• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
18 #define CASTER_Z_CAP_RATIO 0.95f
19 
20 // When there is no umbra, then just fake the umbra using
21 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
22 #define FAKE_UMBRA_SIZE_RATIO 0.05f
23 
24 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
25 // That is consider pretty fine tessllated polygon so far.
26 // This is just to prevent using too much some memory when edge slicing is not
27 // needed any more.
28 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
29 /**
30  * Extra vertices for the corner for smoother corner.
31  * Only for outer loop.
32  * Note that we use such extra memory to avoid an extra loop.
33  */
34 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
35 // Set to 1 if we don't want to have any.
36 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
37 
38 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
39 // therefore, the maximum number of extra vertices will be twice bigger.
40 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
41 
42 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
43 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
44 
45 #define PENUMBRA_ALPHA 0.0f
46 #define UMBRA_ALPHA 1.0f
47 
48 #include "SpotShadow.h"
49 
50 #include "ShadowTessellator.h"
51 #include "Vertex.h"
52 #include "VertexBuffer.h"
53 #include "utils/MathUtils.h"
54 
55 #include <algorithm>
56 #include <math.h>
57 #include <stdlib.h>
58 #include <utils/Log.h>
59 
60 // TODO: After we settle down the new algorithm, we can remove the old one and
61 // its utility functions.
62 // Right now, we still need to keep it for comparison purpose and future expansion.
63 namespace android {
64 namespace uirenderer {
65 
66 static const float EPSILON = 1e-7;
67 
68 /**
69  * For each polygon's vertex, the light center will project it to the receiver
70  * as one of the outline vertex.
71  * For each outline vertex, we need to store the position and normal.
72  * Normal here is defined against the edge by the current vertex and the next vertex.
73  */
74 struct OutlineData {
75     Vector2 position;
76     Vector2 normal;
77     float radius;
78 };
79 
80 /**
81  * For each vertex, we need to keep track of its angle, whether it is penumbra or
82  * umbra, and its corresponding vertex index.
83  */
84 struct SpotShadow::VertexAngleData {
85     // The angle to the vertex from the centroid.
86     float mAngle;
87     // True is the vertex comes from penumbra, otherwise it comes from umbra.
88     bool mIsPenumbra;
89     // The index of the vertex described by this data.
90     int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData91     void set(float angle, bool isPenumbra, int index) {
92         mAngle = angle;
93         mIsPenumbra = isPenumbra;
94         mVertexIndex = index;
95     }
96 };
97 
98 /**
99  * Calculate the angle between and x and a y coordinate.
100  * The atan2 range from -PI to PI.
101  */
angle(const Vector2 & point,const Vector2 & center)102 static float angle(const Vector2& point, const Vector2& center) {
103     return atan2(point.y - center.y, point.x - center.x);
104 }
105 
106 /**
107  * Calculate the intersection of a ray with the line segment defined by two points.
108  *
109  * Returns a negative value in error conditions.
110 
111  * @param rayOrigin The start of the ray
112  * @param dx The x vector of the ray
113  * @param dy The y vector of the ray
114  * @param p1 The first point defining the line segment
115  * @param p2 The second point defining the line segment
116  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
117  */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)118 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
119         const Vector2& p1, const Vector2& p2) {
120     // The math below is derived from solving this formula, basically the
121     // intersection point should stay on both the ray and the edge of (p1, p2).
122     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
123 
124     float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
125     if (divisor == 0) return -1.0f; // error, invalid divisor
126 
127 #if DEBUG_SHADOW
128     float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
129     if (interpVal < 0 || interpVal > 1) {
130         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
131     }
132 #endif
133 
134     float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
135             rayOrigin.x * (p2.y - p1.y)) / divisor;
136 
137     return distance; // may be negative in error cases
138 }
139 
140 /**
141  * Sort points by their X coordinates
142  *
143  * @param points the points as a Vector2 array.
144  * @param pointsLength the number of vertices of the polygon.
145  */
xsort(Vector2 * points,int pointsLength)146 void SpotShadow::xsort(Vector2* points, int pointsLength) {
147     auto cmp = [](const Vector2& a, const Vector2& b) -> bool {
148         return a.x < b.x;
149     };
150     std::sort(points, points + pointsLength, cmp);
151 }
152 
153 /**
154  * compute the convex hull of a collection of Points
155  *
156  * @param points the points as a Vector2 array.
157  * @param pointsLength the number of vertices of the polygon.
158  * @param retPoly pre allocated array of floats to put the vertices
159  * @return the number of points in the polygon 0 if no intersection
160  */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)161 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
162     xsort(points, pointsLength);
163     int n = pointsLength;
164     Vector2 lUpper[n];
165     lUpper[0] = points[0];
166     lUpper[1] = points[1];
167 
168     int lUpperSize = 2;
169 
170     for (int i = 2; i < n; i++) {
171         lUpper[lUpperSize] = points[i];
172         lUpperSize++;
173 
174         while (lUpperSize > 2 && !ccw(
175                 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
176                 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
177                 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
178             // Remove the middle point of the three last
179             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
180             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
181             lUpperSize--;
182         }
183     }
184 
185     Vector2 lLower[n];
186     lLower[0] = points[n - 1];
187     lLower[1] = points[n - 2];
188 
189     int lLowerSize = 2;
190 
191     for (int i = n - 3; i >= 0; i--) {
192         lLower[lLowerSize] = points[i];
193         lLowerSize++;
194 
195         while (lLowerSize > 2 && !ccw(
196                 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
197                 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
198                 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
199             // Remove the middle point of the three last
200             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
201             lLowerSize--;
202         }
203     }
204 
205     // output points in CW ordering
206     const int total = lUpperSize + lLowerSize - 2;
207     int outIndex = total - 1;
208     for (int i = 0; i < lUpperSize; i++) {
209         retPoly[outIndex] = lUpper[i];
210         outIndex--;
211     }
212 
213     for (int i = 1; i < lLowerSize - 1; i++) {
214         retPoly[outIndex] = lLower[i];
215         outIndex--;
216     }
217     // TODO: Add test harness which verify that all the points are inside the hull.
218     return total;
219 }
220 
221 /**
222  * Test whether the 3 points form a counter clockwise turn.
223  *
224  * @return true if a right hand turn
225  */
ccw(float ax,float ay,float bx,float by,float cx,float cy)226 bool SpotShadow::ccw(float ax, float ay, float bx, float by,
227         float cx, float cy) {
228     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
229 }
230 
231 /**
232  * Sort points about a center point
233  *
234  * @param poly The in and out polyogon as a Vector2 array.
235  * @param polyLength The number of vertices of the polygon.
236  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
237  */
sort(Vector2 * poly,int polyLength,const Vector2 & center)238 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
239     quicksortCirc(poly, 0, polyLength - 1, center);
240 }
241 
242 /**
243  * Swap points pointed to by i and j
244  */
swap(Vector2 * points,int i,int j)245 void SpotShadow::swap(Vector2* points, int i, int j) {
246     Vector2 temp = points[i];
247     points[i] = points[j];
248     points[j] = temp;
249 }
250 
251 /**
252  * quick sort implementation about the center.
253  */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)254 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
255         const Vector2& center) {
256     int i = low, j = high;
257     int p = low + (high - low) / 2;
258     float pivot = angle(points[p], center);
259     while (i <= j) {
260         while (angle(points[i], center) > pivot) {
261             i++;
262         }
263         while (angle(points[j], center) < pivot) {
264             j--;
265         }
266 
267         if (i <= j) {
268             swap(points, i, j);
269             i++;
270             j--;
271         }
272     }
273     if (low < j) quicksortCirc(points, low, j, center);
274     if (i < high) quicksortCirc(points, i, high, center);
275 }
276 
277 /**
278  * Test whether a point is inside the polygon.
279  *
280  * @param testPoint the point to test
281  * @param poly the polygon
282  * @return true if the testPoint is inside the poly.
283  */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)284 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
285         const Vector2* poly, int len) {
286     bool c = false;
287     float testx = testPoint.x;
288     float testy = testPoint.y;
289     for (int i = 0, j = len - 1; i < len; j = i++) {
290         float startX = poly[j].x;
291         float startY = poly[j].y;
292         float endX = poly[i].x;
293         float endY = poly[i].y;
294 
295         if (((endY > testy) != (startY > testy))
296             && (testx < (startX - endX) * (testy - endY)
297              / (startY - endY) + endX)) {
298             c = !c;
299         }
300     }
301     return c;
302 }
303 
304 /**
305  * Reverse the polygon
306  *
307  * @param polygon the polygon as a Vector2 array
308  * @param len the number of points of the polygon
309  */
reverse(Vector2 * polygon,int len)310 void SpotShadow::reverse(Vector2* polygon, int len) {
311     int n = len / 2;
312     for (int i = 0; i < n; i++) {
313         Vector2 tmp = polygon[i];
314         int k = len - 1 - i;
315         polygon[i] = polygon[k];
316         polygon[k] = tmp;
317     }
318 }
319 
320 /**
321  * Compute a horizontal circular polygon about point (x , y , height) of radius
322  * (size)
323  *
324  * @param points number of the points of the output polygon.
325  * @param lightCenter the center of the light.
326  * @param size the light size.
327  * @param ret result polygon.
328  */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)329 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
330         float size, Vector3* ret) {
331     // TODO: Caching all the sin / cos values and store them in a look up table.
332     for (int i = 0; i < points; i++) {
333         float angle = 2 * i * M_PI / points;
334         ret[i].x = cosf(angle) * size + lightCenter.x;
335         ret[i].y = sinf(angle) * size + lightCenter.y;
336         ret[i].z = lightCenter.z;
337     }
338 }
339 
340 /**
341  * From light center, project one vertex to the z=0 surface and get the outline.
342  *
343  * @param outline The result which is the outline position.
344  * @param lightCenter The center of light.
345  * @param polyVertex The input polygon's vertex.
346  *
347  * @return float The ratio of (polygon.z / light.z - polygon.z)
348  */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)349 float SpotShadow::projectCasterToOutline(Vector2& outline,
350         const Vector3& lightCenter, const Vector3& polyVertex) {
351     float lightToPolyZ = lightCenter.z - polyVertex.z;
352     float ratioZ = CASTER_Z_CAP_RATIO;
353     if (lightToPolyZ != 0) {
354         // If any caster's vertex is almost above the light, we just keep it as 95%
355         // of the height of the light.
356         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
357     }
358 
359     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
360     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
361     return ratioZ;
362 }
363 
364 /**
365  * Generate the shadow spot light of shape lightPoly and a object poly
366  *
367  * @param isCasterOpaque whether the caster is opaque
368  * @param lightCenter the center of the light
369  * @param lightSize the radius of the light
370  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
371  * @param polyLength number of vertexes of the occluding polygon
372  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
373  *                            empty strip if error.
374  */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)375 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
376         float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
377         VertexBuffer& shadowTriangleStrip) {
378     if (CC_UNLIKELY(lightCenter.z <= 0)) {
379         ALOGW("Relative Light Z is not positive. No spot shadow!");
380         return;
381     }
382     if (CC_UNLIKELY(polyLength < 3)) {
383 #if DEBUG_SHADOW
384         ALOGW("Invalid polygon length. No spot shadow!");
385 #endif
386         return;
387     }
388     OutlineData outlineData[polyLength];
389     Vector2 outlineCentroid;
390     // Calculate the projected outline for each polygon's vertices from the light center.
391     //
392     //                       O     Light
393     //                      /
394     //                    /
395     //                   .     Polygon vertex
396     //                 /
397     //               /
398     //              O     Outline vertices
399     //
400     // Ratio = (Poly - Outline) / (Light - Poly)
401     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
402     // Outline's radius / Light's radius = Ratio
403 
404     // Compute the last outline vertex to make sure we can get the normal and outline
405     // in one single loop.
406     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
407             poly[polyLength - 1]);
408 
409     // Take the outline's polygon, calculate the normal for each outline edge.
410     int currentNormalIndex = polyLength - 1;
411     int nextNormalIndex = 0;
412 
413     for (int i = 0; i < polyLength; i++) {
414         float ratioZ = projectCasterToOutline(outlineData[i].position,
415                 lightCenter, poly[i]);
416         outlineData[i].radius = ratioZ * lightSize;
417 
418         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
419                 outlineData[currentNormalIndex].position,
420                 outlineData[nextNormalIndex].position);
421         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
422         nextNormalIndex++;
423     }
424 
425     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
426 
427     int penumbraIndex = 0;
428     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
429     // Since the size can be dynamic here, we keep track of the size and update
430     // the real size at the end.
431     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
432     Vector2 penumbra[allocatedPenumbraLength];
433     int totalExtraCornerSliceNumber = 0;
434 
435     Vector2 umbra[polyLength];
436 
437     // When centroid is covered by all circles from outline, then we consider
438     // the umbra is invalid, and we will tune down the shadow strength.
439     bool hasValidUmbra = true;
440     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
441     float minRaitoVI = FLT_MAX;
442 
443     for (int i = 0; i < polyLength; i++) {
444         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
445         // There is no guarantee that the penumbra is still convex, but for
446         // each outline vertex, it will connect to all its corresponding penumbra vertices as
447         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
448         //
449         // Penumbra Vertices marked as Pi
450         // Outline Vertices marked as Vi
451         //                                            (P3)
452         //          (P2)                               |     ' (P4)
453         //   (P1)'   |                                 |   '
454         //         ' |                                 | '
455         // (P0)  ------------------------------------------------(P5)
456         //           | (V0)                            |(V1)
457         //           |                                 |
458         //           |                                 |
459         //           |                                 |
460         //           |                                 |
461         //           |                                 |
462         //           |                                 |
463         //           |                                 |
464         //           |                                 |
465         //       (V3)-----------------------------------(V2)
466         int preNormalIndex = (i + polyLength - 1) % polyLength;
467 
468         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
469         const Vector2& currentNormal = outlineData[i].normal;
470 
471         // Depending on how roundness we want for each corner, we can subdivide
472         // further here and/or introduce some heuristic to decide how much the
473         // subdivision should be.
474         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
475                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
476 
477         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
478         totalExtraCornerSliceNumber += currentExtraSliceNumber;
479 #if DEBUG_SHADOW
480         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
481         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
482         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
483 #endif
484         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
485             currentCornerSliceNumber = 1;
486         }
487         for (int k = 0; k <= currentCornerSliceNumber; k++) {
488             Vector2 avgNormal =
489                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
490                     currentCornerSliceNumber;
491             avgNormal.normalize();
492             penumbra[penumbraIndex++] = outlineData[i].position +
493                     avgNormal * outlineData[i].radius;
494         }
495 
496 
497         // Compute the umbra by the intersection from the outline's centroid!
498         //
499         //       (V) ------------------------------------
500         //           |          '                       |
501         //           |         '                        |
502         //           |       ' (I)                      |
503         //           |    '                             |
504         //           | '             (C)                |
505         //           |                                  |
506         //           |                                  |
507         //           |                                  |
508         //           |                                  |
509         //           ------------------------------------
510         //
511         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
512         // intersect with the outline vertex's circle at point (I).
513         // Now, ratioVI = VI / VC, ratioIC = IC / VC
514         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
515         //
516         // When all of the outline circles cover the the outline centroid, (like I is
517         // on the other side of C), there is no real umbra any more, so we just fake
518         // a small area around the centroid as the umbra, and tune down the spot
519         // shadow's umbra strength to simulate the effect the whole shadow will
520         // become lighter in this case.
521         // The ratio can be simulated by using the inverse of maximum of ratioVI for
522         // all (V).
523         float distOutline = (outlineData[i].position - outlineCentroid).length();
524         if (CC_UNLIKELY(distOutline == 0)) {
525             // If the outline has 0 area, then there is no spot shadow anyway.
526             ALOGW("Outline has 0 area, no spot shadow!");
527             return;
528         }
529 
530         float ratioVI = outlineData[i].radius / distOutline;
531         minRaitoVI = std::min(minRaitoVI, ratioVI);
532         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
533             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
534         }
535         // When we know we don't have valid umbra, don't bother to compute the
536         // values below. But we can't skip the loop yet since we want to know the
537         // maximum ratio.
538         float ratioIC = 1 - ratioVI;
539         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
540     }
541 
542     hasValidUmbra = (minRaitoVI <= 1.0);
543     float shadowStrengthScale = 1.0;
544     if (!hasValidUmbra) {
545 #if DEBUG_SHADOW
546         ALOGW("The object is too close to the light or too small, no real umbra!");
547 #endif
548         for (int i = 0; i < polyLength; i++) {
549             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
550                     outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
551         }
552         shadowStrengthScale = 1.0 / minRaitoVI;
553     }
554 
555     int penumbraLength = penumbraIndex;
556     int umbraLength = polyLength;
557 
558 #if DEBUG_SHADOW
559     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
560     dumpPolygon(poly, polyLength, "input poly");
561     dumpPolygon(penumbra, penumbraLength, "penumbra");
562     dumpPolygon(umbra, umbraLength, "umbra");
563     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
564 #endif
565 
566     // The penumbra and umbra needs to be in convex shape to keep consistency
567     // and quality.
568     // Since we are still shooting rays to penumbra, it needs to be convex.
569     // Umbra can be represented as a fan from the centroid, but visually umbra
570     // looks nicer when it is convex.
571     Vector2 finalUmbra[umbraLength];
572     Vector2 finalPenumbra[penumbraLength];
573     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
574     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
575 
576     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
577             finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
578             shadowTriangleStrip, outlineCentroid);
579 
580 }
581 
582 /**
583  * This is only for experimental purpose.
584  * After intersections are calculated, we could smooth the polygon if needed.
585  * So far, we don't think it is more appealing yet.
586  *
587  * @param level The level of smoothness.
588  * @param rays The total number of rays.
589  * @param rayDist (In and Out) The distance for each ray.
590  *
591  */
smoothPolygon(int level,int rays,float * rayDist)592 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
593     for (int k = 0; k < level; k++) {
594         for (int i = 0; i < rays; i++) {
595             float p1 = rayDist[(rays - 1 + i) % rays];
596             float p2 = rayDist[i];
597             float p3 = rayDist[(i + 1) % rays];
598             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
599         }
600     }
601 }
602 
603 // Index pair is meant for storing the tessellation information for the penumbra
604 // area. One index must come from exterior tangent of the circles, the other one
605 // must come from the interior tangent of the circles.
606 struct IndexPair {
607     int outerIndex;
608     int innerIndex;
609 };
610 
611 // For one penumbra vertex, find the cloest umbra vertex and return its index.
getClosestUmbraIndex(const Vector2 & pivot,const Vector2 * polygon,int polygonLength)612 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
613     float minLengthSquared = FLT_MAX;
614     int resultIndex = -1;
615     bool hasDecreased = false;
616     // Starting with some negative offset, assuming both umbra and penumbra are starting
617     // at the same angle, this can help to find the result faster.
618     // Normally, loop 3 times, we can find the closest point.
619     int offset = polygonLength - 2;
620     for (int i = 0; i < polygonLength; i++) {
621         int currentIndex = (i + offset) % polygonLength;
622         float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
623         if (currentLengthSquared < minLengthSquared) {
624             if (minLengthSquared != FLT_MAX) {
625                 hasDecreased = true;
626             }
627             minLengthSquared = currentLengthSquared;
628             resultIndex = currentIndex;
629         } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
630             // Early break b/c we have found the closet one and now the length
631             // is increasing again.
632             break;
633         }
634     }
635     if(resultIndex == -1) {
636         ALOGE("resultIndex is -1, the polygon must be invalid!");
637         resultIndex = 0;
638     }
639     return resultIndex;
640 }
641 
642 // Allow some epsilon here since the later ray intersection did allow for some small
643 // floating point error, when the intersection point is slightly outside the segment.
sameDirections(bool isPositiveCross,float a,float b)644 inline bool sameDirections(bool isPositiveCross, float a, float b) {
645     if (isPositiveCross) {
646         return a >= -EPSILON && b >= -EPSILON;
647     } else {
648         return a <= EPSILON && b <= EPSILON;
649     }
650 }
651 
652 // Find the right polygon edge to shoot the ray at.
findPolyIndex(bool isPositiveCross,int startPolyIndex,const Vector2 & umbraDir,const Vector2 * polyToCentroid,int polyLength)653 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
654         const Vector2* polyToCentroid, int polyLength) {
655     // Make sure we loop with a bound.
656     for (int i = 0; i < polyLength; i++) {
657         int currentIndex = (i + startPolyIndex) % polyLength;
658         const Vector2& currentToCentroid = polyToCentroid[currentIndex];
659         const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
660 
661         float currentCrossUmbra = currentToCentroid.cross(umbraDir);
662         float umbraCrossNext = umbraDir.cross(nextToCentroid);
663         if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
664 #if DEBUG_SHADOW
665             ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
666 #endif
667             return currentIndex;
668         }
669     }
670     LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
671     return -1;
672 }
673 
674 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
675 // if needed.
genNewPenumbraAndPairWithUmbra(const Vector2 * penumbra,int penumbraLength,const Vector2 * umbra,int umbraLength,Vector2 * newPenumbra,int & newPenumbraIndex,IndexPair * verticesPair,int & verticesPairIndex)676 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
677         const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
678         IndexPair* verticesPair, int& verticesPairIndex) {
679     // In order to keep everything in just one loop, we need to pre-compute the
680     // closest umbra vertex for the last penumbra vertex.
681     int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
682             umbra, umbraLength);
683     for (int i = 0; i < penumbraLength; i++) {
684         const Vector2& currentPenumbraVertex = penumbra[i];
685         // For current penumbra vertex, starting from previousClosestUmbraIndex,
686         // then check the next one until the distance increase.
687         // The last one before the increase is the umbra vertex we need to pair with.
688         float currentLengthSquared =
689                 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
690         int currentClosestUmbraIndex = previousClosestUmbraIndex;
691         int indexDelta = 0;
692         for (int j = 1; j < umbraLength; j++) {
693             int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
694             float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
695             if (newLengthSquared > currentLengthSquared) {
696                 // currentClosestUmbraIndex is the umbra vertex's index which has
697                 // currently found smallest distance, so we can simply break here.
698                 break;
699             } else {
700                 currentLengthSquared = newLengthSquared;
701                 indexDelta++;
702                 currentClosestUmbraIndex = newUmbraIndex;
703             }
704         }
705 
706         if (indexDelta > 1) {
707             // For those umbra don't have  penumbra, generate new penumbra vertices by interpolation.
708             //
709             // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
710             // In the case like below P1 paired with U1 and P2 paired with  U5.
711             // U2 to U4 are unpaired umbra vertices.
712             //
713             // P1                                        P2
714             // |                                          |
715             // U1     U2                   U3     U4     U5
716             //
717             // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
718             // to pair with U2 to U4.
719             //
720             // P1     P1.1                P1.2   P1.3    P2
721             // |       |                   |      |      |
722             // U1     U2                   U3     U4     U5
723             //
724             // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
725             // vertex's location.
726             int newPenumbraNumber = indexDelta - 1;
727 
728             float accumulatedDeltaLength[indexDelta];
729             float totalDeltaLength = 0;
730 
731             // To save time, cache the previous umbra vertex info outside the loop
732             // and update each loop.
733             Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
734             Vector2 skippedUmbra;
735             // Use umbra data to precompute the length b/t unpaired umbra vertices,
736             // and its ratio against the total length.
737             for (int k = 0; k < indexDelta; k++) {
738                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
739                 skippedUmbra = umbra[skippedUmbraIndex];
740                 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
741 
742                 totalDeltaLength += currentDeltaLength;
743                 accumulatedDeltaLength[k] = totalDeltaLength;
744 
745                 previousClosestUmbra = skippedUmbra;
746             }
747 
748             const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
749             // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
750             // and pair them togehter.
751             for (int k = 0; k < newPenumbraNumber; k++) {
752                 float weightForCurrentPenumbra = 1.0f;
753                 if (totalDeltaLength != 0.0f) {
754                     weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
755                 }
756                 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
757 
758                 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
759                     previousPenumbra * weightForPreviousPenumbra;
760 
761                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
762                 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
763                 verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
764                 verticesPairIndex++;
765                 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
766             }
767         }
768         verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
769         verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
770         verticesPairIndex++;
771         newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
772 
773         previousClosestUmbraIndex = currentClosestUmbraIndex;
774     }
775 }
776 
777 // Precompute all the polygon's vector, return true if the reference cross product is positive.
genPolyToCentroid(const Vector2 * poly2d,int polyLength,const Vector2 & centroid,Vector2 * polyToCentroid)778 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
779         const Vector2& centroid, Vector2* polyToCentroid) {
780     for (int j = 0; j < polyLength; j++) {
781         polyToCentroid[j] = poly2d[j] - centroid;
782         // Normalize these vectors such that we can use epsilon comparison after
783         // computing their cross products with another normalized vector.
784         polyToCentroid[j].normalize();
785     }
786     float refCrossProduct = 0;
787     for (int j = 0; j < polyLength; j++) {
788         refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
789         if (refCrossProduct != 0) {
790             break;
791         }
792     }
793 
794     return refCrossProduct > 0;
795 }
796 
797 // For one umbra vertex, shoot an ray from centroid to it.
798 // If the ray hit the polygon first, then return the intersection point as the
799 // closer vertex.
getCloserVertex(const Vector2 & umbraVertex,const Vector2 & centroid,const Vector2 * poly2d,int polyLength,const Vector2 * polyToCentroid,bool isPositiveCross,int & previousPolyIndex)800 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
801         const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
802         bool isPositiveCross, int& previousPolyIndex) {
803     Vector2 umbraToCentroid = umbraVertex - centroid;
804     float distanceToUmbra = umbraToCentroid.length();
805     umbraToCentroid = umbraToCentroid / distanceToUmbra;
806 
807     // previousPolyIndex is updated for each item such that we can minimize the
808     // looping inside findPolyIndex();
809     previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
810             umbraToCentroid, polyToCentroid, polyLength);
811 
812     float dx = umbraToCentroid.x;
813     float dy = umbraToCentroid.y;
814     float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
815             poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
816     if (distanceToIntersectPoly < 0) {
817         distanceToIntersectPoly = 0;
818     }
819 
820     // Pick the closer one as the occluded area vertex.
821     Vector2 closerVertex;
822     if (distanceToIntersectPoly < distanceToUmbra) {
823         closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
824         closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
825     } else {
826         closerVertex = umbraVertex;
827     }
828 
829     return closerVertex;
830 }
831 
832 /**
833  * Generate a triangle strip given two convex polygon
834 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)835 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
836         Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
837         const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
838         const Vector2& centroid) {
839     bool hasOccludedUmbraArea = false;
840     Vector2 poly2d[polyLength];
841 
842     if (isCasterOpaque) {
843         for (int i = 0; i < polyLength; i++) {
844             poly2d[i].x = poly[i].x;
845             poly2d[i].y = poly[i].y;
846         }
847         // Make sure the centroid is inside the umbra, otherwise, fall back to the
848         // approach as if there is no occluded umbra area.
849         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
850             hasOccludedUmbraArea = true;
851         }
852     }
853 
854     // For each penumbra vertex, find its corresponding closest umbra vertex index.
855     //
856     // Penumbra Vertices marked as Pi
857     // Umbra Vertices marked as Ui
858     //                                            (P3)
859     //          (P2)                               |     ' (P4)
860     //   (P1)'   |                                 |   '
861     //         ' |                                 | '
862     // (P0)  ------------------------------------------------(P5)
863     //           | (U0)                            |(U1)
864     //           |                                 |
865     //           |                                 |(U2)     (P5.1)
866     //           |                                 |
867     //           |                                 |
868     //           |                                 |
869     //           |                                 |
870     //           |                                 |
871     //           |                                 |
872     //       (U4)-----------------------------------(U3)      (P6)
873     //
874     // At least, like P0, P1, P2, they will find the matching umbra as U0.
875     // If we jump over some umbra vertex without matching penumbra vertex, then
876     // we will generate some new penumbra vertex by interpolation. Like P6 is
877     // matching U3, but U2 is not matched with any penumbra vertex.
878     // So interpolate P5.1 out and match U2.
879     // In this way, every umbra vertex will have a matching penumbra vertex.
880     //
881     // The total pair number can be as high as umbraLength + penumbraLength.
882     const int maxNewPenumbraLength = umbraLength + penumbraLength;
883     IndexPair verticesPair[maxNewPenumbraLength];
884     int verticesPairIndex = 0;
885 
886     // Cache all the existing penumbra vertices and newly interpolated vertices into a
887     // a new array.
888     Vector2 newPenumbra[maxNewPenumbraLength];
889     int newPenumbraIndex = 0;
890 
891     // For each penumbra vertex, find its closet umbra vertex by comparing the
892     // neighbor umbra vertices.
893     genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
894             newPenumbraIndex, verticesPair, verticesPairIndex);
895     ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
896     ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
897 #if DEBUG_SHADOW
898     for (int i = 0; i < umbraLength; i++) {
899         ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
900     }
901     for (int i = 0; i < newPenumbraIndex; i++) {
902         ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
903     }
904     for (int i = 0; i < verticesPairIndex; i++) {
905         ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
906     }
907 #endif
908 
909     // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
910     // one has umbraLength, the last one has at most umbraLength.
911     //
912     // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
913     // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
914     // And 2 more for jumping between penumbra to umbra.
915     const int newPenumbraLength = newPenumbraIndex;
916     const int totalVertexCount = newPenumbraLength + umbraLength * 2;
917     const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
918     AlphaVertex* shadowVertices =
919             shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
920     uint16_t* indexBuffer =
921             shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
922     int vertexBufferIndex = 0;
923     int indexBufferIndex = 0;
924 
925     // Fill the IB and VB for the penumbra area.
926     for (int i = 0; i < newPenumbraLength; i++) {
927         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
928                 newPenumbra[i].y, PENUMBRA_ALPHA);
929     }
930     // Since the umbra can be a faked one when the occluder is too high, the umbra should be lighter
931     // in this case.
932     float scaledUmbraAlpha = UMBRA_ALPHA * shadowStrengthScale;
933 
934     for (int i = 0; i < umbraLength; i++) {
935         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
936                 scaledUmbraAlpha);
937     }
938 
939     for (int i = 0; i < verticesPairIndex; i++) {
940         indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
941         // All umbra index need to be offseted by newPenumbraSize.
942         indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
943     }
944     indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
945     indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
946 
947     // Now fill the IB and VB for the umbra area.
948     // First duplicated the index from previous strip and the first one for the
949     // degenerated triangles.
950     indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
951     indexBufferIndex++;
952     indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
953     // Save the first VB index for umbra area in order to close the loop.
954     int savedStartIndex = vertexBufferIndex;
955 
956     if (hasOccludedUmbraArea) {
957         // Precompute all the polygon's vector, and the reference cross product,
958         // in order to find the right polygon edge for the ray to intersect.
959         Vector2 polyToCentroid[polyLength];
960         bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
961 
962         // Because both the umbra and polygon are going in the same direction,
963         // we can save the previous polygon index to make sure we have less polygon
964         // vertex to compute for each ray.
965         int previousPolyIndex = 0;
966         for (int i = 0; i < umbraLength; i++) {
967             // Shoot a ray from centroid to each umbra vertices and pick the one with
968             // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
969             Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
970                     polyToCentroid, isPositiveCross, previousPolyIndex);
971 
972             // We already stored the umbra vertices, just need to add the occlued umbra's ones.
973             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
974             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
975             AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
976                     closerVertex.x, closerVertex.y, scaledUmbraAlpha);
977         }
978     } else {
979         // If there is no occluded umbra at all, then draw the triangle fan
980         // starting from the centroid to all umbra vertices.
981         int lastCentroidIndex = vertexBufferIndex;
982         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
983                 centroid.y, scaledUmbraAlpha);
984         for (int i = 0; i < umbraLength; i++) {
985             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
986             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
987         }
988     }
989     // Closing the umbra area triangle's loop here.
990     indexBuffer[indexBufferIndex++] = newPenumbraLength;
991     indexBuffer[indexBufferIndex++] = savedStartIndex;
992 
993     // At the end, update the real index and vertex buffer size.
994     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
995     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
996     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
997     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
998 
999     shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
1000     shadowTriangleStrip.computeBounds<AlphaVertex>();
1001 }
1002 
1003 #if DEBUG_SHADOW
1004 
1005 #define TEST_POINT_NUMBER 128
1006 /**
1007  * Calculate the bounds for generating random test points.
1008  */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)1009 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1010         Vector2& upperBound) {
1011     if (inVector.x < lowerBound.x) {
1012         lowerBound.x = inVector.x;
1013     }
1014 
1015     if (inVector.y < lowerBound.y) {
1016         lowerBound.y = inVector.y;
1017     }
1018 
1019     if (inVector.x > upperBound.x) {
1020         upperBound.x = inVector.x;
1021     }
1022 
1023     if (inVector.y > upperBound.y) {
1024         upperBound.y = inVector.y;
1025     }
1026 }
1027 
1028 /**
1029  * For debug purpose, when things go wrong, dump the whole polygon data.
1030  */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1031 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1032     for (int i = 0; i < polyLength; i++) {
1033         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1034     }
1035 }
1036 
1037 /**
1038  * For debug purpose, when things go wrong, dump the whole polygon data.
1039  */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1040 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1041     for (int i = 0; i < polyLength; i++) {
1042         ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
1043     }
1044 }
1045 
1046 /**
1047  * Test whether the polygon is convex.
1048  */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1049 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1050         const char* name) {
1051     bool isConvex = true;
1052     for (int i = 0; i < polygonLength; i++) {
1053         Vector2 start = polygon[i];
1054         Vector2 middle = polygon[(i + 1) % polygonLength];
1055         Vector2 end = polygon[(i + 2) % polygonLength];
1056 
1057         float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1058                 (float(middle.y) - start.y) * (float(end.x) - start.x);
1059         bool isCCWOrCoLinear = (delta >= EPSILON);
1060 
1061         if (isCCWOrCoLinear) {
1062             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1063                     "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1064                     name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1065             isConvex = false;
1066             break;
1067         }
1068     }
1069     return isConvex;
1070 }
1071 
1072 /**
1073  * Test whether or not the polygon (intersection) is within the 2 input polygons.
1074  * Using Marte Carlo method, we generate a random point, and if it is inside the
1075  * intersection, then it must be inside both source polygons.
1076  */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1077 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1078         const Vector2* poly2, int poly2Length,
1079         const Vector2* intersection, int intersectionLength) {
1080     // Find the min and max of x and y.
1081     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1082     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1083     for (int i = 0; i < poly1Length; i++) {
1084         updateBound(poly1[i], lowerBound, upperBound);
1085     }
1086     for (int i = 0; i < poly2Length; i++) {
1087         updateBound(poly2[i], lowerBound, upperBound);
1088     }
1089 
1090     bool dumpPoly = false;
1091     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1092         // Generate a random point between minX, minY and maxX, maxY.
1093         float randomX = rand() / float(RAND_MAX);
1094         float randomY = rand() / float(RAND_MAX);
1095 
1096         Vector2 testPoint;
1097         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1098         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1099 
1100         // If the random point is in both poly 1 and 2, then it must be intersection.
1101         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1102             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1103                 dumpPoly = true;
1104                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1105                         " not in the poly1",
1106                         testPoint.x, testPoint.y);
1107             }
1108 
1109             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1110                 dumpPoly = true;
1111                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1112                         " not in the poly2",
1113                         testPoint.x, testPoint.y);
1114             }
1115         }
1116     }
1117 
1118     if (dumpPoly) {
1119         dumpPolygon(intersection, intersectionLength, "intersection");
1120         for (int i = 1; i < intersectionLength; i++) {
1121             Vector2 delta = intersection[i] - intersection[i - 1];
1122             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1123         }
1124 
1125         dumpPolygon(poly1, poly1Length, "poly 1");
1126         dumpPolygon(poly2, poly2Length, "poly 2");
1127     }
1128 }
1129 #endif
1130 
1131 }; // namespace uirenderer
1132 }; // namespace android
1133