1 /*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 #ifndef __INT_H
38 #define __INT_H
39 /**
40 @file opj_intmath.h
41 @brief Implementation of operations on integers (INT)
42
43 The functions in OPJ_INTMATH.H have for goal to realize operations on integers.
44 */
45
46 /** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */
47 /*@{*/
48
49 /** @name Exported functions (see also openjpeg.h) */
50 /*@{*/
51 /* ----------------------------------------------------------------------- */
52 /**
53 Get the minimum of two integers
54 @return Returns a if a < b else b
55 */
opj_int_min(OPJ_INT32 a,OPJ_INT32 b)56 static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b) {
57 return a < b ? a : b;
58 }
59
60 /**
61 Get the minimum of two integers
62 @return Returns a if a < b else b
63 */
opj_uint_min(OPJ_UINT32 a,OPJ_UINT32 b)64 static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b) {
65 return a < b ? a : b;
66 }
67
68 /**
69 Get the maximum of two integers
70 @return Returns a if a > b else b
71 */
opj_int_max(OPJ_INT32 a,OPJ_INT32 b)72 static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b) {
73 return (a > b) ? a : b;
74 }
75
76 /**
77 Get the maximum of two integers
78 @return Returns a if a > b else b
79 */
opj_uint_max(OPJ_UINT32 a,OPJ_UINT32 b)80 static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32 a, OPJ_UINT32 b) {
81 return (a > b) ? a : b;
82 }
83
84 /**
85 Get the saturated sum of two unsigned integers
86 @return Returns saturated sum of a+b
87 */
opj_uint_adds(OPJ_UINT32 a,OPJ_UINT32 b)88 static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b) {
89 OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b;
90 return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum;
91 }
92
93 /**
94 Clamp an integer inside an interval
95 @return
96 <ul>
97 <li>Returns a if (min < a < max)
98 <li>Returns max if (a > max)
99 <li>Returns min if (a < min)
100 </ul>
101 */
opj_int_clamp(OPJ_INT32 a,OPJ_INT32 min,OPJ_INT32 max)102 static INLINE OPJ_INT32 opj_int_clamp(OPJ_INT32 a, OPJ_INT32 min, OPJ_INT32 max) {
103 if (a < min)
104 return min;
105 if (a > max)
106 return max;
107 return a;
108 }
109 /**
110 @return Get absolute value of integer
111 */
opj_int_abs(OPJ_INT32 a)112 static INLINE OPJ_INT32 opj_int_abs(OPJ_INT32 a) {
113 return a < 0 ? -a : a;
114 }
115 /**
116 Divide an integer and round upwards
117 @return Returns a divided by b
118 */
opj_int_ceildiv(OPJ_INT32 a,OPJ_INT32 b)119 static INLINE OPJ_INT32 opj_int_ceildiv(OPJ_INT32 a, OPJ_INT32 b) {
120 assert(b);
121 return (a + b - 1) / b;
122 }
123
124 /**
125 Divide an integer and round upwards
126 @return Returns a divided by b
127 */
opj_uint_ceildiv(OPJ_UINT32 a,OPJ_UINT32 b)128 static INLINE OPJ_UINT32 opj_uint_ceildiv(OPJ_UINT32 a, OPJ_UINT32 b) {
129 assert(b);
130 return (a + b - 1) / b;
131 }
132
133 /**
134 Divide an integer by a power of 2 and round upwards
135 @return Returns a divided by 2^b
136 */
opj_int_ceildivpow2(OPJ_INT32 a,OPJ_INT32 b)137 static INLINE OPJ_INT32 opj_int_ceildivpow2(OPJ_INT32 a, OPJ_INT32 b) {
138 return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
139 }
140
141 /**
142 Divide a 64bits integer by a power of 2 and round upwards
143 @return Returns a divided by 2^b
144 */
opj_int64_ceildivpow2(OPJ_INT64 a,OPJ_INT32 b)145 static INLINE OPJ_INT32 opj_int64_ceildivpow2(OPJ_INT64 a, OPJ_INT32 b) {
146 return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
147 }
148
149 /**
150 Divide an integer by a power of 2 and round upwards
151 @return Returns a divided by 2^b
152 */
opj_uint_ceildivpow2(OPJ_UINT32 a,OPJ_UINT32 b)153 static INLINE OPJ_UINT32 opj_uint_ceildivpow2(OPJ_UINT32 a, OPJ_UINT32 b) {
154 return (OPJ_UINT32)((a + ((OPJ_UINT64)1U << b) - 1U) >> b);
155 }
156
157 /**
158 Divide an integer by a power of 2 and round downwards
159 @return Returns a divided by 2^b
160 */
opj_int_floordivpow2(OPJ_INT32 a,OPJ_INT32 b)161 static INLINE OPJ_INT32 opj_int_floordivpow2(OPJ_INT32 a, OPJ_INT32 b) {
162 return a >> b;
163 }
164 /**
165 Get logarithm of an integer and round downwards
166 @return Returns log2(a)
167 */
opj_int_floorlog2(OPJ_INT32 a)168 static INLINE OPJ_INT32 opj_int_floorlog2(OPJ_INT32 a) {
169 OPJ_INT32 l;
170 for (l = 0; a > 1; l++) {
171 a >>= 1;
172 }
173 return l;
174 }
175 /**
176 Get logarithm of an integer and round downwards
177 @return Returns log2(a)
178 */
opj_uint_floorlog2(OPJ_UINT32 a)179 static INLINE OPJ_UINT32 opj_uint_floorlog2(OPJ_UINT32 a) {
180 OPJ_UINT32 l;
181 for (l = 0; a > 1; ++l)
182 {
183 a >>= 1;
184 }
185 return l;
186 }
187
188 /**
189 Multiply two fixed-precision rational numbers.
190 @param a
191 @param b
192 @return Returns a * b
193 */
opj_int_fix_mul(OPJ_INT32 a,OPJ_INT32 b)194 static INLINE OPJ_INT32 opj_int_fix_mul(OPJ_INT32 a, OPJ_INT32 b) {
195 #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
196 OPJ_INT64 temp = __emul(a, b);
197 #else
198 OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
199 #endif
200 temp += 4096;
201 assert((temp >> 13) <= (OPJ_INT64)0x7FFFFFFF);
202 assert((temp >> 13) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1));
203 return (OPJ_INT32) (temp >> 13);
204 }
205
opj_int_fix_mul_t1(OPJ_INT32 a,OPJ_INT32 b)206 static INLINE OPJ_INT32 opj_int_fix_mul_t1(OPJ_INT32 a, OPJ_INT32 b) {
207 #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
208 OPJ_INT64 temp = __emul(a, b);
209 #else
210 OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
211 #endif
212 temp += 4096;
213 assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) <= (OPJ_INT64)0x7FFFFFFF);
214 assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1));
215 return (OPJ_INT32) (temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) ;
216 }
217
218 /* ----------------------------------------------------------------------- */
219 /*@}*/
220
221 /*@}*/
222
223 #endif
224