• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/hydrogen-bce.h"
6 #include "src/objects-inl.h"
7 
8 namespace v8 {
9 namespace internal {
10 
11 
12 // We try to "factor up" HBoundsCheck instructions towards the root of the
13 // dominator tree.
14 // For now we handle checks where the index is like "exp + int32value".
15 // If in the dominator tree we check "exp + v1" and later (dominated)
16 // "exp + v2", if v2 <= v1 we can safely remove the second check, and if
17 // v2 > v1 we can use v2 in the 1st check and again remove the second.
18 // To do so we keep a dictionary of all checks where the key if the pair
19 // "exp, length".
20 // The class BoundsCheckKey represents this key.
21 class BoundsCheckKey : public ZoneObject {
22  public:
IndexBase() const23   HValue* IndexBase() const { return index_base_; }
Length() const24   HValue* Length() const { return length_; }
25 
Hash()26   uint32_t Hash() {
27     return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode());
28   }
29 
Create(Zone * zone,HBoundsCheck * check,int32_t * offset)30   static BoundsCheckKey* Create(Zone* zone,
31                                 HBoundsCheck* check,
32                                 int32_t* offset) {
33     if (!check->index()->representation().IsSmiOrInteger32()) return NULL;
34 
35     HValue* index_base = NULL;
36     HConstant* constant = NULL;
37     bool is_sub = false;
38 
39     if (check->index()->IsAdd()) {
40       HAdd* index = HAdd::cast(check->index());
41       if (index->left()->IsConstant()) {
42         constant = HConstant::cast(index->left());
43         index_base = index->right();
44       } else if (index->right()->IsConstant()) {
45         constant = HConstant::cast(index->right());
46         index_base = index->left();
47       }
48     } else if (check->index()->IsSub()) {
49       HSub* index = HSub::cast(check->index());
50       is_sub = true;
51       if (index->right()->IsConstant()) {
52         constant = HConstant::cast(index->right());
53         index_base = index->left();
54       }
55     } else if (check->index()->IsConstant()) {
56       index_base = check->block()->graph()->GetConstant0();
57       constant = HConstant::cast(check->index());
58     }
59 
60     if (constant != NULL && constant->HasInteger32Value() &&
61         constant->Integer32Value() != kMinInt) {
62       *offset = is_sub ? - constant->Integer32Value()
63                        : constant->Integer32Value();
64     } else {
65       *offset = 0;
66       index_base = check->index();
67     }
68 
69     return new(zone) BoundsCheckKey(index_base, check->length());
70   }
71 
72  private:
BoundsCheckKey(HValue * index_base,HValue * length)73   BoundsCheckKey(HValue* index_base, HValue* length)
74       : index_base_(index_base),
75         length_(length) { }
76 
77   HValue* index_base_;
78   HValue* length_;
79 
80   DISALLOW_COPY_AND_ASSIGN(BoundsCheckKey);
81 };
82 
83 
84 // Data about each HBoundsCheck that can be eliminated or moved.
85 // It is the "value" in the dictionary indexed by "base-index, length"
86 // (the key is BoundsCheckKey).
87 // We scan the code with a dominator tree traversal.
88 // Traversing the dominator tree we keep a stack (implemented as a singly
89 // linked list) of "data" for each basic block that contains a relevant check
90 // with the same key (the dictionary holds the head of the list).
91 // We also keep all the "data" created for a given basic block in a list, and
92 // use it to "clean up" the dictionary when backtracking in the dominator tree
93 // traversal.
94 // Doing this each dictionary entry always directly points to the check that
95 // is dominating the code being examined now.
96 // We also track the current "offset" of the index expression and use it to
97 // decide if any check is already "covered" (so it can be removed) or not.
98 class BoundsCheckBbData: public ZoneObject {
99  public:
Key() const100   BoundsCheckKey* Key() const { return key_; }
LowerOffset() const101   int32_t LowerOffset() const { return lower_offset_; }
UpperOffset() const102   int32_t UpperOffset() const { return upper_offset_; }
BasicBlock() const103   HBasicBlock* BasicBlock() const { return basic_block_; }
LowerCheck() const104   HBoundsCheck* LowerCheck() const { return lower_check_; }
UpperCheck() const105   HBoundsCheck* UpperCheck() const { return upper_check_; }
NextInBasicBlock() const106   BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; }
FatherInDominatorTree() const107   BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; }
108 
OffsetIsCovered(int32_t offset) const109   bool OffsetIsCovered(int32_t offset) const {
110     return offset >= LowerOffset() && offset <= UpperOffset();
111   }
112 
HasSingleCheck()113   bool HasSingleCheck() { return lower_check_ == upper_check_; }
114 
UpdateUpperOffsets(HBoundsCheck * check,int32_t offset)115   void UpdateUpperOffsets(HBoundsCheck* check, int32_t offset) {
116     BoundsCheckBbData* data = FatherInDominatorTree();
117     while (data != NULL && data->UpperCheck() == check) {
118       DCHECK(data->upper_offset_ < offset);
119       data->upper_offset_ = offset;
120       data = data->FatherInDominatorTree();
121     }
122   }
123 
UpdateLowerOffsets(HBoundsCheck * check,int32_t offset)124   void UpdateLowerOffsets(HBoundsCheck* check, int32_t offset) {
125     BoundsCheckBbData* data = FatherInDominatorTree();
126     while (data != NULL && data->LowerCheck() == check) {
127       DCHECK(data->lower_offset_ > offset);
128       data->lower_offset_ = offset;
129       data = data->FatherInDominatorTree();
130     }
131   }
132 
133   // The goal of this method is to modify either upper_offset_ or
134   // lower_offset_ so that also new_offset is covered (the covered
135   // range grows).
136   //
137   // The precondition is that new_check follows UpperCheck() and
138   // LowerCheck() in the same basic block, and that new_offset is not
139   // covered (otherwise we could simply remove new_check).
140   //
141   // If HasSingleCheck() is true then new_check is added as "second check"
142   // (either upper or lower; note that HasSingleCheck() becomes false).
143   // Otherwise one of the current checks is modified so that it also covers
144   // new_offset, and new_check is removed.
CoverCheck(HBoundsCheck * new_check,int32_t new_offset)145   void CoverCheck(HBoundsCheck* new_check,
146                   int32_t new_offset) {
147     DCHECK(new_check->index()->representation().IsSmiOrInteger32());
148     bool keep_new_check = false;
149 
150     if (new_offset > upper_offset_) {
151       upper_offset_ = new_offset;
152       if (HasSingleCheck()) {
153         keep_new_check = true;
154         upper_check_ = new_check;
155       } else {
156         TightenCheck(upper_check_, new_check, new_offset);
157         UpdateUpperOffsets(upper_check_, upper_offset_);
158       }
159     } else if (new_offset < lower_offset_) {
160       lower_offset_ = new_offset;
161       if (HasSingleCheck()) {
162         keep_new_check = true;
163         lower_check_ = new_check;
164       } else {
165         TightenCheck(lower_check_, new_check, new_offset);
166         UpdateLowerOffsets(lower_check_, lower_offset_);
167       }
168     } else {
169       // Should never have called CoverCheck() in this case.
170       UNREACHABLE();
171     }
172 
173     if (!keep_new_check) {
174       if (FLAG_trace_bce) {
175         base::OS::Print("Eliminating check #%d after tightening\n",
176                         new_check->id());
177       }
178       new_check->block()->graph()->isolate()->counters()->
179           bounds_checks_eliminated()->Increment();
180       new_check->DeleteAndReplaceWith(new_check->ActualValue());
181     } else {
182       HBoundsCheck* first_check = new_check == lower_check_ ? upper_check_
183                                                             : lower_check_;
184       if (FLAG_trace_bce) {
185         base::OS::Print("Moving second check #%d after first check #%d\n",
186                         new_check->id(), first_check->id());
187       }
188       // The length is guaranteed to be live at first_check.
189       DCHECK(new_check->length() == first_check->length());
190       HInstruction* old_position = new_check->next();
191       new_check->Unlink();
192       new_check->InsertAfter(first_check);
193       MoveIndexIfNecessary(new_check->index(), new_check, old_position);
194     }
195   }
196 
BoundsCheckBbData(BoundsCheckKey * key,int32_t lower_offset,int32_t upper_offset,HBasicBlock * bb,HBoundsCheck * lower_check,HBoundsCheck * upper_check,BoundsCheckBbData * next_in_bb,BoundsCheckBbData * father_in_dt)197   BoundsCheckBbData(BoundsCheckKey* key,
198                     int32_t lower_offset,
199                     int32_t upper_offset,
200                     HBasicBlock* bb,
201                     HBoundsCheck* lower_check,
202                     HBoundsCheck* upper_check,
203                     BoundsCheckBbData* next_in_bb,
204                     BoundsCheckBbData* father_in_dt)
205       : key_(key),
206         lower_offset_(lower_offset),
207         upper_offset_(upper_offset),
208         basic_block_(bb),
209         lower_check_(lower_check),
210         upper_check_(upper_check),
211         next_in_bb_(next_in_bb),
212         father_in_dt_(father_in_dt) { }
213 
214  private:
215   BoundsCheckKey* key_;
216   int32_t lower_offset_;
217   int32_t upper_offset_;
218   HBasicBlock* basic_block_;
219   HBoundsCheck* lower_check_;
220   HBoundsCheck* upper_check_;
221   BoundsCheckBbData* next_in_bb_;
222   BoundsCheckBbData* father_in_dt_;
223 
MoveIndexIfNecessary(HValue * index_raw,HBoundsCheck * insert_before,HInstruction * end_of_scan_range)224   void MoveIndexIfNecessary(HValue* index_raw,
225                             HBoundsCheck* insert_before,
226                             HInstruction* end_of_scan_range) {
227     // index_raw can be HAdd(index_base, offset), HSub(index_base, offset),
228     // HConstant(offset) or index_base directly.
229     // In the latter case, no need to move anything.
230     if (index_raw->IsAdd() || index_raw->IsSub()) {
231       HArithmeticBinaryOperation* index =
232           HArithmeticBinaryOperation::cast(index_raw);
233       HValue* left_input = index->left();
234       HValue* right_input = index->right();
235       HValue* context = index->context();
236       bool must_move_index = false;
237       bool must_move_left_input = false;
238       bool must_move_right_input = false;
239       bool must_move_context = false;
240       for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) {
241         if (cursor == left_input) must_move_left_input = true;
242         if (cursor == right_input) must_move_right_input = true;
243         if (cursor == context) must_move_context = true;
244         if (cursor == index) must_move_index = true;
245         if (cursor->previous() == NULL) {
246           cursor = cursor->block()->dominator()->end();
247         } else {
248           cursor = cursor->previous();
249         }
250       }
251       if (must_move_index) {
252         index->Unlink();
253         index->InsertBefore(insert_before);
254       }
255       // The BCE algorithm only selects mergeable bounds checks that share
256       // the same "index_base", so we'll only ever have to move constants.
257       if (must_move_left_input) {
258         HConstant::cast(left_input)->Unlink();
259         HConstant::cast(left_input)->InsertBefore(index);
260       }
261       if (must_move_right_input) {
262         HConstant::cast(right_input)->Unlink();
263         HConstant::cast(right_input)->InsertBefore(index);
264       }
265       if (must_move_context) {
266         // Contexts are always constants.
267         HConstant::cast(context)->Unlink();
268         HConstant::cast(context)->InsertBefore(index);
269       }
270     } else if (index_raw->IsConstant()) {
271       HConstant* index = HConstant::cast(index_raw);
272       bool must_move = false;
273       for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) {
274         if (cursor == index) must_move = true;
275         if (cursor->previous() == NULL) {
276           cursor = cursor->block()->dominator()->end();
277         } else {
278           cursor = cursor->previous();
279         }
280       }
281       if (must_move) {
282         index->Unlink();
283         index->InsertBefore(insert_before);
284       }
285     }
286   }
287 
TightenCheck(HBoundsCheck * original_check,HBoundsCheck * tighter_check,int32_t new_offset)288   void TightenCheck(HBoundsCheck* original_check,
289                     HBoundsCheck* tighter_check,
290                     int32_t new_offset) {
291     DCHECK(original_check->length() == tighter_check->length());
292     MoveIndexIfNecessary(tighter_check->index(), original_check, tighter_check);
293     original_check->ReplaceAllUsesWith(original_check->index());
294     original_check->SetOperandAt(0, tighter_check->index());
295     if (FLAG_trace_bce) {
296       base::OS::Print("Tightened check #%d with offset %d from #%d\n",
297                       original_check->id(), new_offset, tighter_check->id());
298     }
299   }
300 
301   DISALLOW_COPY_AND_ASSIGN(BoundsCheckBbData);
302 };
303 
304 
BoundsCheckKeyMatch(void * key1,void * key2)305 static bool BoundsCheckKeyMatch(void* key1, void* key2) {
306   BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1);
307   BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2);
308   return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length();
309 }
310 
BoundsCheckTable(Zone * zone)311 BoundsCheckTable::BoundsCheckTable(Zone* zone)
312     : CustomMatcherZoneHashMap(BoundsCheckKeyMatch,
313                                ZoneHashMap::kDefaultHashMapCapacity,
314                                ZoneAllocationPolicy(zone)) {}
315 
LookupOrInsert(BoundsCheckKey * key,Zone * zone)316 BoundsCheckBbData** BoundsCheckTable::LookupOrInsert(BoundsCheckKey* key,
317                                                      Zone* zone) {
318   return reinterpret_cast<BoundsCheckBbData**>(
319       &(CustomMatcherZoneHashMap::LookupOrInsert(key, key->Hash(),
320                                                  ZoneAllocationPolicy(zone))
321             ->value));
322 }
323 
324 
Insert(BoundsCheckKey * key,BoundsCheckBbData * data,Zone * zone)325 void BoundsCheckTable::Insert(BoundsCheckKey* key,
326                               BoundsCheckBbData* data,
327                               Zone* zone) {
328   CustomMatcherZoneHashMap::LookupOrInsert(key, key->Hash(),
329                                            ZoneAllocationPolicy(zone))
330       ->value = data;
331 }
332 
333 
Delete(BoundsCheckKey * key)334 void BoundsCheckTable::Delete(BoundsCheckKey* key) {
335   Remove(key, key->Hash());
336 }
337 
338 
339 class HBoundsCheckEliminationState {
340  public:
341   HBasicBlock* block_;
342   BoundsCheckBbData* bb_data_list_;
343   int index_;
344 };
345 
346 
347 // Eliminates checks in bb and recursively in the dominated blocks.
348 // Also replace the results of check instructions with the original value, if
349 // the result is used. This is safe now, since we don't do code motion after
350 // this point. It enables better register allocation since the value produced
351 // by check instructions is really a copy of the original value.
EliminateRedundantBoundsChecks(HBasicBlock * entry)352 void HBoundsCheckEliminationPhase::EliminateRedundantBoundsChecks(
353     HBasicBlock* entry) {
354   // Allocate the stack.
355   HBoundsCheckEliminationState* stack =
356     zone()->NewArray<HBoundsCheckEliminationState>(graph()->blocks()->length());
357 
358   // Explicitly push the entry block.
359   stack[0].block_ = entry;
360   stack[0].bb_data_list_ = PreProcessBlock(entry);
361   stack[0].index_ = 0;
362   int stack_depth = 1;
363 
364   // Implement depth-first traversal with a stack.
365   while (stack_depth > 0) {
366     int current = stack_depth - 1;
367     HBoundsCheckEliminationState* state = &stack[current];
368     const ZoneList<HBasicBlock*>* children = state->block_->dominated_blocks();
369 
370     if (state->index_ < children->length()) {
371       // Recursively visit children blocks.
372       HBasicBlock* child = children->at(state->index_++);
373       int next = stack_depth++;
374       stack[next].block_ = child;
375       stack[next].bb_data_list_ = PreProcessBlock(child);
376       stack[next].index_ = 0;
377     } else {
378       // Finished with all children; post process the block.
379       PostProcessBlock(state->block_, state->bb_data_list_);
380       stack_depth--;
381     }
382   }
383 }
384 
385 
PreProcessBlock(HBasicBlock * bb)386 BoundsCheckBbData* HBoundsCheckEliminationPhase::PreProcessBlock(
387     HBasicBlock* bb) {
388   BoundsCheckBbData* bb_data_list = NULL;
389 
390   for (HInstructionIterator it(bb); !it.Done(); it.Advance()) {
391     HInstruction* i = it.Current();
392     if (!i->IsBoundsCheck()) continue;
393 
394     HBoundsCheck* check = HBoundsCheck::cast(i);
395     int32_t offset = 0;
396     BoundsCheckKey* key =
397         BoundsCheckKey::Create(zone(), check, &offset);
398     if (key == NULL) continue;
399     BoundsCheckBbData** data_p = table_.LookupOrInsert(key, zone());
400     BoundsCheckBbData* data = *data_p;
401     if (data == NULL) {
402       bb_data_list = new(zone()) BoundsCheckBbData(key,
403                                                    offset,
404                                                    offset,
405                                                    bb,
406                                                    check,
407                                                    check,
408                                                    bb_data_list,
409                                                    NULL);
410       *data_p = bb_data_list;
411       if (FLAG_trace_bce) {
412         base::OS::Print("Fresh bounds check data for block #%d: [%d]\n",
413                         bb->block_id(), offset);
414       }
415     } else if (data->OffsetIsCovered(offset)) {
416       bb->graph()->isolate()->counters()->
417           bounds_checks_eliminated()->Increment();
418       if (FLAG_trace_bce) {
419         base::OS::Print("Eliminating bounds check #%d, offset %d is covered\n",
420                         check->id(), offset);
421       }
422       check->DeleteAndReplaceWith(check->ActualValue());
423     } else if (data->BasicBlock() == bb) {
424       // TODO(jkummerow): I think the following logic would be preferable:
425       // if (data->Basicblock() == bb ||
426       //     graph()->use_optimistic_licm() ||
427       //     bb->IsLoopSuccessorDominator()) {
428       //   data->CoverCheck(check, offset)
429       // } else {
430       //   /* add pristine BCBbData like in (data == NULL) case above */
431       // }
432       // Even better would be: distinguish between read-only dominator-imposed
433       // knowledge and modifiable upper/lower checks.
434       // What happens currently is that the first bounds check in a dominated
435       // block will stay around while any further checks are hoisted out,
436       // which doesn't make sense. Investigate/fix this in a future CL.
437       data->CoverCheck(check, offset);
438     } else if (graph()->use_optimistic_licm() ||
439                bb->IsLoopSuccessorDominator()) {
440       int32_t new_lower_offset = offset < data->LowerOffset()
441           ? offset
442           : data->LowerOffset();
443       int32_t new_upper_offset = offset > data->UpperOffset()
444           ? offset
445           : data->UpperOffset();
446       bb_data_list = new(zone()) BoundsCheckBbData(key,
447                                                    new_lower_offset,
448                                                    new_upper_offset,
449                                                    bb,
450                                                    data->LowerCheck(),
451                                                    data->UpperCheck(),
452                                                    bb_data_list,
453                                                    data);
454       if (FLAG_trace_bce) {
455         base::OS::Print("Updated bounds check data for block #%d: [%d - %d]\n",
456                         bb->block_id(), new_lower_offset, new_upper_offset);
457       }
458       table_.Insert(key, bb_data_list, zone());
459     }
460   }
461 
462   return bb_data_list;
463 }
464 
465 
PostProcessBlock(HBasicBlock * block,BoundsCheckBbData * data)466 void HBoundsCheckEliminationPhase::PostProcessBlock(
467     HBasicBlock* block, BoundsCheckBbData* data) {
468   while (data != NULL) {
469     if (data->FatherInDominatorTree()) {
470       table_.Insert(data->Key(), data->FatherInDominatorTree(), zone());
471     } else {
472       table_.Delete(data->Key());
473     }
474     data = data->NextInBasicBlock();
475   }
476 }
477 
478 }  // namespace internal
479 }  // namespace v8
480