• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <math.h>
18 #include <stdlib.h>
19 #include <string.h>
20 
21 #include <utils/Log.h>
22 
23 #include <SkMatrix.h>
24 
25 #include "Matrix.h"
26 
27 namespace android {
28 namespace uirenderer {
29 
30 ///////////////////////////////////////////////////////////////////////////////
31 // Defines
32 ///////////////////////////////////////////////////////////////////////////////
33 
34 static const float EPSILON = 0.0000001f;
35 
36 ///////////////////////////////////////////////////////////////////////////////
37 // Matrix
38 ///////////////////////////////////////////////////////////////////////////////
39 
identity()40 const Matrix4& Matrix4::identity() {
41     static Matrix4 sIdentity;
42     return sIdentity;
43 }
44 
loadIdentity()45 void Matrix4::loadIdentity() {
46     data[kScaleX]       = 1.0f;
47     data[kSkewY]        = 0.0f;
48     data[2]             = 0.0f;
49     data[kPerspective0] = 0.0f;
50 
51     data[kSkewX]        = 0.0f;
52     data[kScaleY]       = 1.0f;
53     data[6]             = 0.0f;
54     data[kPerspective1] = 0.0f;
55 
56     data[8]             = 0.0f;
57     data[9]             = 0.0f;
58     data[kScaleZ]       = 1.0f;
59     data[11]            = 0.0f;
60 
61     data[kTranslateX]   = 0.0f;
62     data[kTranslateY]   = 0.0f;
63     data[kTranslateZ]   = 0.0f;
64     data[kPerspective2] = 1.0f;
65 
66     mType = kTypeIdentity | kTypeRectToRect;
67 }
68 
isZero(float f)69 static bool isZero(float f) {
70     return fabs(f) <= EPSILON;
71 }
72 
getType() const73 uint8_t Matrix4::getType() const {
74     if (mType & kTypeUnknown) {
75         mType = kTypeIdentity;
76 
77         if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
78                 data[kPerspective2] != 1.0f) {
79             mType |= kTypePerspective;
80         }
81 
82         if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
83             mType |= kTypeTranslate;
84         }
85 
86         float m00 = data[kScaleX];
87         float m01 = data[kSkewX];
88         float m10 = data[kSkewY];
89         float m11 = data[kScaleY];
90         float m32 = data[kTranslateZ];
91 
92         if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
93             mType |= kTypeAffine;
94         }
95 
96         if (m00 != 1.0f || m11 != 1.0f) {
97             mType |= kTypeScale;
98         }
99 
100         // The following section determines whether the matrix will preserve
101         // rectangles. For instance, a rectangle transformed by a pure
102         // translation matrix will result in a rectangle. A rectangle
103         // transformed by a 45 degrees rotation matrix is not a rectangle.
104         // If the matrix has a perspective component then we already know
105         // it doesn't preserve rectangles.
106         if (!(mType & kTypePerspective)) {
107             if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
108                     (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
109                 mType |= kTypeRectToRect;
110             }
111         }
112     }
113     return mType;
114 }
115 
getGeometryType() const116 uint8_t Matrix4::getGeometryType() const {
117     return getType() & sGeometryMask;
118 }
119 
rectToRect() const120 bool Matrix4::rectToRect() const {
121     return getType() & kTypeRectToRect;
122 }
123 
positiveScale() const124 bool Matrix4::positiveScale() const {
125     return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
126 }
127 
changesBounds() const128 bool Matrix4::changesBounds() const {
129     return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
130 }
131 
isPureTranslate() const132 bool Matrix4::isPureTranslate() const {
133     // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
134     // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
135     return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
136 }
137 
isSimple() const138 bool Matrix4::isSimple() const {
139     return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
140 }
141 
isIdentity() const142 bool Matrix4::isIdentity() const {
143     return getGeometryType() == kTypeIdentity;
144 }
145 
isPerspective() const146 bool Matrix4::isPerspective() const {
147     return getType() & kTypePerspective;
148 }
149 
load(const float * v)150 void Matrix4::load(const float* v) {
151     memcpy(data, v, sizeof(data));
152     mType = kTypeUnknown;
153 }
154 
load(const SkMatrix & v)155 void Matrix4::load(const SkMatrix& v) {
156     memset(data, 0, sizeof(data));
157 
158     data[kScaleX]     = v[SkMatrix::kMScaleX];
159     data[kSkewX]      = v[SkMatrix::kMSkewX];
160     data[kTranslateX] = v[SkMatrix::kMTransX];
161 
162     data[kSkewY]      = v[SkMatrix::kMSkewY];
163     data[kScaleY]     = v[SkMatrix::kMScaleY];
164     data[kTranslateY] = v[SkMatrix::kMTransY];
165 
166     data[kPerspective0]  = v[SkMatrix::kMPersp0];
167     data[kPerspective1]  = v[SkMatrix::kMPersp1];
168     data[kPerspective2]  = v[SkMatrix::kMPersp2];
169 
170     data[kScaleZ] = 1.0f;
171 
172     // NOTE: The flags are compatible between SkMatrix and this class.
173     //       However, SkMatrix::getType() does not return the flag
174     //       kRectStaysRect. The return value is masked with 0xF
175     //       so we need the extra rectStaysRect() check
176     mType = v.getType();
177     if (v.rectStaysRect()) {
178         mType |= kTypeRectToRect;
179     }
180 }
181 
copyTo(SkMatrix & v) const182 void Matrix4::copyTo(SkMatrix& v) const {
183     v.reset();
184 
185     v.set(SkMatrix::kMScaleX, data[kScaleX]);
186     v.set(SkMatrix::kMSkewX,  data[kSkewX]);
187     v.set(SkMatrix::kMTransX, data[kTranslateX]);
188 
189     v.set(SkMatrix::kMSkewY,  data[kSkewY]);
190     v.set(SkMatrix::kMScaleY, data[kScaleY]);
191     v.set(SkMatrix::kMTransY, data[kTranslateY]);
192 
193     v.set(SkMatrix::kMPersp0, data[kPerspective0]);
194     v.set(SkMatrix::kMPersp1, data[kPerspective1]);
195     v.set(SkMatrix::kMPersp2, data[kPerspective2]);
196 }
197 
loadInverse(const Matrix4 & v)198 void Matrix4::loadInverse(const Matrix4& v) {
199     // Fast case for common translation matrices
200     if (v.isPureTranslate()) {
201         // Reset the matrix
202         // Unnamed fields are never written to except by
203         // loadIdentity(), they don't need to be reset
204         data[kScaleX]       = 1.0f;
205         data[kSkewX]        = 0.0f;
206 
207         data[kScaleY]       = 1.0f;
208         data[kSkewY]        = 0.0f;
209 
210         data[kScaleZ]       = 1.0f;
211 
212         data[kPerspective0] = 0.0f;
213         data[kPerspective1] = 0.0f;
214         data[kPerspective2] = 1.0f;
215 
216         // No need to deal with kTranslateZ because isPureTranslate()
217         // only returns true when the kTranslateZ component is 0
218         data[kTranslateX]   = -v.data[kTranslateX];
219         data[kTranslateY]   = -v.data[kTranslateY];
220         data[kTranslateZ]   = 0.0f;
221 
222         // A "pure translate" matrix can be identity or translation
223         mType = v.getType();
224         return;
225     }
226 
227     double scale = 1.0 /
228             (v.data[kScaleX] * ((double) v.data[kScaleY]  * v.data[kPerspective2] -
229                     (double) v.data[kTranslateY] * v.data[kPerspective1]) +
230              v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
231                      (double) v.data[kSkewY] * v.data[kPerspective2]) +
232              v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
233                      (double) v.data[kScaleY] * v.data[kPerspective0]));
234 
235     data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
236             v.data[kTranslateY] * v.data[kPerspective1]) * scale;
237     data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
238             v.data[kSkewX]  * v.data[kPerspective2]) * scale;
239     data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
240             v.data[kTranslateX] * v.data[kScaleY]) * scale;
241 
242     data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
243             v.data[kSkewY]  * v.data[kPerspective2]) * scale;
244     data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
245             v.data[kTranslateX] * v.data[kPerspective0]) * scale;
246     data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
247             v.data[kScaleX] * v.data[kTranslateY]) * scale;
248 
249     data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
250             v.data[kScaleY] * v.data[kPerspective0]) * scale;
251     data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
252             v.data[kScaleX] * v.data[kPerspective1]) * scale;
253     data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
254             v.data[kSkewX] * v.data[kSkewY]) * scale;
255 
256     mType = kTypeUnknown;
257 }
258 
copyTo(float * v) const259 void Matrix4::copyTo(float* v) const {
260     memcpy(v, data, sizeof(data));
261 }
262 
getTranslateX() const263 float Matrix4::getTranslateX() const {
264     return data[kTranslateX];
265 }
266 
getTranslateY() const267 float Matrix4::getTranslateY() const {
268     return data[kTranslateY];
269 }
270 
multiply(float v)271 void Matrix4::multiply(float v) {
272     for (int i = 0; i < 16; i++) {
273         data[i] *= v;
274     }
275     mType = kTypeUnknown;
276 }
277 
loadTranslate(float x,float y,float z)278 void Matrix4::loadTranslate(float x, float y, float z) {
279     loadIdentity();
280 
281     data[kTranslateX] = x;
282     data[kTranslateY] = y;
283     data[kTranslateZ] = z;
284 
285     mType = kTypeTranslate | kTypeRectToRect;
286 }
287 
loadScale(float sx,float sy,float sz)288 void Matrix4::loadScale(float sx, float sy, float sz) {
289     loadIdentity();
290 
291     data[kScaleX] = sx;
292     data[kScaleY] = sy;
293     data[kScaleZ] = sz;
294 
295     mType = kTypeScale | kTypeRectToRect;
296 }
297 
loadSkew(float sx,float sy)298 void Matrix4::loadSkew(float sx, float sy) {
299     loadIdentity();
300 
301     data[kScaleX]       = 1.0f;
302     data[kSkewX]        = sx;
303     data[kTranslateX]   = 0.0f;
304 
305     data[kSkewY]        = sy;
306     data[kScaleY]       = 1.0f;
307     data[kTranslateY]   = 0.0f;
308 
309     data[kPerspective0] = 0.0f;
310     data[kPerspective1] = 0.0f;
311     data[kPerspective2] = 1.0f;
312 
313     mType = kTypeUnknown;
314 }
315 
loadRotate(float angle)316 void Matrix4::loadRotate(float angle) {
317     angle *= float(M_PI / 180.0f);
318     float c = cosf(angle);
319     float s = sinf(angle);
320 
321     loadIdentity();
322 
323     data[kScaleX]     = c;
324     data[kSkewX]      = -s;
325 
326     data[kSkewY]      = s;
327     data[kScaleY]     = c;
328 
329     mType = kTypeUnknown;
330 }
331 
loadRotate(float angle,float x,float y,float z)332 void Matrix4::loadRotate(float angle, float x, float y, float z) {
333     data[kPerspective0]  = 0.0f;
334     data[kPerspective1]  = 0.0f;
335     data[11]             = 0.0f;
336     data[kTranslateX]    = 0.0f;
337     data[kTranslateY]    = 0.0f;
338     data[kTranslateZ]    = 0.0f;
339     data[kPerspective2]  = 1.0f;
340 
341     angle *= float(M_PI / 180.0f);
342     float c = cosf(angle);
343     float s = sinf(angle);
344 
345     const float length = sqrtf(x * x + y * y + z * z);
346     float recipLen = 1.0f / length;
347     x *= recipLen;
348     y *= recipLen;
349     z *= recipLen;
350 
351     const float nc = 1.0f - c;
352     const float xy = x * y;
353     const float yz = y * z;
354     const float zx = z * x;
355     const float xs = x * s;
356     const float ys = y * s;
357     const float zs = z * s;
358 
359     data[kScaleX] = x * x * nc +  c;
360     data[kSkewX]  =    xy * nc - zs;
361     data[8]       =    zx * nc + ys;
362     data[kSkewY]  =    xy * nc + zs;
363     data[kScaleY] = y * y * nc +  c;
364     data[9]       =    yz * nc - xs;
365     data[2]       =    zx * nc - ys;
366     data[6]       =    yz * nc + xs;
367     data[kScaleZ] = z * z * nc +  c;
368 
369     mType = kTypeUnknown;
370 }
371 
loadMultiply(const Matrix4 & u,const Matrix4 & v)372 void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
373     for (int i = 0 ; i < 4 ; i++) {
374         float x = 0;
375         float y = 0;
376         float z = 0;
377         float w = 0;
378 
379         for (int j = 0 ; j < 4 ; j++) {
380             const float e = v.get(i, j);
381             x += u.get(j, 0) * e;
382             y += u.get(j, 1) * e;
383             z += u.get(j, 2) * e;
384             w += u.get(j, 3) * e;
385         }
386 
387         set(i, 0, x);
388         set(i, 1, y);
389         set(i, 2, z);
390         set(i, 3, w);
391     }
392 
393     mType = kTypeUnknown;
394 }
395 
loadOrtho(float left,float right,float bottom,float top,float near,float far)396 void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
397     loadIdentity();
398 
399     data[kScaleX] = 2.0f / (right - left);
400     data[kScaleY] = 2.0f / (top - bottom);
401     data[kScaleZ] = -2.0f / (far - near);
402     data[kTranslateX] = -(right + left) / (right - left);
403     data[kTranslateY] = -(top + bottom) / (top - bottom);
404     data[kTranslateZ] = -(far + near) / (far - near);
405 
406     mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
407 }
408 
mapZ(const Vector3 & orig) const409 float Matrix4::mapZ(const Vector3& orig) const {
410     // duplicates logic for mapPoint3d's z coordinate
411     return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
412 }
413 
mapPoint3d(Vector3 & vec) const414 void Matrix4::mapPoint3d(Vector3& vec) const {
415     //TODO: optimize simple case
416     const Vector3 orig(vec);
417     vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
418     vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
419     vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
420 }
421 
422 #define MUL_ADD_STORE(a, b, c) ((a) = (a) * (b) + (c))
423 
mapPoint(float & x,float & y) const424 void Matrix4::mapPoint(float& x, float& y) const {
425     if (isSimple()) {
426         MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
427         MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
428         return;
429     }
430 
431     float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
432     float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
433     float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
434     if (dz) dz = 1.0f / dz;
435 
436     x = dx * dz;
437     y = dy * dz;
438 }
439 
440 /**
441  * Set the contents of the rect to be the bounding rect around each of the corners, mapped by the
442  * matrix.
443  *
444  * NOTE: an empty rect to an arbitrary matrix isn't guaranteed to have an empty output, since that's
445  * important for conservative bounds estimation (e.g. rotate45Matrix.mapRect of Rect(0, 10) should
446  * result in non-empty.
447  */
mapRect(Rect & r) const448 void Matrix4::mapRect(Rect& r) const {
449     if (isIdentity()) return;
450 
451     if (isSimple()) {
452         MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
453         MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
454         MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
455         MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
456 
457         if (r.left > r.right) {
458             float x = r.left;
459             r.left = r.right;
460             r.right = x;
461         }
462 
463         if (r.top > r.bottom) {
464             float y = r.top;
465             r.top = r.bottom;
466             r.bottom = y;
467         }
468 
469         return;
470     }
471 
472     float vertices[] = {
473         r.left, r.top,
474         r.right, r.top,
475         r.right, r.bottom,
476         r.left, r.bottom
477     };
478 
479     float x, y, z;
480 
481     for (int i = 0; i < 8; i+= 2) {
482         float px = vertices[i];
483         float py = vertices[i + 1];
484 
485         x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
486         y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
487         z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
488         if (z) z = 1.0f / z;
489 
490         vertices[i] = x * z;
491         vertices[i + 1] = y * z;
492     }
493 
494     r.left = r.right = vertices[0];
495     r.top = r.bottom = vertices[1];
496 
497     for (int i = 2; i < 8; i += 2) {
498         x = vertices[i];
499         y = vertices[i + 1];
500 
501         if (x < r.left) r.left = x;
502         else if (x > r.right) r.right = x;
503         if (y < r.top) r.top = y;
504         else if (y > r.bottom) r.bottom = y;
505     }
506 }
507 
decomposeScale(float & sx,float & sy) const508 void Matrix4::decomposeScale(float& sx, float& sy) const {
509     float len;
510     len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
511     sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
512     len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
513     sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
514 }
515 
dump(const char * label) const516 void Matrix4::dump(const char* label) const {
517     ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
518     ALOGD("  %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
519     ALOGD("  %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
520     ALOGD("  %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
521     ALOGD("  %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
522     ALOGD("]");
523 }
524 
525 }; // namespace uirenderer
526 }; // namespace android
527