reg_create(nir_shader *shader);
1889 
1890 nir_register *nir_local_reg_create(nir_function_impl *impl);
1891 
1892 void nir_reg_remove(nir_register *reg);
1893 
1894 /** Adds a variable to the appropreate list in nir_shader */
1895 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1896 
1897 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)1898 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1899 {
1900    assert(var->data.mode == nir_var_local);
1901    exec_list_push_tail(&impl->locals, &var->node);
1902 }
1903 
1904 /** creates a variable, sets a few defaults, and adds it to the list */
1905 nir_variable *nir_variable_create(nir_shader *shader,
1906                                   nir_variable_mode mode,
1907                                   const struct glsl_type *type,
1908                                   const char *name);
1909 /** creates a local variable and adds it to the list */
1910 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1911                                         const struct glsl_type *type,
1912                                         const char *name);
1913 
1914 /** creates a function and adds it to the shader's list of functions */
1915 nir_function *nir_function_create(nir_shader *shader, const char *name);
1916 
1917 nir_function_impl *nir_function_impl_create(nir_function *func);
1918 /** creates a function_impl that isn't tied to any particular function */
1919 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1920 
1921 nir_block *nir_block_create(nir_shader *shader);
1922 nir_if *nir_if_create(nir_shader *shader);
1923 nir_loop *nir_loop_create(nir_shader *shader);
1924 
1925 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1926 
1927 /** requests that the given pieces of metadata be generated */
1928 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1929 /** dirties all but the preserved metadata */
1930 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1931 
1932 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1933 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1934 
1935 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1936 
1937 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1938                                                   unsigned num_components,
1939                                                   unsigned bit_size);
1940 
1941 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1942                                                 nir_intrinsic_op op);
1943 
1944 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1945                                       nir_function *callee);
1946 
1947 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1948 
1949 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1950 
1951 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1952 
1953 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1954                                                 unsigned num_components,
1955                                                 unsigned bit_size);
1956 
1957 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1958 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1959 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1960 
1961 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1962 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1963                             nir_deref_foreach_leaf_cb cb, void *state);
1964 
1965 nir_load_const_instr *
1966 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1967 
1968 /**
1969  * NIR Cursors and Instruction Insertion API
1970  * @{
1971  *
1972  * A tiny struct representing a point to insert/extract instructions or
1973  * control flow nodes.  Helps reduce the combinatorial explosion of possible
1974  * points to insert/extract.
1975  *
1976  * \sa nir_control_flow.h
1977  */
1978 typedef enum {
1979    nir_cursor_before_block,
1980    nir_cursor_after_block,
1981    nir_cursor_before_instr,
1982    nir_cursor_after_instr,
1983 } nir_cursor_option;
1984 
1985 typedef struct {
1986    nir_cursor_option option;
1987    union {
1988       nir_block *block;
1989       nir_instr *instr;
1990    };
1991 } nir_cursor;
1992 
1993 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)1994 nir_cursor_current_block(nir_cursor cursor)
1995 {
1996    if (cursor.option == nir_cursor_before_instr ||
1997        cursor.option == nir_cursor_after_instr) {
1998       return cursor.instr->block;
1999    } else {
2000       return cursor.block;
2001    }
2002 }
2003 
2004 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2005 
2006 static inline nir_cursor
nir_before_block(nir_block * block)2007 nir_before_block(nir_block *block)
2008 {
2009    nir_cursor cursor;
2010    cursor.option = nir_cursor_before_block;
2011    cursor.block = block;
2012    return cursor;
2013 }
2014 
2015 static inline nir_cursor
nir_after_block(nir_block * block)2016 nir_after_block(nir_block *block)
2017 {
2018    nir_cursor cursor;
2019    cursor.option = nir_cursor_after_block;
2020    cursor.block = block;
2021    return cursor;
2022 }
2023 
2024 static inline nir_cursor
nir_before_instr(nir_instr * instr)2025 nir_before_instr(nir_instr *instr)
2026 {
2027    nir_cursor cursor;
2028    cursor.option = nir_cursor_before_instr;
2029    cursor.instr = instr;
2030    return cursor;
2031 }
2032 
2033 static inline nir_cursor
nir_after_instr(nir_instr * instr)2034 nir_after_instr(nir_instr *instr)
2035 {
2036    nir_cursor cursor;
2037    cursor.option = nir_cursor_after_instr;
2038    cursor.instr = instr;
2039    return cursor;
2040 }
2041 
2042 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)2043 nir_after_block_before_jump(nir_block *block)
2044 {
2045    nir_instr *last_instr = nir_block_last_instr(block);
2046    if (last_instr && last_instr->type == nir_instr_type_jump) {
2047       return nir_before_instr(last_instr);
2048    } else {
2049       return nir_after_block(block);
2050    }
2051 }
2052 
2053 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)2054 nir_before_cf_node(nir_cf_node *node)
2055 {
2056    if (node->type == nir_cf_node_block)
2057       return nir_before_block(nir_cf_node_as_block(node));
2058 
2059    return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2060 }
2061 
2062 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)2063 nir_after_cf_node(nir_cf_node *node)
2064 {
2065    if (node->type == nir_cf_node_block)
2066       return nir_after_block(nir_cf_node_as_block(node));
2067 
2068    return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2069 }
2070 
2071 static inline nir_cursor
nir_after_phis(nir_block * block)2072 nir_after_phis(nir_block *block)
2073 {
2074    nir_foreach_instr(instr, block) {
2075       if (instr->type != nir_instr_type_phi)
2076          return nir_before_instr(instr);
2077    }
2078    return nir_after_block(block);
2079 }
2080 
2081 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)2082 nir_after_cf_node_and_phis(nir_cf_node *node)
2083 {
2084    if (node->type == nir_cf_node_block)
2085       return nir_after_block(nir_cf_node_as_block(node));
2086 
2087    nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2088 
2089    return nir_after_phis(block);
2090 }
2091 
2092 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)2093 nir_before_cf_list(struct exec_list *cf_list)
2094 {
2095    nir_cf_node *first_node = exec_node_data(nir_cf_node,
2096                                             exec_list_get_head(cf_list), node);
2097    return nir_before_cf_node(first_node);
2098 }
2099 
2100 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)2101 nir_after_cf_list(struct exec_list *cf_list)
2102 {
2103    nir_cf_node *last_node = exec_node_data(nir_cf_node,
2104                                            exec_list_get_tail(cf_list), node);
2105    return nir_after_cf_node(last_node);
2106 }
2107 
2108 /**
2109  * Insert a NIR instruction at the given cursor.
2110  *
2111  * Note: This does not update the cursor.
2112  */
2113 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2114 
2115 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)2116 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2117 {
2118    nir_instr_insert(nir_before_instr(instr), before);
2119 }
2120 
2121 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)2122 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2123 {
2124    nir_instr_insert(nir_after_instr(instr), after);
2125 }
2126 
2127 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)2128 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2129 {
2130    nir_instr_insert(nir_before_block(block), before);
2131 }
2132 
2133 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)2134 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2135 {
2136    nir_instr_insert(nir_after_block(block), after);
2137 }
2138 
2139 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)2140 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2141 {
2142    nir_instr_insert(nir_before_cf_node(node), before);
2143 }
2144 
2145 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)2146 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2147 {
2148    nir_instr_insert(nir_after_cf_node(node), after);
2149 }
2150 
2151 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)2152 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2153 {
2154    nir_instr_insert(nir_before_cf_list(list), before);
2155 }
2156 
2157 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)2158 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2159 {
2160    nir_instr_insert(nir_after_cf_list(list), after);
2161 }
2162 
2163 void nir_instr_remove(nir_instr *instr);
2164 
2165 /** @} */
2166 
2167 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2168 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2169 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2170 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2171                          void *state);
2172 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2173 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2174 
2175 nir_const_value *nir_src_as_const_value(nir_src src);
2176 bool nir_src_is_dynamically_uniform(nir_src src);
2177 bool nir_srcs_equal(nir_src src1, nir_src src2);
2178 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2179 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2180 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2181 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2182                             nir_dest new_dest);
2183 
2184 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2185                        unsigned num_components, unsigned bit_size,
2186                        const char *name);
2187 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2188                       unsigned num_components, unsigned bit_size,
2189                       const char *name);
2190 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2191 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2192                                     nir_instr *after_me);
2193 
2194 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2195 
2196 /*
2197  * finds the next basic block in source-code order, returns NULL if there is
2198  * none
2199  */
2200 
2201 nir_block *nir_block_cf_tree_next(nir_block *block);
2202 
2203 /* Performs the opposite of nir_block_cf_tree_next() */
2204 
2205 nir_block *nir_block_cf_tree_prev(nir_block *block);
2206 
2207 /* Gets the first block in a CF node in source-code order */
2208 
2209 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2210 
2211 /* Gets the last block in a CF node in source-code order */
2212 
2213 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2214 
2215 /* Gets the next block after a CF node in source-code order */
2216 
2217 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2218 
2219 /* Macros for loops that visit blocks in source-code order */
2220 
2221 #define nir_foreach_block(block, impl) \
2222    for (nir_block *block = nir_start_block(impl); block != NULL; \
2223         block = nir_block_cf_tree_next(block))
2224 
2225 #define nir_foreach_block_safe(block, impl) \
2226    for (nir_block *block = nir_start_block(impl), \
2227         *next = nir_block_cf_tree_next(block); \
2228         block != NULL; \
2229         block = next, next = nir_block_cf_tree_next(block))
2230 
2231 #define nir_foreach_block_reverse(block, impl) \
2232    for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2233         block = nir_block_cf_tree_prev(block))
2234 
2235 #define nir_foreach_block_reverse_safe(block, impl) \
2236    for (nir_block *block = nir_impl_last_block(impl), \
2237         *prev = nir_block_cf_tree_prev(block); \
2238         block != NULL; \
2239         block = prev, prev = nir_block_cf_tree_prev(block))
2240 
2241 #define nir_foreach_block_in_cf_node(block, node) \
2242    for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2243         block != nir_cf_node_cf_tree_next(node); \
2244         block = nir_block_cf_tree_next(block))
2245 
2246 /* If the following CF node is an if, this function returns that if.
2247  * Otherwise, it returns NULL.
2248  */
2249 nir_if *nir_block_get_following_if(nir_block *block);
2250 
2251 nir_loop *nir_block_get_following_loop(nir_block *block);
2252 
2253 void nir_index_local_regs(nir_function_impl *impl);
2254 void nir_index_global_regs(nir_shader *shader);
2255 void nir_index_ssa_defs(nir_function_impl *impl);
2256 unsigned nir_index_instrs(nir_function_impl *impl);
2257 
2258 void nir_index_blocks(nir_function_impl *impl);
2259 
2260 void nir_print_shader(nir_shader *shader, FILE *fp);
2261 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2262 void nir_print_instr(const nir_instr *instr, FILE *fp);
2263 
2264 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2265 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2266 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2267 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2268 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2269 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2270 
2271 #ifdef DEBUG
2272 void nir_validate_shader(nir_shader *shader);
2273 void nir_metadata_set_validation_flag(nir_shader *shader);
2274 void nir_metadata_check_validation_flag(nir_shader *shader);
2275 
2276 #include "util/debug.h"
2277 static inline bool
should_clone_nir(void)2278 should_clone_nir(void)
2279 {
2280    static int should_clone = -1;
2281    if (should_clone < 0)
2282       should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2283 
2284    return should_clone;
2285 }
2286 #else
nir_validate_shader(nir_shader * shader)2287 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
nir_metadata_set_validation_flag(nir_shader * shader)2288 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
nir_metadata_check_validation_flag(nir_shader * shader)2289 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
should_clone_nir(void)2290 static inline bool should_clone_nir(void) { return false; }
2291 #endif /* DEBUG */
2292 
2293 #define _PASS(nir, do_pass) do {                                     \
2294    do_pass                                                           \
2295    nir_validate_shader(nir);                                         \
2296    if (should_clone_nir()) {                                         \
2297       nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2298       ralloc_free(nir);                                              \
2299       nir = clone;                                                   \
2300    }                                                                 \
2301 } while (0)
2302 
2303 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir,                \
2304    nir_metadata_set_validation_flag(nir);                            \
2305    if (pass(nir, ##__VA_ARGS__)) {                                   \
2306       progress = true;                                               \
2307       nir_metadata_check_validation_flag(nir);                       \
2308    }                                                                 \
2309 )
2310 
2311 #define NIR_PASS_V(nir, pass, ...) _PASS(nir,                        \
2312    pass(nir, ##__VA_ARGS__);                                         \
2313 )
2314 
2315 void nir_calc_dominance_impl(nir_function_impl *impl);
2316 void nir_calc_dominance(nir_shader *shader);
2317 
2318 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2319 bool nir_block_dominates(nir_block *parent, nir_block *child);
2320 
2321 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2322 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2323 
2324 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2325 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2326 
2327 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2328 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2329 
2330 int nir_gs_count_vertices(const nir_shader *shader);
2331 
2332 bool nir_split_var_copies(nir_shader *shader);
2333 
2334 bool nir_lower_returns_impl(nir_function_impl *impl);
2335 bool nir_lower_returns(nir_shader *shader);
2336 
2337 bool nir_inline_functions(nir_shader *shader);
2338 
2339 bool nir_propagate_invariant(nir_shader *shader);
2340 
2341 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2342 void nir_lower_var_copies(nir_shader *shader);
2343 
2344 bool nir_lower_global_vars_to_local(nir_shader *shader);
2345 
2346 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2347 
2348 bool nir_lower_locals_to_regs(nir_shader *shader);
2349 
2350 void nir_lower_io_to_temporaries(nir_shader *shader,
2351                                  nir_function_impl *entrypoint,
2352                                  bool outputs, bool inputs);
2353 
2354 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2355 
2356 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2357                               int (*type_size)(const struct glsl_type *));
2358 
2359 typedef enum {
2360    /* If set, this forces all non-flat fragment shader inputs to be
2361     * interpolated as if with the "sample" qualifier.  This requires
2362     * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2363     */
2364    nir_lower_io_force_sample_interpolation = (1 << 1),
2365 } nir_lower_io_options;
2366 void nir_lower_io(nir_shader *shader,
2367                   nir_variable_mode modes,
2368                   int (*type_size)(const struct glsl_type *),
2369                   nir_lower_io_options);
2370 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2371 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2372 
2373 bool nir_is_per_vertex_io(nir_variable *var, gl_shader_stage stage);
2374 
2375 void nir_lower_io_types(nir_shader *shader);
2376 void nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2377 void nir_lower_regs_to_ssa(nir_shader *shader);
2378 void nir_lower_vars_to_ssa(nir_shader *shader);
2379 
2380 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2381 bool nir_lower_constant_initializers(nir_shader *shader,
2382                                      nir_variable_mode modes);
2383 
2384 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2385 bool nir_lower_vec_to_movs(nir_shader *shader);
2386 bool nir_lower_alu_to_scalar(nir_shader *shader);
2387 void nir_lower_load_const_to_scalar(nir_shader *shader);
2388 
2389 bool nir_lower_phis_to_scalar(nir_shader *shader);
2390 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2391 
2392 void nir_lower_samplers(nir_shader *shader,
2393                         const struct gl_shader_program *shader_program);
2394 
2395 bool nir_lower_system_values(nir_shader *shader);
2396 
2397 typedef struct nir_lower_tex_options {
2398    /**
2399     * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2400     * sampler types a texture projector is lowered.
2401     */
2402    unsigned lower_txp;
2403 
2404    /**
2405     * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2406     */
2407    bool lower_txf_offset;
2408 
2409    /**
2410     * If true, lower away nir_tex_src_offset for all rect textures.
2411     */
2412    bool lower_rect_offset;
2413 
2414    /**
2415     * If true, lower rect textures to 2D, using txs to fetch the
2416     * texture dimensions and dividing the texture coords by the
2417     * texture dims to normalize.
2418     */
2419    bool lower_rect;
2420 
2421    /**
2422     * If true, convert yuv to rgb.
2423     */
2424    unsigned lower_y_uv_external;
2425    unsigned lower_y_u_v_external;
2426    unsigned lower_yx_xuxv_external;
2427 
2428    /**
2429     * To emulate certain texture wrap modes, this can be used
2430     * to saturate the specified tex coord to [0.0, 1.0].  The
2431     * bits are according to sampler #, ie. if, for example:
2432     *
2433     *   (conf->saturate_s & (1 << n))
2434     *
2435     * is true, then the s coord for sampler n is saturated.
2436     *
2437     * Note that clamping must happen *after* projector lowering
2438     * so any projected texture sample instruction with a clamped
2439     * coordinate gets automatically lowered, regardless of the
2440     * 'lower_txp' setting.
2441     */
2442    unsigned saturate_s;
2443    unsigned saturate_t;
2444    unsigned saturate_r;
2445 
2446    /* Bitmask of textures that need swizzling.
2447     *
2448     * If (swizzle_result & (1 << texture_index)), then the swizzle in
2449     * swizzles[texture_index] is applied to the result of the texturing
2450     * operation.
2451     */
2452    unsigned swizzle_result;
2453 
2454    /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
2455     * while 4 and 5 represent 0 and 1 respectively.
2456     */
2457    uint8_t swizzles[32][4];
2458 
2459    /**
2460     * Bitmap of textures that need srgb to linear conversion.  If
2461     * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2462     * of the texture are lowered to linear.
2463     */
2464    unsigned lower_srgb;
2465 
2466    /**
2467     * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2468     */
2469    bool lower_txd_cube_map;
2470 
2471    /**
2472     * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2473     * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2474     * with lower_txd_cube_map.
2475     */
2476    bool lower_txd_shadow;
2477 } nir_lower_tex_options;
2478 
2479 bool nir_lower_tex(nir_shader *shader,
2480                    const nir_lower_tex_options *options);
2481 
2482 bool nir_lower_idiv(nir_shader *shader);
2483 
2484 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2485 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2486 void nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2487 
2488 void nir_lower_two_sided_color(nir_shader *shader);
2489 
2490 void nir_lower_clamp_color_outputs(nir_shader *shader);
2491 
2492 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2493 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2494 
2495 typedef struct nir_lower_wpos_ytransform_options {
2496    int state_tokens[5];
2497    bool fs_coord_origin_upper_left :1;
2498    bool fs_coord_origin_lower_left :1;
2499    bool fs_coord_pixel_center_integer :1;
2500    bool fs_coord_pixel_center_half_integer :1;
2501 } nir_lower_wpos_ytransform_options;
2502 
2503 bool nir_lower_wpos_ytransform(nir_shader *shader,
2504                                const nir_lower_wpos_ytransform_options *options);
2505 bool nir_lower_wpos_center(nir_shader *shader);
2506 
2507 typedef struct nir_lower_drawpixels_options {
2508    int texcoord_state_tokens[5];
2509    int scale_state_tokens[5];
2510    int bias_state_tokens[5];
2511    unsigned drawpix_sampler;
2512    unsigned pixelmap_sampler;
2513    bool pixel_maps :1;
2514    bool scale_and_bias :1;
2515 } nir_lower_drawpixels_options;
2516 
2517 void nir_lower_drawpixels(nir_shader *shader,
2518                           const nir_lower_drawpixels_options *options);
2519 
2520 typedef struct nir_lower_bitmap_options {
2521    unsigned sampler;
2522    bool swizzle_xxxx;
2523 } nir_lower_bitmap_options;
2524 
2525 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2526 
2527 void nir_lower_atomics(nir_shader *shader,
2528                        const struct gl_shader_program *shader_program);
2529 void nir_lower_to_source_mods(nir_shader *shader);
2530 
2531 bool nir_lower_gs_intrinsics(nir_shader *shader);
2532 
2533 typedef enum {
2534    nir_lower_drcp = (1 << 0),
2535    nir_lower_dsqrt = (1 << 1),
2536    nir_lower_drsq = (1 << 2),
2537    nir_lower_dtrunc = (1 << 3),
2538    nir_lower_dfloor = (1 << 4),
2539    nir_lower_dceil = (1 << 5),
2540    nir_lower_dfract = (1 << 6),
2541    nir_lower_dround_even = (1 << 7),
2542    nir_lower_dmod = (1 << 8)
2543 } nir_lower_doubles_options;
2544 
2545 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2546 void nir_lower_double_pack(nir_shader *shader);
2547 
2548 bool nir_normalize_cubemap_coords(nir_shader *shader);
2549 
2550 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2551 
2552 void nir_loop_analyze_impl(nir_function_impl *impl,
2553                            nir_variable_mode indirect_mask);
2554 
2555 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2556 
2557 bool nir_repair_ssa_impl(nir_function_impl *impl);
2558 bool nir_repair_ssa(nir_shader *shader);
2559 
2560 void nir_convert_loop_to_lcssa(nir_loop *loop);
2561 
2562 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2563  * registers.  If false, convert all values (even those not involved in a phi
2564  * node) to registers.
2565  */
2566 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2567 
2568 bool nir_lower_phis_to_regs_block(nir_block *block);
2569 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2570 
2571 bool nir_opt_algebraic(nir_shader *shader);
2572 bool nir_opt_algebraic_late(nir_shader *shader);
2573 bool nir_opt_constant_folding(nir_shader *shader);
2574 
2575 bool nir_opt_global_to_local(nir_shader *shader);
2576 
2577 bool nir_copy_prop(nir_shader *shader);
2578 
2579 bool nir_opt_copy_prop_vars(nir_shader *shader);
2580 
2581 bool nir_opt_cse(nir_shader *shader);
2582 
2583 bool nir_opt_dce(nir_shader *shader);
2584 
2585 bool nir_opt_dead_cf(nir_shader *shader);
2586 
2587 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2588 
2589 bool nir_opt_if(nir_shader *shader);
2590 
2591 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2592 
2593 bool nir_opt_move_comparisons(nir_shader *shader);
2594 
2595 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2596 
2597 bool nir_opt_remove_phis(nir_shader *shader);
2598 
2599 bool nir_opt_trivial_continues(nir_shader *shader);
2600 
2601 bool nir_opt_undef(nir_shader *shader);
2602 
2603 bool nir_opt_conditional_discard(nir_shader *shader);
2604 
2605 void nir_sweep(nir_shader *shader);
2606 
2607 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2608 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2609 
2610 #ifdef __cplusplus
2611 } /* extern "C" */
2612 #endif
2613