• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <stdlib.h>  // qsort()
13 
14 #include "./vp9_rtcd.h"
15 #include "./vpx_dsp_rtcd.h"
16 #include "./vpx_scale_rtcd.h"
17 
18 #include "vpx_dsp/bitreader_buffer.h"
19 #include "vpx_dsp/bitreader.h"
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vpx_ports/mem.h"
23 #include "vpx_ports/mem_ops.h"
24 #include "vpx_scale/vpx_scale.h"
25 #include "vpx_util/vpx_thread.h"
26 
27 #include "vp9/common/vp9_alloccommon.h"
28 #include "vp9/common/vp9_common.h"
29 #include "vp9/common/vp9_entropy.h"
30 #include "vp9/common/vp9_entropymode.h"
31 #include "vp9/common/vp9_idct.h"
32 #include "vp9/common/vp9_thread_common.h"
33 #include "vp9/common/vp9_pred_common.h"
34 #include "vp9/common/vp9_quant_common.h"
35 #include "vp9/common/vp9_reconintra.h"
36 #include "vp9/common/vp9_reconinter.h"
37 #include "vp9/common/vp9_seg_common.h"
38 #include "vp9/common/vp9_tile_common.h"
39 
40 #include "vp9/decoder/vp9_decodeframe.h"
41 #include "vp9/decoder/vp9_detokenize.h"
42 #include "vp9/decoder/vp9_decodemv.h"
43 #include "vp9/decoder/vp9_decoder.h"
44 #include "vp9/decoder/vp9_dsubexp.h"
45 
46 #define MAX_VP9_HEADER_SIZE 80
47 
is_compound_reference_allowed(const VP9_COMMON * cm)48 static int is_compound_reference_allowed(const VP9_COMMON *cm) {
49   int i;
50   for (i = 1; i < REFS_PER_FRAME; ++i)
51     if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
52 
53   return 0;
54 }
55 
setup_compound_reference_mode(VP9_COMMON * cm)56 static void setup_compound_reference_mode(VP9_COMMON *cm) {
57   if (cm->ref_frame_sign_bias[LAST_FRAME] ==
58       cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
59     cm->comp_fixed_ref = ALTREF_FRAME;
60     cm->comp_var_ref[0] = LAST_FRAME;
61     cm->comp_var_ref[1] = GOLDEN_FRAME;
62   } else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
63              cm->ref_frame_sign_bias[ALTREF_FRAME]) {
64     cm->comp_fixed_ref = GOLDEN_FRAME;
65     cm->comp_var_ref[0] = LAST_FRAME;
66     cm->comp_var_ref[1] = ALTREF_FRAME;
67   } else {
68     cm->comp_fixed_ref = LAST_FRAME;
69     cm->comp_var_ref[0] = GOLDEN_FRAME;
70     cm->comp_var_ref[1] = ALTREF_FRAME;
71   }
72 }
73 
read_is_valid(const uint8_t * start,size_t len,const uint8_t * end)74 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
75   return len != 0 && len <= (size_t)(end - start);
76 }
77 
decode_unsigned_max(struct vpx_read_bit_buffer * rb,int max)78 static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
79   const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
80   return data > max ? max : data;
81 }
82 
read_tx_mode(vpx_reader * r)83 static TX_MODE read_tx_mode(vpx_reader *r) {
84   TX_MODE tx_mode = vpx_read_literal(r, 2);
85   if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r);
86   return tx_mode;
87 }
88 
read_tx_mode_probs(struct tx_probs * tx_probs,vpx_reader * r)89 static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) {
90   int i, j;
91 
92   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
93     for (j = 0; j < TX_SIZES - 3; ++j)
94       vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
95 
96   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
97     for (j = 0; j < TX_SIZES - 2; ++j)
98       vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
99 
100   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
101     for (j = 0; j < TX_SIZES - 1; ++j)
102       vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
103 }
104 
read_switchable_interp_probs(FRAME_CONTEXT * fc,vpx_reader * r)105 static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
106   int i, j;
107   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
108     for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
109       vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
110 }
111 
read_inter_mode_probs(FRAME_CONTEXT * fc,vpx_reader * r)112 static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
113   int i, j;
114   for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
115     for (j = 0; j < INTER_MODES - 1; ++j)
116       vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
117 }
118 
read_frame_reference_mode(const VP9_COMMON * cm,vpx_reader * r)119 static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
120                                                 vpx_reader *r) {
121   if (is_compound_reference_allowed(cm)) {
122     return vpx_read_bit(r)
123                ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE)
124                : SINGLE_REFERENCE;
125   } else {
126     return SINGLE_REFERENCE;
127   }
128 }
129 
read_frame_reference_mode_probs(VP9_COMMON * cm,vpx_reader * r)130 static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) {
131   FRAME_CONTEXT *const fc = cm->fc;
132   int i;
133 
134   if (cm->reference_mode == REFERENCE_MODE_SELECT)
135     for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
136       vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
137 
138   if (cm->reference_mode != COMPOUND_REFERENCE)
139     for (i = 0; i < REF_CONTEXTS; ++i) {
140       vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
141       vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
142     }
143 
144   if (cm->reference_mode != SINGLE_REFERENCE)
145     for (i = 0; i < REF_CONTEXTS; ++i)
146       vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
147 }
148 
update_mv_probs(vpx_prob * p,int n,vpx_reader * r)149 static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) {
150   int i;
151   for (i = 0; i < n; ++i)
152     if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1;
153 }
154 
read_mv_probs(nmv_context * ctx,int allow_hp,vpx_reader * r)155 static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) {
156   int i, j;
157 
158   update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
159 
160   for (i = 0; i < 2; ++i) {
161     nmv_component *const comp_ctx = &ctx->comps[i];
162     update_mv_probs(&comp_ctx->sign, 1, r);
163     update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
164     update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
165     update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
166   }
167 
168   for (i = 0; i < 2; ++i) {
169     nmv_component *const comp_ctx = &ctx->comps[i];
170     for (j = 0; j < CLASS0_SIZE; ++j)
171       update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
172     update_mv_probs(comp_ctx->fp, 3, r);
173   }
174 
175   if (allow_hp) {
176     for (i = 0; i < 2; ++i) {
177       nmv_component *const comp_ctx = &ctx->comps[i];
178       update_mv_probs(&comp_ctx->class0_hp, 1, r);
179       update_mv_probs(&comp_ctx->hp, 1, r);
180     }
181   }
182 }
183 
inverse_transform_block_inter(MACROBLOCKD * xd,int plane,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)184 static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane,
185                                           const TX_SIZE tx_size, uint8_t *dst,
186                                           int stride, int eob) {
187   struct macroblockd_plane *const pd = &xd->plane[plane];
188   tran_low_t *const dqcoeff = pd->dqcoeff;
189   assert(eob > 0);
190 #if CONFIG_VP9_HIGHBITDEPTH
191   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
192     uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
193     if (xd->lossless) {
194       vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
195     } else {
196       switch (tx_size) {
197         case TX_4X4:
198           vp9_highbd_idct4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
199           break;
200         case TX_8X8:
201           vp9_highbd_idct8x8_add(dqcoeff, dst16, stride, eob, xd->bd);
202           break;
203         case TX_16X16:
204           vp9_highbd_idct16x16_add(dqcoeff, dst16, stride, eob, xd->bd);
205           break;
206         case TX_32X32:
207           vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
208           break;
209         default: assert(0 && "Invalid transform size");
210       }
211     }
212   } else {
213     if (xd->lossless) {
214       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
215     } else {
216       switch (tx_size) {
217         case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
218         case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
219         case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
220         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
221         default: assert(0 && "Invalid transform size"); return;
222       }
223     }
224   }
225 #else
226   if (xd->lossless) {
227     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
228   } else {
229     switch (tx_size) {
230       case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
231       case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
232       case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
233       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
234       default: assert(0 && "Invalid transform size"); return;
235     }
236   }
237 #endif  // CONFIG_VP9_HIGHBITDEPTH
238 
239   if (eob == 1) {
240     dqcoeff[0] = 0;
241   } else {
242     if (tx_size <= TX_16X16 && eob <= 10)
243       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
244     else if (tx_size == TX_32X32 && eob <= 34)
245       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
246     else
247       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
248   }
249 }
250 
inverse_transform_block_intra(MACROBLOCKD * xd,int plane,const TX_TYPE tx_type,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)251 static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane,
252                                           const TX_TYPE tx_type,
253                                           const TX_SIZE tx_size, uint8_t *dst,
254                                           int stride, int eob) {
255   struct macroblockd_plane *const pd = &xd->plane[plane];
256   tran_low_t *const dqcoeff = pd->dqcoeff;
257   assert(eob > 0);
258 #if CONFIG_VP9_HIGHBITDEPTH
259   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
260     uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
261     if (xd->lossless) {
262       vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
263     } else {
264       switch (tx_size) {
265         case TX_4X4:
266           vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
267           break;
268         case TX_8X8:
269           vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
270           break;
271         case TX_16X16:
272           vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
273           break;
274         case TX_32X32:
275           vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
276           break;
277         default: assert(0 && "Invalid transform size");
278       }
279     }
280   } else {
281     if (xd->lossless) {
282       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
283     } else {
284       switch (tx_size) {
285         case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
286         case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
287         case TX_16X16:
288           vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
289           break;
290         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
291         default: assert(0 && "Invalid transform size"); return;
292       }
293     }
294   }
295 #else
296   if (xd->lossless) {
297     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
298   } else {
299     switch (tx_size) {
300       case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
301       case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
302       case TX_16X16:
303         vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
304         break;
305       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
306       default: assert(0 && "Invalid transform size"); return;
307     }
308   }
309 #endif  // CONFIG_VP9_HIGHBITDEPTH
310 
311   if (eob == 1) {
312     dqcoeff[0] = 0;
313   } else {
314     if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
315       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
316     else if (tx_size == TX_32X32 && eob <= 34)
317       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
318     else
319       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
320   }
321 }
322 
predict_and_reconstruct_intra_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)323 static void predict_and_reconstruct_intra_block(TileWorkerData *twd,
324                                                 MODE_INFO *const mi, int plane,
325                                                 int row, int col,
326                                                 TX_SIZE tx_size) {
327   MACROBLOCKD *const xd = &twd->xd;
328   struct macroblockd_plane *const pd = &xd->plane[plane];
329   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
330   uint8_t *dst;
331   dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
332 
333   if (mi->sb_type < BLOCK_8X8)
334     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
335 
336   vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
337                           dst, pd->dst.stride, col, row, plane);
338 
339   if (!mi->skip) {
340     const TX_TYPE tx_type =
341         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
342     const scan_order *sc = (plane || xd->lossless)
343                                ? &vp9_default_scan_orders[tx_size]
344                                : &vp9_scan_orders[tx_size][tx_type];
345     const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
346                                             mi->segment_id);
347     if (eob > 0) {
348       inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
349                                     pd->dst.stride, eob);
350     }
351   }
352 }
353 
reconstruct_inter_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)354 static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi,
355                                    int plane, int row, int col,
356                                    TX_SIZE tx_size) {
357   MACROBLOCKD *const xd = &twd->xd;
358   struct macroblockd_plane *const pd = &xd->plane[plane];
359   const scan_order *sc = &vp9_default_scan_orders[tx_size];
360   const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
361                                           mi->segment_id);
362 
363   if (eob > 0) {
364     inverse_transform_block_inter(
365         xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
366         pd->dst.stride, eob);
367   }
368   return eob;
369 }
370 
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)371 static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst,
372                             int dst_stride, int x, int y, int b_w, int b_h,
373                             int w, int h) {
374   // Get a pointer to the start of the real data for this row.
375   const uint8_t *ref_row = src - x - y * src_stride;
376 
377   if (y >= h)
378     ref_row += (h - 1) * src_stride;
379   else if (y > 0)
380     ref_row += y * src_stride;
381 
382   do {
383     int right = 0, copy;
384     int left = x < 0 ? -x : 0;
385 
386     if (left > b_w) left = b_w;
387 
388     if (x + b_w > w) right = x + b_w - w;
389 
390     if (right > b_w) right = b_w;
391 
392     copy = b_w - left - right;
393 
394     if (left) memset(dst, ref_row[0], left);
395 
396     if (copy) memcpy(dst + left, ref_row + x + left, copy);
397 
398     if (right) memset(dst + left + copy, ref_row[w - 1], right);
399 
400     dst += dst_stride;
401     ++y;
402 
403     if (y > 0 && y < h) ref_row += src_stride;
404   } while (--b_h);
405 }
406 
407 #if CONFIG_VP9_HIGHBITDEPTH
high_build_mc_border(const uint8_t * src8,int src_stride,uint16_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)408 static void high_build_mc_border(const uint8_t *src8, int src_stride,
409                                  uint16_t *dst, int dst_stride, int x, int y,
410                                  int b_w, int b_h, int w, int h) {
411   // Get a pointer to the start of the real data for this row.
412   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
413   const uint16_t *ref_row = src - x - y * src_stride;
414 
415   if (y >= h)
416     ref_row += (h - 1) * src_stride;
417   else if (y > 0)
418     ref_row += y * src_stride;
419 
420   do {
421     int right = 0, copy;
422     int left = x < 0 ? -x : 0;
423 
424     if (left > b_w) left = b_w;
425 
426     if (x + b_w > w) right = x + b_w - w;
427 
428     if (right > b_w) right = b_w;
429 
430     copy = b_w - left - right;
431 
432     if (left) vpx_memset16(dst, ref_row[0], left);
433 
434     if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
435 
436     if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right);
437 
438     dst += dst_stride;
439     ++y;
440 
441     if (y > 0 && y < h) ref_row += src_stride;
442   } while (--b_h);
443 }
444 #endif  // CONFIG_VP9_HIGHBITDEPTH
445 
446 #if CONFIG_VP9_HIGHBITDEPTH
extend_and_predict(const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,MACROBLOCKD * xd,int w,int h,int ref,int xs,int ys)447 static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
448                                int x0, int y0, int b_w, int b_h,
449                                int frame_width, int frame_height,
450                                int border_offset, uint8_t *const dst,
451                                int dst_buf_stride, int subpel_x, int subpel_y,
452                                const InterpKernel *kernel,
453                                const struct scale_factors *sf, MACROBLOCKD *xd,
454                                int w, int h, int ref, int xs, int ys) {
455   DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]);
456 
457   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
458     high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0,
459                          b_w, b_h, frame_width, frame_height);
460     highbd_inter_predictor(mc_buf_high + border_offset, b_w,
461                            CONVERT_TO_SHORTPTR(dst), dst_buf_stride, subpel_x,
462                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
463   } else {
464     build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0,
465                     y0, b_w, b_h, frame_width, frame_height);
466     inter_predictor(((uint8_t *)mc_buf_high) + border_offset, b_w, dst,
467                     dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel,
468                     xs, ys);
469   }
470 }
471 #else
extend_and_predict(const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,int w,int h,int ref,int xs,int ys)472 static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride,
473                                int x0, int y0, int b_w, int b_h,
474                                int frame_width, int frame_height,
475                                int border_offset, uint8_t *const dst,
476                                int dst_buf_stride, int subpel_x, int subpel_y,
477                                const InterpKernel *kernel,
478                                const struct scale_factors *sf, int w, int h,
479                                int ref, int xs, int ys) {
480   DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]);
481   const uint8_t *buf_ptr;
482 
483   build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h,
484                   frame_width, frame_height);
485   buf_ptr = mc_buf + border_offset;
486 
487   inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w,
488                   h, ref, kernel, xs, ys);
489 }
490 #endif  // CONFIG_VP9_HIGHBITDEPTH
491 
dec_build_inter_predictors(VPxWorker * const worker,MACROBLOCKD * xd,int plane,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y,const InterpKernel * kernel,const struct scale_factors * sf,struct buf_2d * pre_buf,struct buf_2d * dst_buf,const MV * mv,RefCntBuffer * ref_frame_buf,int is_scaled,int ref)492 static void dec_build_inter_predictors(
493     VPxWorker *const worker, MACROBLOCKD *xd, int plane, int bw, int bh, int x,
494     int y, int w, int h, int mi_x, int mi_y, const InterpKernel *kernel,
495     const struct scale_factors *sf, struct buf_2d *pre_buf,
496     struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf,
497     int is_scaled, int ref) {
498   struct macroblockd_plane *const pd = &xd->plane[plane];
499   uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
500   MV32 scaled_mv;
501   int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
502       subpel_x, subpel_y;
503   uint8_t *ref_frame, *buf_ptr;
504 
505   // Get reference frame pointer, width and height.
506   if (plane == 0) {
507     frame_width = ref_frame_buf->buf.y_crop_width;
508     frame_height = ref_frame_buf->buf.y_crop_height;
509     ref_frame = ref_frame_buf->buf.y_buffer;
510   } else {
511     frame_width = ref_frame_buf->buf.uv_crop_width;
512     frame_height = ref_frame_buf->buf.uv_crop_height;
513     ref_frame =
514         plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer;
515   }
516 
517   if (is_scaled) {
518     const MV mv_q4 = clamp_mv_to_umv_border_sb(
519         xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
520     // Co-ordinate of containing block to pixel precision.
521     int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
522     int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
523 #if 0  // CONFIG_BETTER_HW_COMPATIBILITY
524     assert(xd->mi[0]->sb_type != BLOCK_4X8 &&
525            xd->mi[0]->sb_type != BLOCK_8X4);
526     assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) &&
527            mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x)));
528 #endif
529     // Co-ordinate of the block to 1/16th pixel precision.
530     x0_16 = (x_start + x) << SUBPEL_BITS;
531     y0_16 = (y_start + y) << SUBPEL_BITS;
532 
533     // Co-ordinate of current block in reference frame
534     // to 1/16th pixel precision.
535     x0_16 = sf->scale_value_x(x0_16, sf);
536     y0_16 = sf->scale_value_y(y0_16, sf);
537 
538     // Map the top left corner of the block into the reference frame.
539     x0 = sf->scale_value_x(x_start + x, sf);
540     y0 = sf->scale_value_y(y_start + y, sf);
541 
542     // Scale the MV and incorporate the sub-pixel offset of the block
543     // in the reference frame.
544     scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
545     xs = sf->x_step_q4;
546     ys = sf->y_step_q4;
547   } else {
548     // Co-ordinate of containing block to pixel precision.
549     x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
550     y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
551 
552     // Co-ordinate of the block to 1/16th pixel precision.
553     x0_16 = x0 << SUBPEL_BITS;
554     y0_16 = y0 << SUBPEL_BITS;
555 
556     scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y));
557     scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x));
558     xs = ys = 16;
559   }
560   subpel_x = scaled_mv.col & SUBPEL_MASK;
561   subpel_y = scaled_mv.row & SUBPEL_MASK;
562 
563   // Calculate the top left corner of the best matching block in the
564   // reference frame.
565   x0 += scaled_mv.col >> SUBPEL_BITS;
566   y0 += scaled_mv.row >> SUBPEL_BITS;
567   x0_16 += scaled_mv.col;
568   y0_16 += scaled_mv.row;
569 
570   // Get reference block pointer.
571   buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
572   buf_stride = pre_buf->stride;
573 
574   // Do border extension if there is motion or the
575   // width/height is not a multiple of 8 pixels.
576   if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
577       (frame_height & 0x7)) {
578     int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
579 
580     // Get reference block bottom right horizontal coordinate.
581     int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
582     int x_pad = 0, y_pad = 0;
583 
584     if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
585       x0 -= VP9_INTERP_EXTEND - 1;
586       x1 += VP9_INTERP_EXTEND;
587       x_pad = 1;
588     }
589 
590     if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
591       y0 -= VP9_INTERP_EXTEND - 1;
592       y1 += VP9_INTERP_EXTEND;
593       y_pad = 1;
594     }
595 
596     // Wait until reference block is ready. Pad 7 more pixels as last 7
597     // pixels of each superblock row can be changed by next superblock row.
598     if (worker != NULL)
599       vp9_frameworker_wait(worker, ref_frame_buf, VPXMAX(0, (y1 + 7))
600                                                       << (plane == 0 ? 0 : 1));
601 
602     // Skip border extension if block is inside the frame.
603     if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
604         y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
605       // Extend the border.
606       const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0;
607       const int b_w = x1 - x0 + 1;
608       const int b_h = y1 - y0 + 1;
609       const int border_offset = y_pad * 3 * b_w + x_pad * 3;
610 
611       extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h, frame_width,
612                          frame_height, border_offset, dst, dst_buf->stride,
613                          subpel_x, subpel_y, kernel, sf,
614 #if CONFIG_VP9_HIGHBITDEPTH
615                          xd,
616 #endif
617                          w, h, ref, xs, ys);
618       return;
619     }
620   } else {
621     // Wait until reference block is ready. Pad 7 more pixels as last 7
622     // pixels of each superblock row can be changed by next superblock row.
623     if (worker != NULL) {
624       const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS;
625       vp9_frameworker_wait(worker, ref_frame_buf, VPXMAX(0, (y1 + 7))
626                                                       << (plane == 0 ? 0 : 1));
627     }
628   }
629 #if CONFIG_VP9_HIGHBITDEPTH
630   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
631     highbd_inter_predictor(CONVERT_TO_SHORTPTR(buf_ptr), buf_stride,
632                            CONVERT_TO_SHORTPTR(dst), dst_buf->stride, subpel_x,
633                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
634   } else {
635     inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
636                     subpel_y, sf, w, h, ref, kernel, xs, ys);
637   }
638 #else
639   inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y,
640                   sf, w, h, ref, kernel, xs, ys);
641 #endif  // CONFIG_VP9_HIGHBITDEPTH
642 }
643 
dec_build_inter_predictors_sb(VP9Decoder * const pbi,MACROBLOCKD * xd,int mi_row,int mi_col)644 static void dec_build_inter_predictors_sb(VP9Decoder *const pbi,
645                                           MACROBLOCKD *xd, int mi_row,
646                                           int mi_col) {
647   int plane;
648   const int mi_x = mi_col * MI_SIZE;
649   const int mi_y = mi_row * MI_SIZE;
650   const MODE_INFO *mi = xd->mi[0];
651   const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
652   const BLOCK_SIZE sb_type = mi->sb_type;
653   const int is_compound = has_second_ref(mi);
654   int ref;
655   int is_scaled;
656   VPxWorker *const fwo =
657       pbi->frame_parallel_decode ? pbi->frame_worker_owner : NULL;
658 
659   for (ref = 0; ref < 1 + is_compound; ++ref) {
660     const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
661     RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME];
662     const struct scale_factors *const sf = &ref_buf->sf;
663     const int idx = ref_buf->idx;
664     BufferPool *const pool = pbi->common.buffer_pool;
665     RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx];
666 
667     if (!vp9_is_valid_scale(sf))
668       vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
669                          "Reference frame has invalid dimensions");
670 
671     is_scaled = vp9_is_scaled(sf);
672     vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
673                          is_scaled ? sf : NULL);
674     xd->block_refs[ref] = ref_buf;
675 
676     if (sb_type < BLOCK_8X8) {
677       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
678         struct macroblockd_plane *const pd = &xd->plane[plane];
679         struct buf_2d *const dst_buf = &pd->dst;
680         const int num_4x4_w = pd->n4_w;
681         const int num_4x4_h = pd->n4_h;
682         const int n4w_x4 = 4 * num_4x4_w;
683         const int n4h_x4 = 4 * num_4x4_h;
684         struct buf_2d *const pre_buf = &pd->pre[ref];
685         int i = 0, x, y;
686         for (y = 0; y < num_4x4_h; ++y) {
687           for (x = 0; x < num_4x4_w; ++x) {
688             const MV mv = average_split_mvs(pd, mi, ref, i++);
689             dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4, 4 * x,
690                                        4 * y, 4, 4, mi_x, mi_y, kernel, sf,
691                                        pre_buf, dst_buf, &mv, ref_frame_buf,
692                                        is_scaled, ref);
693           }
694         }
695       }
696     } else {
697       const MV mv = mi->mv[ref].as_mv;
698       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
699         struct macroblockd_plane *const pd = &xd->plane[plane];
700         struct buf_2d *const dst_buf = &pd->dst;
701         const int num_4x4_w = pd->n4_w;
702         const int num_4x4_h = pd->n4_h;
703         const int n4w_x4 = 4 * num_4x4_w;
704         const int n4h_x4 = 4 * num_4x4_h;
705         struct buf_2d *const pre_buf = &pd->pre[ref];
706         dec_build_inter_predictors(fwo, xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4,
707                                    n4h_x4, mi_x, mi_y, kernel, sf, pre_buf,
708                                    dst_buf, &mv, ref_frame_buf, is_scaled, ref);
709       }
710     }
711   }
712 }
713 
dec_reset_skip_context(MACROBLOCKD * xd)714 static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
715   int i;
716   for (i = 0; i < MAX_MB_PLANE; i++) {
717     struct macroblockd_plane *const pd = &xd->plane[i];
718     memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
719     memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
720   }
721 }
722 
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,int bwl,int bhl)723 static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
724                          int bhl) {
725   int i;
726   for (i = 0; i < MAX_MB_PLANE; i++) {
727     xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
728     xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
729     xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
730     xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
731   }
732 }
733 
set_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int bw,int bh,int x_mis,int y_mis,int bwl,int bhl)734 static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
735                               BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
736                               int bh, int x_mis, int y_mis, int bwl, int bhl) {
737   const int offset = mi_row * cm->mi_stride + mi_col;
738   int x, y;
739   const TileInfo *const tile = &xd->tile;
740 
741   xd->mi = cm->mi_grid_visible + offset;
742   xd->mi[0] = &cm->mi[offset];
743   // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
744   // passing bsize from decode_partition().
745   xd->mi[0]->sb_type = bsize;
746   for (y = 0; y < y_mis; ++y)
747     for (x = !y; x < x_mis; ++x) {
748       xd->mi[y * cm->mi_stride + x] = xd->mi[0];
749     }
750 
751   set_plane_n4(xd, bw, bh, bwl, bhl);
752 
753   set_skip_context(xd, mi_row, mi_col);
754 
755   // Distance of Mb to the various image edges. These are specified to 8th pel
756   // as they are always compared to values that are in 1/8th pel units
757   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
758 
759   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
760   return xd->mi[0];
761 }
762 
decode_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)763 static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
764                          int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
765   VP9_COMMON *const cm = &pbi->common;
766   const int less8x8 = bsize < BLOCK_8X8;
767   const int bw = 1 << (bwl - 1);
768   const int bh = 1 << (bhl - 1);
769   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
770   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
771   vpx_reader *r = &twd->bit_reader;
772   MACROBLOCKD *const xd = &twd->xd;
773 
774   MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
775                               y_mis, bwl, bhl);
776 
777   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
778     const BLOCK_SIZE uv_subsize =
779         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
780     if (uv_subsize == BLOCK_INVALID)
781       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
782                          "Invalid block size.");
783   }
784 
785   vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
786 
787   if (mi->skip) {
788     dec_reset_skip_context(xd);
789   }
790 
791   if (!is_inter_block(mi)) {
792     int plane;
793     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
794       const struct macroblockd_plane *const pd = &xd->plane[plane];
795       const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
796       const int num_4x4_w = pd->n4_w;
797       const int num_4x4_h = pd->n4_h;
798       const int step = (1 << tx_size);
799       int row, col;
800       const int max_blocks_wide =
801           num_4x4_w + (xd->mb_to_right_edge >= 0
802                            ? 0
803                            : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
804       const int max_blocks_high =
805           num_4x4_h + (xd->mb_to_bottom_edge >= 0
806                            ? 0
807                            : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
808 
809       xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
810       xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
811 
812       for (row = 0; row < max_blocks_high; row += step)
813         for (col = 0; col < max_blocks_wide; col += step)
814           predict_and_reconstruct_intra_block(twd, mi, plane, row, col,
815                                               tx_size);
816     }
817   } else {
818     // Prediction
819     dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col);
820 
821     // Reconstruction
822     if (!mi->skip) {
823       int eobtotal = 0;
824       int plane;
825 
826       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
827         const struct macroblockd_plane *const pd = &xd->plane[plane];
828         const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
829         const int num_4x4_w = pd->n4_w;
830         const int num_4x4_h = pd->n4_h;
831         const int step = (1 << tx_size);
832         int row, col;
833         const int max_blocks_wide =
834             num_4x4_w + (xd->mb_to_right_edge >= 0
835                              ? 0
836                              : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
837         const int max_blocks_high =
838             num_4x4_h +
839             (xd->mb_to_bottom_edge >= 0
840                  ? 0
841                  : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
842 
843         xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
844         xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
845 
846         for (row = 0; row < max_blocks_high; row += step)
847           for (col = 0; col < max_blocks_wide; col += step)
848             eobtotal +=
849                 reconstruct_inter_block(twd, mi, plane, row, col, tx_size);
850       }
851 
852       if (!less8x8 && eobtotal == 0) mi->skip = 1;  // skip loopfilter
853     }
854   }
855 
856   xd->corrupted |= vpx_reader_has_error(r);
857 
858   if (cm->lf.filter_level) {
859     vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
860   }
861 }
862 
dec_partition_plane_context(TileWorkerData * twd,int mi_row,int mi_col,int bsl)863 static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row,
864                                               int mi_col, int bsl) {
865   const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col;
866   const PARTITION_CONTEXT *left_ctx =
867       twd->xd.left_seg_context + (mi_row & MI_MASK);
868   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
869 
870   //  assert(bsl >= 0);
871 
872   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
873 }
874 
dec_update_partition_context(TileWorkerData * twd,int mi_row,int mi_col,BLOCK_SIZE subsize,int bw)875 static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row,
876                                                 int mi_col, BLOCK_SIZE subsize,
877                                                 int bw) {
878   PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col;
879   PARTITION_CONTEXT *const left_ctx =
880       twd->xd.left_seg_context + (mi_row & MI_MASK);
881 
882   // update the partition context at the end notes. set partition bits
883   // of block sizes larger than the current one to be one, and partition
884   // bits of smaller block sizes to be zero.
885   memset(above_ctx, partition_context_lookup[subsize].above, bw);
886   memset(left_ctx, partition_context_lookup[subsize].left, bw);
887 }
888 
read_partition(TileWorkerData * twd,int mi_row,int mi_col,int has_rows,int has_cols,int bsl)889 static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row,
890                                      int mi_col, int has_rows, int has_cols,
891                                      int bsl) {
892   const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl);
893   const vpx_prob *const probs = twd->xd.partition_probs[ctx];
894   FRAME_COUNTS *counts = twd->xd.counts;
895   PARTITION_TYPE p;
896   vpx_reader *r = &twd->bit_reader;
897 
898   if (has_rows && has_cols)
899     p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs);
900   else if (!has_rows && has_cols)
901     p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
902   else if (has_rows && !has_cols)
903     p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
904   else
905     p = PARTITION_SPLIT;
906 
907   if (counts) ++counts->partition[ctx][p];
908 
909   return p;
910 }
911 
912 // TODO(slavarnway): eliminate bsize and subsize in future commits
decode_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2)913 static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi,
914                              int mi_row, int mi_col, BLOCK_SIZE bsize,
915                              int n4x4_l2) {
916   VP9_COMMON *const cm = &pbi->common;
917   const int n8x8_l2 = n4x4_l2 - 1;
918   const int num_8x8_wh = 1 << n8x8_l2;
919   const int hbs = num_8x8_wh >> 1;
920   PARTITION_TYPE partition;
921   BLOCK_SIZE subsize;
922   const int has_rows = (mi_row + hbs) < cm->mi_rows;
923   const int has_cols = (mi_col + hbs) < cm->mi_cols;
924   MACROBLOCKD *const xd = &twd->xd;
925 
926   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
927 
928   partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
929   subsize = subsize_lookup[partition][bsize];  // get_subsize(bsize, partition);
930   if (!hbs) {
931     // calculate bmode block dimensions (log 2)
932     xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
933     xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
934     decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
935   } else {
936     switch (partition) {
937       case PARTITION_NONE:
938         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
939         break;
940       case PARTITION_HORZ:
941         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
942         if (has_rows)
943           decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
944                        n8x8_l2);
945         break;
946       case PARTITION_VERT:
947         decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
948         if (has_cols)
949           decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
950                        n4x4_l2);
951         break;
952       case PARTITION_SPLIT:
953         decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
954         decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
955         decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
956         decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
957                          n8x8_l2);
958         break;
959       default: assert(0 && "Invalid partition type");
960     }
961   }
962 
963   // update partition context
964   if (bsize >= BLOCK_8X8 &&
965       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
966     dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
967 }
968 
setup_token_decoder(const uint8_t * data,const uint8_t * data_end,size_t read_size,struct vpx_internal_error_info * error_info,vpx_reader * r,vpx_decrypt_cb decrypt_cb,void * decrypt_state)969 static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
970                                 size_t read_size,
971                                 struct vpx_internal_error_info *error_info,
972                                 vpx_reader *r, vpx_decrypt_cb decrypt_cb,
973                                 void *decrypt_state) {
974   // Validate the calculated partition length. If the buffer
975   // described by the partition can't be fully read, then restrict
976   // it to the portion that can be (for EC mode) or throw an error.
977   if (!read_is_valid(data, read_size, data_end))
978     vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
979                        "Truncated packet or corrupt tile length");
980 
981   if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
982     vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
983                        "Failed to allocate bool decoder %d", 1);
984 }
985 
read_coef_probs_common(vp9_coeff_probs_model * coef_probs,vpx_reader * r)986 static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
987                                    vpx_reader *r) {
988   int i, j, k, l, m;
989 
990   if (vpx_read_bit(r))
991     for (i = 0; i < PLANE_TYPES; ++i)
992       for (j = 0; j < REF_TYPES; ++j)
993         for (k = 0; k < COEF_BANDS; ++k)
994           for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
995             for (m = 0; m < UNCONSTRAINED_NODES; ++m)
996               vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
997 }
998 
read_coef_probs(FRAME_CONTEXT * fc,TX_MODE tx_mode,vpx_reader * r)999 static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) {
1000   const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1001   TX_SIZE tx_size;
1002   for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
1003     read_coef_probs_common(fc->coef_probs[tx_size], r);
1004 }
1005 
setup_segmentation(struct segmentation * seg,struct vpx_read_bit_buffer * rb)1006 static void setup_segmentation(struct segmentation *seg,
1007                                struct vpx_read_bit_buffer *rb) {
1008   int i, j;
1009 
1010   seg->update_map = 0;
1011   seg->update_data = 0;
1012 
1013   seg->enabled = vpx_rb_read_bit(rb);
1014   if (!seg->enabled) return;
1015 
1016   // Segmentation map update
1017   seg->update_map = vpx_rb_read_bit(rb);
1018   if (seg->update_map) {
1019     for (i = 0; i < SEG_TREE_PROBS; i++)
1020       seg->tree_probs[i] =
1021           vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1022 
1023     seg->temporal_update = vpx_rb_read_bit(rb);
1024     if (seg->temporal_update) {
1025       for (i = 0; i < PREDICTION_PROBS; i++)
1026         seg->pred_probs[i] =
1027             vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1028     } else {
1029       for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB;
1030     }
1031   }
1032 
1033   // Segmentation data update
1034   seg->update_data = vpx_rb_read_bit(rb);
1035   if (seg->update_data) {
1036     seg->abs_delta = vpx_rb_read_bit(rb);
1037 
1038     vp9_clearall_segfeatures(seg);
1039 
1040     for (i = 0; i < MAX_SEGMENTS; i++) {
1041       for (j = 0; j < SEG_LVL_MAX; j++) {
1042         int data = 0;
1043         const int feature_enabled = vpx_rb_read_bit(rb);
1044         if (feature_enabled) {
1045           vp9_enable_segfeature(seg, i, j);
1046           data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
1047           if (vp9_is_segfeature_signed(j))
1048             data = vpx_rb_read_bit(rb) ? -data : data;
1049         }
1050         vp9_set_segdata(seg, i, j, data);
1051       }
1052     }
1053   }
1054 }
1055 
setup_loopfilter(struct loopfilter * lf,struct vpx_read_bit_buffer * rb)1056 static void setup_loopfilter(struct loopfilter *lf,
1057                              struct vpx_read_bit_buffer *rb) {
1058   lf->filter_level = vpx_rb_read_literal(rb, 6);
1059   lf->sharpness_level = vpx_rb_read_literal(rb, 3);
1060 
1061   // Read in loop filter deltas applied at the MB level based on mode or ref
1062   // frame.
1063   lf->mode_ref_delta_update = 0;
1064 
1065   lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
1066   if (lf->mode_ref_delta_enabled) {
1067     lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
1068     if (lf->mode_ref_delta_update) {
1069       int i;
1070 
1071       for (i = 0; i < MAX_REF_LF_DELTAS; i++)
1072         if (vpx_rb_read_bit(rb))
1073           lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1074 
1075       for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
1076         if (vpx_rb_read_bit(rb))
1077           lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1078     }
1079   }
1080 }
1081 
read_delta_q(struct vpx_read_bit_buffer * rb)1082 static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
1083   return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0;
1084 }
1085 
setup_quantization(VP9_COMMON * const cm,MACROBLOCKD * const xd,struct vpx_read_bit_buffer * rb)1086 static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
1087                                struct vpx_read_bit_buffer *rb) {
1088   cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
1089   cm->y_dc_delta_q = read_delta_q(rb);
1090   cm->uv_dc_delta_q = read_delta_q(rb);
1091   cm->uv_ac_delta_q = read_delta_q(rb);
1092   cm->dequant_bit_depth = cm->bit_depth;
1093   xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
1094                  cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
1095 
1096 #if CONFIG_VP9_HIGHBITDEPTH
1097   xd->bd = (int)cm->bit_depth;
1098 #endif
1099 }
1100 
setup_segmentation_dequant(VP9_COMMON * const cm)1101 static void setup_segmentation_dequant(VP9_COMMON *const cm) {
1102   // Build y/uv dequant values based on segmentation.
1103   if (cm->seg.enabled) {
1104     int i;
1105     for (i = 0; i < MAX_SEGMENTS; ++i) {
1106       const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex);
1107       cm->y_dequant[i][0] =
1108           vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1109       cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1110       cm->uv_dequant[i][0] =
1111           vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1112       cm->uv_dequant[i][1] =
1113           vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1114     }
1115   } else {
1116     const int qindex = cm->base_qindex;
1117     // When segmentation is disabled, only the first value is used.  The
1118     // remaining are don't cares.
1119     cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1120     cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1121     cm->uv_dequant[0][0] =
1122         vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1123     cm->uv_dequant[0][1] =
1124         vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1125   }
1126 }
1127 
read_interp_filter(struct vpx_read_bit_buffer * rb)1128 static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
1129   const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP,
1130                                               EIGHTTAP_SHARP, BILINEAR };
1131   return vpx_rb_read_bit(rb) ? SWITCHABLE
1132                              : literal_to_filter[vpx_rb_read_literal(rb, 2)];
1133 }
1134 
setup_render_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1135 static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1136   cm->render_width = cm->width;
1137   cm->render_height = cm->height;
1138   if (vpx_rb_read_bit(rb))
1139     vp9_read_frame_size(rb, &cm->render_width, &cm->render_height);
1140 }
1141 
resize_mv_buffer(VP9_COMMON * cm)1142 static void resize_mv_buffer(VP9_COMMON *cm) {
1143   vpx_free(cm->cur_frame->mvs);
1144   cm->cur_frame->mi_rows = cm->mi_rows;
1145   cm->cur_frame->mi_cols = cm->mi_cols;
1146   CHECK_MEM_ERROR(cm, cm->cur_frame->mvs,
1147                   (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
1148                                        sizeof(*cm->cur_frame->mvs)));
1149 }
1150 
resize_context_buffers(VP9_COMMON * cm,int width,int height)1151 static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
1152 #if CONFIG_SIZE_LIMIT
1153   if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
1154     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1155                        "Dimensions of %dx%d beyond allowed size of %dx%d.",
1156                        width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
1157 #endif
1158   if (cm->width != width || cm->height != height) {
1159     const int new_mi_rows =
1160         ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1161     const int new_mi_cols =
1162         ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1163 
1164     // Allocations in vp9_alloc_context_buffers() depend on individual
1165     // dimensions as well as the overall size.
1166     if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
1167       if (vp9_alloc_context_buffers(cm, width, height))
1168         vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1169                            "Failed to allocate context buffers");
1170     } else {
1171       vp9_set_mb_mi(cm, width, height);
1172     }
1173     vp9_init_context_buffers(cm);
1174     cm->width = width;
1175     cm->height = height;
1176   }
1177   if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
1178       cm->mi_cols > cm->cur_frame->mi_cols) {
1179     resize_mv_buffer(cm);
1180   }
1181 }
1182 
setup_frame_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1183 static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1184   int width, height;
1185   BufferPool *const pool = cm->buffer_pool;
1186   vp9_read_frame_size(rb, &width, &height);
1187   resize_context_buffers(cm, width, height);
1188   setup_render_size(cm, rb);
1189 
1190   lock_buffer_pool(pool);
1191   if (vpx_realloc_frame_buffer(
1192           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1193           cm->subsampling_y,
1194 #if CONFIG_VP9_HIGHBITDEPTH
1195           cm->use_highbitdepth,
1196 #endif
1197           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1198           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1199           pool->cb_priv)) {
1200     unlock_buffer_pool(pool);
1201     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1202                        "Failed to allocate frame buffer");
1203   }
1204   unlock_buffer_pool(pool);
1205 
1206   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1207   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1208   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1209   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1210   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1211   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1212   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1213 }
1214 
valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,int ref_xss,int ref_yss,vpx_bit_depth_t this_bit_depth,int this_xss,int this_yss)1215 static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
1216                                           int ref_xss, int ref_yss,
1217                                           vpx_bit_depth_t this_bit_depth,
1218                                           int this_xss, int this_yss) {
1219   return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
1220          ref_yss == this_yss;
1221 }
1222 
setup_frame_size_with_refs(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1223 static void setup_frame_size_with_refs(VP9_COMMON *cm,
1224                                        struct vpx_read_bit_buffer *rb) {
1225   int width, height;
1226   int found = 0, i;
1227   int has_valid_ref_frame = 0;
1228   BufferPool *const pool = cm->buffer_pool;
1229   for (i = 0; i < REFS_PER_FRAME; ++i) {
1230     if (vpx_rb_read_bit(rb)) {
1231       if (cm->frame_refs[i].idx != INVALID_IDX) {
1232         YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
1233         width = buf->y_crop_width;
1234         height = buf->y_crop_height;
1235         found = 1;
1236         break;
1237       } else {
1238         vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1239                            "Failed to decode frame size");
1240       }
1241     }
1242   }
1243 
1244   if (!found) vp9_read_frame_size(rb, &width, &height);
1245 
1246   if (width <= 0 || height <= 0)
1247     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1248                        "Invalid frame size");
1249 
1250   // Check to make sure at least one of frames that this frame references
1251   // has valid dimensions.
1252   for (i = 0; i < REFS_PER_FRAME; ++i) {
1253     RefBuffer *const ref_frame = &cm->frame_refs[i];
1254     has_valid_ref_frame |=
1255         (ref_frame->idx != INVALID_IDX &&
1256          valid_ref_frame_size(ref_frame->buf->y_crop_width,
1257                               ref_frame->buf->y_crop_height, width, height));
1258   }
1259   if (!has_valid_ref_frame)
1260     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1261                        "Referenced frame has invalid size");
1262   for (i = 0; i < REFS_PER_FRAME; ++i) {
1263     RefBuffer *const ref_frame = &cm->frame_refs[i];
1264     if (ref_frame->idx == INVALID_IDX ||
1265         !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
1266                                  ref_frame->buf->subsampling_x,
1267                                  ref_frame->buf->subsampling_y, cm->bit_depth,
1268                                  cm->subsampling_x, cm->subsampling_y))
1269       vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1270                          "Referenced frame has incompatible color format");
1271   }
1272 
1273   resize_context_buffers(cm, width, height);
1274   setup_render_size(cm, rb);
1275 
1276   lock_buffer_pool(pool);
1277   if (vpx_realloc_frame_buffer(
1278           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1279           cm->subsampling_y,
1280 #if CONFIG_VP9_HIGHBITDEPTH
1281           cm->use_highbitdepth,
1282 #endif
1283           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1284           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1285           pool->cb_priv)) {
1286     unlock_buffer_pool(pool);
1287     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1288                        "Failed to allocate frame buffer");
1289   }
1290   unlock_buffer_pool(pool);
1291 
1292   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1293   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1294   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1295   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1296   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1297   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1298   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1299 }
1300 
setup_tile_info(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1301 static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1302   int min_log2_tile_cols, max_log2_tile_cols, max_ones;
1303   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
1304 
1305   // columns
1306   max_ones = max_log2_tile_cols - min_log2_tile_cols;
1307   cm->log2_tile_cols = min_log2_tile_cols;
1308   while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++;
1309 
1310   if (cm->log2_tile_cols > 6)
1311     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1312                        "Invalid number of tile columns");
1313 
1314   // rows
1315   cm->log2_tile_rows = vpx_rb_read_bit(rb);
1316   if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb);
1317 }
1318 
1319 // Reads the next tile returning its size and adjusting '*data' accordingly
1320 // based on 'is_last'.
get_tile_buffer(const uint8_t * const data_end,int is_last,struct vpx_internal_error_info * error_info,const uint8_t ** data,vpx_decrypt_cb decrypt_cb,void * decrypt_state,TileBuffer * buf)1321 static void get_tile_buffer(const uint8_t *const data_end, int is_last,
1322                             struct vpx_internal_error_info *error_info,
1323                             const uint8_t **data, vpx_decrypt_cb decrypt_cb,
1324                             void *decrypt_state, TileBuffer *buf) {
1325   size_t size;
1326 
1327   if (!is_last) {
1328     if (!read_is_valid(*data, 4, data_end))
1329       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1330                          "Truncated packet or corrupt tile length");
1331 
1332     if (decrypt_cb) {
1333       uint8_t be_data[4];
1334       decrypt_cb(decrypt_state, *data, be_data, 4);
1335       size = mem_get_be32(be_data);
1336     } else {
1337       size = mem_get_be32(*data);
1338     }
1339     *data += 4;
1340 
1341     if (size > (size_t)(data_end - *data))
1342       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1343                          "Truncated packet or corrupt tile size");
1344   } else {
1345     size = data_end - *data;
1346   }
1347 
1348   buf->data = *data;
1349   buf->size = size;
1350 
1351   *data += size;
1352 }
1353 
get_tile_buffers(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int tile_cols,int tile_rows,TileBuffer (* tile_buffers)[1<<6])1354 static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data,
1355                              const uint8_t *data_end, int tile_cols,
1356                              int tile_rows,
1357                              TileBuffer (*tile_buffers)[1 << 6]) {
1358   int r, c;
1359 
1360   for (r = 0; r < tile_rows; ++r) {
1361     for (c = 0; c < tile_cols; ++c) {
1362       const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
1363       TileBuffer *const buf = &tile_buffers[r][c];
1364       buf->col = c;
1365       get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
1366                       pbi->decrypt_cb, pbi->decrypt_state, buf);
1367     }
1368   }
1369 }
1370 
decode_tiles(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)1371 static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data,
1372                                    const uint8_t *data_end) {
1373   VP9_COMMON *const cm = &pbi->common;
1374   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
1375   const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1376   const int tile_cols = 1 << cm->log2_tile_cols;
1377   const int tile_rows = 1 << cm->log2_tile_rows;
1378   TileBuffer tile_buffers[4][1 << 6];
1379   int tile_row, tile_col;
1380   int mi_row, mi_col;
1381   TileWorkerData *tile_data = NULL;
1382 
1383   if (cm->lf.filter_level && !cm->skip_loop_filter &&
1384       pbi->lf_worker.data1 == NULL) {
1385     CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
1386                     vpx_memalign(32, sizeof(LFWorkerData)));
1387     pbi->lf_worker.hook = (VPxWorkerHook)vp9_loop_filter_worker;
1388     if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
1389       vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
1390                          "Loop filter thread creation failed");
1391     }
1392   }
1393 
1394   if (cm->lf.filter_level && !cm->skip_loop_filter) {
1395     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1396     // Be sure to sync as we might be resuming after a failed frame decode.
1397     winterface->sync(&pbi->lf_worker);
1398     vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
1399                                pbi->mb.plane);
1400   }
1401 
1402   assert(tile_rows <= 4);
1403   assert(tile_cols <= (1 << 6));
1404 
1405   // Note: this memset assumes above_context[0], [1] and [2]
1406   // are allocated as part of the same buffer.
1407   memset(cm->above_context, 0,
1408          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
1409 
1410   memset(cm->above_seg_context, 0,
1411          sizeof(*cm->above_seg_context) * aligned_cols);
1412 
1413   vp9_reset_lfm(cm);
1414 
1415   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
1416 
1417   // Load all tile information into tile_data.
1418   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
1419     for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
1420       const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
1421       tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col;
1422       tile_data->xd = pbi->mb;
1423       tile_data->xd.corrupted = 0;
1424       tile_data->xd.counts =
1425           cm->frame_parallel_decoding_mode ? NULL : &cm->counts;
1426       vp9_zero(tile_data->dqcoeff);
1427       vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col);
1428       setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
1429                           &tile_data->bit_reader, pbi->decrypt_cb,
1430                           pbi->decrypt_state);
1431       vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
1432     }
1433   }
1434 
1435   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
1436     TileInfo tile;
1437     vp9_tile_set_row(&tile, cm, tile_row);
1438     for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
1439          mi_row += MI_BLOCK_SIZE) {
1440       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
1441         const int col =
1442             pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col;
1443         tile_data = pbi->tile_worker_data + tile_cols * tile_row + col;
1444         vp9_tile_set_col(&tile, cm, col);
1445         vp9_zero(tile_data->xd.left_context);
1446         vp9_zero(tile_data->xd.left_seg_context);
1447         for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
1448              mi_col += MI_BLOCK_SIZE) {
1449           decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1450         }
1451         pbi->mb.corrupted |= tile_data->xd.corrupted;
1452         if (pbi->mb.corrupted)
1453           vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1454                              "Failed to decode tile data");
1455       }
1456       // Loopfilter one row.
1457       if (cm->lf.filter_level && !cm->skip_loop_filter) {
1458         const int lf_start = mi_row - MI_BLOCK_SIZE;
1459         LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1460 
1461         // delay the loopfilter by 1 macroblock row.
1462         if (lf_start < 0) continue;
1463 
1464         // decoding has completed: finish up the loop filter in this thread.
1465         if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
1466 
1467         winterface->sync(&pbi->lf_worker);
1468         lf_data->start = lf_start;
1469         lf_data->stop = mi_row;
1470         if (pbi->max_threads > 1) {
1471           winterface->launch(&pbi->lf_worker);
1472         } else {
1473           winterface->execute(&pbi->lf_worker);
1474         }
1475       }
1476       // After loopfiltering, the last 7 row pixels in each superblock row may
1477       // still be changed by the longest loopfilter of the next superblock
1478       // row.
1479       if (pbi->frame_parallel_decode)
1480         vp9_frameworker_broadcast(pbi->cur_buf, mi_row << MI_BLOCK_SIZE_LOG2);
1481     }
1482   }
1483 
1484   // Loopfilter remaining rows in the frame.
1485   if (cm->lf.filter_level && !cm->skip_loop_filter) {
1486     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
1487     winterface->sync(&pbi->lf_worker);
1488     lf_data->start = lf_data->stop;
1489     lf_data->stop = cm->mi_rows;
1490     winterface->execute(&pbi->lf_worker);
1491   }
1492 
1493   // Get last tile data.
1494   tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1;
1495 
1496   if (pbi->frame_parallel_decode)
1497     vp9_frameworker_broadcast(pbi->cur_buf, INT_MAX);
1498   return vpx_reader_find_end(&tile_data->bit_reader);
1499 }
1500 
1501 // On entry 'tile_data->data_end' points to the end of the input frame, on exit
1502 // it is updated to reflect the bitreader position of the final tile column if
1503 // present in the tile buffer group or NULL otherwise.
tile_worker_hook(TileWorkerData * const tile_data,VP9Decoder * const pbi)1504 static int tile_worker_hook(TileWorkerData *const tile_data,
1505                             VP9Decoder *const pbi) {
1506   TileInfo *volatile tile = &tile_data->xd.tile;
1507   const int final_col = (1 << pbi->common.log2_tile_cols) - 1;
1508   const uint8_t *volatile bit_reader_end = NULL;
1509   volatile int n = tile_data->buf_start;
1510   tile_data->error_info.setjmp = 1;
1511 
1512   if (setjmp(tile_data->error_info.jmp)) {
1513     tile_data->error_info.setjmp = 0;
1514     tile_data->xd.corrupted = 1;
1515     tile_data->data_end = NULL;
1516     return 0;
1517   }
1518 
1519   tile_data->xd.corrupted = 0;
1520 
1521   do {
1522     int mi_row, mi_col;
1523     const TileBuffer *const buf = pbi->tile_buffers + n;
1524     vp9_zero(tile_data->dqcoeff);
1525     vp9_tile_init(tile, &pbi->common, 0, buf->col);
1526     setup_token_decoder(buf->data, tile_data->data_end, buf->size,
1527                         &tile_data->error_info, &tile_data->bit_reader,
1528                         pbi->decrypt_cb, pbi->decrypt_state);
1529     vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff);
1530     // init resets xd.error_info
1531     tile_data->xd.error_info = &tile_data->error_info;
1532 
1533     for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
1534          mi_row += MI_BLOCK_SIZE) {
1535       vp9_zero(tile_data->xd.left_context);
1536       vp9_zero(tile_data->xd.left_seg_context);
1537       for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
1538            mi_col += MI_BLOCK_SIZE) {
1539         decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
1540       }
1541     }
1542 
1543     if (buf->col == final_col) {
1544       bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader);
1545     }
1546   } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end);
1547 
1548   tile_data->data_end = bit_reader_end;
1549   return !tile_data->xd.corrupted;
1550 }
1551 
1552 // sorts in descending order
compare_tile_buffers(const void * a,const void * b)1553 static int compare_tile_buffers(const void *a, const void *b) {
1554   const TileBuffer *const buf1 = (const TileBuffer *)a;
1555   const TileBuffer *const buf2 = (const TileBuffer *)b;
1556   return (int)(buf2->size - buf1->size);
1557 }
1558 
decode_tiles_mt(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)1559 static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data,
1560                                       const uint8_t *data_end) {
1561   VP9_COMMON *const cm = &pbi->common;
1562   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
1563   const uint8_t *bit_reader_end = NULL;
1564   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1565   const int tile_cols = 1 << cm->log2_tile_cols;
1566   const int tile_rows = 1 << cm->log2_tile_rows;
1567   const int num_workers = VPXMIN(pbi->max_threads, tile_cols);
1568   int n;
1569 
1570   assert(tile_cols <= (1 << 6));
1571   assert(tile_rows == 1);
1572   (void)tile_rows;
1573 
1574   if (pbi->num_tile_workers == 0) {
1575     const int num_threads = pbi->max_threads;
1576     CHECK_MEM_ERROR(cm, pbi->tile_workers,
1577                     vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
1578     for (n = 0; n < num_threads; ++n) {
1579       VPxWorker *const worker = &pbi->tile_workers[n];
1580       ++pbi->num_tile_workers;
1581 
1582       winterface->init(worker);
1583       if (n < num_threads - 1 && !winterface->reset(worker)) {
1584         vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
1585                            "Tile decoder thread creation failed");
1586       }
1587     }
1588   }
1589 
1590   // Reset tile decoding hook
1591   for (n = 0; n < num_workers; ++n) {
1592     VPxWorker *const worker = &pbi->tile_workers[n];
1593     TileWorkerData *const tile_data =
1594         &pbi->tile_worker_data[n + pbi->total_tiles];
1595     winterface->sync(worker);
1596     tile_data->xd = pbi->mb;
1597     tile_data->xd.counts =
1598         cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
1599     worker->hook = (VPxWorkerHook)tile_worker_hook;
1600     worker->data1 = tile_data;
1601     worker->data2 = pbi;
1602   }
1603 
1604   // Note: this memset assumes above_context[0], [1] and [2]
1605   // are allocated as part of the same buffer.
1606   memset(cm->above_context, 0,
1607          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
1608   memset(cm->above_seg_context, 0,
1609          sizeof(*cm->above_seg_context) * aligned_mi_cols);
1610 
1611   vp9_reset_lfm(cm);
1612 
1613   // Load tile data into tile_buffers
1614   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
1615                    &pbi->tile_buffers);
1616 
1617   // Sort the buffers based on size in descending order.
1618   qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]),
1619         compare_tile_buffers);
1620 
1621   if (num_workers == tile_cols) {
1622     // Rearrange the tile buffers such that the largest, and
1623     // presumably the most difficult, tile will be decoded in the main thread.
1624     // This should help minimize the number of instances where the main thread
1625     // is waiting for a worker to complete.
1626     const TileBuffer largest = pbi->tile_buffers[0];
1627     memmove(pbi->tile_buffers, pbi->tile_buffers + 1,
1628             (tile_cols - 1) * sizeof(pbi->tile_buffers[0]));
1629     pbi->tile_buffers[tile_cols - 1] = largest;
1630   } else {
1631     int start = 0, end = tile_cols - 2;
1632     TileBuffer tmp;
1633 
1634     // Interleave the tiles to distribute the load between threads, assuming a
1635     // larger tile implies it is more difficult to decode.
1636     while (start < end) {
1637       tmp = pbi->tile_buffers[start];
1638       pbi->tile_buffers[start] = pbi->tile_buffers[end];
1639       pbi->tile_buffers[end] = tmp;
1640       start += 2;
1641       end -= 2;
1642     }
1643   }
1644 
1645   // Initialize thread frame counts.
1646   if (!cm->frame_parallel_decoding_mode) {
1647     for (n = 0; n < num_workers; ++n) {
1648       TileWorkerData *const tile_data =
1649           (TileWorkerData *)pbi->tile_workers[n].data1;
1650       vp9_zero(tile_data->counts);
1651     }
1652   }
1653 
1654   {
1655     const int base = tile_cols / num_workers;
1656     const int remain = tile_cols % num_workers;
1657     int buf_start = 0;
1658 
1659     for (n = 0; n < num_workers; ++n) {
1660       const int count = base + (remain + n) / num_workers;
1661       VPxWorker *const worker = &pbi->tile_workers[n];
1662       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
1663 
1664       tile_data->buf_start = buf_start;
1665       tile_data->buf_end = buf_start + count - 1;
1666       tile_data->data_end = data_end;
1667       buf_start += count;
1668 
1669       worker->had_error = 0;
1670       if (n == num_workers - 1) {
1671         assert(tile_data->buf_end == tile_cols - 1);
1672         winterface->execute(worker);
1673       } else {
1674         winterface->launch(worker);
1675       }
1676     }
1677 
1678     for (; n > 0; --n) {
1679       VPxWorker *const worker = &pbi->tile_workers[n - 1];
1680       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
1681       // TODO(jzern): The tile may have specific error data associated with
1682       // its vpx_internal_error_info which could be propagated to the main info
1683       // in cm. Additionally once the threads have been synced and an error is
1684       // detected, there's no point in continuing to decode tiles.
1685       pbi->mb.corrupted |= !winterface->sync(worker);
1686       if (!bit_reader_end) bit_reader_end = tile_data->data_end;
1687     }
1688   }
1689 
1690   // Accumulate thread frame counts.
1691   if (!cm->frame_parallel_decoding_mode) {
1692     for (n = 0; n < num_workers; ++n) {
1693       TileWorkerData *const tile_data =
1694           (TileWorkerData *)pbi->tile_workers[n].data1;
1695       vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
1696     }
1697   }
1698 
1699   assert(bit_reader_end || pbi->mb.corrupted);
1700   return bit_reader_end;
1701 }
1702 
error_handler(void * data)1703 static void error_handler(void *data) {
1704   VP9_COMMON *const cm = (VP9_COMMON *)data;
1705   vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
1706 }
1707 
read_bitdepth_colorspace_sampling(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1708 static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm,
1709                                               struct vpx_read_bit_buffer *rb) {
1710   if (cm->profile >= PROFILE_2) {
1711     cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
1712 #if CONFIG_VP9_HIGHBITDEPTH
1713     cm->use_highbitdepth = 1;
1714 #endif
1715   } else {
1716     cm->bit_depth = VPX_BITS_8;
1717 #if CONFIG_VP9_HIGHBITDEPTH
1718     cm->use_highbitdepth = 0;
1719 #endif
1720   }
1721   cm->color_space = vpx_rb_read_literal(rb, 3);
1722   if (cm->color_space != VPX_CS_SRGB) {
1723     cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb);
1724     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1725       cm->subsampling_x = vpx_rb_read_bit(rb);
1726       cm->subsampling_y = vpx_rb_read_bit(rb);
1727       if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
1728         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1729                            "4:2:0 color not supported in profile 1 or 3");
1730       if (vpx_rb_read_bit(rb))
1731         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1732                            "Reserved bit set");
1733     } else {
1734       cm->subsampling_y = cm->subsampling_x = 1;
1735     }
1736   } else {
1737     cm->color_range = VPX_CR_FULL_RANGE;
1738     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1739       // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
1740       // 4:2:2 or 4:4:0 chroma sampling is not allowed.
1741       cm->subsampling_y = cm->subsampling_x = 0;
1742       if (vpx_rb_read_bit(rb))
1743         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1744                            "Reserved bit set");
1745     } else {
1746       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1747                          "4:4:4 color not supported in profile 0 or 2");
1748     }
1749   }
1750 }
1751 
read_uncompressed_header(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb)1752 static size_t read_uncompressed_header(VP9Decoder *pbi,
1753                                        struct vpx_read_bit_buffer *rb) {
1754   VP9_COMMON *const cm = &pbi->common;
1755   BufferPool *const pool = cm->buffer_pool;
1756   RefCntBuffer *const frame_bufs = pool->frame_bufs;
1757   int i, mask, ref_index = 0;
1758   size_t sz;
1759 
1760   cm->last_frame_type = cm->frame_type;
1761   cm->last_intra_only = cm->intra_only;
1762 
1763   if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
1764     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1765                        "Invalid frame marker");
1766 
1767   cm->profile = vp9_read_profile(rb);
1768 #if CONFIG_VP9_HIGHBITDEPTH
1769   if (cm->profile >= MAX_PROFILES)
1770     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1771                        "Unsupported bitstream profile");
1772 #else
1773   if (cm->profile >= PROFILE_2)
1774     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1775                        "Unsupported bitstream profile");
1776 #endif
1777 
1778   cm->show_existing_frame = vpx_rb_read_bit(rb);
1779   if (cm->show_existing_frame) {
1780     // Show an existing frame directly.
1781     const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
1782     lock_buffer_pool(pool);
1783     if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
1784       unlock_buffer_pool(pool);
1785       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1786                          "Buffer %d does not contain a decoded frame",
1787                          frame_to_show);
1788     }
1789 
1790     ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
1791     unlock_buffer_pool(pool);
1792     pbi->refresh_frame_flags = 0;
1793     cm->lf.filter_level = 0;
1794     cm->show_frame = 1;
1795 
1796     if (pbi->frame_parallel_decode) {
1797       for (i = 0; i < REF_FRAMES; ++i)
1798         cm->next_ref_frame_map[i] = cm->ref_frame_map[i];
1799     }
1800     return 0;
1801   }
1802 
1803   cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb);
1804   cm->show_frame = vpx_rb_read_bit(rb);
1805   cm->error_resilient_mode = vpx_rb_read_bit(rb);
1806 
1807   if (cm->frame_type == KEY_FRAME) {
1808     if (!vp9_read_sync_code(rb))
1809       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1810                          "Invalid frame sync code");
1811 
1812     read_bitdepth_colorspace_sampling(cm, rb);
1813     pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
1814 
1815     for (i = 0; i < REFS_PER_FRAME; ++i) {
1816       cm->frame_refs[i].idx = INVALID_IDX;
1817       cm->frame_refs[i].buf = NULL;
1818     }
1819 
1820     setup_frame_size(cm, rb);
1821     if (pbi->need_resync) {
1822       memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
1823       pbi->need_resync = 0;
1824     }
1825   } else {
1826     cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
1827 
1828     cm->reset_frame_context =
1829         cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2);
1830 
1831     if (cm->intra_only) {
1832       if (!vp9_read_sync_code(rb))
1833         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
1834                            "Invalid frame sync code");
1835       if (cm->profile > PROFILE_0) {
1836         read_bitdepth_colorspace_sampling(cm, rb);
1837       } else {
1838         // NOTE: The intra-only frame header does not include the specification
1839         // of either the color format or color sub-sampling in profile 0. VP9
1840         // specifies that the default color format should be YUV 4:2:0 in this
1841         // case (normative).
1842         cm->color_space = VPX_CS_BT_601;
1843         cm->color_range = VPX_CR_STUDIO_RANGE;
1844         cm->subsampling_y = cm->subsampling_x = 1;
1845         cm->bit_depth = VPX_BITS_8;
1846 #if CONFIG_VP9_HIGHBITDEPTH
1847         cm->use_highbitdepth = 0;
1848 #endif
1849       }
1850 
1851       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
1852       setup_frame_size(cm, rb);
1853       if (pbi->need_resync) {
1854         memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
1855         pbi->need_resync = 0;
1856       }
1857     } else if (pbi->need_resync != 1) { /* Skip if need resync */
1858       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
1859       for (i = 0; i < REFS_PER_FRAME; ++i) {
1860         const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
1861         const int idx = cm->ref_frame_map[ref];
1862         RefBuffer *const ref_frame = &cm->frame_refs[i];
1863         ref_frame->idx = idx;
1864         ref_frame->buf = &frame_bufs[idx].buf;
1865         cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
1866       }
1867 
1868       setup_frame_size_with_refs(cm, rb);
1869 
1870       cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
1871       cm->interp_filter = read_interp_filter(rb);
1872 
1873       for (i = 0; i < REFS_PER_FRAME; ++i) {
1874         RefBuffer *const ref_buf = &cm->frame_refs[i];
1875 #if CONFIG_VP9_HIGHBITDEPTH
1876         vp9_setup_scale_factors_for_frame(
1877             &ref_buf->sf, ref_buf->buf->y_crop_width,
1878             ref_buf->buf->y_crop_height, cm->width, cm->height,
1879             cm->use_highbitdepth);
1880 #else
1881         vp9_setup_scale_factors_for_frame(
1882             &ref_buf->sf, ref_buf->buf->y_crop_width,
1883             ref_buf->buf->y_crop_height, cm->width, cm->height);
1884 #endif
1885       }
1886     }
1887   }
1888 #if CONFIG_VP9_HIGHBITDEPTH
1889   get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
1890 #endif
1891   get_frame_new_buffer(cm)->color_space = cm->color_space;
1892   get_frame_new_buffer(cm)->color_range = cm->color_range;
1893   get_frame_new_buffer(cm)->render_width = cm->render_width;
1894   get_frame_new_buffer(cm)->render_height = cm->render_height;
1895 
1896   if (pbi->need_resync) {
1897     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1898                        "Keyframe / intra-only frame required to reset decoder"
1899                        " state");
1900   }
1901 
1902   if (!cm->error_resilient_mode) {
1903     cm->refresh_frame_context = vpx_rb_read_bit(rb);
1904     cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb);
1905     if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts);
1906   } else {
1907     cm->refresh_frame_context = 0;
1908     cm->frame_parallel_decoding_mode = 1;
1909   }
1910 
1911   // This flag will be overridden by the call to vp9_setup_past_independence
1912   // below, forcing the use of context 0 for those frame types.
1913   cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
1914 
1915   // Generate next_ref_frame_map.
1916   lock_buffer_pool(pool);
1917   for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
1918     if (mask & 1) {
1919       cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
1920       ++frame_bufs[cm->new_fb_idx].ref_count;
1921     } else {
1922       cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
1923     }
1924     // Current thread holds the reference frame.
1925     if (cm->ref_frame_map[ref_index] >= 0)
1926       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
1927     ++ref_index;
1928   }
1929 
1930   for (; ref_index < REF_FRAMES; ++ref_index) {
1931     cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
1932     // Current thread holds the reference frame.
1933     if (cm->ref_frame_map[ref_index] >= 0)
1934       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
1935   }
1936   unlock_buffer_pool(pool);
1937   pbi->hold_ref_buf = 1;
1938 
1939   if (frame_is_intra_only(cm) || cm->error_resilient_mode)
1940     vp9_setup_past_independence(cm);
1941 
1942   setup_loopfilter(&cm->lf, rb);
1943   setup_quantization(cm, &pbi->mb, rb);
1944   setup_segmentation(&cm->seg, rb);
1945   setup_segmentation_dequant(cm);
1946 
1947   setup_tile_info(cm, rb);
1948   sz = vpx_rb_read_literal(rb, 16);
1949 
1950   if (sz == 0)
1951     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1952                        "Invalid header size");
1953 
1954   return sz;
1955 }
1956 
read_compressed_header(VP9Decoder * pbi,const uint8_t * data,size_t partition_size)1957 static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
1958                                   size_t partition_size) {
1959   VP9_COMMON *const cm = &pbi->common;
1960   MACROBLOCKD *const xd = &pbi->mb;
1961   FRAME_CONTEXT *const fc = cm->fc;
1962   vpx_reader r;
1963   int k;
1964 
1965   if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
1966                       pbi->decrypt_state))
1967     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1968                        "Failed to allocate bool decoder 0");
1969 
1970   cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
1971   if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r);
1972   read_coef_probs(fc, cm->tx_mode, &r);
1973 
1974   for (k = 0; k < SKIP_CONTEXTS; ++k)
1975     vp9_diff_update_prob(&r, &fc->skip_probs[k]);
1976 
1977   if (!frame_is_intra_only(cm)) {
1978     nmv_context *const nmvc = &fc->nmvc;
1979     int i, j;
1980 
1981     read_inter_mode_probs(fc, &r);
1982 
1983     if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
1984 
1985     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1986       vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
1987 
1988     cm->reference_mode = read_frame_reference_mode(cm, &r);
1989     if (cm->reference_mode != SINGLE_REFERENCE)
1990       setup_compound_reference_mode(cm);
1991     read_frame_reference_mode_probs(cm, &r);
1992 
1993     for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
1994       for (i = 0; i < INTRA_MODES - 1; ++i)
1995         vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
1996 
1997     for (j = 0; j < PARTITION_CONTEXTS; ++j)
1998       for (i = 0; i < PARTITION_TYPES - 1; ++i)
1999         vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
2000 
2001     read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
2002   }
2003 
2004   return vpx_reader_has_error(&r);
2005 }
2006 
init_read_bit_buffer(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb,const uint8_t * data,const uint8_t * data_end,uint8_t clear_data[MAX_VP9_HEADER_SIZE])2007 static struct vpx_read_bit_buffer *init_read_bit_buffer(
2008     VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data,
2009     const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) {
2010   rb->bit_offset = 0;
2011   rb->error_handler = error_handler;
2012   rb->error_handler_data = &pbi->common;
2013   if (pbi->decrypt_cb) {
2014     const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
2015     pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
2016     rb->bit_buffer = clear_data;
2017     rb->bit_buffer_end = clear_data + n;
2018   } else {
2019     rb->bit_buffer = data;
2020     rb->bit_buffer_end = data_end;
2021   }
2022   return rb;
2023 }
2024 
2025 //------------------------------------------------------------------------------
2026 
vp9_read_sync_code(struct vpx_read_bit_buffer * const rb)2027 int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) {
2028   return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
2029          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
2030          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
2031 }
2032 
vp9_read_frame_size(struct vpx_read_bit_buffer * rb,int * width,int * height)2033 void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width,
2034                          int *height) {
2035   *width = vpx_rb_read_literal(rb, 16) + 1;
2036   *height = vpx_rb_read_literal(rb, 16) + 1;
2037 }
2038 
vp9_read_profile(struct vpx_read_bit_buffer * rb)2039 BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) {
2040   int profile = vpx_rb_read_bit(rb);
2041   profile |= vpx_rb_read_bit(rb) << 1;
2042   if (profile > 2) profile += vpx_rb_read_bit(rb);
2043   return (BITSTREAM_PROFILE)profile;
2044 }
2045 
vp9_decode_frame(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,const uint8_t ** p_data_end)2046 void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data,
2047                       const uint8_t *data_end, const uint8_t **p_data_end) {
2048   VP9_COMMON *const cm = &pbi->common;
2049   MACROBLOCKD *const xd = &pbi->mb;
2050   struct vpx_read_bit_buffer rb;
2051   int context_updated = 0;
2052   uint8_t clear_data[MAX_VP9_HEADER_SIZE];
2053   const size_t first_partition_size = read_uncompressed_header(
2054       pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
2055   const int tile_rows = 1 << cm->log2_tile_rows;
2056   const int tile_cols = 1 << cm->log2_tile_cols;
2057   YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2058   xd->cur_buf = new_fb;
2059 
2060   if (!first_partition_size) {
2061     // showing a frame directly
2062     *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
2063     return;
2064   }
2065 
2066   data += vpx_rb_bytes_read(&rb);
2067   if (!read_is_valid(data, first_partition_size, data_end))
2068     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2069                        "Truncated packet or corrupt header length");
2070 
2071   cm->use_prev_frame_mvs =
2072       !cm->error_resilient_mode && cm->width == cm->last_width &&
2073       cm->height == cm->last_height && !cm->last_intra_only &&
2074       cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
2075 
2076   vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
2077 
2078   *cm->fc = cm->frame_contexts[cm->frame_context_idx];
2079   if (!cm->fc->initialized)
2080     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2081                        "Uninitialized entropy context.");
2082 
2083   xd->corrupted = 0;
2084   new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
2085   if (new_fb->corrupted)
2086     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2087                        "Decode failed. Frame data header is corrupted.");
2088 
2089   if (cm->lf.filter_level && !cm->skip_loop_filter) {
2090     vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
2091   }
2092 
2093   // If encoded in frame parallel mode, frame context is ready after decoding
2094   // the frame header.
2095   if (pbi->frame_parallel_decode && cm->frame_parallel_decoding_mode) {
2096     VPxWorker *const worker = pbi->frame_worker_owner;
2097     FrameWorkerData *const frame_worker_data = worker->data1;
2098     if (cm->refresh_frame_context) {
2099       context_updated = 1;
2100       cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
2101     }
2102     vp9_frameworker_lock_stats(worker);
2103     pbi->cur_buf->row = -1;
2104     pbi->cur_buf->col = -1;
2105     frame_worker_data->frame_context_ready = 1;
2106     // Signal the main thread that context is ready.
2107     vp9_frameworker_signal_stats(worker);
2108     vp9_frameworker_unlock_stats(worker);
2109   }
2110 
2111   if (pbi->tile_worker_data == NULL ||
2112       (tile_cols * tile_rows) != pbi->total_tiles) {
2113     const int num_tile_workers =
2114         tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0);
2115     const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data);
2116     // Ensure tile data offsets will be properly aligned. This may fail on
2117     // platforms without DECLARE_ALIGNED().
2118     assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
2119     vpx_free(pbi->tile_worker_data);
2120     CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, twd_size));
2121     pbi->total_tiles = tile_rows * tile_cols;
2122   }
2123 
2124   if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) {
2125     // Multi-threaded tile decoder
2126     *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
2127     if (!xd->corrupted) {
2128       if (!cm->skip_loop_filter) {
2129         // If multiple threads are used to decode tiles, then we use those
2130         // threads to do parallel loopfiltering.
2131         vp9_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level,
2132                                  0, 0, pbi->tile_workers, pbi->num_tile_workers,
2133                                  &pbi->lf_row_sync);
2134       }
2135     } else {
2136       vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2137                          "Decode failed. Frame data is corrupted.");
2138     }
2139   } else {
2140     *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
2141   }
2142 
2143   if (!xd->corrupted) {
2144     if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
2145       vp9_adapt_coef_probs(cm);
2146 
2147       if (!frame_is_intra_only(cm)) {
2148         vp9_adapt_mode_probs(cm);
2149         vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
2150       }
2151     }
2152   } else {
2153     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2154                        "Decode failed. Frame data is corrupted.");
2155   }
2156 
2157   // Non frame parallel update frame context here.
2158   if (cm->refresh_frame_context && !context_updated)
2159     cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
2160 }
2161