1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <linux/futex.h>
27 #include <sys/stat.h>
28 #include <sys/syscall.h>
29 #include <cutils/properties.h>
30 #include <media/AudioParameter.h>
31 #include <media/AudioResamplerPublic.h>
32 #include <media/RecordBufferConverter.h>
33 #include <media/TypeConverter.h>
34 #include <utils/Log.h>
35 #include <utils/Trace.h>
36
37 #include <private/media/AudioTrackShared.h>
38 #include <private/android_filesystem_config.h>
39 #include <audio_utils/mono_blend.h>
40 #include <audio_utils/primitives.h>
41 #include <audio_utils/format.h>
42 #include <audio_utils/minifloat.h>
43 #include <system/audio_effects/effect_ns.h>
44 #include <system/audio_effects/effect_aec.h>
45 #include <system/audio.h>
46
47 // NBAIO implementations
48 #include <media/nbaio/AudioStreamInSource.h>
49 #include <media/nbaio/AudioStreamOutSink.h>
50 #include <media/nbaio/MonoPipe.h>
51 #include <media/nbaio/MonoPipeReader.h>
52 #include <media/nbaio/Pipe.h>
53 #include <media/nbaio/PipeReader.h>
54 #include <media/nbaio/SourceAudioBufferProvider.h>
55 #include <mediautils/BatteryNotifier.h>
56
57 #include <powermanager/PowerManager.h>
58
59 #include "AudioFlinger.h"
60 #include "FastMixer.h"
61 #include "FastCapture.h"
62 #include "ServiceUtilities.h"
63 #include "mediautils/SchedulingPolicyService.h"
64
65 #ifdef ADD_BATTERY_DATA
66 #include <media/IMediaPlayerService.h>
67 #include <media/IMediaDeathNotifier.h>
68 #endif
69
70 #ifdef DEBUG_CPU_USAGE
71 #include <cpustats/CentralTendencyStatistics.h>
72 #include <cpustats/ThreadCpuUsage.h>
73 #endif
74
75 #include "AutoPark.h"
76
77 #include <pthread.h>
78 #include "TypedLogger.h"
79
80 // ----------------------------------------------------------------------------
81
82 // Note: the following macro is used for extremely verbose logging message. In
83 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
84 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
85 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
86 // turned on. Do not uncomment the #def below unless you really know what you
87 // are doing and want to see all of the extremely verbose messages.
88 //#define VERY_VERY_VERBOSE_LOGGING
89 #ifdef VERY_VERY_VERBOSE_LOGGING
90 #define ALOGVV ALOGV
91 #else
92 #define ALOGVV(a...) do { } while(0)
93 #endif
94
95 // TODO: Move these macro/inlines to a header file.
96 #define max(a, b) ((a) > (b) ? (a) : (b))
97 template <typename T>
min(const T & a,const T & b)98 static inline T min(const T& a, const T& b)
99 {
100 return a < b ? a : b;
101 }
102
103 namespace android {
104
105 // retry counts for buffer fill timeout
106 // 50 * ~20msecs = 1 second
107 static const int8_t kMaxTrackRetries = 50;
108 static const int8_t kMaxTrackStartupRetries = 50;
109 // allow less retry attempts on direct output thread.
110 // direct outputs can be a scarce resource in audio hardware and should
111 // be released as quickly as possible.
112 static const int8_t kMaxTrackRetriesDirect = 2;
113
114
115
116 // don't warn about blocked writes or record buffer overflows more often than this
117 static const nsecs_t kWarningThrottleNs = seconds(5);
118
119 // RecordThread loop sleep time upon application overrun or audio HAL read error
120 static const int kRecordThreadSleepUs = 5000;
121
122 // maximum time to wait in sendConfigEvent_l() for a status to be received
123 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
124
125 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
126 static const uint32_t kMinThreadSleepTimeUs = 5000;
127 // maximum divider applied to the active sleep time in the mixer thread loop
128 static const uint32_t kMaxThreadSleepTimeShift = 2;
129
130 // minimum normal sink buffer size, expressed in milliseconds rather than frames
131 // FIXME This should be based on experimentally observed scheduling jitter
132 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
133 // maximum normal sink buffer size
134 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
135
136 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
137 // FIXME This should be based on experimentally observed scheduling jitter
138 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
139
140 // Offloaded output thread standby delay: allows track transition without going to standby
141 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
142
143 // Direct output thread minimum sleep time in idle or active(underrun) state
144 static const nsecs_t kDirectMinSleepTimeUs = 10000;
145
146 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
147 // balance between power consumption and latency, and allows threads to be scheduled reliably
148 // by the CFS scheduler.
149 // FIXME Express other hardcoded references to 20ms with references to this constant and move
150 // it appropriately.
151 #define FMS_20 20
152
153 // Whether to use fast mixer
154 static const enum {
155 FastMixer_Never, // never initialize or use: for debugging only
156 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
157 // normal mixer multiplier is 1
158 FastMixer_Static, // initialize if needed, then use all the time if initialized,
159 // multiplier is calculated based on min & max normal mixer buffer size
160 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
161 // multiplier is calculated based on min & max normal mixer buffer size
162 // FIXME for FastMixer_Dynamic:
163 // Supporting this option will require fixing HALs that can't handle large writes.
164 // For example, one HAL implementation returns an error from a large write,
165 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
166 // We could either fix the HAL implementations, or provide a wrapper that breaks
167 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
168 } kUseFastMixer = FastMixer_Static;
169
170 // Whether to use fast capture
171 static const enum {
172 FastCapture_Never, // never initialize or use: for debugging only
173 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
174 FastCapture_Static, // initialize if needed, then use all the time if initialized
175 } kUseFastCapture = FastCapture_Static;
176
177 // Priorities for requestPriority
178 static const int kPriorityAudioApp = 2;
179 static const int kPriorityFastMixer = 3;
180 static const int kPriorityFastCapture = 3;
181
182 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
183 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
184 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
185
186 // This is the default value, if not specified by property.
187 static const int kFastTrackMultiplier = 2;
188
189 // The minimum and maximum allowed values
190 static const int kFastTrackMultiplierMin = 1;
191 static const int kFastTrackMultiplierMax = 2;
192
193 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
194 static int sFastTrackMultiplier = kFastTrackMultiplier;
195
196 // See Thread::readOnlyHeap().
197 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
198 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
199 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
200 static const size_t kRecordThreadReadOnlyHeapSize = 0x4000;
201
202 // ----------------------------------------------------------------------------
203
204 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
205
sFastTrackMultiplierInit()206 static void sFastTrackMultiplierInit()
207 {
208 char value[PROPERTY_VALUE_MAX];
209 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
210 char *endptr;
211 unsigned long ul = strtoul(value, &endptr, 0);
212 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
213 sFastTrackMultiplier = (int) ul;
214 }
215 }
216 }
217
218 // ----------------------------------------------------------------------------
219
220 #ifdef ADD_BATTERY_DATA
221 // To collect the amplifier usage
addBatteryData(uint32_t params)222 static void addBatteryData(uint32_t params) {
223 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
224 if (service == NULL) {
225 // it already logged
226 return;
227 }
228
229 service->addBatteryData(params);
230 }
231 #endif
232
233 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
234 struct {
235 // call when you acquire a partial wakelock
acquireandroid::__anonf44034cb0308236 void acquire(const sp<IBinder> &wakeLockToken) {
237 pthread_mutex_lock(&mLock);
238 if (wakeLockToken.get() == nullptr) {
239 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
240 } else {
241 if (mCount == 0) {
242 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
243 }
244 ++mCount;
245 }
246 pthread_mutex_unlock(&mLock);
247 }
248
249 // call when you release a partial wakelock.
releaseandroid::__anonf44034cb0308250 void release(const sp<IBinder> &wakeLockToken) {
251 if (wakeLockToken.get() == nullptr) {
252 return;
253 }
254 pthread_mutex_lock(&mLock);
255 if (--mCount < 0) {
256 ALOGE("negative wakelock count");
257 mCount = 0;
258 }
259 pthread_mutex_unlock(&mLock);
260 }
261
262 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anonf44034cb0308263 int64_t getBoottimeOffset() {
264 pthread_mutex_lock(&mLock);
265 int64_t boottimeOffset = mBoottimeOffset;
266 pthread_mutex_unlock(&mLock);
267 return boottimeOffset;
268 }
269
270 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
271 // and the selected timebase.
272 // Currently only TIMEBASE_BOOTTIME is allowed.
273 //
274 // This only needs to be called upon acquiring the first partial wakelock
275 // after all other partial wakelocks are released.
276 //
277 // We do an empirical measurement of the offset rather than parsing
278 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anonf44034cb0308279 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
280 int clockbase;
281 switch (timebase) {
282 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
283 clockbase = SYSTEM_TIME_BOOTTIME;
284 break;
285 default:
286 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
287 break;
288 }
289 // try three times to get the clock offset, choose the one
290 // with the minimum gap in measurements.
291 const int tries = 3;
292 nsecs_t bestGap, measured;
293 for (int i = 0; i < tries; ++i) {
294 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
295 const nsecs_t tbase = systemTime(clockbase);
296 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
297 const nsecs_t gap = tmono2 - tmono;
298 if (i == 0 || gap < bestGap) {
299 bestGap = gap;
300 measured = tbase - ((tmono + tmono2) >> 1);
301 }
302 }
303
304 // to avoid micro-adjusting, we don't change the timebase
305 // unless it is significantly different.
306 //
307 // Assumption: It probably takes more than toleranceNs to
308 // suspend and resume the device.
309 static int64_t toleranceNs = 10000; // 10 us
310 if (llabs(*offset - measured) > toleranceNs) {
311 ALOGV("Adjusting timebase offset old: %lld new: %lld",
312 (long long)*offset, (long long)measured);
313 *offset = measured;
314 }
315 }
316
317 pthread_mutex_t mLock;
318 int32_t mCount;
319 int64_t mBoottimeOffset;
320 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
321
322 // ----------------------------------------------------------------------------
323 // CPU Stats
324 // ----------------------------------------------------------------------------
325
326 class CpuStats {
327 public:
328 CpuStats();
329 void sample(const String8 &title);
330 #ifdef DEBUG_CPU_USAGE
331 private:
332 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
333 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
334
335 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
336
337 int mCpuNum; // thread's current CPU number
338 int mCpukHz; // frequency of thread's current CPU in kHz
339 #endif
340 };
341
CpuStats()342 CpuStats::CpuStats()
343 #ifdef DEBUG_CPU_USAGE
344 : mCpuNum(-1), mCpukHz(-1)
345 #endif
346 {
347 }
348
sample(const String8 & title __unused)349 void CpuStats::sample(const String8 &title
350 #ifndef DEBUG_CPU_USAGE
351 __unused
352 #endif
353 ) {
354 #ifdef DEBUG_CPU_USAGE
355 // get current thread's delta CPU time in wall clock ns
356 double wcNs;
357 bool valid = mCpuUsage.sampleAndEnable(wcNs);
358
359 // record sample for wall clock statistics
360 if (valid) {
361 mWcStats.sample(wcNs);
362 }
363
364 // get the current CPU number
365 int cpuNum = sched_getcpu();
366
367 // get the current CPU frequency in kHz
368 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
369
370 // check if either CPU number or frequency changed
371 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
372 mCpuNum = cpuNum;
373 mCpukHz = cpukHz;
374 // ignore sample for purposes of cycles
375 valid = false;
376 }
377
378 // if no change in CPU number or frequency, then record sample for cycle statistics
379 if (valid && mCpukHz > 0) {
380 double cycles = wcNs * cpukHz * 0.000001;
381 mHzStats.sample(cycles);
382 }
383
384 unsigned n = mWcStats.n();
385 // mCpuUsage.elapsed() is expensive, so don't call it every loop
386 if ((n & 127) == 1) {
387 long long elapsed = mCpuUsage.elapsed();
388 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
389 double perLoop = elapsed / (double) n;
390 double perLoop100 = perLoop * 0.01;
391 double perLoop1k = perLoop * 0.001;
392 double mean = mWcStats.mean();
393 double stddev = mWcStats.stddev();
394 double minimum = mWcStats.minimum();
395 double maximum = mWcStats.maximum();
396 double meanCycles = mHzStats.mean();
397 double stddevCycles = mHzStats.stddev();
398 double minCycles = mHzStats.minimum();
399 double maxCycles = mHzStats.maximum();
400 mCpuUsage.resetElapsed();
401 mWcStats.reset();
402 mHzStats.reset();
403 ALOGD("CPU usage for %s over past %.1f secs\n"
404 " (%u mixer loops at %.1f mean ms per loop):\n"
405 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
406 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
407 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
408 title.string(),
409 elapsed * .000000001, n, perLoop * .000001,
410 mean * .001,
411 stddev * .001,
412 minimum * .001,
413 maximum * .001,
414 mean / perLoop100,
415 stddev / perLoop100,
416 minimum / perLoop100,
417 maximum / perLoop100,
418 meanCycles / perLoop1k,
419 stddevCycles / perLoop1k,
420 minCycles / perLoop1k,
421 maxCycles / perLoop1k);
422
423 }
424 }
425 #endif
426 };
427
428 // ----------------------------------------------------------------------------
429 // ThreadBase
430 // ----------------------------------------------------------------------------
431
432 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)433 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
434 {
435 switch (type) {
436 case MIXER:
437 return "MIXER";
438 case DIRECT:
439 return "DIRECT";
440 case DUPLICATING:
441 return "DUPLICATING";
442 case RECORD:
443 return "RECORD";
444 case OFFLOAD:
445 return "OFFLOAD";
446 case MMAP:
447 return "MMAP";
448 default:
449 return "unknown";
450 }
451 }
452
devicesToString(audio_devices_t devices)453 std::string devicesToString(audio_devices_t devices)
454 {
455 std::string result;
456 if (devices & AUDIO_DEVICE_BIT_IN) {
457 InputDeviceConverter::maskToString(devices, result);
458 } else {
459 OutputDeviceConverter::maskToString(devices, result);
460 }
461 return result;
462 }
463
inputFlagsToString(audio_input_flags_t flags)464 std::string inputFlagsToString(audio_input_flags_t flags)
465 {
466 std::string result;
467 InputFlagConverter::maskToString(flags, result);
468 return result;
469 }
470
outputFlagsToString(audio_output_flags_t flags)471 std::string outputFlagsToString(audio_output_flags_t flags)
472 {
473 std::string result;
474 OutputFlagConverter::maskToString(flags, result);
475 return result;
476 }
477
sourceToString(audio_source_t source)478 const char *sourceToString(audio_source_t source)
479 {
480 switch (source) {
481 case AUDIO_SOURCE_DEFAULT: return "default";
482 case AUDIO_SOURCE_MIC: return "mic";
483 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink";
484 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink";
485 case AUDIO_SOURCE_VOICE_CALL: return "voice call";
486 case AUDIO_SOURCE_CAMCORDER: return "camcorder";
487 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition";
488 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication";
489 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix";
490 case AUDIO_SOURCE_UNPROCESSED: return "unprocessed";
491 case AUDIO_SOURCE_FM_TUNER: return "FM tuner";
492 case AUDIO_SOURCE_HOTWORD: return "hotword";
493 default: return "unknown";
494 }
495 }
496
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)497 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
498 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
499 : Thread(false /*canCallJava*/),
500 mType(type),
501 mAudioFlinger(audioFlinger),
502 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
503 // are set by PlaybackThread::readOutputParameters_l() or
504 // RecordThread::readInputParameters_l()
505 //FIXME: mStandby should be true here. Is this some kind of hack?
506 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
507 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
508 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
509 // mName will be set by concrete (non-virtual) subclass
510 mDeathRecipient(new PMDeathRecipient(this)),
511 mSystemReady(systemReady),
512 mSignalPending(false)
513 {
514 memset(&mPatch, 0, sizeof(struct audio_patch));
515 }
516
~ThreadBase()517 AudioFlinger::ThreadBase::~ThreadBase()
518 {
519 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
520 mConfigEvents.clear();
521
522 // do not lock the mutex in destructor
523 releaseWakeLock_l();
524 if (mPowerManager != 0) {
525 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
526 binder->unlinkToDeath(mDeathRecipient);
527 }
528 }
529
readyToRun()530 status_t AudioFlinger::ThreadBase::readyToRun()
531 {
532 status_t status = initCheck();
533 if (status == NO_ERROR) {
534 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
535 } else {
536 ALOGE("No working audio driver found.");
537 }
538 return status;
539 }
540
exit()541 void AudioFlinger::ThreadBase::exit()
542 {
543 ALOGV("ThreadBase::exit");
544 // do any cleanup required for exit to succeed
545 preExit();
546 {
547 // This lock prevents the following race in thread (uniprocessor for illustration):
548 // if (!exitPending()) {
549 // // context switch from here to exit()
550 // // exit() calls requestExit(), what exitPending() observes
551 // // exit() calls signal(), which is dropped since no waiters
552 // // context switch back from exit() to here
553 // mWaitWorkCV.wait(...);
554 // // now thread is hung
555 // }
556 AutoMutex lock(mLock);
557 requestExit();
558 mWaitWorkCV.broadcast();
559 }
560 // When Thread::requestExitAndWait is made virtual and this method is renamed to
561 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
562 requestExitAndWait();
563 }
564
setParameters(const String8 & keyValuePairs)565 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
566 {
567 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
568 Mutex::Autolock _l(mLock);
569
570 return sendSetParameterConfigEvent_l(keyValuePairs);
571 }
572
573 // sendConfigEvent_l() must be called with ThreadBase::mLock held
574 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)575 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
576 {
577 status_t status = NO_ERROR;
578
579 if (event->mRequiresSystemReady && !mSystemReady) {
580 event->mWaitStatus = false;
581 mPendingConfigEvents.add(event);
582 return status;
583 }
584 mConfigEvents.add(event);
585 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
586 mWaitWorkCV.signal();
587 mLock.unlock();
588 {
589 Mutex::Autolock _l(event->mLock);
590 while (event->mWaitStatus) {
591 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
592 event->mStatus = TIMED_OUT;
593 event->mWaitStatus = false;
594 }
595 }
596 status = event->mStatus;
597 }
598 mLock.lock();
599 return status;
600 }
601
sendIoConfigEvent(audio_io_config_event event,pid_t pid)602 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
603 {
604 Mutex::Autolock _l(mLock);
605 sendIoConfigEvent_l(event, pid);
606 }
607
608 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid)609 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
610 {
611 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
612 sendConfigEvent_l(configEvent);
613 }
614
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)615 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
616 {
617 Mutex::Autolock _l(mLock);
618 sendPrioConfigEvent_l(pid, tid, prio, forApp);
619 }
620
621 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)622 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
623 pid_t pid, pid_t tid, int32_t prio, bool forApp)
624 {
625 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
626 sendConfigEvent_l(configEvent);
627 }
628
629 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)630 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
631 {
632 sp<ConfigEvent> configEvent;
633 AudioParameter param(keyValuePair);
634 int value;
635 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
636 setMasterMono_l(value != 0);
637 if (param.size() == 1) {
638 return NO_ERROR; // should be a solo parameter - we don't pass down
639 }
640 param.remove(String8(AudioParameter::keyMonoOutput));
641 configEvent = new SetParameterConfigEvent(param.toString());
642 } else {
643 configEvent = new SetParameterConfigEvent(keyValuePair);
644 }
645 return sendConfigEvent_l(configEvent);
646 }
647
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)648 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
649 const struct audio_patch *patch,
650 audio_patch_handle_t *handle)
651 {
652 Mutex::Autolock _l(mLock);
653 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
654 status_t status = sendConfigEvent_l(configEvent);
655 if (status == NO_ERROR) {
656 CreateAudioPatchConfigEventData *data =
657 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
658 *handle = data->mHandle;
659 }
660 return status;
661 }
662
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)663 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
664 const audio_patch_handle_t handle)
665 {
666 Mutex::Autolock _l(mLock);
667 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
668 return sendConfigEvent_l(configEvent);
669 }
670
671
672 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()673 void AudioFlinger::ThreadBase::processConfigEvents_l()
674 {
675 bool configChanged = false;
676
677 while (!mConfigEvents.isEmpty()) {
678 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
679 sp<ConfigEvent> event = mConfigEvents[0];
680 mConfigEvents.removeAt(0);
681 switch (event->mType) {
682 case CFG_EVENT_PRIO: {
683 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
684 // FIXME Need to understand why this has to be done asynchronously
685 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
686 true /*asynchronous*/);
687 if (err != 0) {
688 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
689 data->mPrio, data->mPid, data->mTid, err);
690 }
691 } break;
692 case CFG_EVENT_IO: {
693 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
694 ioConfigChanged(data->mEvent, data->mPid);
695 } break;
696 case CFG_EVENT_SET_PARAMETER: {
697 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
698 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
699 configChanged = true;
700 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
701 data->mKeyValuePairs.string());
702 }
703 } break;
704 case CFG_EVENT_CREATE_AUDIO_PATCH: {
705 const audio_devices_t oldDevice = getDevice();
706 CreateAudioPatchConfigEventData *data =
707 (CreateAudioPatchConfigEventData *)event->mData.get();
708 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
709 const audio_devices_t newDevice = getDevice();
710 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
711 (unsigned)oldDevice, devicesToString(oldDevice).c_str(),
712 (unsigned)newDevice, devicesToString(newDevice).c_str());
713 } break;
714 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
715 const audio_devices_t oldDevice = getDevice();
716 ReleaseAudioPatchConfigEventData *data =
717 (ReleaseAudioPatchConfigEventData *)event->mData.get();
718 event->mStatus = releaseAudioPatch_l(data->mHandle);
719 const audio_devices_t newDevice = getDevice();
720 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
721 (unsigned)oldDevice, devicesToString(oldDevice).c_str(),
722 (unsigned)newDevice, devicesToString(newDevice).c_str());
723 } break;
724 default:
725 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
726 break;
727 }
728 {
729 Mutex::Autolock _l(event->mLock);
730 if (event->mWaitStatus) {
731 event->mWaitStatus = false;
732 event->mCond.signal();
733 }
734 }
735 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
736 }
737
738 if (configChanged) {
739 cacheParameters_l();
740 }
741 }
742
channelMaskToString(audio_channel_mask_t mask,bool output)743 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
744 String8 s;
745 const audio_channel_representation_t representation =
746 audio_channel_mask_get_representation(mask);
747
748 switch (representation) {
749 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
750 if (output) {
751 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
752 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
753 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
754 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
755 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
756 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
757 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
758 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
759 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
760 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
761 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
762 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
763 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
764 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
765 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
766 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
767 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
768 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
769 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
770 } else {
771 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
772 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
773 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
774 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
775 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
776 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
777 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
778 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
779 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
780 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
781 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
782 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
783 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
784 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
785 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
786 }
787 const int len = s.length();
788 if (len > 2) {
789 (void) s.lockBuffer(len); // needed?
790 s.unlockBuffer(len - 2); // remove trailing ", "
791 }
792 return s;
793 }
794 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
795 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
796 return s;
797 default:
798 s.appendFormat("unknown mask, representation:%d bits:%#x",
799 representation, audio_channel_mask_get_bits(mask));
800 return s;
801 }
802 }
803
dumpBase(int fd,const Vector<String16> & args __unused)804 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
805 {
806 const size_t SIZE = 256;
807 char buffer[SIZE];
808 String8 result;
809
810 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
811 this, mThreadName, getTid(), type(), threadTypeToString(type()));
812
813 bool locked = AudioFlinger::dumpTryLock(mLock);
814 if (!locked) {
815 dprintf(fd, " Thread may be deadlocked\n");
816 }
817
818 dprintf(fd, " I/O handle: %d\n", mId);
819 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
820 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
821 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
822 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
823 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
824 dprintf(fd, " Channel count: %u\n", mChannelCount);
825 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
826 channelMaskToString(mChannelMask, mType != RECORD).string());
827 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
828 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
829 dprintf(fd, " Pending config events:");
830 size_t numConfig = mConfigEvents.size();
831 if (numConfig) {
832 for (size_t i = 0; i < numConfig; i++) {
833 mConfigEvents[i]->dump(buffer, SIZE);
834 dprintf(fd, "\n %s", buffer);
835 }
836 dprintf(fd, "\n");
837 } else {
838 dprintf(fd, " none\n");
839 }
840 // Note: output device may be used by capture threads for effects such as AEC.
841 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).c_str());
842 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).c_str());
843 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
844
845 if (locked) {
846 mLock.unlock();
847 }
848 }
849
dumpEffectChains(int fd,const Vector<String16> & args)850 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
851 {
852 const size_t SIZE = 256;
853 char buffer[SIZE];
854 String8 result;
855
856 size_t numEffectChains = mEffectChains.size();
857 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
858 write(fd, buffer, strlen(buffer));
859
860 for (size_t i = 0; i < numEffectChains; ++i) {
861 sp<EffectChain> chain = mEffectChains[i];
862 if (chain != 0) {
863 chain->dump(fd, args);
864 }
865 }
866 }
867
acquireWakeLock()868 void AudioFlinger::ThreadBase::acquireWakeLock()
869 {
870 Mutex::Autolock _l(mLock);
871 acquireWakeLock_l();
872 }
873
getWakeLockTag()874 String16 AudioFlinger::ThreadBase::getWakeLockTag()
875 {
876 switch (mType) {
877 case MIXER:
878 return String16("AudioMix");
879 case DIRECT:
880 return String16("AudioDirectOut");
881 case DUPLICATING:
882 return String16("AudioDup");
883 case RECORD:
884 return String16("AudioIn");
885 case OFFLOAD:
886 return String16("AudioOffload");
887 case MMAP:
888 return String16("Mmap");
889 default:
890 ALOG_ASSERT(false);
891 return String16("AudioUnknown");
892 }
893 }
894
acquireWakeLock_l()895 void AudioFlinger::ThreadBase::acquireWakeLock_l()
896 {
897 getPowerManager_l();
898 if (mPowerManager != 0) {
899 sp<IBinder> binder = new BBinder();
900 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
901 status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
902 binder,
903 getWakeLockTag(),
904 String16("audioserver"),
905 true /* FIXME force oneway contrary to .aidl */);
906 if (status == NO_ERROR) {
907 mWakeLockToken = binder;
908 }
909 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
910 }
911
912 gBoottime.acquire(mWakeLockToken);
913 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
914 gBoottime.getBoottimeOffset();
915 }
916
releaseWakeLock()917 void AudioFlinger::ThreadBase::releaseWakeLock()
918 {
919 Mutex::Autolock _l(mLock);
920 releaseWakeLock_l();
921 }
922
releaseWakeLock_l()923 void AudioFlinger::ThreadBase::releaseWakeLock_l()
924 {
925 gBoottime.release(mWakeLockToken);
926 if (mWakeLockToken != 0) {
927 ALOGV("releaseWakeLock_l() %s", mThreadName);
928 if (mPowerManager != 0) {
929 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
930 true /* FIXME force oneway contrary to .aidl */);
931 }
932 mWakeLockToken.clear();
933 }
934 }
935
getPowerManager_l()936 void AudioFlinger::ThreadBase::getPowerManager_l() {
937 if (mSystemReady && mPowerManager == 0) {
938 // use checkService() to avoid blocking if power service is not up yet
939 sp<IBinder> binder =
940 defaultServiceManager()->checkService(String16("power"));
941 if (binder == 0) {
942 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
943 } else {
944 mPowerManager = interface_cast<IPowerManager>(binder);
945 binder->linkToDeath(mDeathRecipient);
946 }
947 }
948 }
949
updateWakeLockUids_l(const SortedVector<uid_t> & uids)950 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
951 getPowerManager_l();
952
953 #if !LOG_NDEBUG
954 std::stringstream s;
955 for (uid_t uid : uids) {
956 s << uid << " ";
957 }
958 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
959 #endif
960
961 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
962 if (mSystemReady) {
963 ALOGE("no wake lock to update, but system ready!");
964 } else {
965 ALOGW("no wake lock to update, system not ready yet");
966 }
967 return;
968 }
969 if (mPowerManager != 0) {
970 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
971 status_t status = mPowerManager->updateWakeLockUids(
972 mWakeLockToken, uidsAsInt.size(), uidsAsInt.data(),
973 true /* FIXME force oneway contrary to .aidl */);
974 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
975 }
976 }
977
clearPowerManager()978 void AudioFlinger::ThreadBase::clearPowerManager()
979 {
980 Mutex::Autolock _l(mLock);
981 releaseWakeLock_l();
982 mPowerManager.clear();
983 }
984
binderDied(const wp<IBinder> & who __unused)985 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
986 {
987 sp<ThreadBase> thread = mThread.promote();
988 if (thread != 0) {
989 thread->clearPowerManager();
990 }
991 ALOGW("power manager service died !!!");
992 }
993
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)994 void AudioFlinger::ThreadBase::setEffectSuspended_l(
995 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
996 {
997 sp<EffectChain> chain = getEffectChain_l(sessionId);
998 if (chain != 0) {
999 if (type != NULL) {
1000 chain->setEffectSuspended_l(type, suspend);
1001 } else {
1002 chain->setEffectSuspendedAll_l(suspend);
1003 }
1004 }
1005
1006 updateSuspendedSessions_l(type, suspend, sessionId);
1007 }
1008
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1009 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1010 {
1011 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1012 if (index < 0) {
1013 return;
1014 }
1015
1016 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1017 mSuspendedSessions.valueAt(index);
1018
1019 for (size_t i = 0; i < sessionEffects.size(); i++) {
1020 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1021 for (int j = 0; j < desc->mRefCount; j++) {
1022 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1023 chain->setEffectSuspendedAll_l(true);
1024 } else {
1025 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1026 desc->mType.timeLow);
1027 chain->setEffectSuspended_l(&desc->mType, true);
1028 }
1029 }
1030 }
1031 }
1032
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1033 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1034 bool suspend,
1035 audio_session_t sessionId)
1036 {
1037 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1038
1039 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1040
1041 if (suspend) {
1042 if (index >= 0) {
1043 sessionEffects = mSuspendedSessions.valueAt(index);
1044 } else {
1045 mSuspendedSessions.add(sessionId, sessionEffects);
1046 }
1047 } else {
1048 if (index < 0) {
1049 return;
1050 }
1051 sessionEffects = mSuspendedSessions.valueAt(index);
1052 }
1053
1054
1055 int key = EffectChain::kKeyForSuspendAll;
1056 if (type != NULL) {
1057 key = type->timeLow;
1058 }
1059 index = sessionEffects.indexOfKey(key);
1060
1061 sp<SuspendedSessionDesc> desc;
1062 if (suspend) {
1063 if (index >= 0) {
1064 desc = sessionEffects.valueAt(index);
1065 } else {
1066 desc = new SuspendedSessionDesc();
1067 if (type != NULL) {
1068 desc->mType = *type;
1069 }
1070 sessionEffects.add(key, desc);
1071 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1072 }
1073 desc->mRefCount++;
1074 } else {
1075 if (index < 0) {
1076 return;
1077 }
1078 desc = sessionEffects.valueAt(index);
1079 if (--desc->mRefCount == 0) {
1080 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1081 sessionEffects.removeItemsAt(index);
1082 if (sessionEffects.isEmpty()) {
1083 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1084 sessionId);
1085 mSuspendedSessions.removeItem(sessionId);
1086 }
1087 }
1088 }
1089 if (!sessionEffects.isEmpty()) {
1090 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1091 }
1092 }
1093
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1094 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1095 bool enabled,
1096 audio_session_t sessionId)
1097 {
1098 Mutex::Autolock _l(mLock);
1099 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1100 }
1101
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1102 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1103 bool enabled,
1104 audio_session_t sessionId)
1105 {
1106 if (mType != RECORD) {
1107 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1108 // another session. This gives the priority to well behaved effect control panels
1109 // and applications not using global effects.
1110 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1111 // global effects
1112 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1113 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1114 }
1115 }
1116
1117 sp<EffectChain> chain = getEffectChain_l(sessionId);
1118 if (chain != 0) {
1119 chain->checkSuspendOnEffectEnabled(effect, enabled);
1120 }
1121 }
1122
1123 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1124 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1125 const effect_descriptor_t *desc, audio_session_t sessionId)
1126 {
1127 // No global effect sessions on record threads
1128 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1129 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1130 desc->name, mThreadName);
1131 return BAD_VALUE;
1132 }
1133 // only pre processing effects on record thread
1134 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1135 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1136 desc->name, mThreadName);
1137 return BAD_VALUE;
1138 }
1139
1140 // always allow effects without processing load or latency
1141 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1142 return NO_ERROR;
1143 }
1144
1145 audio_input_flags_t flags = mInput->flags;
1146 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1147 if (flags & AUDIO_INPUT_FLAG_RAW) {
1148 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1149 desc->name, mThreadName);
1150 return BAD_VALUE;
1151 }
1152 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1153 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1154 desc->name, mThreadName);
1155 return BAD_VALUE;
1156 }
1157 }
1158 return NO_ERROR;
1159 }
1160
1161 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1162 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1163 const effect_descriptor_t *desc, audio_session_t sessionId)
1164 {
1165 // no preprocessing on playback threads
1166 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1167 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1168 " thread %s", desc->name, mThreadName);
1169 return BAD_VALUE;
1170 }
1171
1172 // always allow effects without processing load or latency
1173 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1174 return NO_ERROR;
1175 }
1176
1177 switch (mType) {
1178 case MIXER: {
1179 // Reject any effect on mixer multichannel sinks.
1180 // TODO: fix both format and multichannel issues with effects.
1181 if (mChannelCount != FCC_2) {
1182 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1183 " thread %s", desc->name, mChannelCount, mThreadName);
1184 return BAD_VALUE;
1185 }
1186 audio_output_flags_t flags = mOutput->flags;
1187 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1188 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1189 // global effects are applied only to non fast tracks if they are SW
1190 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1191 break;
1192 }
1193 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1194 // only post processing on output stage session
1195 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1196 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1197 " on output stage session", desc->name);
1198 return BAD_VALUE;
1199 }
1200 } else {
1201 // no restriction on effects applied on non fast tracks
1202 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1203 break;
1204 }
1205 }
1206
1207 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1208 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1209 desc->name);
1210 return BAD_VALUE;
1211 }
1212 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1213 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1214 " in fast mode", desc->name);
1215 return BAD_VALUE;
1216 }
1217 }
1218 } break;
1219 case OFFLOAD:
1220 // nothing actionable on offload threads, if the effect:
1221 // - is offloadable: the effect can be created
1222 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1223 // will take care of invalidating the tracks of the thread
1224 break;
1225 case DIRECT:
1226 // Reject any effect on Direct output threads for now, since the format of
1227 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1228 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1229 desc->name, mThreadName);
1230 return BAD_VALUE;
1231 case DUPLICATING:
1232 // Reject any effect on mixer multichannel sinks.
1233 // TODO: fix both format and multichannel issues with effects.
1234 if (mChannelCount != FCC_2) {
1235 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1236 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1237 return BAD_VALUE;
1238 }
1239 if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1240 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1241 " thread %s", desc->name, mThreadName);
1242 return BAD_VALUE;
1243 }
1244 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1245 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1246 " DUPLICATING thread %s", desc->name, mThreadName);
1247 return BAD_VALUE;
1248 }
1249 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1250 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1251 " DUPLICATING thread %s", desc->name, mThreadName);
1252 return BAD_VALUE;
1253 }
1254 break;
1255 default:
1256 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1257 }
1258
1259 return NO_ERROR;
1260 }
1261
1262 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned)1263 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1264 const sp<AudioFlinger::Client>& client,
1265 const sp<IEffectClient>& effectClient,
1266 int32_t priority,
1267 audio_session_t sessionId,
1268 effect_descriptor_t *desc,
1269 int *enabled,
1270 status_t *status,
1271 bool pinned)
1272 {
1273 sp<EffectModule> effect;
1274 sp<EffectHandle> handle;
1275 status_t lStatus;
1276 sp<EffectChain> chain;
1277 bool chainCreated = false;
1278 bool effectCreated = false;
1279 bool effectRegistered = false;
1280 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1281
1282 lStatus = initCheck();
1283 if (lStatus != NO_ERROR) {
1284 ALOGW("createEffect_l() Audio driver not initialized.");
1285 goto Exit;
1286 }
1287
1288 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1289
1290 { // scope for mLock
1291 Mutex::Autolock _l(mLock);
1292
1293 lStatus = checkEffectCompatibility_l(desc, sessionId);
1294 if (lStatus != NO_ERROR) {
1295 goto Exit;
1296 }
1297
1298 // check for existing effect chain with the requested audio session
1299 chain = getEffectChain_l(sessionId);
1300 if (chain == 0) {
1301 // create a new chain for this session
1302 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1303 chain = new EffectChain(this, sessionId);
1304 addEffectChain_l(chain);
1305 chain->setStrategy(getStrategyForSession_l(sessionId));
1306 chainCreated = true;
1307 } else {
1308 effect = chain->getEffectFromDesc_l(desc);
1309 }
1310
1311 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1312
1313 if (effect == 0) {
1314 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1315 // Check CPU and memory usage
1316 lStatus = AudioSystem::registerEffect(
1317 desc, mId, chain->strategy(), sessionId, effectId);
1318 if (lStatus != NO_ERROR) {
1319 goto Exit;
1320 }
1321 effectRegistered = true;
1322 // create a new effect module if none present in the chain
1323 lStatus = chain->createEffect_l(effect, this, desc, effectId, sessionId, pinned);
1324 if (lStatus != NO_ERROR) {
1325 goto Exit;
1326 }
1327 effectCreated = true;
1328
1329 effect->setDevice(mOutDevice);
1330 effect->setDevice(mInDevice);
1331 effect->setMode(mAudioFlinger->getMode());
1332 effect->setAudioSource(mAudioSource);
1333 }
1334 // create effect handle and connect it to effect module
1335 handle = new EffectHandle(effect, client, effectClient, priority);
1336 lStatus = handle->initCheck();
1337 if (lStatus == OK) {
1338 lStatus = effect->addHandle(handle.get());
1339 }
1340 if (enabled != NULL) {
1341 *enabled = (int)effect->isEnabled();
1342 }
1343 }
1344
1345 Exit:
1346 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1347 Mutex::Autolock _l(mLock);
1348 if (effectCreated) {
1349 chain->removeEffect_l(effect);
1350 }
1351 if (effectRegistered) {
1352 AudioSystem::unregisterEffect(effectId);
1353 }
1354 if (chainCreated) {
1355 removeEffectChain_l(chain);
1356 }
1357 handle.clear();
1358 }
1359
1360 *status = lStatus;
1361 return handle;
1362 }
1363
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1364 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1365 bool unpinIfLast)
1366 {
1367 bool remove = false;
1368 sp<EffectModule> effect;
1369 {
1370 Mutex::Autolock _l(mLock);
1371
1372 effect = handle->effect().promote();
1373 if (effect == 0) {
1374 return;
1375 }
1376 // restore suspended effects if the disconnected handle was enabled and the last one.
1377 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1378 if (remove) {
1379 removeEffect_l(effect, true);
1380 }
1381 }
1382 if (remove) {
1383 mAudioFlinger->updateOrphanEffectChains(effect);
1384 AudioSystem::unregisterEffect(effect->id());
1385 if (handle->enabled()) {
1386 checkSuspendOnEffectEnabled(effect, false, effect->sessionId());
1387 }
1388 }
1389 }
1390
getEffect(audio_session_t sessionId,int effectId)1391 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1392 int effectId)
1393 {
1394 Mutex::Autolock _l(mLock);
1395 return getEffect_l(sessionId, effectId);
1396 }
1397
getEffect_l(audio_session_t sessionId,int effectId)1398 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1399 int effectId)
1400 {
1401 sp<EffectChain> chain = getEffectChain_l(sessionId);
1402 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1403 }
1404
1405 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1406 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1407 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1408 {
1409 // check for existing effect chain with the requested audio session
1410 audio_session_t sessionId = effect->sessionId();
1411 sp<EffectChain> chain = getEffectChain_l(sessionId);
1412 bool chainCreated = false;
1413
1414 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1415 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1416 this, effect->desc().name, effect->desc().flags);
1417
1418 if (chain == 0) {
1419 // create a new chain for this session
1420 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1421 chain = new EffectChain(this, sessionId);
1422 addEffectChain_l(chain);
1423 chain->setStrategy(getStrategyForSession_l(sessionId));
1424 chainCreated = true;
1425 }
1426 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1427
1428 if (chain->getEffectFromId_l(effect->id()) != 0) {
1429 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1430 this, effect->desc().name, chain.get());
1431 return BAD_VALUE;
1432 }
1433
1434 effect->setOffloaded(mType == OFFLOAD, mId);
1435
1436 status_t status = chain->addEffect_l(effect);
1437 if (status != NO_ERROR) {
1438 if (chainCreated) {
1439 removeEffectChain_l(chain);
1440 }
1441 return status;
1442 }
1443
1444 effect->setDevice(mOutDevice);
1445 effect->setDevice(mInDevice);
1446 effect->setMode(mAudioFlinger->getMode());
1447 effect->setAudioSource(mAudioSource);
1448
1449 return NO_ERROR;
1450 }
1451
removeEffect_l(const sp<EffectModule> & effect,bool release)1452 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1453
1454 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1455 effect_descriptor_t desc = effect->desc();
1456 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1457 detachAuxEffect_l(effect->id());
1458 }
1459
1460 sp<EffectChain> chain = effect->chain().promote();
1461 if (chain != 0) {
1462 // remove effect chain if removing last effect
1463 if (chain->removeEffect_l(effect, release) == 0) {
1464 removeEffectChain_l(chain);
1465 }
1466 } else {
1467 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1468 }
1469 }
1470
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1471 void AudioFlinger::ThreadBase::lockEffectChains_l(
1472 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1473 {
1474 effectChains = mEffectChains;
1475 for (size_t i = 0; i < mEffectChains.size(); i++) {
1476 mEffectChains[i]->lock();
1477 }
1478 }
1479
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1480 void AudioFlinger::ThreadBase::unlockEffectChains(
1481 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1482 {
1483 for (size_t i = 0; i < effectChains.size(); i++) {
1484 effectChains[i]->unlock();
1485 }
1486 }
1487
getEffectChain(audio_session_t sessionId)1488 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1489 {
1490 Mutex::Autolock _l(mLock);
1491 return getEffectChain_l(sessionId);
1492 }
1493
getEffectChain_l(audio_session_t sessionId) const1494 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1495 const
1496 {
1497 size_t size = mEffectChains.size();
1498 for (size_t i = 0; i < size; i++) {
1499 if (mEffectChains[i]->sessionId() == sessionId) {
1500 return mEffectChains[i];
1501 }
1502 }
1503 return 0;
1504 }
1505
setMode(audio_mode_t mode)1506 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1507 {
1508 Mutex::Autolock _l(mLock);
1509 size_t size = mEffectChains.size();
1510 for (size_t i = 0; i < size; i++) {
1511 mEffectChains[i]->setMode_l(mode);
1512 }
1513 }
1514
getAudioPortConfig(struct audio_port_config * config)1515 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1516 {
1517 config->type = AUDIO_PORT_TYPE_MIX;
1518 config->ext.mix.handle = mId;
1519 config->sample_rate = mSampleRate;
1520 config->format = mFormat;
1521 config->channel_mask = mChannelMask;
1522 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1523 AUDIO_PORT_CONFIG_FORMAT;
1524 }
1525
systemReady()1526 void AudioFlinger::ThreadBase::systemReady()
1527 {
1528 Mutex::Autolock _l(mLock);
1529 if (mSystemReady) {
1530 return;
1531 }
1532 mSystemReady = true;
1533
1534 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1535 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1536 }
1537 mPendingConfigEvents.clear();
1538 }
1539
1540 template <typename T>
add(const sp<T> & track)1541 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1542 ssize_t index = mActiveTracks.indexOf(track);
1543 if (index >= 0) {
1544 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1545 return index;
1546 }
1547 logTrack("add", track);
1548 mActiveTracksGeneration++;
1549 mLatestActiveTrack = track;
1550 ++mBatteryCounter[track->uid()].second;
1551 return mActiveTracks.add(track);
1552 }
1553
1554 template <typename T>
remove(const sp<T> & track)1555 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1556 ssize_t index = mActiveTracks.remove(track);
1557 if (index < 0) {
1558 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1559 return index;
1560 }
1561 logTrack("remove", track);
1562 mActiveTracksGeneration++;
1563 --mBatteryCounter[track->uid()].second;
1564 // mLatestActiveTrack is not cleared even if is the same as track.
1565 return index;
1566 }
1567
1568 template <typename T>
clear()1569 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1570 for (const sp<T> &track : mActiveTracks) {
1571 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1572 logTrack("clear", track);
1573 }
1574 mLastActiveTracksGeneration = mActiveTracksGeneration;
1575 mActiveTracks.clear();
1576 mLatestActiveTrack.clear();
1577 mBatteryCounter.clear();
1578 }
1579
1580 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1581 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1582 sp<ThreadBase> thread, bool force) {
1583 // Updates ActiveTracks client uids to the thread wakelock.
1584 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1585 thread->updateWakeLockUids_l(getWakeLockUids());
1586 mLastActiveTracksGeneration = mActiveTracksGeneration;
1587 }
1588
1589 // Updates BatteryNotifier uids
1590 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1591 const uid_t uid = it->first;
1592 ssize_t &previous = it->second.first;
1593 ssize_t ¤t = it->second.second;
1594 if (current > 0) {
1595 if (previous == 0) {
1596 BatteryNotifier::getInstance().noteStartAudio(uid);
1597 }
1598 previous = current;
1599 ++it;
1600 } else if (current == 0) {
1601 if (previous > 0) {
1602 BatteryNotifier::getInstance().noteStopAudio(uid);
1603 }
1604 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1605 } else /* (current < 0) */ {
1606 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1607 }
1608 }
1609 }
1610
1611 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1612 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1613 const char *funcName, const sp<T> &track) const {
1614 if (mLocalLog != nullptr) {
1615 String8 result;
1616 track->appendDump(result, false /* active */);
1617 mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1618 }
1619 }
1620
broadcast_l()1621 void AudioFlinger::ThreadBase::broadcast_l()
1622 {
1623 // Thread could be blocked waiting for async
1624 // so signal it to handle state changes immediately
1625 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1626 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1627 mSignalPending = true;
1628 mWaitWorkCV.broadcast();
1629 }
1630
1631 // ----------------------------------------------------------------------------
1632 // Playback
1633 // ----------------------------------------------------------------------------
1634
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1635 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1636 AudioStreamOut* output,
1637 audio_io_handle_t id,
1638 audio_devices_t device,
1639 type_t type,
1640 bool systemReady)
1641 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1642 mNormalFrameCount(0), mSinkBuffer(NULL),
1643 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1644 mMixerBuffer(NULL),
1645 mMixerBufferSize(0),
1646 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1647 mMixerBufferValid(false),
1648 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1649 mEffectBuffer(NULL),
1650 mEffectBufferSize(0),
1651 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1652 mEffectBufferValid(false),
1653 mSuspended(0), mBytesWritten(0),
1654 mFramesWritten(0),
1655 mSuspendedFrames(0),
1656 mActiveTracks(&this->mLocalLog),
1657 // mStreamTypes[] initialized in constructor body
1658 mOutput(output),
1659 mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1660 mMixerStatus(MIXER_IDLE),
1661 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1662 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1663 mBytesRemaining(0),
1664 mCurrentWriteLength(0),
1665 mUseAsyncWrite(false),
1666 mWriteAckSequence(0),
1667 mDrainSequence(0),
1668 mScreenState(AudioFlinger::mScreenState),
1669 // index 0 is reserved for normal mixer's submix
1670 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1671 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1672 mLeftVolFloat(-1.0), mRightVolFloat(-1.0)
1673 {
1674 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1675 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1676
1677 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1678 // it would be safer to explicitly pass initial masterVolume/masterMute as
1679 // parameter.
1680 //
1681 // If the HAL we are using has support for master volume or master mute,
1682 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1683 // and the mute set to false).
1684 mMasterVolume = audioFlinger->masterVolume_l();
1685 mMasterMute = audioFlinger->masterMute_l();
1686 if (mOutput && mOutput->audioHwDev) {
1687 if (mOutput->audioHwDev->canSetMasterVolume()) {
1688 mMasterVolume = 1.0;
1689 }
1690
1691 if (mOutput->audioHwDev->canSetMasterMute()) {
1692 mMasterMute = false;
1693 }
1694 }
1695
1696 readOutputParameters_l();
1697
1698 // ++ operator does not compile
1699 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1700 stream = (audio_stream_type_t) (stream + 1)) {
1701 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1702 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1703 }
1704 }
1705
~PlaybackThread()1706 AudioFlinger::PlaybackThread::~PlaybackThread()
1707 {
1708 mAudioFlinger->unregisterWriter(mNBLogWriter);
1709 free(mSinkBuffer);
1710 free(mMixerBuffer);
1711 free(mEffectBuffer);
1712 }
1713
dump(int fd,const Vector<String16> & args)1714 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1715 {
1716 dumpInternals(fd, args);
1717 dumpTracks(fd, args);
1718 dumpEffectChains(fd, args);
1719 dprintf(fd, " Local log:\n");
1720 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
1721 }
1722
dumpTracks(int fd,const Vector<String16> & args __unused)1723 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1724 {
1725 String8 result;
1726
1727 result.appendFormat(" Stream volumes in dB: ");
1728 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1729 const stream_type_t *st = &mStreamTypes[i];
1730 if (i > 0) {
1731 result.appendFormat(", ");
1732 }
1733 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1734 if (st->mute) {
1735 result.append("M");
1736 }
1737 }
1738 result.append("\n");
1739 write(fd, result.string(), result.length());
1740 result.clear();
1741
1742 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1743 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1744 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1745 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1746
1747 size_t numtracks = mTracks.size();
1748 size_t numactive = mActiveTracks.size();
1749 dprintf(fd, " %zu Tracks", numtracks);
1750 size_t numactiveseen = 0;
1751 const char *prefix = " ";
1752 if (numtracks) {
1753 dprintf(fd, " of which %zu are active\n", numactive);
1754 result.append(prefix);
1755 Track::appendDumpHeader(result);
1756 for (size_t i = 0; i < numtracks; ++i) {
1757 sp<Track> track = mTracks[i];
1758 if (track != 0) {
1759 bool active = mActiveTracks.indexOf(track) >= 0;
1760 if (active) {
1761 numactiveseen++;
1762 }
1763 result.append(prefix);
1764 track->appendDump(result, active);
1765 }
1766 }
1767 } else {
1768 result.append("\n");
1769 }
1770 if (numactiveseen != numactive) {
1771 // some tracks in the active list were not in the tracks list
1772 result.append(" The following tracks are in the active list but"
1773 " not in the track list\n");
1774 result.append(prefix);
1775 Track::appendDumpHeader(result);
1776 for (size_t i = 0; i < numactive; ++i) {
1777 sp<Track> track = mActiveTracks[i];
1778 if (mTracks.indexOf(track) < 0) {
1779 result.append(prefix);
1780 track->appendDump(result, true /* active */);
1781 }
1782 }
1783 }
1784
1785 write(fd, result.string(), result.size());
1786 }
1787
dumpInternals(int fd,const Vector<String16> & args)1788 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1789 {
1790 dumpBase(fd, args);
1791
1792 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1793 dprintf(fd, " Last write occurred (msecs): %llu\n",
1794 (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1795 dprintf(fd, " Total writes: %d\n", mNumWrites);
1796 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1797 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1798 dprintf(fd, " Suspend count: %d\n", mSuspended);
1799 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1800 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1801 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1802 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1803 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1804 AudioStreamOut *output = mOutput;
1805 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1806 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
1807 output, flags, outputFlagsToString(flags).c_str());
1808 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
1809 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
1810 if (mPipeSink.get() != nullptr) {
1811 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
1812 }
1813 if (output != nullptr) {
1814 dprintf(fd, " Hal stream dump:\n");
1815 (void)output->stream->dump(fd);
1816 }
1817 }
1818
1819 // Thread virtuals
1820
onFirstRef()1821 void AudioFlinger::PlaybackThread::onFirstRef()
1822 {
1823 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1824 }
1825
1826 // ThreadBase virtuals
preExit()1827 void AudioFlinger::PlaybackThread::preExit()
1828 {
1829 ALOGV(" preExit()");
1830 // FIXME this is using hard-coded strings but in the future, this functionality will be
1831 // converted to use audio HAL extensions required to support tunneling
1832 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1833 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1834 }
1835
1836 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t tid,uid_t uid,status_t * status,audio_port_handle_t portId)1837 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1838 const sp<AudioFlinger::Client>& client,
1839 audio_stream_type_t streamType,
1840 uint32_t sampleRate,
1841 audio_format_t format,
1842 audio_channel_mask_t channelMask,
1843 size_t *pFrameCount,
1844 const sp<IMemory>& sharedBuffer,
1845 audio_session_t sessionId,
1846 audio_output_flags_t *flags,
1847 pid_t tid,
1848 uid_t uid,
1849 status_t *status,
1850 audio_port_handle_t portId)
1851 {
1852 size_t frameCount = *pFrameCount;
1853 sp<Track> track;
1854 status_t lStatus;
1855 audio_output_flags_t outputFlags = mOutput->flags;
1856
1857 // special case for FAST flag considered OK if fast mixer is present
1858 if (hasFastMixer()) {
1859 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1860 }
1861
1862 // Check if requested flags are compatible with output stream flags
1863 if ((*flags & outputFlags) != *flags) {
1864 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1865 *flags, outputFlags);
1866 *flags = (audio_output_flags_t)(*flags & outputFlags);
1867 }
1868
1869 // client expresses a preference for FAST, but we get the final say
1870 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1871 if (
1872 // PCM data
1873 audio_is_linear_pcm(format) &&
1874 // TODO: extract as a data library function that checks that a computationally
1875 // expensive downmixer is not required: isFastOutputChannelConversion()
1876 (channelMask == mChannelMask ||
1877 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1878 (channelMask == AUDIO_CHANNEL_OUT_MONO
1879 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1880 // hardware sample rate
1881 (sampleRate == mSampleRate) &&
1882 // normal mixer has an associated fast mixer
1883 hasFastMixer() &&
1884 // there are sufficient fast track slots available
1885 (mFastTrackAvailMask != 0)
1886 // FIXME test that MixerThread for this fast track has a capable output HAL
1887 // FIXME add a permission test also?
1888 ) {
1889 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1890 if (sharedBuffer == 0) {
1891 // read the fast track multiplier property the first time it is needed
1892 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1893 if (ok != 0) {
1894 ALOGE("%s pthread_once failed: %d", __func__, ok);
1895 }
1896 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1897 }
1898
1899 // check compatibility with audio effects.
1900 { // scope for mLock
1901 Mutex::Autolock _l(mLock);
1902 for (audio_session_t session : {
1903 AUDIO_SESSION_OUTPUT_STAGE,
1904 AUDIO_SESSION_OUTPUT_MIX,
1905 sessionId,
1906 }) {
1907 sp<EffectChain> chain = getEffectChain_l(session);
1908 if (chain.get() != nullptr) {
1909 audio_output_flags_t old = *flags;
1910 chain->checkOutputFlagCompatibility(flags);
1911 if (old != *flags) {
1912 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
1913 (int)session, (int)old, (int)*flags);
1914 }
1915 }
1916 }
1917 }
1918 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1919 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1920 frameCount, mFrameCount);
1921 } else {
1922 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1923 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1924 "sampleRate=%u mSampleRate=%u "
1925 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1926 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1927 audio_is_linear_pcm(format),
1928 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1929 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1930 }
1931 }
1932 // For normal PCM streaming tracks, update minimum frame count.
1933 // For compatibility with AudioTrack calculation, buffer depth is forced
1934 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1935 // This is probably too conservative, but legacy application code may depend on it.
1936 // If you change this calculation, also review the start threshold which is related.
1937 if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1938 && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1939 // this must match AudioTrack.cpp calculateMinFrameCount().
1940 // TODO: Move to a common library
1941 uint32_t latencyMs = 0;
1942 lStatus = mOutput->stream->getLatency(&latencyMs);
1943 if (lStatus != OK) {
1944 ALOGE("Error when retrieving output stream latency: %d", lStatus);
1945 goto Exit;
1946 }
1947 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1948 if (minBufCount < 2) {
1949 minBufCount = 2;
1950 }
1951 // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1952 // or the client should compute and pass in a larger buffer request.
1953 size_t minFrameCount =
1954 minBufCount * sourceFramesNeededWithTimestretch(
1955 sampleRate, mNormalFrameCount,
1956 mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1957 if (frameCount < minFrameCount) { // including frameCount == 0
1958 frameCount = minFrameCount;
1959 }
1960 }
1961 *pFrameCount = frameCount;
1962
1963 switch (mType) {
1964
1965 case DIRECT:
1966 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1967 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1968 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1969 "for output %p with format %#x",
1970 sampleRate, format, channelMask, mOutput, mFormat);
1971 lStatus = BAD_VALUE;
1972 goto Exit;
1973 }
1974 }
1975 break;
1976
1977 case OFFLOAD:
1978 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1979 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1980 "for output %p with format %#x",
1981 sampleRate, format, channelMask, mOutput, mFormat);
1982 lStatus = BAD_VALUE;
1983 goto Exit;
1984 }
1985 break;
1986
1987 default:
1988 if (!audio_is_linear_pcm(format)) {
1989 ALOGE("createTrack_l() Bad parameter: format %#x \""
1990 "for output %p with format %#x",
1991 format, mOutput, mFormat);
1992 lStatus = BAD_VALUE;
1993 goto Exit;
1994 }
1995 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1996 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1997 lStatus = BAD_VALUE;
1998 goto Exit;
1999 }
2000 break;
2001
2002 }
2003
2004 lStatus = initCheck();
2005 if (lStatus != NO_ERROR) {
2006 ALOGE("createTrack_l() audio driver not initialized");
2007 goto Exit;
2008 }
2009
2010 { // scope for mLock
2011 Mutex::Autolock _l(mLock);
2012
2013 // all tracks in same audio session must share the same routing strategy otherwise
2014 // conflicts will happen when tracks are moved from one output to another by audio policy
2015 // manager
2016 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2017 for (size_t i = 0; i < mTracks.size(); ++i) {
2018 sp<Track> t = mTracks[i];
2019 if (t != 0 && t->isExternalTrack()) {
2020 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2021 if (sessionId == t->sessionId() && strategy != actual) {
2022 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2023 strategy, actual);
2024 lStatus = BAD_VALUE;
2025 goto Exit;
2026 }
2027 }
2028 }
2029
2030 track = new Track(this, client, streamType, sampleRate, format,
2031 channelMask, frameCount,
2032 nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2033 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT, portId);
2034
2035 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2036 if (lStatus != NO_ERROR) {
2037 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2038 // track must be cleared from the caller as the caller has the AF lock
2039 goto Exit;
2040 }
2041 mTracks.add(track);
2042
2043 sp<EffectChain> chain = getEffectChain_l(sessionId);
2044 if (chain != 0) {
2045 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2046 track->setMainBuffer(chain->inBuffer());
2047 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2048 chain->incTrackCnt();
2049 }
2050
2051 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2052 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2053 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2054 // so ask activity manager to do this on our behalf
2055 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2056 }
2057 }
2058
2059 lStatus = NO_ERROR;
2060
2061 Exit:
2062 *status = lStatus;
2063 return track;
2064 }
2065
correctLatency_l(uint32_t latency) const2066 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2067 {
2068 return latency;
2069 }
2070
latency() const2071 uint32_t AudioFlinger::PlaybackThread::latency() const
2072 {
2073 Mutex::Autolock _l(mLock);
2074 return latency_l();
2075 }
latency_l() const2076 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2077 {
2078 uint32_t latency;
2079 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2080 return correctLatency_l(latency);
2081 }
2082 return 0;
2083 }
2084
setMasterVolume(float value)2085 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2086 {
2087 Mutex::Autolock _l(mLock);
2088 // Don't apply master volume in SW if our HAL can do it for us.
2089 if (mOutput && mOutput->audioHwDev &&
2090 mOutput->audioHwDev->canSetMasterVolume()) {
2091 mMasterVolume = 1.0;
2092 } else {
2093 mMasterVolume = value;
2094 }
2095 }
2096
setMasterMute(bool muted)2097 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2098 {
2099 if (isDuplicating()) {
2100 return;
2101 }
2102 Mutex::Autolock _l(mLock);
2103 // Don't apply master mute in SW if our HAL can do it for us.
2104 if (mOutput && mOutput->audioHwDev &&
2105 mOutput->audioHwDev->canSetMasterMute()) {
2106 mMasterMute = false;
2107 } else {
2108 mMasterMute = muted;
2109 }
2110 }
2111
setStreamVolume(audio_stream_type_t stream,float value)2112 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2113 {
2114 Mutex::Autolock _l(mLock);
2115 mStreamTypes[stream].volume = value;
2116 broadcast_l();
2117 }
2118
setStreamMute(audio_stream_type_t stream,bool muted)2119 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2120 {
2121 Mutex::Autolock _l(mLock);
2122 mStreamTypes[stream].mute = muted;
2123 broadcast_l();
2124 }
2125
streamVolume(audio_stream_type_t stream) const2126 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2127 {
2128 Mutex::Autolock _l(mLock);
2129 return mStreamTypes[stream].volume;
2130 }
2131
2132 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2133 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2134 {
2135 status_t status = ALREADY_EXISTS;
2136
2137 if (mActiveTracks.indexOf(track) < 0) {
2138 // the track is newly added, make sure it fills up all its
2139 // buffers before playing. This is to ensure the client will
2140 // effectively get the latency it requested.
2141 if (track->isExternalTrack()) {
2142 TrackBase::track_state state = track->mState;
2143 mLock.unlock();
2144 status = AudioSystem::startOutput(mId, track->streamType(),
2145 track->sessionId());
2146 mLock.lock();
2147 // abort track was stopped/paused while we released the lock
2148 if (state != track->mState) {
2149 if (status == NO_ERROR) {
2150 mLock.unlock();
2151 AudioSystem::stopOutput(mId, track->streamType(),
2152 track->sessionId());
2153 mLock.lock();
2154 }
2155 return INVALID_OPERATION;
2156 }
2157 // abort if start is rejected by audio policy manager
2158 if (status != NO_ERROR) {
2159 return PERMISSION_DENIED;
2160 }
2161 #ifdef ADD_BATTERY_DATA
2162 // to track the speaker usage
2163 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2164 #endif
2165 }
2166
2167 // set retry count for buffer fill
2168 if (track->isOffloaded()) {
2169 if (track->isStopping_1()) {
2170 track->mRetryCount = kMaxTrackStopRetriesOffload;
2171 } else {
2172 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2173 }
2174 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2175 } else {
2176 track->mRetryCount = kMaxTrackStartupRetries;
2177 track->mFillingUpStatus =
2178 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2179 }
2180
2181 track->mResetDone = false;
2182 track->mPresentationCompleteFrames = 0;
2183 mActiveTracks.add(track);
2184 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2185 if (chain != 0) {
2186 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2187 track->sessionId());
2188 chain->incActiveTrackCnt();
2189 }
2190
2191 status = NO_ERROR;
2192 }
2193
2194 onAddNewTrack_l();
2195 return status;
2196 }
2197
destroyTrack_l(const sp<Track> & track)2198 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2199 {
2200 track->terminate();
2201 // active tracks are removed by threadLoop()
2202 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2203 track->mState = TrackBase::STOPPED;
2204 if (!trackActive) {
2205 removeTrack_l(track);
2206 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2207 track->mState = TrackBase::STOPPING_1;
2208 }
2209
2210 return trackActive;
2211 }
2212
removeTrack_l(const sp<Track> & track)2213 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2214 {
2215 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2216
2217 String8 result;
2218 track->appendDump(result, false /* active */);
2219 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2220
2221 mTracks.remove(track);
2222 deleteTrackName_l(track->name());
2223 // redundant as track is about to be destroyed, for dumpsys only
2224 track->mName = -1;
2225 if (track->isFastTrack()) {
2226 int index = track->mFastIndex;
2227 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2228 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2229 mFastTrackAvailMask |= 1 << index;
2230 // redundant as track is about to be destroyed, for dumpsys only
2231 track->mFastIndex = -1;
2232 }
2233 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2234 if (chain != 0) {
2235 chain->decTrackCnt();
2236 }
2237 }
2238
getParameters(const String8 & keys)2239 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2240 {
2241 Mutex::Autolock _l(mLock);
2242 String8 out_s8;
2243 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2244 return out_s8;
2245 }
2246 return String8();
2247 }
2248
ioConfigChanged(audio_io_config_event event,pid_t pid)2249 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2250 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2251 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2252
2253 desc->mIoHandle = mId;
2254
2255 switch (event) {
2256 case AUDIO_OUTPUT_OPENED:
2257 case AUDIO_OUTPUT_REGISTERED:
2258 case AUDIO_OUTPUT_CONFIG_CHANGED:
2259 desc->mPatch = mPatch;
2260 desc->mChannelMask = mChannelMask;
2261 desc->mSamplingRate = mSampleRate;
2262 desc->mFormat = mFormat;
2263 desc->mFrameCount = mNormalFrameCount; // FIXME see
2264 // AudioFlinger::frameCount(audio_io_handle_t)
2265 desc->mFrameCountHAL = mFrameCount;
2266 desc->mLatency = latency_l();
2267 break;
2268
2269 case AUDIO_OUTPUT_CLOSED:
2270 default:
2271 break;
2272 }
2273 mAudioFlinger->ioConfigChanged(event, desc, pid);
2274 }
2275
onWriteReady()2276 void AudioFlinger::PlaybackThread::onWriteReady()
2277 {
2278 mCallbackThread->resetWriteBlocked();
2279 }
2280
onDrainReady()2281 void AudioFlinger::PlaybackThread::onDrainReady()
2282 {
2283 mCallbackThread->resetDraining();
2284 }
2285
onError()2286 void AudioFlinger::PlaybackThread::onError()
2287 {
2288 mCallbackThread->setAsyncError();
2289 }
2290
resetWriteBlocked(uint32_t sequence)2291 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2292 {
2293 Mutex::Autolock _l(mLock);
2294 // reject out of sequence requests
2295 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2296 mWriteAckSequence &= ~1;
2297 mWaitWorkCV.signal();
2298 }
2299 }
2300
resetDraining(uint32_t sequence)2301 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2302 {
2303 Mutex::Autolock _l(mLock);
2304 // reject out of sequence requests
2305 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2306 mDrainSequence &= ~1;
2307 mWaitWorkCV.signal();
2308 }
2309 }
2310
readOutputParameters_l()2311 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2312 {
2313 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2314 mSampleRate = mOutput->getSampleRate();
2315 mChannelMask = mOutput->getChannelMask();
2316 if (!audio_is_output_channel(mChannelMask)) {
2317 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2318 }
2319 if ((mType == MIXER || mType == DUPLICATING)
2320 && !isValidPcmSinkChannelMask(mChannelMask)) {
2321 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2322 mChannelMask);
2323 }
2324 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2325
2326 // Get actual HAL format.
2327 status_t result = mOutput->stream->getFormat(&mHALFormat);
2328 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2329 // Get format from the shim, which will be different than the HAL format
2330 // if playing compressed audio over HDMI passthrough.
2331 mFormat = mOutput->getFormat();
2332 if (!audio_is_valid_format(mFormat)) {
2333 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2334 }
2335 if ((mType == MIXER || mType == DUPLICATING)
2336 && !isValidPcmSinkFormat(mFormat)) {
2337 LOG_FATAL("HAL format %#x not supported for mixed output",
2338 mFormat);
2339 }
2340 mFrameSize = mOutput->getFrameSize();
2341 result = mOutput->stream->getBufferSize(&mBufferSize);
2342 LOG_ALWAYS_FATAL_IF(result != OK,
2343 "Error when retrieving output stream buffer size: %d", result);
2344 mFrameCount = mBufferSize / mFrameSize;
2345 if (mFrameCount & 15) {
2346 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2347 mFrameCount);
2348 }
2349
2350 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2351 if (mOutput->stream->setCallback(this) == OK) {
2352 mUseAsyncWrite = true;
2353 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2354 }
2355 }
2356
2357 mHwSupportsPause = false;
2358 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2359 bool supportsPause = false, supportsResume = false;
2360 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2361 if (supportsPause && supportsResume) {
2362 mHwSupportsPause = true;
2363 } else if (supportsPause) {
2364 ALOGW("direct output implements pause but not resume");
2365 } else if (supportsResume) {
2366 ALOGW("direct output implements resume but not pause");
2367 }
2368 }
2369 }
2370 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2371 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2372 }
2373
2374 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2375 // For best precision, we use float instead of the associated output
2376 // device format (typically PCM 16 bit).
2377
2378 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2379 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2380 mBufferSize = mFrameSize * mFrameCount;
2381
2382 // TODO: We currently use the associated output device channel mask and sample rate.
2383 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2384 // (if a valid mask) to avoid premature downmix.
2385 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2386 // instead of the output device sample rate to avoid loss of high frequency information.
2387 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2388 }
2389
2390 // Calculate size of normal sink buffer relative to the HAL output buffer size
2391 double multiplier = 1.0;
2392 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2393 kUseFastMixer == FastMixer_Dynamic)) {
2394 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2395 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2396
2397 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2398 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2399 maxNormalFrameCount = maxNormalFrameCount & ~15;
2400 if (maxNormalFrameCount < minNormalFrameCount) {
2401 maxNormalFrameCount = minNormalFrameCount;
2402 }
2403 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2404 if (multiplier <= 1.0) {
2405 multiplier = 1.0;
2406 } else if (multiplier <= 2.0) {
2407 if (2 * mFrameCount <= maxNormalFrameCount) {
2408 multiplier = 2.0;
2409 } else {
2410 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2411 }
2412 } else {
2413 multiplier = floor(multiplier);
2414 }
2415 }
2416 mNormalFrameCount = multiplier * mFrameCount;
2417 // round up to nearest 16 frames to satisfy AudioMixer
2418 if (mType == MIXER || mType == DUPLICATING) {
2419 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2420 }
2421 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2422 mNormalFrameCount);
2423
2424 // Check if we want to throttle the processing to no more than 2x normal rate
2425 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2426 mThreadThrottleTimeMs = 0;
2427 mThreadThrottleEndMs = 0;
2428 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2429
2430 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2431 // Originally this was int16_t[] array, need to remove legacy implications.
2432 free(mSinkBuffer);
2433 mSinkBuffer = NULL;
2434 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2435 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2436 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2437 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2438
2439 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2440 // drives the output.
2441 free(mMixerBuffer);
2442 mMixerBuffer = NULL;
2443 if (mMixerBufferEnabled) {
2444 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2445 mMixerBufferSize = mNormalFrameCount * mChannelCount
2446 * audio_bytes_per_sample(mMixerBufferFormat);
2447 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2448 }
2449 free(mEffectBuffer);
2450 mEffectBuffer = NULL;
2451 if (mEffectBufferEnabled) {
2452 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2453 mEffectBufferSize = mNormalFrameCount * mChannelCount
2454 * audio_bytes_per_sample(mEffectBufferFormat);
2455 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2456 }
2457
2458 // force reconfiguration of effect chains and engines to take new buffer size and audio
2459 // parameters into account
2460 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2461 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2462 // matter.
2463 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2464 Vector< sp<EffectChain> > effectChains = mEffectChains;
2465 for (size_t i = 0; i < effectChains.size(); i ++) {
2466 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2467 }
2468 }
2469
2470
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2471 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2472 {
2473 if (halFrames == NULL || dspFrames == NULL) {
2474 return BAD_VALUE;
2475 }
2476 Mutex::Autolock _l(mLock);
2477 if (initCheck() != NO_ERROR) {
2478 return INVALID_OPERATION;
2479 }
2480 int64_t framesWritten = mBytesWritten / mFrameSize;
2481 *halFrames = framesWritten;
2482
2483 if (isSuspended()) {
2484 // return an estimation of rendered frames when the output is suspended
2485 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2486 *dspFrames = (uint32_t)
2487 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2488 return NO_ERROR;
2489 } else {
2490 status_t status;
2491 uint32_t frames;
2492 status = mOutput->getRenderPosition(&frames);
2493 *dspFrames = (size_t)frames;
2494 return status;
2495 }
2496 }
2497
2498 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const2499 uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2500 {
2501 uint32_t result = 0;
2502 if (getEffectChain_l(sessionId) != 0) {
2503 result = EFFECT_SESSION;
2504 }
2505
2506 for (size_t i = 0; i < mTracks.size(); ++i) {
2507 sp<Track> track = mTracks[i];
2508 if (sessionId == track->sessionId() && !track->isInvalid()) {
2509 result |= TRACK_SESSION;
2510 if (track->isFastTrack()) {
2511 result |= FAST_SESSION;
2512 }
2513 break;
2514 }
2515 }
2516
2517 return result;
2518 }
2519
getStrategyForSession_l(audio_session_t sessionId)2520 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2521 {
2522 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2523 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2524 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2525 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2526 }
2527 for (size_t i = 0; i < mTracks.size(); i++) {
2528 sp<Track> track = mTracks[i];
2529 if (sessionId == track->sessionId() && !track->isInvalid()) {
2530 return AudioSystem::getStrategyForStream(track->streamType());
2531 }
2532 }
2533 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2534 }
2535
2536
getOutput() const2537 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2538 {
2539 Mutex::Autolock _l(mLock);
2540 return mOutput;
2541 }
2542
clearOutput()2543 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2544 {
2545 Mutex::Autolock _l(mLock);
2546 AudioStreamOut *output = mOutput;
2547 mOutput = NULL;
2548 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2549 // must push a NULL and wait for ack
2550 mOutputSink.clear();
2551 mPipeSink.clear();
2552 mNormalSink.clear();
2553 return output;
2554 }
2555
2556 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2557 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
2558 {
2559 if (mOutput == NULL) {
2560 return NULL;
2561 }
2562 return mOutput->stream;
2563 }
2564
activeSleepTimeUs() const2565 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2566 {
2567 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2568 }
2569
setSyncEvent(const sp<SyncEvent> & event)2570 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2571 {
2572 if (!isValidSyncEvent(event)) {
2573 return BAD_VALUE;
2574 }
2575
2576 Mutex::Autolock _l(mLock);
2577
2578 for (size_t i = 0; i < mTracks.size(); ++i) {
2579 sp<Track> track = mTracks[i];
2580 if (event->triggerSession() == track->sessionId()) {
2581 (void) track->setSyncEvent(event);
2582 return NO_ERROR;
2583 }
2584 }
2585
2586 return NAME_NOT_FOUND;
2587 }
2588
isValidSyncEvent(const sp<SyncEvent> & event) const2589 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2590 {
2591 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2592 }
2593
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2594 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2595 const Vector< sp<Track> >& tracksToRemove)
2596 {
2597 size_t count = tracksToRemove.size();
2598 if (count > 0) {
2599 for (size_t i = 0 ; i < count ; i++) {
2600 const sp<Track>& track = tracksToRemove.itemAt(i);
2601 if (track->isExternalTrack()) {
2602 AudioSystem::stopOutput(mId, track->streamType(),
2603 track->sessionId());
2604 #ifdef ADD_BATTERY_DATA
2605 // to track the speaker usage
2606 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2607 #endif
2608 if (track->isTerminated()) {
2609 AudioSystem::releaseOutput(mId, track->streamType(),
2610 track->sessionId());
2611 }
2612 }
2613 }
2614 }
2615 }
2616
checkSilentMode_l()2617 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2618 {
2619 if (!mMasterMute) {
2620 char value[PROPERTY_VALUE_MAX];
2621 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2622 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2623 return;
2624 }
2625 if (property_get("ro.audio.silent", value, "0") > 0) {
2626 char *endptr;
2627 unsigned long ul = strtoul(value, &endptr, 0);
2628 if (*endptr == '\0' && ul != 0) {
2629 ALOGD("Silence is golden");
2630 // The setprop command will not allow a property to be changed after
2631 // the first time it is set, so we don't have to worry about un-muting.
2632 setMasterMute_l(true);
2633 }
2634 }
2635 }
2636 }
2637
2638 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2639 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2640 {
2641 mInWrite = true;
2642 ssize_t bytesWritten;
2643 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2644
2645 // If an NBAIO sink is present, use it to write the normal mixer's submix
2646 if (mNormalSink != 0) {
2647
2648 const size_t count = mBytesRemaining / mFrameSize;
2649
2650 ATRACE_BEGIN("write");
2651 // update the setpoint when AudioFlinger::mScreenState changes
2652 uint32_t screenState = AudioFlinger::mScreenState;
2653 if (screenState != mScreenState) {
2654 mScreenState = screenState;
2655 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2656 if (pipe != NULL) {
2657 pipe->setAvgFrames((mScreenState & 1) ?
2658 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2659 }
2660 }
2661 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2662 ATRACE_END();
2663 if (framesWritten > 0) {
2664 bytesWritten = framesWritten * mFrameSize;
2665 } else {
2666 bytesWritten = framesWritten;
2667 }
2668 // otherwise use the HAL / AudioStreamOut directly
2669 } else {
2670 // Direct output and offload threads
2671
2672 if (mUseAsyncWrite) {
2673 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2674 mWriteAckSequence += 2;
2675 mWriteAckSequence |= 1;
2676 ALOG_ASSERT(mCallbackThread != 0);
2677 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2678 }
2679 // FIXME We should have an implementation of timestamps for direct output threads.
2680 // They are used e.g for multichannel PCM playback over HDMI.
2681 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2682
2683 if (mUseAsyncWrite &&
2684 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2685 // do not wait for async callback in case of error of full write
2686 mWriteAckSequence &= ~1;
2687 ALOG_ASSERT(mCallbackThread != 0);
2688 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2689 }
2690 }
2691
2692 mNumWrites++;
2693 mInWrite = false;
2694 mStandby = false;
2695 return bytesWritten;
2696 }
2697
threadLoop_drain()2698 void AudioFlinger::PlaybackThread::threadLoop_drain()
2699 {
2700 bool supportsDrain = false;
2701 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
2702 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2703 if (mUseAsyncWrite) {
2704 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2705 mDrainSequence |= 1;
2706 ALOG_ASSERT(mCallbackThread != 0);
2707 mCallbackThread->setDraining(mDrainSequence);
2708 }
2709 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
2710 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
2711 }
2712 }
2713
threadLoop_exit()2714 void AudioFlinger::PlaybackThread::threadLoop_exit()
2715 {
2716 {
2717 Mutex::Autolock _l(mLock);
2718 for (size_t i = 0; i < mTracks.size(); i++) {
2719 sp<Track> track = mTracks[i];
2720 track->invalidate();
2721 }
2722 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
2723 // After we exit there are no more track changes sent to BatteryNotifier
2724 // because that requires an active threadLoop.
2725 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
2726 mActiveTracks.clear();
2727 }
2728 }
2729
2730 /*
2731 The derived values that are cached:
2732 - mSinkBufferSize from frame count * frame size
2733 - mActiveSleepTimeUs from activeSleepTimeUs()
2734 - mIdleSleepTimeUs from idleSleepTimeUs()
2735 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2736 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2737 - maxPeriod from frame count and sample rate (MIXER only)
2738
2739 The parameters that affect these derived values are:
2740 - frame count
2741 - frame size
2742 - sample rate
2743 - device type: A2DP or not
2744 - device latency
2745 - format: PCM or not
2746 - active sleep time
2747 - idle sleep time
2748 */
2749
cacheParameters_l()2750 void AudioFlinger::PlaybackThread::cacheParameters_l()
2751 {
2752 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2753 mActiveSleepTimeUs = activeSleepTimeUs();
2754 mIdleSleepTimeUs = idleSleepTimeUs();
2755
2756 // make sure standby delay is not too short when connected to an A2DP sink to avoid
2757 // truncating audio when going to standby.
2758 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2759 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2760 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2761 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2762 }
2763 }
2764 }
2765
invalidateTracks_l(audio_stream_type_t streamType)2766 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2767 {
2768 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2769 this, streamType, mTracks.size());
2770 bool trackMatch = false;
2771 size_t size = mTracks.size();
2772 for (size_t i = 0; i < size; i++) {
2773 sp<Track> t = mTracks[i];
2774 if (t->streamType() == streamType && t->isExternalTrack()) {
2775 t->invalidate();
2776 trackMatch = true;
2777 }
2778 }
2779 return trackMatch;
2780 }
2781
invalidateTracks(audio_stream_type_t streamType)2782 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2783 {
2784 Mutex::Autolock _l(mLock);
2785 invalidateTracks_l(streamType);
2786 }
2787
addEffectChain_l(const sp<EffectChain> & chain)2788 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2789 {
2790 audio_session_t session = chain->sessionId();
2791 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
2792 status_t result = EffectBufferHalInterface::mirror(
2793 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
2794 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
2795 &halInBuffer);
2796 if (result != OK) return result;
2797 halOutBuffer = halInBuffer;
2798 int16_t *buffer = reinterpret_cast<int16_t*>(halInBuffer->externalData());
2799
2800 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2801 if (session > AUDIO_SESSION_OUTPUT_MIX) {
2802 // Only one effect chain can be present in direct output thread and it uses
2803 // the sink buffer as input
2804 if (mType != DIRECT) {
2805 size_t numSamples = mNormalFrameCount * mChannelCount;
2806 status_t result = EffectBufferHalInterface::allocate(
2807 numSamples * sizeof(int16_t),
2808 &halInBuffer);
2809 if (result != OK) return result;
2810 buffer = halInBuffer->audioBuffer()->s16;
2811 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
2812 buffer, session);
2813 }
2814
2815 // Attach all tracks with same session ID to this chain.
2816 for (size_t i = 0; i < mTracks.size(); ++i) {
2817 sp<Track> track = mTracks[i];
2818 if (session == track->sessionId()) {
2819 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2820 buffer);
2821 track->setMainBuffer(buffer);
2822 chain->incTrackCnt();
2823 }
2824 }
2825
2826 // indicate all active tracks in the chain
2827 for (const sp<Track> &track : mActiveTracks) {
2828 if (session == track->sessionId()) {
2829 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2830 chain->incActiveTrackCnt();
2831 }
2832 }
2833 }
2834 chain->setThread(this);
2835 chain->setInBuffer(halInBuffer);
2836 chain->setOutBuffer(halOutBuffer);
2837 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2838 // chains list in order to be processed last as it contains output stage effects.
2839 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2840 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2841 // after track specific effects and before output stage.
2842 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2843 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2844 // Effect chain for other sessions are inserted at beginning of effect
2845 // chains list to be processed before output mix effects. Relative order between other
2846 // sessions is not important.
2847 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2848 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2849 "audio_session_t constants misdefined");
2850 size_t size = mEffectChains.size();
2851 size_t i = 0;
2852 for (i = 0; i < size; i++) {
2853 if (mEffectChains[i]->sessionId() < session) {
2854 break;
2855 }
2856 }
2857 mEffectChains.insertAt(chain, i);
2858 checkSuspendOnAddEffectChain_l(chain);
2859
2860 return NO_ERROR;
2861 }
2862
removeEffectChain_l(const sp<EffectChain> & chain)2863 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2864 {
2865 audio_session_t session = chain->sessionId();
2866
2867 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2868
2869 for (size_t i = 0; i < mEffectChains.size(); i++) {
2870 if (chain == mEffectChains[i]) {
2871 mEffectChains.removeAt(i);
2872 // detach all active tracks from the chain
2873 for (const sp<Track> &track : mActiveTracks) {
2874 if (session == track->sessionId()) {
2875 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2876 chain.get(), session);
2877 chain->decActiveTrackCnt();
2878 }
2879 }
2880
2881 // detach all tracks with same session ID from this chain
2882 for (size_t i = 0; i < mTracks.size(); ++i) {
2883 sp<Track> track = mTracks[i];
2884 if (session == track->sessionId()) {
2885 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2886 chain->decTrackCnt();
2887 }
2888 }
2889 break;
2890 }
2891 }
2892 return mEffectChains.size();
2893 }
2894
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)2895 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2896 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2897 {
2898 Mutex::Autolock _l(mLock);
2899 return attachAuxEffect_l(track, EffectId);
2900 }
2901
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)2902 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2903 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2904 {
2905 status_t status = NO_ERROR;
2906
2907 if (EffectId == 0) {
2908 track->setAuxBuffer(0, NULL);
2909 } else {
2910 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2911 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2912 if (effect != 0) {
2913 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2914 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2915 } else {
2916 status = INVALID_OPERATION;
2917 }
2918 } else {
2919 status = BAD_VALUE;
2920 }
2921 }
2922 return status;
2923 }
2924
detachAuxEffect_l(int effectId)2925 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2926 {
2927 for (size_t i = 0; i < mTracks.size(); ++i) {
2928 sp<Track> track = mTracks[i];
2929 if (track->auxEffectId() == effectId) {
2930 attachAuxEffect_l(track, 0);
2931 }
2932 }
2933 }
2934
threadLoop()2935 bool AudioFlinger::PlaybackThread::threadLoop()
2936 {
2937 tlNBLogWriter = mNBLogWriter.get();
2938
2939 Vector< sp<Track> > tracksToRemove;
2940
2941 mStandbyTimeNs = systemTime();
2942 nsecs_t lastWriteFinished = -1; // time last server write completed
2943 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2944
2945 // MIXER
2946 nsecs_t lastWarning = 0;
2947
2948 // DUPLICATING
2949 // FIXME could this be made local to while loop?
2950 writeFrames = 0;
2951
2952 cacheParameters_l();
2953 mSleepTimeUs = mIdleSleepTimeUs;
2954
2955 if (mType == MIXER) {
2956 sleepTimeShift = 0;
2957 }
2958
2959 CpuStats cpuStats;
2960 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2961
2962 acquireWakeLock();
2963
2964 // mNBLogWriter logging APIs can only be called by a single thread, typically the
2965 // thread associated with this PlaybackThread.
2966 // If you want to share the mNBLogWriter with other threads (for example, binder threads)
2967 // then all such threads must agree to hold a common mutex before logging.
2968 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2969 // and then that string will be logged at the next convenient opportunity.
2970 // See reference to logString below.
2971 const char *logString = NULL;
2972
2973 // Estimated time for next buffer to be written to hal. This is used only on
2974 // suspended mode (for now) to help schedule the wait time until next iteration.
2975 nsecs_t timeLoopNextNs = 0;
2976
2977 checkSilentMode_l();
2978
2979 while (!exitPending())
2980 {
2981 // Log merge requests are performed during AudioFlinger binder transactions, but
2982 // that does not cover audio playback. It's requested here for that reason.
2983 mAudioFlinger->requestLogMerge();
2984
2985 cpuStats.sample(myName);
2986
2987 Vector< sp<EffectChain> > effectChains;
2988
2989 { // scope for mLock
2990
2991 Mutex::Autolock _l(mLock);
2992
2993 processConfigEvents_l();
2994
2995 // See comment at declaration of logString for why this is done under mLock
2996 if (logString != NULL) {
2997 mNBLogWriter->logTimestamp();
2998 mNBLogWriter->log(logString);
2999 logString = NULL;
3000 }
3001
3002 // Gather the framesReleased counters for all active tracks,
3003 // and associate with the sink frames written out. We need
3004 // this to convert the sink timestamp to the track timestamp.
3005 bool kernelLocationUpdate = false;
3006 if (mNormalSink != 0) {
3007 // Note: The DuplicatingThread may not have a mNormalSink.
3008 // We always fetch the timestamp here because often the downstream
3009 // sink will block while writing.
3010 ExtendedTimestamp timestamp; // use private copy to fetch
3011 (void) mNormalSink->getTimestamp(timestamp);
3012
3013 // We keep track of the last valid kernel position in case we are in underrun
3014 // and the normal mixer period is the same as the fast mixer period, or there
3015 // is some error from the HAL.
3016 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3017 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3018 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3019 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3020 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3021
3022 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3023 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3024 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3025 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3026 }
3027
3028 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3029 kernelLocationUpdate = true;
3030 } else {
3031 ALOGVV("getTimestamp error - no valid kernel position");
3032 }
3033
3034 // copy over kernel info
3035 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3036 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3037 + mSuspendedFrames; // add frames discarded when suspended
3038 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3039 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3040 }
3041 // mFramesWritten for non-offloaded tracks are contiguous
3042 // even after standby() is called. This is useful for the track frame
3043 // to sink frame mapping.
3044 bool serverLocationUpdate = false;
3045 if (mFramesWritten != lastFramesWritten) {
3046 serverLocationUpdate = true;
3047 lastFramesWritten = mFramesWritten;
3048 }
3049 // Only update timestamps if there is a meaningful change.
3050 // Either the kernel timestamp must be valid or we have written something.
3051 if (kernelLocationUpdate || serverLocationUpdate) {
3052 if (serverLocationUpdate) {
3053 // use the time before we called the HAL write - it is a bit more accurate
3054 // to when the server last read data than the current time here.
3055 //
3056 // If we haven't written anything, mLastWriteTime will be -1
3057 // and we use systemTime().
3058 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3059 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3060 ? systemTime() : mLastWriteTime;
3061 }
3062
3063 for (const sp<Track> &t : mActiveTracks) {
3064 if (!t->isFastTrack()) {
3065 t->updateTrackFrameInfo(
3066 t->mAudioTrackServerProxy->framesReleased(),
3067 mFramesWritten,
3068 mTimestamp);
3069 }
3070 }
3071 }
3072 #if 0
3073 // logFormat example
3074 if (z % 100 == 0) {
3075 timespec ts;
3076 clock_gettime(CLOCK_MONOTONIC, &ts);
3077 LOGT("This is an integer %d, this is a float %f, this is my "
3078 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
3079 LOGT("A deceptive null-terminated string %\0");
3080 }
3081 ++z;
3082 #endif
3083 saveOutputTracks();
3084 if (mSignalPending) {
3085 // A signal was raised while we were unlocked
3086 mSignalPending = false;
3087 } else if (waitingAsyncCallback_l()) {
3088 if (exitPending()) {
3089 break;
3090 }
3091 bool released = false;
3092 if (!keepWakeLock()) {
3093 releaseWakeLock_l();
3094 released = true;
3095 }
3096
3097 const int64_t waitNs = computeWaitTimeNs_l();
3098 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3099 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3100 if (status == TIMED_OUT) {
3101 mSignalPending = true; // if timeout recheck everything
3102 }
3103 ALOGV("async completion/wake");
3104 if (released) {
3105 acquireWakeLock_l();
3106 }
3107 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3108 mSleepTimeUs = 0;
3109
3110 continue;
3111 }
3112 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3113 isSuspended()) {
3114 // put audio hardware into standby after short delay
3115 if (shouldStandby_l()) {
3116
3117 threadLoop_standby();
3118
3119 mStandby = true;
3120 }
3121
3122 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3123 // we're about to wait, flush the binder command buffer
3124 IPCThreadState::self()->flushCommands();
3125
3126 clearOutputTracks();
3127
3128 if (exitPending()) {
3129 break;
3130 }
3131
3132 releaseWakeLock_l();
3133 // wait until we have something to do...
3134 ALOGV("%s going to sleep", myName.string());
3135 mWaitWorkCV.wait(mLock);
3136 ALOGV("%s waking up", myName.string());
3137 acquireWakeLock_l();
3138
3139 mMixerStatus = MIXER_IDLE;
3140 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3141 mBytesWritten = 0;
3142 mBytesRemaining = 0;
3143 checkSilentMode_l();
3144
3145 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3146 mSleepTimeUs = mIdleSleepTimeUs;
3147 if (mType == MIXER) {
3148 sleepTimeShift = 0;
3149 }
3150
3151 continue;
3152 }
3153 }
3154 // mMixerStatusIgnoringFastTracks is also updated internally
3155 mMixerStatus = prepareTracks_l(&tracksToRemove);
3156
3157 mActiveTracks.updatePowerState(this);
3158
3159 // prevent any changes in effect chain list and in each effect chain
3160 // during mixing and effect process as the audio buffers could be deleted
3161 // or modified if an effect is created or deleted
3162 lockEffectChains_l(effectChains);
3163 } // mLock scope ends
3164
3165 if (mBytesRemaining == 0) {
3166 mCurrentWriteLength = 0;
3167 if (mMixerStatus == MIXER_TRACKS_READY) {
3168 // threadLoop_mix() sets mCurrentWriteLength
3169 threadLoop_mix();
3170 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3171 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3172 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3173 // must be written to HAL
3174 threadLoop_sleepTime();
3175 if (mSleepTimeUs == 0) {
3176 mCurrentWriteLength = mSinkBufferSize;
3177 }
3178 }
3179 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3180 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3181 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3182 // or mSinkBuffer (if there are no effects).
3183 //
3184 // This is done pre-effects computation; if effects change to
3185 // support higher precision, this needs to move.
3186 //
3187 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3188 // TODO use mSleepTimeUs == 0 as an additional condition.
3189 if (mMixerBufferValid) {
3190 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3191 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3192
3193 // mono blend occurs for mixer threads only (not direct or offloaded)
3194 // and is handled here if we're going directly to the sink.
3195 if (requireMonoBlend() && !mEffectBufferValid) {
3196 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3197 true /*limit*/);
3198 }
3199
3200 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3201 mNormalFrameCount * mChannelCount);
3202 }
3203
3204 mBytesRemaining = mCurrentWriteLength;
3205 if (isSuspended()) {
3206 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3207 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3208 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3209 mBytesWritten += mBytesRemaining;
3210 mFramesWritten += framesRemaining;
3211 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3212 mBytesRemaining = 0;
3213 }
3214
3215 // only process effects if we're going to write
3216 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3217 for (size_t i = 0; i < effectChains.size(); i ++) {
3218 effectChains[i]->process_l();
3219 }
3220 }
3221 }
3222 // Process effect chains for offloaded thread even if no audio
3223 // was read from audio track: process only updates effect state
3224 // and thus does have to be synchronized with audio writes but may have
3225 // to be called while waiting for async write callback
3226 if (mType == OFFLOAD) {
3227 for (size_t i = 0; i < effectChains.size(); i ++) {
3228 effectChains[i]->process_l();
3229 }
3230 }
3231
3232 // Only if the Effects buffer is enabled and there is data in the
3233 // Effects buffer (buffer valid), we need to
3234 // copy into the sink buffer.
3235 // TODO use mSleepTimeUs == 0 as an additional condition.
3236 if (mEffectBufferValid) {
3237 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3238
3239 if (requireMonoBlend()) {
3240 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3241 true /*limit*/);
3242 }
3243
3244 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3245 mNormalFrameCount * mChannelCount);
3246 }
3247
3248 // enable changes in effect chain
3249 unlockEffectChains(effectChains);
3250
3251 if (!waitingAsyncCallback()) {
3252 // mSleepTimeUs == 0 means we must write to audio hardware
3253 if (mSleepTimeUs == 0) {
3254 ssize_t ret = 0;
3255 // We save lastWriteFinished here, as previousLastWriteFinished,
3256 // for throttling. On thread start, previousLastWriteFinished will be
3257 // set to -1, which properly results in no throttling after the first write.
3258 nsecs_t previousLastWriteFinished = lastWriteFinished;
3259 nsecs_t delta = 0;
3260 if (mBytesRemaining) {
3261 // FIXME rewrite to reduce number of system calls
3262 mLastWriteTime = systemTime(); // also used for dumpsys
3263 ret = threadLoop_write();
3264 lastWriteFinished = systemTime();
3265 delta = lastWriteFinished - mLastWriteTime;
3266 if (ret < 0) {
3267 mBytesRemaining = 0;
3268 } else {
3269 mBytesWritten += ret;
3270 mBytesRemaining -= ret;
3271 mFramesWritten += ret / mFrameSize;
3272 }
3273 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3274 (mMixerStatus == MIXER_DRAIN_ALL)) {
3275 threadLoop_drain();
3276 }
3277 if (mType == MIXER && !mStandby) {
3278 // write blocked detection
3279 if (delta > maxPeriod) {
3280 mNumDelayedWrites++;
3281 if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3282 ATRACE_NAME("underrun");
3283 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3284 (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3285 lastWarning = lastWriteFinished;
3286 }
3287 }
3288
3289 if (mThreadThrottle
3290 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3291 && ret > 0) { // we wrote something
3292 // Limit MixerThread data processing to no more than twice the
3293 // expected processing rate.
3294 //
3295 // This helps prevent underruns with NuPlayer and other applications
3296 // which may set up buffers that are close to the minimum size, or use
3297 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3298 //
3299 // The throttle smooths out sudden large data drains from the device,
3300 // e.g. when it comes out of standby, which often causes problems with
3301 // (1) mixer threads without a fast mixer (which has its own warm-up)
3302 // (2) minimum buffer sized tracks (even if the track is full,
3303 // the app won't fill fast enough to handle the sudden draw).
3304 //
3305 // Total time spent in last processing cycle equals time spent in
3306 // 1. threadLoop_write, as well as time spent in
3307 // 2. threadLoop_mix (significant for heavy mixing, especially
3308 // on low tier processors)
3309
3310 // it's OK if deltaMs is an overestimate.
3311 const int32_t deltaMs =
3312 (lastWriteFinished - previousLastWriteFinished) / 1000000;
3313 const int32_t throttleMs = mHalfBufferMs - deltaMs;
3314 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3315 usleep(throttleMs * 1000);
3316 // notify of throttle start on verbose log
3317 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3318 "mixer(%p) throttle begin:"
3319 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3320 this, ret, deltaMs, throttleMs);
3321 mThreadThrottleTimeMs += throttleMs;
3322 // Throttle must be attributed to the previous mixer loop's write time
3323 // to allow back-to-back throttling.
3324 lastWriteFinished += throttleMs * 1000000;
3325 } else {
3326 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3327 if (diff > 0) {
3328 // notify of throttle end on debug log
3329 // but prevent spamming for bluetooth
3330 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3331 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3332 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3333 }
3334 }
3335 }
3336 }
3337
3338 } else {
3339 ATRACE_BEGIN("sleep");
3340 Mutex::Autolock _l(mLock);
3341 // suspended requires accurate metering of sleep time.
3342 if (isSuspended()) {
3343 // advance by expected sleepTime
3344 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
3345 const nsecs_t nowNs = systemTime();
3346
3347 // compute expected next time vs current time.
3348 // (negative deltas are treated as delays).
3349 nsecs_t deltaNs = timeLoopNextNs - nowNs;
3350 if (deltaNs < -kMaxNextBufferDelayNs) {
3351 // Delays longer than the max allowed trigger a reset.
3352 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
3353 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
3354 timeLoopNextNs = nowNs + deltaNs;
3355 } else if (deltaNs < 0) {
3356 // Delays within the max delay allowed: zero the delta/sleepTime
3357 // to help the system catch up in the next iteration(s)
3358 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
3359 deltaNs = 0;
3360 }
3361 // update sleep time (which is >= 0)
3362 mSleepTimeUs = deltaNs / 1000;
3363 }
3364 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3365 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3366 }
3367 ATRACE_END();
3368 }
3369 }
3370
3371 // Finally let go of removed track(s), without the lock held
3372 // since we can't guarantee the destructors won't acquire that
3373 // same lock. This will also mutate and push a new fast mixer state.
3374 threadLoop_removeTracks(tracksToRemove);
3375 tracksToRemove.clear();
3376
3377 // FIXME I don't understand the need for this here;
3378 // it was in the original code but maybe the
3379 // assignment in saveOutputTracks() makes this unnecessary?
3380 clearOutputTracks();
3381
3382 // Effect chains will be actually deleted here if they were removed from
3383 // mEffectChains list during mixing or effects processing
3384 effectChains.clear();
3385
3386 // FIXME Note that the above .clear() is no longer necessary since effectChains
3387 // is now local to this block, but will keep it for now (at least until merge done).
3388 }
3389
3390 threadLoop_exit();
3391
3392 if (!mStandby) {
3393 threadLoop_standby();
3394 mStandby = true;
3395 }
3396
3397 releaseWakeLock();
3398
3399 ALOGV("Thread %p type %d exiting", this, mType);
3400 return false;
3401 }
3402
3403 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3404 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3405 {
3406 size_t count = tracksToRemove.size();
3407 if (count > 0) {
3408 for (size_t i=0 ; i<count ; i++) {
3409 const sp<Track>& track = tracksToRemove.itemAt(i);
3410 mActiveTracks.remove(track);
3411 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3412 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3413 if (chain != 0) {
3414 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3415 track->sessionId());
3416 chain->decActiveTrackCnt();
3417 }
3418 if (track->isTerminated()) {
3419 removeTrack_l(track);
3420 }
3421 }
3422 }
3423
3424 }
3425
getTimestamp_l(AudioTimestamp & timestamp)3426 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3427 {
3428 if (mNormalSink != 0) {
3429 ExtendedTimestamp ets;
3430 status_t status = mNormalSink->getTimestamp(ets);
3431 if (status == NO_ERROR) {
3432 status = ets.getBestTimestamp(×tamp);
3433 }
3434 return status;
3435 }
3436 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
3437 uint64_t position64;
3438 if (mOutput->getPresentationPosition(&position64, ×tamp.mTime) == OK) {
3439 timestamp.mPosition = (uint32_t)position64;
3440 return NO_ERROR;
3441 }
3442 }
3443 return INVALID_OPERATION;
3444 }
3445
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3446 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3447 audio_patch_handle_t *handle)
3448 {
3449 status_t status;
3450 if (property_get_bool("af.patch_park", false /* default_value */)) {
3451 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3452 // or if HAL does not properly lock against access.
3453 AutoPark<FastMixer> park(mFastMixer);
3454 status = PlaybackThread::createAudioPatch_l(patch, handle);
3455 } else {
3456 status = PlaybackThread::createAudioPatch_l(patch, handle);
3457 }
3458 return status;
3459 }
3460
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3461 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3462 audio_patch_handle_t *handle)
3463 {
3464 status_t status = NO_ERROR;
3465
3466 // store new device and send to effects
3467 audio_devices_t type = AUDIO_DEVICE_NONE;
3468 for (unsigned int i = 0; i < patch->num_sinks; i++) {
3469 type |= patch->sinks[i].ext.device.type;
3470 }
3471
3472 #ifdef ADD_BATTERY_DATA
3473 // when changing the audio output device, call addBatteryData to notify
3474 // the change
3475 if (mOutDevice != type) {
3476 uint32_t params = 0;
3477 // check whether speaker is on
3478 if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3479 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3480 }
3481
3482 audio_devices_t deviceWithoutSpeaker
3483 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3484 // check if any other device (except speaker) is on
3485 if (type & deviceWithoutSpeaker) {
3486 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3487 }
3488
3489 if (params != 0) {
3490 addBatteryData(params);
3491 }
3492 }
3493 #endif
3494
3495 for (size_t i = 0; i < mEffectChains.size(); i++) {
3496 mEffectChains[i]->setDevice_l(type);
3497 }
3498
3499 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3500 // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3501 bool configChanged = mPrevOutDevice != type;
3502 mOutDevice = type;
3503 mPatch = *patch;
3504
3505 if (mOutput->audioHwDev->supportsAudioPatches()) {
3506 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3507 status = hwDevice->createAudioPatch(patch->num_sources,
3508 patch->sources,
3509 patch->num_sinks,
3510 patch->sinks,
3511 handle);
3512 } else {
3513 char *address;
3514 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3515 //FIXME: we only support address on first sink with HAL version < 3.0
3516 address = audio_device_address_to_parameter(
3517 patch->sinks[0].ext.device.type,
3518 patch->sinks[0].ext.device.address);
3519 } else {
3520 address = (char *)calloc(1, 1);
3521 }
3522 AudioParameter param = AudioParameter(String8(address));
3523 free(address);
3524 param.addInt(String8(AudioParameter::keyRouting), (int)type);
3525 status = mOutput->stream->setParameters(param.toString());
3526 *handle = AUDIO_PATCH_HANDLE_NONE;
3527 }
3528 if (configChanged) {
3529 mPrevOutDevice = type;
3530 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3531 }
3532 return status;
3533 }
3534
releaseAudioPatch_l(const audio_patch_handle_t handle)3535 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3536 {
3537 status_t status;
3538 if (property_get_bool("af.patch_park", false /* default_value */)) {
3539 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3540 // or if HAL does not properly lock against access.
3541 AutoPark<FastMixer> park(mFastMixer);
3542 status = PlaybackThread::releaseAudioPatch_l(handle);
3543 } else {
3544 status = PlaybackThread::releaseAudioPatch_l(handle);
3545 }
3546 return status;
3547 }
3548
releaseAudioPatch_l(const audio_patch_handle_t handle)3549 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3550 {
3551 status_t status = NO_ERROR;
3552
3553 mOutDevice = AUDIO_DEVICE_NONE;
3554
3555 if (mOutput->audioHwDev->supportsAudioPatches()) {
3556 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3557 status = hwDevice->releaseAudioPatch(handle);
3558 } else {
3559 AudioParameter param;
3560 param.addInt(String8(AudioParameter::keyRouting), 0);
3561 status = mOutput->stream->setParameters(param.toString());
3562 }
3563 return status;
3564 }
3565
addPatchTrack(const sp<PatchTrack> & track)3566 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3567 {
3568 Mutex::Autolock _l(mLock);
3569 mTracks.add(track);
3570 }
3571
deletePatchTrack(const sp<PatchTrack> & track)3572 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3573 {
3574 Mutex::Autolock _l(mLock);
3575 destroyTrack_l(track);
3576 }
3577
getAudioPortConfig(struct audio_port_config * config)3578 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3579 {
3580 ThreadBase::getAudioPortConfig(config);
3581 config->role = AUDIO_PORT_ROLE_SOURCE;
3582 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3583 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3584 }
3585
3586 // ----------------------------------------------------------------------------
3587
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)3588 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3589 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3590 : PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3591 // mAudioMixer below
3592 // mFastMixer below
3593 mFastMixerFutex(0),
3594 mMasterMono(false)
3595 // mOutputSink below
3596 // mPipeSink below
3597 // mNormalSink below
3598 {
3599 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3600 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3601 "mFrameCount=%zu, mNormalFrameCount=%zu",
3602 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3603 mNormalFrameCount);
3604 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3605
3606 if (type == DUPLICATING) {
3607 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3608 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3609 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3610 return;
3611 }
3612 // create an NBAIO sink for the HAL output stream, and negotiate
3613 mOutputSink = new AudioStreamOutSink(output->stream);
3614 size_t numCounterOffers = 0;
3615 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3616 #if !LOG_NDEBUG
3617 ssize_t index =
3618 #else
3619 (void)
3620 #endif
3621 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3622 ALOG_ASSERT(index == 0);
3623
3624 // initialize fast mixer depending on configuration
3625 bool initFastMixer;
3626 switch (kUseFastMixer) {
3627 case FastMixer_Never:
3628 initFastMixer = false;
3629 break;
3630 case FastMixer_Always:
3631 initFastMixer = true;
3632 break;
3633 case FastMixer_Static:
3634 case FastMixer_Dynamic:
3635 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
3636 // where the period is less than an experimentally determined threshold that can be
3637 // scheduled reliably with CFS. However, the BT A2DP HAL is
3638 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
3639 initFastMixer = mFrameCount < mNormalFrameCount
3640 && (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) == 0;
3641 break;
3642 }
3643 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
3644 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
3645 mFrameCount, mNormalFrameCount);
3646 if (initFastMixer) {
3647 audio_format_t fastMixerFormat;
3648 if (mMixerBufferEnabled && mEffectBufferEnabled) {
3649 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3650 } else {
3651 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3652 }
3653 if (mFormat != fastMixerFormat) {
3654 // change our Sink format to accept our intermediate precision
3655 mFormat = fastMixerFormat;
3656 free(mSinkBuffer);
3657 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3658 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3659 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3660 }
3661
3662 // create a MonoPipe to connect our submix to FastMixer
3663 NBAIO_Format format = mOutputSink->format();
3664 #ifdef TEE_SINK
3665 NBAIO_Format origformat = format;
3666 #endif
3667 // adjust format to match that of the Fast Mixer
3668 ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3669 format.mFormat = fastMixerFormat;
3670 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3671
3672 // This pipe depth compensates for scheduling latency of the normal mixer thread.
3673 // When it wakes up after a maximum latency, it runs a few cycles quickly before
3674 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
3675 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3676 const NBAIO_Format offers[1] = {format};
3677 size_t numCounterOffers = 0;
3678 #if !LOG_NDEBUG || defined(TEE_SINK)
3679 ssize_t index =
3680 #else
3681 (void)
3682 #endif
3683 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3684 ALOG_ASSERT(index == 0);
3685 monoPipe->setAvgFrames((mScreenState & 1) ?
3686 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3687 mPipeSink = monoPipe;
3688
3689 #ifdef TEE_SINK
3690 if (mTeeSinkOutputEnabled) {
3691 // create a Pipe to archive a copy of FastMixer's output for dumpsys
3692 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3693 const NBAIO_Format offers2[1] = {origformat};
3694 numCounterOffers = 0;
3695 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3696 ALOG_ASSERT(index == 0);
3697 mTeeSink = teeSink;
3698 PipeReader *teeSource = new PipeReader(*teeSink);
3699 numCounterOffers = 0;
3700 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3701 ALOG_ASSERT(index == 0);
3702 mTeeSource = teeSource;
3703 }
3704 #endif
3705
3706 // create fast mixer and configure it initially with just one fast track for our submix
3707 mFastMixer = new FastMixer();
3708 FastMixerStateQueue *sq = mFastMixer->sq();
3709 #ifdef STATE_QUEUE_DUMP
3710 sq->setObserverDump(&mStateQueueObserverDump);
3711 sq->setMutatorDump(&mStateQueueMutatorDump);
3712 #endif
3713 FastMixerState *state = sq->begin();
3714 FastTrack *fastTrack = &state->mFastTracks[0];
3715 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3716 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3717 fastTrack->mVolumeProvider = NULL;
3718 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3719 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3720 fastTrack->mGeneration++;
3721 state->mFastTracksGen++;
3722 state->mTrackMask = 1;
3723 // fast mixer will use the HAL output sink
3724 state->mOutputSink = mOutputSink.get();
3725 state->mOutputSinkGen++;
3726 state->mFrameCount = mFrameCount;
3727 state->mCommand = FastMixerState::COLD_IDLE;
3728 // already done in constructor initialization list
3729 //mFastMixerFutex = 0;
3730 state->mColdFutexAddr = &mFastMixerFutex;
3731 state->mColdGen++;
3732 state->mDumpState = &mFastMixerDumpState;
3733 #ifdef TEE_SINK
3734 state->mTeeSink = mTeeSink.get();
3735 #endif
3736 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3737 state->mNBLogWriter = mFastMixerNBLogWriter.get();
3738 sq->end();
3739 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3740
3741 // start the fast mixer
3742 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3743 pid_t tid = mFastMixer->getTid();
3744 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer, false /*forApp*/);
3745 stream()->setHalThreadPriority(kPriorityFastMixer);
3746
3747 #ifdef AUDIO_WATCHDOG
3748 // create and start the watchdog
3749 mAudioWatchdog = new AudioWatchdog();
3750 mAudioWatchdog->setDump(&mAudioWatchdogDump);
3751 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3752 tid = mAudioWatchdog->getTid();
3753 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer, false /*forApp*/);
3754 #endif
3755
3756 }
3757
3758 switch (kUseFastMixer) {
3759 case FastMixer_Never:
3760 case FastMixer_Dynamic:
3761 mNormalSink = mOutputSink;
3762 break;
3763 case FastMixer_Always:
3764 mNormalSink = mPipeSink;
3765 break;
3766 case FastMixer_Static:
3767 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3768 break;
3769 }
3770 }
3771
~MixerThread()3772 AudioFlinger::MixerThread::~MixerThread()
3773 {
3774 if (mFastMixer != 0) {
3775 FastMixerStateQueue *sq = mFastMixer->sq();
3776 FastMixerState *state = sq->begin();
3777 if (state->mCommand == FastMixerState::COLD_IDLE) {
3778 int32_t old = android_atomic_inc(&mFastMixerFutex);
3779 if (old == -1) {
3780 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3781 }
3782 }
3783 state->mCommand = FastMixerState::EXIT;
3784 sq->end();
3785 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3786 mFastMixer->join();
3787 // Though the fast mixer thread has exited, it's state queue is still valid.
3788 // We'll use that extract the final state which contains one remaining fast track
3789 // corresponding to our sub-mix.
3790 state = sq->begin();
3791 ALOG_ASSERT(state->mTrackMask == 1);
3792 FastTrack *fastTrack = &state->mFastTracks[0];
3793 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3794 delete fastTrack->mBufferProvider;
3795 sq->end(false /*didModify*/);
3796 mFastMixer.clear();
3797 #ifdef AUDIO_WATCHDOG
3798 if (mAudioWatchdog != 0) {
3799 mAudioWatchdog->requestExit();
3800 mAudioWatchdog->requestExitAndWait();
3801 mAudioWatchdog.clear();
3802 }
3803 #endif
3804 }
3805 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3806 delete mAudioMixer;
3807 }
3808
3809
correctLatency_l(uint32_t latency) const3810 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3811 {
3812 if (mFastMixer != 0) {
3813 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3814 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3815 }
3816 return latency;
3817 }
3818
3819
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3820 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3821 {
3822 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3823 }
3824
threadLoop_write()3825 ssize_t AudioFlinger::MixerThread::threadLoop_write()
3826 {
3827 // FIXME we should only do one push per cycle; confirm this is true
3828 // Start the fast mixer if it's not already running
3829 if (mFastMixer != 0) {
3830 FastMixerStateQueue *sq = mFastMixer->sq();
3831 FastMixerState *state = sq->begin();
3832 if (state->mCommand != FastMixerState::MIX_WRITE &&
3833 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3834 if (state->mCommand == FastMixerState::COLD_IDLE) {
3835
3836 // FIXME workaround for first HAL write being CPU bound on some devices
3837 ATRACE_BEGIN("write");
3838 mOutput->write((char *)mSinkBuffer, 0);
3839 ATRACE_END();
3840
3841 int32_t old = android_atomic_inc(&mFastMixerFutex);
3842 if (old == -1) {
3843 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3844 }
3845 #ifdef AUDIO_WATCHDOG
3846 if (mAudioWatchdog != 0) {
3847 mAudioWatchdog->resume();
3848 }
3849 #endif
3850 }
3851 state->mCommand = FastMixerState::MIX_WRITE;
3852 #ifdef FAST_THREAD_STATISTICS
3853 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3854 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3855 #endif
3856 sq->end();
3857 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3858 if (kUseFastMixer == FastMixer_Dynamic) {
3859 mNormalSink = mPipeSink;
3860 }
3861 } else {
3862 sq->end(false /*didModify*/);
3863 }
3864 }
3865 return PlaybackThread::threadLoop_write();
3866 }
3867
threadLoop_standby()3868 void AudioFlinger::MixerThread::threadLoop_standby()
3869 {
3870 // Idle the fast mixer if it's currently running
3871 if (mFastMixer != 0) {
3872 FastMixerStateQueue *sq = mFastMixer->sq();
3873 FastMixerState *state = sq->begin();
3874 if (!(state->mCommand & FastMixerState::IDLE)) {
3875 // Report any frames trapped in the Monopipe
3876 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
3877 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
3878 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
3879 "monoPipeWritten:%lld monoPipeLeft:%lld",
3880 (long long)mFramesWritten, (long long)mSuspendedFrames,
3881 (long long)mPipeSink->framesWritten(), pipeFrames);
3882 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
3883
3884 state->mCommand = FastMixerState::COLD_IDLE;
3885 state->mColdFutexAddr = &mFastMixerFutex;
3886 state->mColdGen++;
3887 mFastMixerFutex = 0;
3888 sq->end();
3889 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3890 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3891 if (kUseFastMixer == FastMixer_Dynamic) {
3892 mNormalSink = mOutputSink;
3893 }
3894 #ifdef AUDIO_WATCHDOG
3895 if (mAudioWatchdog != 0) {
3896 mAudioWatchdog->pause();
3897 }
3898 #endif
3899 } else {
3900 sq->end(false /*didModify*/);
3901 }
3902 }
3903 PlaybackThread::threadLoop_standby();
3904 }
3905
waitingAsyncCallback_l()3906 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3907 {
3908 return false;
3909 }
3910
shouldStandby_l()3911 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3912 {
3913 return !mStandby;
3914 }
3915
waitingAsyncCallback()3916 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3917 {
3918 Mutex::Autolock _l(mLock);
3919 return waitingAsyncCallback_l();
3920 }
3921
3922 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3923 void AudioFlinger::PlaybackThread::threadLoop_standby()
3924 {
3925 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3926 mOutput->standby();
3927 if (mUseAsyncWrite != 0) {
3928 // discard any pending drain or write ack by incrementing sequence
3929 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3930 mDrainSequence = (mDrainSequence + 2) & ~1;
3931 ALOG_ASSERT(mCallbackThread != 0);
3932 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3933 mCallbackThread->setDraining(mDrainSequence);
3934 }
3935 mHwPaused = false;
3936 }
3937
onAddNewTrack_l()3938 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3939 {
3940 ALOGV("signal playback thread");
3941 broadcast_l();
3942 }
3943
onAsyncError()3944 void AudioFlinger::PlaybackThread::onAsyncError()
3945 {
3946 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
3947 invalidateTracks((audio_stream_type_t)i);
3948 }
3949 }
3950
threadLoop_mix()3951 void AudioFlinger::MixerThread::threadLoop_mix()
3952 {
3953 // mix buffers...
3954 mAudioMixer->process();
3955 mCurrentWriteLength = mSinkBufferSize;
3956 // increase sleep time progressively when application underrun condition clears.
3957 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3958 // that a steady state of alternating ready/not ready conditions keeps the sleep time
3959 // such that we would underrun the audio HAL.
3960 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3961 sleepTimeShift--;
3962 }
3963 mSleepTimeUs = 0;
3964 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3965 //TODO: delay standby when effects have a tail
3966
3967 }
3968
threadLoop_sleepTime()3969 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3970 {
3971 // If no tracks are ready, sleep once for the duration of an output
3972 // buffer size, then write 0s to the output
3973 if (mSleepTimeUs == 0) {
3974 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3975 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3976 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3977 mSleepTimeUs = kMinThreadSleepTimeUs;
3978 }
3979 // reduce sleep time in case of consecutive application underruns to avoid
3980 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3981 // duration we would end up writing less data than needed by the audio HAL if
3982 // the condition persists.
3983 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3984 sleepTimeShift++;
3985 }
3986 } else {
3987 mSleepTimeUs = mIdleSleepTimeUs;
3988 }
3989 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3990 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3991 // before effects processing or output.
3992 if (mMixerBufferValid) {
3993 memset(mMixerBuffer, 0, mMixerBufferSize);
3994 } else {
3995 memset(mSinkBuffer, 0, mSinkBufferSize);
3996 }
3997 mSleepTimeUs = 0;
3998 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3999 "anticipated start");
4000 }
4001 // TODO add standby time extension fct of effect tail
4002 }
4003
4004 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4005 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4006 Vector< sp<Track> > *tracksToRemove)
4007 {
4008
4009 mixer_state mixerStatus = MIXER_IDLE;
4010 // find out which tracks need to be processed
4011 size_t count = mActiveTracks.size();
4012 size_t mixedTracks = 0;
4013 size_t tracksWithEffect = 0;
4014 // counts only _active_ fast tracks
4015 size_t fastTracks = 0;
4016 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4017
4018 float masterVolume = mMasterVolume;
4019 bool masterMute = mMasterMute;
4020
4021 if (masterMute) {
4022 masterVolume = 0;
4023 }
4024 // Delegate master volume control to effect in output mix effect chain if needed
4025 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4026 if (chain != 0) {
4027 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4028 chain->setVolume_l(&v, &v);
4029 masterVolume = (float)((v + (1 << 23)) >> 24);
4030 chain.clear();
4031 }
4032
4033 // prepare a new state to push
4034 FastMixerStateQueue *sq = NULL;
4035 FastMixerState *state = NULL;
4036 bool didModify = false;
4037 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4038 bool coldIdle = false;
4039 if (mFastMixer != 0) {
4040 sq = mFastMixer->sq();
4041 state = sq->begin();
4042 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4043 }
4044
4045 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4046 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4047
4048 for (size_t i=0 ; i<count ; i++) {
4049 const sp<Track> t = mActiveTracks[i];
4050
4051 // this const just means the local variable doesn't change
4052 Track* const track = t.get();
4053
4054 // process fast tracks
4055 if (track->isFastTrack()) {
4056
4057 // It's theoretically possible (though unlikely) for a fast track to be created
4058 // and then removed within the same normal mix cycle. This is not a problem, as
4059 // the track never becomes active so it's fast mixer slot is never touched.
4060 // The converse, of removing an (active) track and then creating a new track
4061 // at the identical fast mixer slot within the same normal mix cycle,
4062 // is impossible because the slot isn't marked available until the end of each cycle.
4063 int j = track->mFastIndex;
4064 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4065 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4066 FastTrack *fastTrack = &state->mFastTracks[j];
4067
4068 // Determine whether the track is currently in underrun condition,
4069 // and whether it had a recent underrun.
4070 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4071 FastTrackUnderruns underruns = ftDump->mUnderruns;
4072 uint32_t recentFull = (underruns.mBitFields.mFull -
4073 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4074 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4075 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4076 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4077 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4078 uint32_t recentUnderruns = recentPartial + recentEmpty;
4079 track->mObservedUnderruns = underruns;
4080 // don't count underruns that occur while stopping or pausing
4081 // or stopped which can occur when flush() is called while active
4082 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4083 recentUnderruns > 0) {
4084 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4085 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4086 } else {
4087 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4088 }
4089
4090 // This is similar to the state machine for normal tracks,
4091 // with a few modifications for fast tracks.
4092 bool isActive = true;
4093 switch (track->mState) {
4094 case TrackBase::STOPPING_1:
4095 // track stays active in STOPPING_1 state until first underrun
4096 if (recentUnderruns > 0 || track->isTerminated()) {
4097 track->mState = TrackBase::STOPPING_2;
4098 }
4099 break;
4100 case TrackBase::PAUSING:
4101 // ramp down is not yet implemented
4102 track->setPaused();
4103 break;
4104 case TrackBase::RESUMING:
4105 // ramp up is not yet implemented
4106 track->mState = TrackBase::ACTIVE;
4107 break;
4108 case TrackBase::ACTIVE:
4109 if (recentFull > 0 || recentPartial > 0) {
4110 // track has provided at least some frames recently: reset retry count
4111 track->mRetryCount = kMaxTrackRetries;
4112 }
4113 if (recentUnderruns == 0) {
4114 // no recent underruns: stay active
4115 break;
4116 }
4117 // there has recently been an underrun of some kind
4118 if (track->sharedBuffer() == 0) {
4119 // were any of the recent underruns "empty" (no frames available)?
4120 if (recentEmpty == 0) {
4121 // no, then ignore the partial underruns as they are allowed indefinitely
4122 break;
4123 }
4124 // there has recently been an "empty" underrun: decrement the retry counter
4125 if (--(track->mRetryCount) > 0) {
4126 break;
4127 }
4128 // indicate to client process that the track was disabled because of underrun;
4129 // it will then automatically call start() when data is available
4130 track->disable();
4131 // remove from active list, but state remains ACTIVE [confusing but true]
4132 isActive = false;
4133 break;
4134 }
4135 // fall through
4136 case TrackBase::STOPPING_2:
4137 case TrackBase::PAUSED:
4138 case TrackBase::STOPPED:
4139 case TrackBase::FLUSHED: // flush() while active
4140 // Check for presentation complete if track is inactive
4141 // We have consumed all the buffers of this track.
4142 // This would be incomplete if we auto-paused on underrun
4143 {
4144 uint32_t latency = 0;
4145 status_t result = mOutput->stream->getLatency(&latency);
4146 ALOGE_IF(result != OK,
4147 "Error when retrieving output stream latency: %d", result);
4148 size_t audioHALFrames = (latency * mSampleRate) / 1000;
4149 int64_t framesWritten = mBytesWritten / mFrameSize;
4150 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4151 // track stays in active list until presentation is complete
4152 break;
4153 }
4154 }
4155 if (track->isStopping_2()) {
4156 track->mState = TrackBase::STOPPED;
4157 }
4158 if (track->isStopped()) {
4159 // Can't reset directly, as fast mixer is still polling this track
4160 // track->reset();
4161 // So instead mark this track as needing to be reset after push with ack
4162 resetMask |= 1 << i;
4163 }
4164 isActive = false;
4165 break;
4166 case TrackBase::IDLE:
4167 default:
4168 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4169 }
4170
4171 if (isActive) {
4172 // was it previously inactive?
4173 if (!(state->mTrackMask & (1 << j))) {
4174 ExtendedAudioBufferProvider *eabp = track;
4175 VolumeProvider *vp = track;
4176 fastTrack->mBufferProvider = eabp;
4177 fastTrack->mVolumeProvider = vp;
4178 fastTrack->mChannelMask = track->mChannelMask;
4179 fastTrack->mFormat = track->mFormat;
4180 fastTrack->mGeneration++;
4181 state->mTrackMask |= 1 << j;
4182 didModify = true;
4183 // no acknowledgement required for newly active tracks
4184 }
4185 // cache the combined master volume and stream type volume for fast mixer; this
4186 // lacks any synchronization or barrier so VolumeProvider may read a stale value
4187 const float vh = track->getVolumeHandler()->getVolume(
4188 track->mAudioTrackServerProxy->framesReleased()).first;
4189 track->mCachedVolume = masterVolume
4190 * mStreamTypes[track->streamType()].volume
4191 * vh;
4192 ++fastTracks;
4193 } else {
4194 // was it previously active?
4195 if (state->mTrackMask & (1 << j)) {
4196 fastTrack->mBufferProvider = NULL;
4197 fastTrack->mGeneration++;
4198 state->mTrackMask &= ~(1 << j);
4199 didModify = true;
4200 // If any fast tracks were removed, we must wait for acknowledgement
4201 // because we're about to decrement the last sp<> on those tracks.
4202 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4203 } else {
4204 LOG_ALWAYS_FATAL("fast track %d should have been active; "
4205 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4206 j, track->mState, state->mTrackMask, recentUnderruns,
4207 track->sharedBuffer() != 0);
4208 }
4209 tracksToRemove->add(track);
4210 // Avoids a misleading display in dumpsys
4211 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4212 }
4213 continue;
4214 }
4215
4216 { // local variable scope to avoid goto warning
4217
4218 audio_track_cblk_t* cblk = track->cblk();
4219
4220 // The first time a track is added we wait
4221 // for all its buffers to be filled before processing it
4222 int name = track->name();
4223 // make sure that we have enough frames to mix one full buffer.
4224 // enforce this condition only once to enable draining the buffer in case the client
4225 // app does not call stop() and relies on underrun to stop:
4226 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4227 // during last round
4228 size_t desiredFrames;
4229 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4230 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4231
4232 desiredFrames = sourceFramesNeededWithTimestretch(
4233 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4234 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4235 // add frames already consumed but not yet released by the resampler
4236 // because mAudioTrackServerProxy->framesReady() will include these frames
4237 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4238
4239 uint32_t minFrames = 1;
4240 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4241 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4242 minFrames = desiredFrames;
4243 }
4244
4245 size_t framesReady = track->framesReady();
4246 if (ATRACE_ENABLED()) {
4247 // I wish we had formatted trace names
4248 char traceName[16];
4249 strcpy(traceName, "nRdy");
4250 int name = track->name();
4251 if (AudioMixer::TRACK0 <= name &&
4252 name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4253 name -= AudioMixer::TRACK0;
4254 traceName[4] = (name / 10) + '0';
4255 traceName[5] = (name % 10) + '0';
4256 } else {
4257 traceName[4] = '?';
4258 traceName[5] = '?';
4259 }
4260 traceName[6] = '\0';
4261 ATRACE_INT(traceName, framesReady);
4262 }
4263 if ((framesReady >= minFrames) && track->isReady() &&
4264 !track->isPaused() && !track->isTerminated())
4265 {
4266 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4267
4268 mixedTracks++;
4269
4270 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4271 // there is an effect chain connected to the track
4272 chain.clear();
4273 if (track->mainBuffer() != mSinkBuffer &&
4274 track->mainBuffer() != mMixerBuffer) {
4275 if (mEffectBufferEnabled) {
4276 mEffectBufferValid = true; // Later can set directly.
4277 }
4278 chain = getEffectChain_l(track->sessionId());
4279 // Delegate volume control to effect in track effect chain if needed
4280 if (chain != 0) {
4281 tracksWithEffect++;
4282 } else {
4283 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4284 "session %d",
4285 name, track->sessionId());
4286 }
4287 }
4288
4289
4290 int param = AudioMixer::VOLUME;
4291 if (track->mFillingUpStatus == Track::FS_FILLED) {
4292 // no ramp for the first volume setting
4293 track->mFillingUpStatus = Track::FS_ACTIVE;
4294 if (track->mState == TrackBase::RESUMING) {
4295 track->mState = TrackBase::ACTIVE;
4296 param = AudioMixer::RAMP_VOLUME;
4297 }
4298 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4299 mLeftVolFloat = -1.0;
4300 // FIXME should not make a decision based on mServer
4301 } else if (cblk->mServer != 0) {
4302 // If the track is stopped before the first frame was mixed,
4303 // do not apply ramp
4304 param = AudioMixer::RAMP_VOLUME;
4305 }
4306
4307 // compute volume for this track
4308 uint32_t vl, vr; // in U8.24 integer format
4309 float vlf, vrf, vaf; // in [0.0, 1.0] float format
4310 // read original volumes with volume control
4311 float typeVolume = mStreamTypes[track->streamType()].volume;
4312 float v = masterVolume * typeVolume;
4313
4314 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4315 vl = vr = 0;
4316 vlf = vrf = vaf = 0.;
4317 if (track->isPausing()) {
4318 track->setPaused();
4319 }
4320 } else {
4321 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4322 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4323 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4324 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4325 // track volumes come from shared memory, so can't be trusted and must be clamped
4326 if (vlf > GAIN_FLOAT_UNITY) {
4327 ALOGV("Track left volume out of range: %.3g", vlf);
4328 vlf = GAIN_FLOAT_UNITY;
4329 }
4330 if (vrf > GAIN_FLOAT_UNITY) {
4331 ALOGV("Track right volume out of range: %.3g", vrf);
4332 vrf = GAIN_FLOAT_UNITY;
4333 }
4334 const float vh = track->getVolumeHandler()->getVolume(
4335 track->mAudioTrackServerProxy->framesReleased()).first;
4336 // now apply the master volume and stream type volume and shaper volume
4337 vlf *= v * vh;
4338 vrf *= v * vh;
4339 // assuming master volume and stream type volume each go up to 1.0,
4340 // then derive vl and vr as U8.24 versions for the effect chain
4341 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4342 vl = (uint32_t) (scaleto8_24 * vlf);
4343 vr = (uint32_t) (scaleto8_24 * vrf);
4344 // vl and vr are now in U8.24 format
4345 uint16_t sendLevel = proxy->getSendLevel_U4_12();
4346 // send level comes from shared memory and so may be corrupt
4347 if (sendLevel > MAX_GAIN_INT) {
4348 ALOGV("Track send level out of range: %04X", sendLevel);
4349 sendLevel = MAX_GAIN_INT;
4350 }
4351 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4352 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4353 }
4354
4355 // Delegate volume control to effect in track effect chain if needed
4356 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4357 // Do not ramp volume if volume is controlled by effect
4358 param = AudioMixer::VOLUME;
4359 // Update remaining floating point volume levels
4360 vlf = (float)vl / (1 << 24);
4361 vrf = (float)vr / (1 << 24);
4362 track->mHasVolumeController = true;
4363 } else {
4364 // force no volume ramp when volume controller was just disabled or removed
4365 // from effect chain to avoid volume spike
4366 if (track->mHasVolumeController) {
4367 param = AudioMixer::VOLUME;
4368 }
4369 track->mHasVolumeController = false;
4370 }
4371
4372 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4373 // still applied by the mixer.
4374 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4375 v = mStreamTypes[track->streamType()].mute ? 0.0f : v;
4376 if (v != mLeftVolFloat) {
4377 status_t result = mOutput->stream->setVolume(v, v);
4378 ALOGE_IF(result != OK, "Error when setting output stream volume: %d", result);
4379 if (result == OK) {
4380 mLeftVolFloat = v;
4381 }
4382 }
4383 // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4384 // remove stream volume contribution from software volume.
4385 if (v != 0.0f && mLeftVolFloat == v) {
4386 vlf = min(1.0f, vlf / v);
4387 vrf = min(1.0f, vrf / v);
4388 vaf = min(1.0f, vaf / v);
4389 }
4390 }
4391 // XXX: these things DON'T need to be done each time
4392 mAudioMixer->setBufferProvider(name, track);
4393 mAudioMixer->enable(name);
4394
4395 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4396 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4397 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4398 mAudioMixer->setParameter(
4399 name,
4400 AudioMixer::TRACK,
4401 AudioMixer::FORMAT, (void *)track->format());
4402 mAudioMixer->setParameter(
4403 name,
4404 AudioMixer::TRACK,
4405 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4406 mAudioMixer->setParameter(
4407 name,
4408 AudioMixer::TRACK,
4409 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4410 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4411 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4412 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4413 if (reqSampleRate == 0) {
4414 reqSampleRate = mSampleRate;
4415 } else if (reqSampleRate > maxSampleRate) {
4416 reqSampleRate = maxSampleRate;
4417 }
4418 mAudioMixer->setParameter(
4419 name,
4420 AudioMixer::RESAMPLE,
4421 AudioMixer::SAMPLE_RATE,
4422 (void *)(uintptr_t)reqSampleRate);
4423
4424 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4425 mAudioMixer->setParameter(
4426 name,
4427 AudioMixer::TIMESTRETCH,
4428 AudioMixer::PLAYBACK_RATE,
4429 &playbackRate);
4430
4431 /*
4432 * Select the appropriate output buffer for the track.
4433 *
4434 * Tracks with effects go into their own effects chain buffer
4435 * and from there into either mEffectBuffer or mSinkBuffer.
4436 *
4437 * Other tracks can use mMixerBuffer for higher precision
4438 * channel accumulation. If this buffer is enabled
4439 * (mMixerBufferEnabled true), then selected tracks will accumulate
4440 * into it.
4441 *
4442 */
4443 if (mMixerBufferEnabled
4444 && (track->mainBuffer() == mSinkBuffer
4445 || track->mainBuffer() == mMixerBuffer)) {
4446 mAudioMixer->setParameter(
4447 name,
4448 AudioMixer::TRACK,
4449 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4450 mAudioMixer->setParameter(
4451 name,
4452 AudioMixer::TRACK,
4453 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4454 // TODO: override track->mainBuffer()?
4455 mMixerBufferValid = true;
4456 } else {
4457 mAudioMixer->setParameter(
4458 name,
4459 AudioMixer::TRACK,
4460 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4461 mAudioMixer->setParameter(
4462 name,
4463 AudioMixer::TRACK,
4464 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4465 }
4466 mAudioMixer->setParameter(
4467 name,
4468 AudioMixer::TRACK,
4469 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4470
4471 // reset retry count
4472 track->mRetryCount = kMaxTrackRetries;
4473
4474 // If one track is ready, set the mixer ready if:
4475 // - the mixer was not ready during previous round OR
4476 // - no other track is not ready
4477 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4478 mixerStatus != MIXER_TRACKS_ENABLED) {
4479 mixerStatus = MIXER_TRACKS_READY;
4480 }
4481 } else {
4482 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4483 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)",
4484 track, framesReady, desiredFrames);
4485 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4486 } else {
4487 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4488 }
4489
4490 // clear effect chain input buffer if an active track underruns to avoid sending
4491 // previous audio buffer again to effects
4492 chain = getEffectChain_l(track->sessionId());
4493 if (chain != 0) {
4494 chain->clearInputBuffer();
4495 }
4496
4497 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4498 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4499 track->isStopped() || track->isPaused()) {
4500 // We have consumed all the buffers of this track.
4501 // Remove it from the list of active tracks.
4502 // TODO: use actual buffer filling status instead of latency when available from
4503 // audio HAL
4504 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4505 int64_t framesWritten = mBytesWritten / mFrameSize;
4506 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4507 if (track->isStopped()) {
4508 track->reset();
4509 }
4510 tracksToRemove->add(track);
4511 }
4512 } else {
4513 // No buffers for this track. Give it a few chances to
4514 // fill a buffer, then remove it from active list.
4515 if (--(track->mRetryCount) <= 0) {
4516 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4517 tracksToRemove->add(track);
4518 // indicate to client process that the track was disabled because of underrun;
4519 // it will then automatically call start() when data is available
4520 track->disable();
4521 // If one track is not ready, mark the mixer also not ready if:
4522 // - the mixer was ready during previous round OR
4523 // - no other track is ready
4524 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4525 mixerStatus != MIXER_TRACKS_READY) {
4526 mixerStatus = MIXER_TRACKS_ENABLED;
4527 }
4528 }
4529 mAudioMixer->disable(name);
4530 }
4531
4532 } // local variable scope to avoid goto warning
4533
4534 }
4535
4536 // Push the new FastMixer state if necessary
4537 bool pauseAudioWatchdog = false;
4538 if (didModify) {
4539 state->mFastTracksGen++;
4540 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4541 if (kUseFastMixer == FastMixer_Dynamic &&
4542 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4543 state->mCommand = FastMixerState::COLD_IDLE;
4544 state->mColdFutexAddr = &mFastMixerFutex;
4545 state->mColdGen++;
4546 mFastMixerFutex = 0;
4547 if (kUseFastMixer == FastMixer_Dynamic) {
4548 mNormalSink = mOutputSink;
4549 }
4550 // If we go into cold idle, need to wait for acknowledgement
4551 // so that fast mixer stops doing I/O.
4552 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4553 pauseAudioWatchdog = true;
4554 }
4555 }
4556 if (sq != NULL) {
4557 sq->end(didModify);
4558 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
4559 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
4560 // when bringing the output sink into standby.)
4561 //
4562 // We will get the latest FastMixer state when we come out of COLD_IDLE.
4563 //
4564 // This occurs with BT suspend when we idle the FastMixer with
4565 // active tracks, which may be added or removed.
4566 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
4567 }
4568 #ifdef AUDIO_WATCHDOG
4569 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4570 mAudioWatchdog->pause();
4571 }
4572 #endif
4573
4574 // Now perform the deferred reset on fast tracks that have stopped
4575 while (resetMask != 0) {
4576 size_t i = __builtin_ctz(resetMask);
4577 ALOG_ASSERT(i < count);
4578 resetMask &= ~(1 << i);
4579 sp<Track> track = mActiveTracks[i];
4580 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4581 track->reset();
4582 }
4583
4584 // remove all the tracks that need to be...
4585 removeTracks_l(*tracksToRemove);
4586
4587 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4588 mEffectBufferValid = true;
4589 }
4590
4591 if (mEffectBufferValid) {
4592 // as long as there are effects we should clear the effects buffer, to avoid
4593 // passing a non-clean buffer to the effect chain
4594 memset(mEffectBuffer, 0, mEffectBufferSize);
4595 }
4596 // sink or mix buffer must be cleared if all tracks are connected to an
4597 // effect chain as in this case the mixer will not write to the sink or mix buffer
4598 // and track effects will accumulate into it
4599 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4600 (mixedTracks == 0 && fastTracks > 0))) {
4601 // FIXME as a performance optimization, should remember previous zero status
4602 if (mMixerBufferValid) {
4603 memset(mMixerBuffer, 0, mMixerBufferSize);
4604 // TODO: In testing, mSinkBuffer below need not be cleared because
4605 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4606 // after mixing.
4607 //
4608 // To enforce this guarantee:
4609 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4610 // (mixedTracks == 0 && fastTracks > 0))
4611 // must imply MIXER_TRACKS_READY.
4612 // Later, we may clear buffers regardless, and skip much of this logic.
4613 }
4614 // FIXME as a performance optimization, should remember previous zero status
4615 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4616 }
4617
4618 // if any fast tracks, then status is ready
4619 mMixerStatusIgnoringFastTracks = mixerStatus;
4620 if (fastTracks > 0) {
4621 mixerStatus = MIXER_TRACKS_READY;
4622 }
4623 return mixerStatus;
4624 }
4625
4626 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid)4627 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid)
4628 {
4629 uint32_t trackCount = 0;
4630 for (size_t i = 0; i < mTracks.size() ; i++) {
4631 if (mTracks[i]->uid() == uid) {
4632 trackCount++;
4633 }
4634 }
4635 return trackCount;
4636 }
4637
4638 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid)4639 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4640 audio_format_t format, audio_session_t sessionId, uid_t uid)
4641 {
4642 if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
4643 return -1;
4644 }
4645 return mAudioMixer->getTrackName(channelMask, format, sessionId);
4646 }
4647
4648 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)4649 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4650 {
4651 ALOGV("remove track (%d) and delete from mixer", name);
4652 mAudioMixer->deleteTrackName(name);
4653 }
4654
4655 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4656 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4657 status_t& status)
4658 {
4659 bool reconfig = false;
4660 bool a2dpDeviceChanged = false;
4661
4662 status = NO_ERROR;
4663
4664 AutoPark<FastMixer> park(mFastMixer);
4665
4666 AudioParameter param = AudioParameter(keyValuePair);
4667 int value;
4668 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4669 reconfig = true;
4670 }
4671 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4672 if (!isValidPcmSinkFormat((audio_format_t) value)) {
4673 status = BAD_VALUE;
4674 } else {
4675 // no need to save value, since it's constant
4676 reconfig = true;
4677 }
4678 }
4679 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4680 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4681 status = BAD_VALUE;
4682 } else {
4683 // no need to save value, since it's constant
4684 reconfig = true;
4685 }
4686 }
4687 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4688 // do not accept frame count changes if tracks are open as the track buffer
4689 // size depends on frame count and correct behavior would not be guaranteed
4690 // if frame count is changed after track creation
4691 if (!mTracks.isEmpty()) {
4692 status = INVALID_OPERATION;
4693 } else {
4694 reconfig = true;
4695 }
4696 }
4697 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4698 #ifdef ADD_BATTERY_DATA
4699 // when changing the audio output device, call addBatteryData to notify
4700 // the change
4701 if (mOutDevice != value) {
4702 uint32_t params = 0;
4703 // check whether speaker is on
4704 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4705 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4706 }
4707
4708 audio_devices_t deviceWithoutSpeaker
4709 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4710 // check if any other device (except speaker) is on
4711 if (value & deviceWithoutSpeaker) {
4712 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4713 }
4714
4715 if (params != 0) {
4716 addBatteryData(params);
4717 }
4718 }
4719 #endif
4720
4721 // forward device change to effects that have requested to be
4722 // aware of attached audio device.
4723 if (value != AUDIO_DEVICE_NONE) {
4724 a2dpDeviceChanged =
4725 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4726 mOutDevice = value;
4727 for (size_t i = 0; i < mEffectChains.size(); i++) {
4728 mEffectChains[i]->setDevice_l(mOutDevice);
4729 }
4730 }
4731 }
4732
4733 if (status == NO_ERROR) {
4734 status = mOutput->stream->setParameters(keyValuePair);
4735 if (!mStandby && status == INVALID_OPERATION) {
4736 mOutput->standby();
4737 mStandby = true;
4738 mBytesWritten = 0;
4739 status = mOutput->stream->setParameters(keyValuePair);
4740 }
4741 if (status == NO_ERROR && reconfig) {
4742 readOutputParameters_l();
4743 delete mAudioMixer;
4744 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4745 for (size_t i = 0; i < mTracks.size() ; i++) {
4746 int name = getTrackName_l(mTracks[i]->mChannelMask,
4747 mTracks[i]->mFormat, mTracks[i]->mSessionId, mTracks[i]->uid());
4748 if (name < 0) {
4749 break;
4750 }
4751 mTracks[i]->mName = name;
4752 }
4753 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4754 }
4755 }
4756
4757 return reconfig || a2dpDeviceChanged;
4758 }
4759
4760
dumpInternals(int fd,const Vector<String16> & args)4761 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4762 {
4763 PlaybackThread::dumpInternals(fd, args);
4764 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4765 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4766 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
4767
4768 if (hasFastMixer()) {
4769 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
4770
4771 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4772 // while we are dumping it. It may be inconsistent, but it won't mutate!
4773 // This is a large object so we place it on the heap.
4774 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4775 const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4776 copy->dump(fd);
4777 delete copy;
4778
4779 #ifdef STATE_QUEUE_DUMP
4780 // Similar for state queue
4781 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4782 observerCopy.dump(fd);
4783 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4784 mutatorCopy.dump(fd);
4785 #endif
4786
4787 #ifdef AUDIO_WATCHDOG
4788 if (mAudioWatchdog != 0) {
4789 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4790 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4791 wdCopy.dump(fd);
4792 }
4793 #endif
4794
4795 } else {
4796 dprintf(fd, " No FastMixer\n");
4797 }
4798
4799 #ifdef TEE_SINK
4800 // Write the tee output to a .wav file
4801 dumpTee(fd, mTeeSource, mId, 'M');
4802 #endif
4803
4804 }
4805
idleSleepTimeUs() const4806 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4807 {
4808 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4809 }
4810
suspendSleepTimeUs() const4811 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4812 {
4813 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4814 }
4815
cacheParameters_l()4816 void AudioFlinger::MixerThread::cacheParameters_l()
4817 {
4818 PlaybackThread::cacheParameters_l();
4819
4820 // FIXME: Relaxed timing because of a certain device that can't meet latency
4821 // Should be reduced to 2x after the vendor fixes the driver issue
4822 // increase threshold again due to low power audio mode. The way this warning
4823 // threshold is calculated and its usefulness should be reconsidered anyway.
4824 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4825 }
4826
4827 // ----------------------------------------------------------------------------
4828
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady)4829 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4830 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4831 : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4832 {
4833 }
4834
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type,bool systemReady)4835 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4836 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4837 ThreadBase::type_t type, bool systemReady)
4838 : PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4839 , mVolumeShaperActive(false)
4840 {
4841 }
4842
~DirectOutputThread()4843 AudioFlinger::DirectOutputThread::~DirectOutputThread()
4844 {
4845 }
4846
processVolume_l(Track * track,bool lastTrack)4847 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4848 {
4849 float left, right;
4850
4851 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4852 left = right = 0;
4853 } else {
4854 float typeVolume = mStreamTypes[track->streamType()].volume;
4855 float v = mMasterVolume * typeVolume;
4856 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4857
4858 // Get volumeshaper scaling
4859 std::pair<float /* volume */, bool /* active */>
4860 vh = track->getVolumeHandler()->getVolume(
4861 track->mAudioTrackServerProxy->framesReleased());
4862 v *= vh.first;
4863 mVolumeShaperActive = vh.second;
4864
4865 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4866 left = float_from_gain(gain_minifloat_unpack_left(vlr));
4867 if (left > GAIN_FLOAT_UNITY) {
4868 left = GAIN_FLOAT_UNITY;
4869 }
4870 left *= v;
4871 right = float_from_gain(gain_minifloat_unpack_right(vlr));
4872 if (right > GAIN_FLOAT_UNITY) {
4873 right = GAIN_FLOAT_UNITY;
4874 }
4875 right *= v;
4876 }
4877
4878 if (lastTrack) {
4879 if (left != mLeftVolFloat || right != mRightVolFloat) {
4880 mLeftVolFloat = left;
4881 mRightVolFloat = right;
4882
4883 // Convert volumes from float to 8.24
4884 uint32_t vl = (uint32_t)(left * (1 << 24));
4885 uint32_t vr = (uint32_t)(right * (1 << 24));
4886
4887 // Delegate volume control to effect in track effect chain if needed
4888 // only one effect chain can be present on DirectOutputThread, so if
4889 // there is one, the track is connected to it
4890 if (!mEffectChains.isEmpty()) {
4891 mEffectChains[0]->setVolume_l(&vl, &vr);
4892 left = (float)vl / (1 << 24);
4893 right = (float)vr / (1 << 24);
4894 }
4895 status_t result = mOutput->stream->setVolume(left, right);
4896 ALOGE_IF(result != OK, "Error when setting output stream volume: %d", result);
4897 }
4898 }
4899 }
4900
onAddNewTrack_l()4901 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4902 {
4903 sp<Track> previousTrack = mPreviousTrack.promote();
4904 sp<Track> latestTrack = mActiveTracks.getLatest();
4905
4906 if (previousTrack != 0 && latestTrack != 0) {
4907 if (mType == DIRECT) {
4908 if (previousTrack.get() != latestTrack.get()) {
4909 mFlushPending = true;
4910 }
4911 } else /* mType == OFFLOAD */ {
4912 if (previousTrack->sessionId() != latestTrack->sessionId()) {
4913 mFlushPending = true;
4914 }
4915 }
4916 }
4917 PlaybackThread::onAddNewTrack_l();
4918 }
4919
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4920 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4921 Vector< sp<Track> > *tracksToRemove
4922 )
4923 {
4924 size_t count = mActiveTracks.size();
4925 mixer_state mixerStatus = MIXER_IDLE;
4926 bool doHwPause = false;
4927 bool doHwResume = false;
4928
4929 // find out which tracks need to be processed
4930 for (const sp<Track> &t : mActiveTracks) {
4931 if (t->isInvalid()) {
4932 ALOGW("An invalidated track shouldn't be in active list");
4933 tracksToRemove->add(t);
4934 continue;
4935 }
4936
4937 Track* const track = t.get();
4938 #ifdef VERY_VERY_VERBOSE_LOGGING
4939 audio_track_cblk_t* cblk = track->cblk();
4940 #endif
4941 // Only consider last track started for volume and mixer state control.
4942 // In theory an older track could underrun and restart after the new one starts
4943 // but as we only care about the transition phase between two tracks on a
4944 // direct output, it is not a problem to ignore the underrun case.
4945 sp<Track> l = mActiveTracks.getLatest();
4946 bool last = l.get() == track;
4947
4948 if (track->isPausing()) {
4949 track->setPaused();
4950 if (mHwSupportsPause && last && !mHwPaused) {
4951 doHwPause = true;
4952 mHwPaused = true;
4953 }
4954 tracksToRemove->add(track);
4955 } else if (track->isFlushPending()) {
4956 track->flushAck();
4957 if (last) {
4958 mFlushPending = true;
4959 }
4960 } else if (track->isResumePending()) {
4961 track->resumeAck();
4962 if (last) {
4963 mLeftVolFloat = mRightVolFloat = -1.0;
4964 if (mHwPaused) {
4965 doHwResume = true;
4966 mHwPaused = false;
4967 }
4968 }
4969 }
4970
4971 // The first time a track is added we wait
4972 // for all its buffers to be filled before processing it.
4973 // Allow draining the buffer in case the client
4974 // app does not call stop() and relies on underrun to stop:
4975 // hence the test on (track->mRetryCount > 1).
4976 // If retryCount<=1 then track is about to underrun and be removed.
4977 // Do not use a high threshold for compressed audio.
4978 uint32_t minFrames;
4979 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4980 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4981 minFrames = mNormalFrameCount;
4982 } else {
4983 minFrames = 1;
4984 }
4985
4986 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4987 !track->isStopping_2() && !track->isStopped())
4988 {
4989 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4990
4991 if (track->mFillingUpStatus == Track::FS_FILLED) {
4992 track->mFillingUpStatus = Track::FS_ACTIVE;
4993 if (last) {
4994 // make sure processVolume_l() will apply new volume even if 0
4995 mLeftVolFloat = mRightVolFloat = -1.0;
4996 }
4997 if (!mHwSupportsPause) {
4998 track->resumeAck();
4999 }
5000 }
5001
5002 // compute volume for this track
5003 processVolume_l(track, last);
5004 if (last) {
5005 sp<Track> previousTrack = mPreviousTrack.promote();
5006 if (previousTrack != 0) {
5007 if (track != previousTrack.get()) {
5008 // Flush any data still being written from last track
5009 mBytesRemaining = 0;
5010 // Invalidate previous track to force a seek when resuming.
5011 previousTrack->invalidate();
5012 }
5013 }
5014 mPreviousTrack = track;
5015
5016 // reset retry count
5017 track->mRetryCount = kMaxTrackRetriesDirect;
5018 mActiveTrack = t;
5019 mixerStatus = MIXER_TRACKS_READY;
5020 if (mHwPaused) {
5021 doHwResume = true;
5022 mHwPaused = false;
5023 }
5024 }
5025 } else {
5026 // clear effect chain input buffer if the last active track started underruns
5027 // to avoid sending previous audio buffer again to effects
5028 if (!mEffectChains.isEmpty() && last) {
5029 mEffectChains[0]->clearInputBuffer();
5030 }
5031 if (track->isStopping_1()) {
5032 track->mState = TrackBase::STOPPING_2;
5033 if (last && mHwPaused) {
5034 doHwResume = true;
5035 mHwPaused = false;
5036 }
5037 }
5038 if ((track->sharedBuffer() != 0) || track->isStopped() ||
5039 track->isStopping_2() || track->isPaused()) {
5040 // We have consumed all the buffers of this track.
5041 // Remove it from the list of active tracks.
5042 size_t audioHALFrames;
5043 if (audio_has_proportional_frames(mFormat)) {
5044 audioHALFrames = (latency_l() * mSampleRate) / 1000;
5045 } else {
5046 audioHALFrames = 0;
5047 }
5048
5049 int64_t framesWritten = mBytesWritten / mFrameSize;
5050 if (mStandby || !last ||
5051 track->presentationComplete(framesWritten, audioHALFrames)) {
5052 if (track->isStopping_2()) {
5053 track->mState = TrackBase::STOPPED;
5054 }
5055 if (track->isStopped()) {
5056 track->reset();
5057 }
5058 tracksToRemove->add(track);
5059 }
5060 } else {
5061 // No buffers for this track. Give it a few chances to
5062 // fill a buffer, then remove it from active list.
5063 // Only consider last track started for mixer state control
5064 if (--(track->mRetryCount) <= 0) {
5065 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
5066 tracksToRemove->add(track);
5067 // indicate to client process that the track was disabled because of underrun;
5068 // it will then automatically call start() when data is available
5069 track->disable();
5070 } else if (last) {
5071 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5072 "minFrames = %u, mFormat = %#x",
5073 track->framesReady(), minFrames, mFormat);
5074 mixerStatus = MIXER_TRACKS_ENABLED;
5075 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5076 doHwPause = true;
5077 mHwPaused = true;
5078 }
5079 }
5080 }
5081 }
5082 }
5083
5084 // if an active track did not command a flush, check for pending flush on stopped tracks
5085 if (!mFlushPending) {
5086 for (size_t i = 0; i < mTracks.size(); i++) {
5087 if (mTracks[i]->isFlushPending()) {
5088 mTracks[i]->flushAck();
5089 mFlushPending = true;
5090 }
5091 }
5092 }
5093
5094 // make sure the pause/flush/resume sequence is executed in the right order.
5095 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5096 // before flush and then resume HW. This can happen in case of pause/flush/resume
5097 // if resume is received before pause is executed.
5098 if (mHwSupportsPause && !mStandby &&
5099 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5100 status_t result = mOutput->stream->pause();
5101 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5102 }
5103 if (mFlushPending) {
5104 flushHw_l();
5105 }
5106 if (mHwSupportsPause && !mStandby && doHwResume) {
5107 status_t result = mOutput->stream->resume();
5108 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5109 }
5110 // remove all the tracks that need to be...
5111 removeTracks_l(*tracksToRemove);
5112
5113 return mixerStatus;
5114 }
5115
threadLoop_mix()5116 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5117 {
5118 size_t frameCount = mFrameCount;
5119 int8_t *curBuf = (int8_t *)mSinkBuffer;
5120 // output audio to hardware
5121 while (frameCount) {
5122 AudioBufferProvider::Buffer buffer;
5123 buffer.frameCount = frameCount;
5124 status_t status = mActiveTrack->getNextBuffer(&buffer);
5125 if (status != NO_ERROR || buffer.raw == NULL) {
5126 // no need to pad with 0 for compressed audio
5127 if (audio_has_proportional_frames(mFormat)) {
5128 memset(curBuf, 0, frameCount * mFrameSize);
5129 }
5130 break;
5131 }
5132 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5133 frameCount -= buffer.frameCount;
5134 curBuf += buffer.frameCount * mFrameSize;
5135 mActiveTrack->releaseBuffer(&buffer);
5136 }
5137 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5138 mSleepTimeUs = 0;
5139 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5140 mActiveTrack.clear();
5141 }
5142
threadLoop_sleepTime()5143 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5144 {
5145 // do not write to HAL when paused
5146 if (mHwPaused || (usesHwAvSync() && mStandby)) {
5147 mSleepTimeUs = mIdleSleepTimeUs;
5148 return;
5149 }
5150 if (mSleepTimeUs == 0) {
5151 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5152 mSleepTimeUs = mActiveSleepTimeUs;
5153 } else {
5154 mSleepTimeUs = mIdleSleepTimeUs;
5155 }
5156 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5157 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5158 mSleepTimeUs = 0;
5159 }
5160 }
5161
threadLoop_exit()5162 void AudioFlinger::DirectOutputThread::threadLoop_exit()
5163 {
5164 {
5165 Mutex::Autolock _l(mLock);
5166 for (size_t i = 0; i < mTracks.size(); i++) {
5167 if (mTracks[i]->isFlushPending()) {
5168 mTracks[i]->flushAck();
5169 mFlushPending = true;
5170 }
5171 }
5172 if (mFlushPending) {
5173 flushHw_l();
5174 }
5175 }
5176 PlaybackThread::threadLoop_exit();
5177 }
5178
5179 // must be called with thread mutex locked
shouldStandby_l()5180 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5181 {
5182 bool trackPaused = false;
5183 bool trackStopped = false;
5184
5185 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5186 return !mStandby;
5187 }
5188
5189 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5190 // after a timeout and we will enter standby then.
5191 if (mTracks.size() > 0) {
5192 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5193 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5194 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5195 }
5196
5197 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5198 }
5199
5200 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,audio_session_t sessionId __unused,uid_t uid)5201 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5202 audio_format_t format __unused, audio_session_t sessionId __unused, uid_t uid)
5203 {
5204 if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
5205 return -1;
5206 }
5207 return 0;
5208 }
5209
5210 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)5211 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5212 {
5213 }
5214
5215 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5216 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5217 status_t& status)
5218 {
5219 bool reconfig = false;
5220 bool a2dpDeviceChanged = false;
5221
5222 status = NO_ERROR;
5223
5224 AudioParameter param = AudioParameter(keyValuePair);
5225 int value;
5226 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5227 // forward device change to effects that have requested to be
5228 // aware of attached audio device.
5229 if (value != AUDIO_DEVICE_NONE) {
5230 a2dpDeviceChanged =
5231 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5232 mOutDevice = value;
5233 for (size_t i = 0; i < mEffectChains.size(); i++) {
5234 mEffectChains[i]->setDevice_l(mOutDevice);
5235 }
5236 }
5237 }
5238 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5239 // do not accept frame count changes if tracks are open as the track buffer
5240 // size depends on frame count and correct behavior would not be garantied
5241 // if frame count is changed after track creation
5242 if (!mTracks.isEmpty()) {
5243 status = INVALID_OPERATION;
5244 } else {
5245 reconfig = true;
5246 }
5247 }
5248 if (status == NO_ERROR) {
5249 status = mOutput->stream->setParameters(keyValuePair);
5250 if (!mStandby && status == INVALID_OPERATION) {
5251 mOutput->standby();
5252 mStandby = true;
5253 mBytesWritten = 0;
5254 status = mOutput->stream->setParameters(keyValuePair);
5255 }
5256 if (status == NO_ERROR && reconfig) {
5257 readOutputParameters_l();
5258 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5259 }
5260 }
5261
5262 return reconfig || a2dpDeviceChanged;
5263 }
5264
activeSleepTimeUs() const5265 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5266 {
5267 uint32_t time;
5268 if (audio_has_proportional_frames(mFormat)) {
5269 time = PlaybackThread::activeSleepTimeUs();
5270 } else {
5271 time = kDirectMinSleepTimeUs;
5272 }
5273 return time;
5274 }
5275
idleSleepTimeUs() const5276 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5277 {
5278 uint32_t time;
5279 if (audio_has_proportional_frames(mFormat)) {
5280 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5281 } else {
5282 time = kDirectMinSleepTimeUs;
5283 }
5284 return time;
5285 }
5286
suspendSleepTimeUs() const5287 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5288 {
5289 uint32_t time;
5290 if (audio_has_proportional_frames(mFormat)) {
5291 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5292 } else {
5293 time = kDirectMinSleepTimeUs;
5294 }
5295 return time;
5296 }
5297
cacheParameters_l()5298 void AudioFlinger::DirectOutputThread::cacheParameters_l()
5299 {
5300 PlaybackThread::cacheParameters_l();
5301
5302 // use shorter standby delay as on normal output to release
5303 // hardware resources as soon as possible
5304 // no delay on outputs with HW A/V sync
5305 if (usesHwAvSync()) {
5306 mStandbyDelayNs = 0;
5307 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5308 mStandbyDelayNs = kOffloadStandbyDelayNs;
5309 } else {
5310 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5311 }
5312 }
5313
flushHw_l()5314 void AudioFlinger::DirectOutputThread::flushHw_l()
5315 {
5316 mOutput->flush();
5317 mHwPaused = false;
5318 mFlushPending = false;
5319 }
5320
computeWaitTimeNs_l() const5321 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
5322 // If a VolumeShaper is active, we must wake up periodically to update volume.
5323 const int64_t NS_PER_MS = 1000000;
5324 return mVolumeShaperActive ?
5325 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
5326 }
5327
5328 // ----------------------------------------------------------------------------
5329
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)5330 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5331 const wp<AudioFlinger::PlaybackThread>& playbackThread)
5332 : Thread(false /*canCallJava*/),
5333 mPlaybackThread(playbackThread),
5334 mWriteAckSequence(0),
5335 mDrainSequence(0),
5336 mAsyncError(false)
5337 {
5338 }
5339
~AsyncCallbackThread()5340 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5341 {
5342 }
5343
onFirstRef()5344 void AudioFlinger::AsyncCallbackThread::onFirstRef()
5345 {
5346 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5347 }
5348
threadLoop()5349 bool AudioFlinger::AsyncCallbackThread::threadLoop()
5350 {
5351 while (!exitPending()) {
5352 uint32_t writeAckSequence;
5353 uint32_t drainSequence;
5354 bool asyncError;
5355
5356 {
5357 Mutex::Autolock _l(mLock);
5358 while (!((mWriteAckSequence & 1) ||
5359 (mDrainSequence & 1) ||
5360 mAsyncError ||
5361 exitPending())) {
5362 mWaitWorkCV.wait(mLock);
5363 }
5364
5365 if (exitPending()) {
5366 break;
5367 }
5368 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5369 mWriteAckSequence, mDrainSequence);
5370 writeAckSequence = mWriteAckSequence;
5371 mWriteAckSequence &= ~1;
5372 drainSequence = mDrainSequence;
5373 mDrainSequence &= ~1;
5374 asyncError = mAsyncError;
5375 mAsyncError = false;
5376 }
5377 {
5378 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5379 if (playbackThread != 0) {
5380 if (writeAckSequence & 1) {
5381 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5382 }
5383 if (drainSequence & 1) {
5384 playbackThread->resetDraining(drainSequence >> 1);
5385 }
5386 if (asyncError) {
5387 playbackThread->onAsyncError();
5388 }
5389 }
5390 }
5391 }
5392 return false;
5393 }
5394
exit()5395 void AudioFlinger::AsyncCallbackThread::exit()
5396 {
5397 ALOGV("AsyncCallbackThread::exit");
5398 Mutex::Autolock _l(mLock);
5399 requestExit();
5400 mWaitWorkCV.broadcast();
5401 }
5402
setWriteBlocked(uint32_t sequence)5403 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5404 {
5405 Mutex::Autolock _l(mLock);
5406 // bit 0 is cleared
5407 mWriteAckSequence = sequence << 1;
5408 }
5409
resetWriteBlocked()5410 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5411 {
5412 Mutex::Autolock _l(mLock);
5413 // ignore unexpected callbacks
5414 if (mWriteAckSequence & 2) {
5415 mWriteAckSequence |= 1;
5416 mWaitWorkCV.signal();
5417 }
5418 }
5419
setDraining(uint32_t sequence)5420 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5421 {
5422 Mutex::Autolock _l(mLock);
5423 // bit 0 is cleared
5424 mDrainSequence = sequence << 1;
5425 }
5426
resetDraining()5427 void AudioFlinger::AsyncCallbackThread::resetDraining()
5428 {
5429 Mutex::Autolock _l(mLock);
5430 // ignore unexpected callbacks
5431 if (mDrainSequence & 2) {
5432 mDrainSequence |= 1;
5433 mWaitWorkCV.signal();
5434 }
5435 }
5436
setAsyncError()5437 void AudioFlinger::AsyncCallbackThread::setAsyncError()
5438 {
5439 Mutex::Autolock _l(mLock);
5440 mAsyncError = true;
5441 mWaitWorkCV.signal();
5442 }
5443
5444
5445 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)5446 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5447 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5448 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5449 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
5450 mOffloadUnderrunPosition(~0LL)
5451 {
5452 //FIXME: mStandby should be set to true by ThreadBase constructor
5453 mStandby = true;
5454 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5455 }
5456
threadLoop_exit()5457 void AudioFlinger::OffloadThread::threadLoop_exit()
5458 {
5459 if (mFlushPending || mHwPaused) {
5460 // If a flush is pending or track was paused, just discard buffered data
5461 flushHw_l();
5462 } else {
5463 mMixerStatus = MIXER_DRAIN_ALL;
5464 threadLoop_drain();
5465 }
5466 if (mUseAsyncWrite) {
5467 ALOG_ASSERT(mCallbackThread != 0);
5468 mCallbackThread->exit();
5469 }
5470 PlaybackThread::threadLoop_exit();
5471 }
5472
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5473 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5474 Vector< sp<Track> > *tracksToRemove
5475 )
5476 {
5477 size_t count = mActiveTracks.size();
5478
5479 mixer_state mixerStatus = MIXER_IDLE;
5480 bool doHwPause = false;
5481 bool doHwResume = false;
5482
5483 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5484
5485 // find out which tracks need to be processed
5486 for (const sp<Track> &t : mActiveTracks) {
5487 Track* const track = t.get();
5488 #ifdef VERY_VERY_VERBOSE_LOGGING
5489 audio_track_cblk_t* cblk = track->cblk();
5490 #endif
5491 // Only consider last track started for volume and mixer state control.
5492 // In theory an older track could underrun and restart after the new one starts
5493 // but as we only care about the transition phase between two tracks on a
5494 // direct output, it is not a problem to ignore the underrun case.
5495 sp<Track> l = mActiveTracks.getLatest();
5496 bool last = l.get() == track;
5497
5498 if (track->isInvalid()) {
5499 ALOGW("An invalidated track shouldn't be in active list");
5500 tracksToRemove->add(track);
5501 continue;
5502 }
5503
5504 if (track->mState == TrackBase::IDLE) {
5505 ALOGW("An idle track shouldn't be in active list");
5506 continue;
5507 }
5508
5509 if (track->isPausing()) {
5510 track->setPaused();
5511 if (last) {
5512 if (mHwSupportsPause && !mHwPaused) {
5513 doHwPause = true;
5514 mHwPaused = true;
5515 }
5516 // If we were part way through writing the mixbuffer to
5517 // the HAL we must save this until we resume
5518 // BUG - this will be wrong if a different track is made active,
5519 // in that case we want to discard the pending data in the
5520 // mixbuffer and tell the client to present it again when the
5521 // track is resumed
5522 mPausedWriteLength = mCurrentWriteLength;
5523 mPausedBytesRemaining = mBytesRemaining;
5524 mBytesRemaining = 0; // stop writing
5525 }
5526 tracksToRemove->add(track);
5527 } else if (track->isFlushPending()) {
5528 if (track->isStopping_1()) {
5529 track->mRetryCount = kMaxTrackStopRetriesOffload;
5530 } else {
5531 track->mRetryCount = kMaxTrackRetriesOffload;
5532 }
5533 track->flushAck();
5534 if (last) {
5535 mFlushPending = true;
5536 }
5537 } else if (track->isResumePending()){
5538 track->resumeAck();
5539 if (last) {
5540 if (mPausedBytesRemaining) {
5541 // Need to continue write that was interrupted
5542 mCurrentWriteLength = mPausedWriteLength;
5543 mBytesRemaining = mPausedBytesRemaining;
5544 mPausedBytesRemaining = 0;
5545 }
5546 if (mHwPaused) {
5547 doHwResume = true;
5548 mHwPaused = false;
5549 // threadLoop_mix() will handle the case that we need to
5550 // resume an interrupted write
5551 }
5552 // enable write to audio HAL
5553 mSleepTimeUs = 0;
5554
5555 mLeftVolFloat = mRightVolFloat = -1.0;
5556
5557 // Do not handle new data in this iteration even if track->framesReady()
5558 mixerStatus = MIXER_TRACKS_ENABLED;
5559 }
5560 } else if (track->framesReady() && track->isReady() &&
5561 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5562 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5563 if (track->mFillingUpStatus == Track::FS_FILLED) {
5564 track->mFillingUpStatus = Track::FS_ACTIVE;
5565 if (last) {
5566 // make sure processVolume_l() will apply new volume even if 0
5567 mLeftVolFloat = mRightVolFloat = -1.0;
5568 }
5569 }
5570
5571 if (last) {
5572 sp<Track> previousTrack = mPreviousTrack.promote();
5573 if (previousTrack != 0) {
5574 if (track != previousTrack.get()) {
5575 // Flush any data still being written from last track
5576 mBytesRemaining = 0;
5577 if (mPausedBytesRemaining) {
5578 // Last track was paused so we also need to flush saved
5579 // mixbuffer state and invalidate track so that it will
5580 // re-submit that unwritten data when it is next resumed
5581 mPausedBytesRemaining = 0;
5582 // Invalidate is a bit drastic - would be more efficient
5583 // to have a flag to tell client that some of the
5584 // previously written data was lost
5585 previousTrack->invalidate();
5586 }
5587 // flush data already sent to the DSP if changing audio session as audio
5588 // comes from a different source. Also invalidate previous track to force a
5589 // seek when resuming.
5590 if (previousTrack->sessionId() != track->sessionId()) {
5591 previousTrack->invalidate();
5592 }
5593 }
5594 }
5595 mPreviousTrack = track;
5596 // reset retry count
5597 if (track->isStopping_1()) {
5598 track->mRetryCount = kMaxTrackStopRetriesOffload;
5599 } else {
5600 track->mRetryCount = kMaxTrackRetriesOffload;
5601 }
5602 mActiveTrack = t;
5603 mixerStatus = MIXER_TRACKS_READY;
5604 }
5605 } else {
5606 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5607 if (track->isStopping_1()) {
5608 if (--(track->mRetryCount) <= 0) {
5609 // Hardware buffer can hold a large amount of audio so we must
5610 // wait for all current track's data to drain before we say
5611 // that the track is stopped.
5612 if (mBytesRemaining == 0) {
5613 // Only start draining when all data in mixbuffer
5614 // has been written
5615 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5616 track->mState = TrackBase::STOPPING_2; // so presentation completes after
5617 // drain do not drain if no data was ever sent to HAL (mStandby == true)
5618 if (last && !mStandby) {
5619 // do not modify drain sequence if we are already draining. This happens
5620 // when resuming from pause after drain.
5621 if ((mDrainSequence & 1) == 0) {
5622 mSleepTimeUs = 0;
5623 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5624 mixerStatus = MIXER_DRAIN_TRACK;
5625 mDrainSequence += 2;
5626 }
5627 if (mHwPaused) {
5628 // It is possible to move from PAUSED to STOPPING_1 without
5629 // a resume so we must ensure hardware is running
5630 doHwResume = true;
5631 mHwPaused = false;
5632 }
5633 }
5634 }
5635 } else if (last) {
5636 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5637 mixerStatus = MIXER_TRACKS_ENABLED;
5638 }
5639 } else if (track->isStopping_2()) {
5640 // Drain has completed or we are in standby, signal presentation complete
5641 if (!(mDrainSequence & 1) || !last || mStandby) {
5642 track->mState = TrackBase::STOPPED;
5643 uint32_t latency = 0;
5644 status_t result = mOutput->stream->getLatency(&latency);
5645 ALOGE_IF(result != OK,
5646 "Error when retrieving output stream latency: %d", result);
5647 size_t audioHALFrames = (latency * mSampleRate) / 1000;
5648 int64_t framesWritten =
5649 mBytesWritten / mOutput->getFrameSize();
5650 track->presentationComplete(framesWritten, audioHALFrames);
5651 track->reset();
5652 tracksToRemove->add(track);
5653 }
5654 } else {
5655 // No buffers for this track. Give it a few chances to
5656 // fill a buffer, then remove it from active list.
5657 if (--(track->mRetryCount) <= 0) {
5658 bool running = false;
5659 uint64_t position = 0;
5660 struct timespec unused;
5661 // The running check restarts the retry counter at least once.
5662 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
5663 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
5664 running = true;
5665 mOffloadUnderrunPosition = position;
5666 }
5667 if (ret == NO_ERROR) {
5668 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
5669 (long long)position, (long long)mOffloadUnderrunPosition);
5670 }
5671 if (running) { // still running, give us more time.
5672 track->mRetryCount = kMaxTrackRetriesOffload;
5673 } else {
5674 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5675 track->name());
5676 tracksToRemove->add(track);
5677 // tell client process that the track was disabled because of underrun;
5678 // it will then automatically call start() when data is available
5679 track->disable();
5680 }
5681 } else if (last){
5682 mixerStatus = MIXER_TRACKS_ENABLED;
5683 }
5684 }
5685 }
5686 // compute volume for this track
5687 processVolume_l(track, last);
5688 }
5689
5690 // make sure the pause/flush/resume sequence is executed in the right order.
5691 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5692 // before flush and then resume HW. This can happen in case of pause/flush/resume
5693 // if resume is received before pause is executed.
5694 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5695 status_t result = mOutput->stream->pause();
5696 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5697 }
5698 if (mFlushPending) {
5699 flushHw_l();
5700 }
5701 if (!mStandby && doHwResume) {
5702 status_t result = mOutput->stream->resume();
5703 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5704 }
5705
5706 // remove all the tracks that need to be...
5707 removeTracks_l(*tracksToRemove);
5708
5709 return mixerStatus;
5710 }
5711
5712 // must be called with thread mutex locked
waitingAsyncCallback_l()5713 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5714 {
5715 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5716 mWriteAckSequence, mDrainSequence);
5717 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5718 return true;
5719 }
5720 return false;
5721 }
5722
waitingAsyncCallback()5723 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5724 {
5725 Mutex::Autolock _l(mLock);
5726 return waitingAsyncCallback_l();
5727 }
5728
flushHw_l()5729 void AudioFlinger::OffloadThread::flushHw_l()
5730 {
5731 DirectOutputThread::flushHw_l();
5732 // Flush anything still waiting in the mixbuffer
5733 mCurrentWriteLength = 0;
5734 mBytesRemaining = 0;
5735 mPausedWriteLength = 0;
5736 mPausedBytesRemaining = 0;
5737 // reset bytes written count to reflect that DSP buffers are empty after flush.
5738 mBytesWritten = 0;
5739 mOffloadUnderrunPosition = ~0LL;
5740
5741 if (mUseAsyncWrite) {
5742 // discard any pending drain or write ack by incrementing sequence
5743 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5744 mDrainSequence = (mDrainSequence + 2) & ~1;
5745 ALOG_ASSERT(mCallbackThread != 0);
5746 mCallbackThread->setWriteBlocked(mWriteAckSequence);
5747 mCallbackThread->setDraining(mDrainSequence);
5748 }
5749 }
5750
invalidateTracks(audio_stream_type_t streamType)5751 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5752 {
5753 Mutex::Autolock _l(mLock);
5754 if (PlaybackThread::invalidateTracks_l(streamType)) {
5755 mFlushPending = true;
5756 }
5757 }
5758
5759 // ----------------------------------------------------------------------------
5760
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)5761 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5762 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5763 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5764 systemReady, DUPLICATING),
5765 mWaitTimeMs(UINT_MAX)
5766 {
5767 addOutputTrack(mainThread);
5768 }
5769
~DuplicatingThread()5770 AudioFlinger::DuplicatingThread::~DuplicatingThread()
5771 {
5772 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5773 mOutputTracks[i]->destroy();
5774 }
5775 }
5776
threadLoop_mix()5777 void AudioFlinger::DuplicatingThread::threadLoop_mix()
5778 {
5779 // mix buffers...
5780 if (outputsReady(outputTracks)) {
5781 mAudioMixer->process();
5782 } else {
5783 if (mMixerBufferValid) {
5784 memset(mMixerBuffer, 0, mMixerBufferSize);
5785 } else {
5786 memset(mSinkBuffer, 0, mSinkBufferSize);
5787 }
5788 }
5789 mSleepTimeUs = 0;
5790 writeFrames = mNormalFrameCount;
5791 mCurrentWriteLength = mSinkBufferSize;
5792 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5793 }
5794
threadLoop_sleepTime()5795 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5796 {
5797 if (mSleepTimeUs == 0) {
5798 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5799 mSleepTimeUs = mActiveSleepTimeUs;
5800 } else {
5801 mSleepTimeUs = mIdleSleepTimeUs;
5802 }
5803 } else if (mBytesWritten != 0) {
5804 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5805 writeFrames = mNormalFrameCount;
5806 memset(mSinkBuffer, 0, mSinkBufferSize);
5807 } else {
5808 // flush remaining overflow buffers in output tracks
5809 writeFrames = 0;
5810 }
5811 mSleepTimeUs = 0;
5812 }
5813 }
5814
threadLoop_write()5815 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5816 {
5817 for (size_t i = 0; i < outputTracks.size(); i++) {
5818 outputTracks[i]->write(mSinkBuffer, writeFrames);
5819 }
5820 mStandby = false;
5821 return (ssize_t)mSinkBufferSize;
5822 }
5823
threadLoop_standby()5824 void AudioFlinger::DuplicatingThread::threadLoop_standby()
5825 {
5826 // DuplicatingThread implements standby by stopping all tracks
5827 for (size_t i = 0; i < outputTracks.size(); i++) {
5828 outputTracks[i]->stop();
5829 }
5830 }
5831
saveOutputTracks()5832 void AudioFlinger::DuplicatingThread::saveOutputTracks()
5833 {
5834 outputTracks = mOutputTracks;
5835 }
5836
clearOutputTracks()5837 void AudioFlinger::DuplicatingThread::clearOutputTracks()
5838 {
5839 outputTracks.clear();
5840 }
5841
addOutputTrack(MixerThread * thread)5842 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5843 {
5844 Mutex::Autolock _l(mLock);
5845 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5846 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5847 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5848 const size_t frameCount =
5849 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5850 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5851 // from different OutputTracks and their associated MixerThreads (e.g. one may
5852 // nearly empty and the other may be dropping data).
5853
5854 sp<OutputTrack> outputTrack = new OutputTrack(thread,
5855 this,
5856 mSampleRate,
5857 mFormat,
5858 mChannelMask,
5859 frameCount,
5860 IPCThreadState::self()->getCallingUid());
5861 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
5862 if (status != NO_ERROR) {
5863 ALOGE("addOutputTrack() initCheck failed %d", status);
5864 return;
5865 }
5866 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5867 mOutputTracks.add(outputTrack);
5868 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5869 updateWaitTime_l();
5870 }
5871
removeOutputTrack(MixerThread * thread)5872 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5873 {
5874 Mutex::Autolock _l(mLock);
5875 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5876 if (mOutputTracks[i]->thread() == thread) {
5877 mOutputTracks[i]->destroy();
5878 mOutputTracks.removeAt(i);
5879 updateWaitTime_l();
5880 if (thread->getOutput() == mOutput) {
5881 mOutput = NULL;
5882 }
5883 return;
5884 }
5885 }
5886 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5887 }
5888
5889 // caller must hold mLock
updateWaitTime_l()5890 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5891 {
5892 mWaitTimeMs = UINT_MAX;
5893 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5894 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5895 if (strong != 0) {
5896 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5897 if (waitTimeMs < mWaitTimeMs) {
5898 mWaitTimeMs = waitTimeMs;
5899 }
5900 }
5901 }
5902 }
5903
5904
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)5905 bool AudioFlinger::DuplicatingThread::outputsReady(
5906 const SortedVector< sp<OutputTrack> > &outputTracks)
5907 {
5908 for (size_t i = 0; i < outputTracks.size(); i++) {
5909 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5910 if (thread == 0) {
5911 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5912 outputTracks[i].get());
5913 return false;
5914 }
5915 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5916 // see note at standby() declaration
5917 if (playbackThread->standby() && !playbackThread->isSuspended()) {
5918 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5919 thread.get());
5920 return false;
5921 }
5922 }
5923 return true;
5924 }
5925
activeSleepTimeUs() const5926 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5927 {
5928 return (mWaitTimeMs * 1000) / 2;
5929 }
5930
cacheParameters_l()5931 void AudioFlinger::DuplicatingThread::cacheParameters_l()
5932 {
5933 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5934 updateWaitTime_l();
5935
5936 MixerThread::cacheParameters_l();
5937 }
5938
5939
5940 // ----------------------------------------------------------------------------
5941 // Record
5942 // ----------------------------------------------------------------------------
5943
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady,const sp<NBAIO_Sink> & teeSink)5944 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5945 AudioStreamIn *input,
5946 audio_io_handle_t id,
5947 audio_devices_t outDevice,
5948 audio_devices_t inDevice,
5949 bool systemReady
5950 #ifdef TEE_SINK
5951 , const sp<NBAIO_Sink>& teeSink
5952 #endif
5953 ) :
5954 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5955 mInput(input),
5956 mActiveTracks(&this->mLocalLog),
5957 mRsmpInBuffer(NULL),
5958 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
5959 mRsmpInRear(0)
5960 #ifdef TEE_SINK
5961 , mTeeSink(teeSink)
5962 #endif
5963 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5964 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5965 // mFastCapture below
5966 , mFastCaptureFutex(0)
5967 // mInputSource
5968 // mPipeSink
5969 // mPipeSource
5970 , mPipeFramesP2(0)
5971 // mPipeMemory
5972 // mFastCaptureNBLogWriter
5973 , mFastTrackAvail(false)
5974 , mBtNrecSuspended(false)
5975 {
5976 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5977 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5978
5979 readInputParameters_l();
5980
5981 // create an NBAIO source for the HAL input stream, and negotiate
5982 mInputSource = new AudioStreamInSource(input->stream);
5983 size_t numCounterOffers = 0;
5984 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5985 #if !LOG_NDEBUG
5986 ssize_t index =
5987 #else
5988 (void)
5989 #endif
5990 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5991 ALOG_ASSERT(index == 0);
5992
5993 // initialize fast capture depending on configuration
5994 bool initFastCapture;
5995 switch (kUseFastCapture) {
5996 case FastCapture_Never:
5997 initFastCapture = false;
5998 ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
5999 break;
6000 case FastCapture_Always:
6001 initFastCapture = true;
6002 ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
6003 break;
6004 case FastCapture_Static:
6005 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
6006 ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
6007 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
6008 initFastCapture);
6009 break;
6010 // case FastCapture_Dynamic:
6011 }
6012
6013 if (initFastCapture) {
6014 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
6015 NBAIO_Format format = mInputSource->format();
6016 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
6017 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
6018 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
6019 void *pipeBuffer = nullptr;
6020 const sp<MemoryDealer> roHeap(readOnlyHeap());
6021 sp<IMemory> pipeMemory;
6022 if ((roHeap == 0) ||
6023 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
6024 (pipeBuffer = pipeMemory->pointer()) == nullptr) {
6025 ALOGE("not enough memory for pipe buffer size=%zu; "
6026 "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
6027 pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
6028 (long long)kRecordThreadReadOnlyHeapSize);
6029 goto failed;
6030 }
6031 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
6032 memset(pipeBuffer, 0, pipeSize);
6033 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
6034 const NBAIO_Format offers[1] = {format};
6035 size_t numCounterOffers = 0;
6036 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
6037 ALOG_ASSERT(index == 0);
6038 mPipeSink = pipe;
6039 PipeReader *pipeReader = new PipeReader(*pipe);
6040 numCounterOffers = 0;
6041 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
6042 ALOG_ASSERT(index == 0);
6043 mPipeSource = pipeReader;
6044 mPipeFramesP2 = pipeFramesP2;
6045 mPipeMemory = pipeMemory;
6046
6047 // create fast capture
6048 mFastCapture = new FastCapture();
6049 FastCaptureStateQueue *sq = mFastCapture->sq();
6050 #ifdef STATE_QUEUE_DUMP
6051 // FIXME
6052 #endif
6053 FastCaptureState *state = sq->begin();
6054 state->mCblk = NULL;
6055 state->mInputSource = mInputSource.get();
6056 state->mInputSourceGen++;
6057 state->mPipeSink = pipe;
6058 state->mPipeSinkGen++;
6059 state->mFrameCount = mFrameCount;
6060 state->mCommand = FastCaptureState::COLD_IDLE;
6061 // already done in constructor initialization list
6062 //mFastCaptureFutex = 0;
6063 state->mColdFutexAddr = &mFastCaptureFutex;
6064 state->mColdGen++;
6065 state->mDumpState = &mFastCaptureDumpState;
6066 #ifdef TEE_SINK
6067 // FIXME
6068 #endif
6069 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6070 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6071 sq->end();
6072 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6073
6074 // start the fast capture
6075 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
6076 pid_t tid = mFastCapture->getTid();
6077 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture, false /*forApp*/);
6078 stream()->setHalThreadPriority(kPriorityFastCapture);
6079 #ifdef AUDIO_WATCHDOG
6080 // FIXME
6081 #endif
6082
6083 mFastTrackAvail = true;
6084 }
6085 failed: ;
6086
6087 // FIXME mNormalSource
6088 }
6089
~RecordThread()6090 AudioFlinger::RecordThread::~RecordThread()
6091 {
6092 if (mFastCapture != 0) {
6093 FastCaptureStateQueue *sq = mFastCapture->sq();
6094 FastCaptureState *state = sq->begin();
6095 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6096 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6097 if (old == -1) {
6098 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6099 }
6100 }
6101 state->mCommand = FastCaptureState::EXIT;
6102 sq->end();
6103 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6104 mFastCapture->join();
6105 mFastCapture.clear();
6106 }
6107 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6108 mAudioFlinger->unregisterWriter(mNBLogWriter);
6109 free(mRsmpInBuffer);
6110 }
6111
onFirstRef()6112 void AudioFlinger::RecordThread::onFirstRef()
6113 {
6114 run(mThreadName, PRIORITY_URGENT_AUDIO);
6115 }
6116
preExit()6117 void AudioFlinger::RecordThread::preExit()
6118 {
6119 ALOGV(" preExit()");
6120 Mutex::Autolock _l(mLock);
6121 for (size_t i = 0; i < mTracks.size(); i++) {
6122 sp<RecordTrack> track = mTracks[i];
6123 track->invalidate();
6124 }
6125 mActiveTracks.clear();
6126 mStartStopCond.broadcast();
6127 }
6128
threadLoop()6129 bool AudioFlinger::RecordThread::threadLoop()
6130 {
6131 nsecs_t lastWarning = 0;
6132
6133 inputStandBy();
6134
6135 reacquire_wakelock:
6136 sp<RecordTrack> activeTrack;
6137 {
6138 Mutex::Autolock _l(mLock);
6139 acquireWakeLock_l();
6140 }
6141
6142 // used to request a deferred sleep, to be executed later while mutex is unlocked
6143 uint32_t sleepUs = 0;
6144
6145 // loop while there is work to do
6146 for (;;) {
6147 Vector< sp<EffectChain> > effectChains;
6148
6149 // activeTracks accumulates a copy of a subset of mActiveTracks
6150 Vector< sp<RecordTrack> > activeTracks;
6151
6152 // reference to the (first and only) active fast track
6153 sp<RecordTrack> fastTrack;
6154
6155 // reference to a fast track which is about to be removed
6156 sp<RecordTrack> fastTrackToRemove;
6157
6158 { // scope for mLock
6159 Mutex::Autolock _l(mLock);
6160
6161 processConfigEvents_l();
6162
6163 // check exitPending here because checkForNewParameters_l() and
6164 // checkForNewParameters_l() can temporarily release mLock
6165 if (exitPending()) {
6166 break;
6167 }
6168
6169 // sleep with mutex unlocked
6170 if (sleepUs > 0) {
6171 ATRACE_BEGIN("sleepC");
6172 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6173 ATRACE_END();
6174 sleepUs = 0;
6175 continue;
6176 }
6177
6178 // if no active track(s), then standby and release wakelock
6179 size_t size = mActiveTracks.size();
6180 if (size == 0) {
6181 standbyIfNotAlreadyInStandby();
6182 // exitPending() can't become true here
6183 releaseWakeLock_l();
6184 ALOGV("RecordThread: loop stopping");
6185 // go to sleep
6186 mWaitWorkCV.wait(mLock);
6187 ALOGV("RecordThread: loop starting");
6188 goto reacquire_wakelock;
6189 }
6190
6191 bool doBroadcast = false;
6192 bool allStopped = true;
6193 for (size_t i = 0; i < size; ) {
6194
6195 activeTrack = mActiveTracks[i];
6196 if (activeTrack->isTerminated()) {
6197 if (activeTrack->isFastTrack()) {
6198 ALOG_ASSERT(fastTrackToRemove == 0);
6199 fastTrackToRemove = activeTrack;
6200 }
6201 removeTrack_l(activeTrack);
6202 mActiveTracks.remove(activeTrack);
6203 size--;
6204 continue;
6205 }
6206
6207 TrackBase::track_state activeTrackState = activeTrack->mState;
6208 switch (activeTrackState) {
6209
6210 case TrackBase::PAUSING:
6211 mActiveTracks.remove(activeTrack);
6212 doBroadcast = true;
6213 size--;
6214 continue;
6215
6216 case TrackBase::STARTING_1:
6217 sleepUs = 10000;
6218 i++;
6219 allStopped = false;
6220 continue;
6221
6222 case TrackBase::STARTING_2:
6223 doBroadcast = true;
6224 mStandby = false;
6225 activeTrack->mState = TrackBase::ACTIVE;
6226 allStopped = false;
6227 break;
6228
6229 case TrackBase::ACTIVE:
6230 allStopped = false;
6231 break;
6232
6233 case TrackBase::IDLE:
6234 i++;
6235 continue;
6236
6237 default:
6238 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6239 }
6240
6241 activeTracks.add(activeTrack);
6242 i++;
6243
6244 if (activeTrack->isFastTrack()) {
6245 ALOG_ASSERT(!mFastTrackAvail);
6246 ALOG_ASSERT(fastTrack == 0);
6247 fastTrack = activeTrack;
6248 }
6249 }
6250
6251 mActiveTracks.updatePowerState(this);
6252
6253 if (allStopped) {
6254 standbyIfNotAlreadyInStandby();
6255 }
6256 if (doBroadcast) {
6257 mStartStopCond.broadcast();
6258 }
6259
6260 // sleep if there are no active tracks to process
6261 if (activeTracks.size() == 0) {
6262 if (sleepUs == 0) {
6263 sleepUs = kRecordThreadSleepUs;
6264 }
6265 continue;
6266 }
6267 sleepUs = 0;
6268
6269 lockEffectChains_l(effectChains);
6270 }
6271
6272 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6273
6274 size_t size = effectChains.size();
6275 for (size_t i = 0; i < size; i++) {
6276 // thread mutex is not locked, but effect chain is locked
6277 effectChains[i]->process_l();
6278 }
6279
6280 // Push a new fast capture state if fast capture is not already running, or cblk change
6281 if (mFastCapture != 0) {
6282 FastCaptureStateQueue *sq = mFastCapture->sq();
6283 FastCaptureState *state = sq->begin();
6284 bool didModify = false;
6285 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6286 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6287 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6288 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6289 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6290 if (old == -1) {
6291 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6292 }
6293 }
6294 state->mCommand = FastCaptureState::READ_WRITE;
6295 #if 0 // FIXME
6296 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6297 FastThreadDumpState::kSamplingNforLowRamDevice :
6298 FastThreadDumpState::kSamplingN);
6299 #endif
6300 didModify = true;
6301 }
6302 audio_track_cblk_t *cblkOld = state->mCblk;
6303 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6304 if (cblkNew != cblkOld) {
6305 state->mCblk = cblkNew;
6306 // block until acked if removing a fast track
6307 if (cblkOld != NULL) {
6308 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6309 }
6310 didModify = true;
6311 }
6312 sq->end(didModify);
6313 if (didModify) {
6314 sq->push(block);
6315 #if 0
6316 if (kUseFastCapture == FastCapture_Dynamic) {
6317 mNormalSource = mPipeSource;
6318 }
6319 #endif
6320 }
6321 }
6322
6323 // now run the fast track destructor with thread mutex unlocked
6324 fastTrackToRemove.clear();
6325
6326 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6327 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6328 // slow, then this RecordThread will overrun by not calling HAL read often enough.
6329 // If destination is non-contiguous, first read past the nominal end of buffer, then
6330 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
6331
6332 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6333 ssize_t framesRead;
6334
6335 // If an NBAIO source is present, use it to read the normal capture's data
6336 if (mPipeSource != 0) {
6337 size_t framesToRead = mBufferSize / mFrameSize;
6338 framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
6339 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6340 framesToRead);
6341 // since pipe is non-blocking, simulate blocking input by waiting for 1/2 of
6342 // buffer size or at least for 20ms.
6343 size_t sleepFrames = max(
6344 min(mPipeFramesP2, mRsmpInFramesP2) / 2, FMS_20 * mSampleRate / 1000);
6345 if (framesRead <= (ssize_t) sleepFrames) {
6346 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
6347 }
6348 if (framesRead < 0) {
6349 status_t status = (status_t) framesRead;
6350 switch (status) {
6351 case OVERRUN:
6352 ALOGW("overrun on read from pipe");
6353 framesRead = 0;
6354 break;
6355 case NEGOTIATE:
6356 ALOGE("re-negotiation is needed");
6357 framesRead = -1; // Will cause an attempt to recover.
6358 break;
6359 default:
6360 ALOGE("unknown error %d on read from pipe", status);
6361 break;
6362 }
6363 }
6364 // otherwise use the HAL / AudioStreamIn directly
6365 } else {
6366 ATRACE_BEGIN("read");
6367 size_t bytesRead;
6368 status_t result = mInput->stream->read(
6369 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
6370 ATRACE_END();
6371 if (result < 0) {
6372 framesRead = result;
6373 } else {
6374 framesRead = bytesRead / mFrameSize;
6375 }
6376 }
6377
6378 // Update server timestamp with server stats
6379 // systemTime() is optional if the hardware supports timestamps.
6380 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6381 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6382
6383 // Update server timestamp with kernel stats
6384 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
6385 int64_t position, time;
6386 int ret = mInput->stream->getCapturePosition(&position, &time);
6387 if (ret == NO_ERROR) {
6388 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6389 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6390 // Note: In general record buffers should tend to be empty in
6391 // a properly running pipeline.
6392 //
6393 // Also, it is not advantageous to call get_presentation_position during the read
6394 // as the read obtains a lock, preventing the timestamp call from executing.
6395 }
6396 }
6397 // Use this to track timestamp information
6398 // ALOGD("%s", mTimestamp.toString().c_str());
6399
6400 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6401 ALOGE("read failed: framesRead=%zd", framesRead);
6402 // Force input into standby so that it tries to recover at next read attempt
6403 inputStandBy();
6404 sleepUs = kRecordThreadSleepUs;
6405 }
6406 if (framesRead <= 0) {
6407 goto unlock;
6408 }
6409 ALOG_ASSERT(framesRead > 0);
6410
6411 if (mTeeSink != 0) {
6412 (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6413 }
6414 // If destination is non-contiguous, we now correct for reading past end of buffer.
6415 {
6416 size_t part1 = mRsmpInFramesP2 - rear;
6417 if ((size_t) framesRead > part1) {
6418 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6419 (framesRead - part1) * mFrameSize);
6420 }
6421 }
6422 rear = mRsmpInRear += framesRead;
6423
6424 size = activeTracks.size();
6425 // loop over each active track
6426 for (size_t i = 0; i < size; i++) {
6427 activeTrack = activeTracks[i];
6428
6429 // skip fast tracks, as those are handled directly by FastCapture
6430 if (activeTrack->isFastTrack()) {
6431 continue;
6432 }
6433
6434 // TODO: This code probably should be moved to RecordTrack.
6435 // TODO: Update the activeTrack buffer converter in case of reconfigure.
6436
6437 enum {
6438 OVERRUN_UNKNOWN,
6439 OVERRUN_TRUE,
6440 OVERRUN_FALSE
6441 } overrun = OVERRUN_UNKNOWN;
6442
6443 // loop over getNextBuffer to handle circular sink
6444 for (;;) {
6445
6446 activeTrack->mSink.frameCount = ~0;
6447 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6448 size_t framesOut = activeTrack->mSink.frameCount;
6449 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6450
6451 // check available frames and handle overrun conditions
6452 // if the record track isn't draining fast enough.
6453 bool hasOverrun;
6454 size_t framesIn;
6455 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6456 if (hasOverrun) {
6457 overrun = OVERRUN_TRUE;
6458 }
6459 if (framesOut == 0 || framesIn == 0) {
6460 break;
6461 }
6462
6463 // Don't allow framesOut to be larger than what is possible with resampling
6464 // from framesIn.
6465 // This isn't strictly necessary but helps limit buffer resizing in
6466 // RecordBufferConverter. TODO: remove when no longer needed.
6467 framesOut = min(framesOut,
6468 destinationFramesPossible(
6469 framesIn, mSampleRate, activeTrack->mSampleRate));
6470 // process frames from the RecordThread buffer provider to the RecordTrack buffer
6471 framesOut = activeTrack->mRecordBufferConverter->convert(
6472 activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6473
6474 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6475 overrun = OVERRUN_FALSE;
6476 }
6477
6478 if (activeTrack->mFramesToDrop == 0) {
6479 if (framesOut > 0) {
6480 activeTrack->mSink.frameCount = framesOut;
6481 activeTrack->releaseBuffer(&activeTrack->mSink);
6482 }
6483 } else {
6484 // FIXME could do a partial drop of framesOut
6485 if (activeTrack->mFramesToDrop > 0) {
6486 activeTrack->mFramesToDrop -= framesOut;
6487 if (activeTrack->mFramesToDrop <= 0) {
6488 activeTrack->clearSyncStartEvent();
6489 }
6490 } else {
6491 activeTrack->mFramesToDrop += framesOut;
6492 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6493 activeTrack->mSyncStartEvent->isCancelled()) {
6494 ALOGW("Synced record %s, session %d, trigger session %d",
6495 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6496 activeTrack->sessionId(),
6497 (activeTrack->mSyncStartEvent != 0) ?
6498 activeTrack->mSyncStartEvent->triggerSession() :
6499 AUDIO_SESSION_NONE);
6500 activeTrack->clearSyncStartEvent();
6501 }
6502 }
6503 }
6504
6505 if (framesOut == 0) {
6506 break;
6507 }
6508 }
6509
6510 switch (overrun) {
6511 case OVERRUN_TRUE:
6512 // client isn't retrieving buffers fast enough
6513 if (!activeTrack->setOverflow()) {
6514 nsecs_t now = systemTime();
6515 // FIXME should lastWarning per track?
6516 if ((now - lastWarning) > kWarningThrottleNs) {
6517 ALOGW("RecordThread: buffer overflow");
6518 lastWarning = now;
6519 }
6520 }
6521 break;
6522 case OVERRUN_FALSE:
6523 activeTrack->clearOverflow();
6524 break;
6525 case OVERRUN_UNKNOWN:
6526 break;
6527 }
6528
6529 // update frame information and push timestamp out
6530 activeTrack->updateTrackFrameInfo(
6531 activeTrack->mServerProxy->framesReleased(),
6532 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6533 mSampleRate, mTimestamp);
6534 }
6535
6536 unlock:
6537 // enable changes in effect chain
6538 unlockEffectChains(effectChains);
6539 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6540 }
6541
6542 standbyIfNotAlreadyInStandby();
6543
6544 {
6545 Mutex::Autolock _l(mLock);
6546 for (size_t i = 0; i < mTracks.size(); i++) {
6547 sp<RecordTrack> track = mTracks[i];
6548 track->invalidate();
6549 }
6550 mActiveTracks.clear();
6551 mStartStopCond.broadcast();
6552 }
6553
6554 releaseWakeLock();
6555
6556 ALOGV("RecordThread %p exiting", this);
6557 return false;
6558 }
6559
standbyIfNotAlreadyInStandby()6560 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6561 {
6562 if (!mStandby) {
6563 inputStandBy();
6564 mStandby = true;
6565 }
6566 }
6567
inputStandBy()6568 void AudioFlinger::RecordThread::inputStandBy()
6569 {
6570 // Idle the fast capture if it's currently running
6571 if (mFastCapture != 0) {
6572 FastCaptureStateQueue *sq = mFastCapture->sq();
6573 FastCaptureState *state = sq->begin();
6574 if (!(state->mCommand & FastCaptureState::IDLE)) {
6575 state->mCommand = FastCaptureState::COLD_IDLE;
6576 state->mColdFutexAddr = &mFastCaptureFutex;
6577 state->mColdGen++;
6578 mFastCaptureFutex = 0;
6579 sq->end();
6580 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6581 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6582 #if 0
6583 if (kUseFastCapture == FastCapture_Dynamic) {
6584 // FIXME
6585 }
6586 #endif
6587 #ifdef AUDIO_WATCHDOG
6588 // FIXME
6589 #endif
6590 } else {
6591 sq->end(false /*didModify*/);
6592 }
6593 }
6594 status_t result = mInput->stream->standby();
6595 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
6596
6597 // If going into standby, flush the pipe source.
6598 if (mPipeSource.get() != nullptr) {
6599 const ssize_t flushed = mPipeSource->flush();
6600 if (flushed > 0) {
6601 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
6602 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
6603 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6604 }
6605 }
6606 }
6607
6608 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * notificationFrames,uid_t uid,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId)6609 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6610 const sp<AudioFlinger::Client>& client,
6611 uint32_t sampleRate,
6612 audio_format_t format,
6613 audio_channel_mask_t channelMask,
6614 size_t *pFrameCount,
6615 audio_session_t sessionId,
6616 size_t *notificationFrames,
6617 uid_t uid,
6618 audio_input_flags_t *flags,
6619 pid_t tid,
6620 status_t *status,
6621 audio_port_handle_t portId)
6622 {
6623 size_t frameCount = *pFrameCount;
6624 sp<RecordTrack> track;
6625 status_t lStatus;
6626 audio_input_flags_t inputFlags = mInput->flags;
6627
6628 // special case for FAST flag considered OK if fast capture is present
6629 if (hasFastCapture()) {
6630 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6631 }
6632
6633 // Check if requested flags are compatible with output stream flags
6634 if ((*flags & inputFlags) != *flags) {
6635 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6636 " input flags (%08x)",
6637 *flags, inputFlags);
6638 *flags = (audio_input_flags_t)(*flags & inputFlags);
6639 }
6640
6641 // client expresses a preference for FAST, but we get the final say
6642 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6643 if (
6644 // we formerly checked for a callback handler (non-0 tid),
6645 // but that is no longer required for TRANSFER_OBTAIN mode
6646 //
6647 // frame count is not specified, or is exactly the pipe depth
6648 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6649 // PCM data
6650 audio_is_linear_pcm(format) &&
6651 // hardware format
6652 (format == mFormat) &&
6653 // hardware channel mask
6654 (channelMask == mChannelMask) &&
6655 // hardware sample rate
6656 (sampleRate == mSampleRate) &&
6657 // record thread has an associated fast capture
6658 hasFastCapture() &&
6659 // there are sufficient fast track slots available
6660 mFastTrackAvail
6661 ) {
6662 // check compatibility with audio effects.
6663 Mutex::Autolock _l(mLock);
6664 // Do not accept FAST flag if the session has software effects
6665 sp<EffectChain> chain = getEffectChain_l(sessionId);
6666 if (chain != 0) {
6667 audio_input_flags_t old = *flags;
6668 chain->checkInputFlagCompatibility(flags);
6669 if (old != *flags) {
6670 ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
6671 this, (int)old, (int)*flags);
6672 }
6673 }
6674 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6675 "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6676 this, frameCount, mFrameCount);
6677 } else {
6678 ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6679 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
6680 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6681 this, frameCount, mFrameCount, mPipeFramesP2,
6682 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
6683 hasFastCapture(), tid, mFastTrackAvail);
6684 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6685 }
6686 }
6687
6688 // compute track buffer size in frames, and suggest the notification frame count
6689 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6690 // fast track: frame count is exactly the pipe depth
6691 frameCount = mPipeFramesP2;
6692 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6693 *notificationFrames = mFrameCount;
6694 } else {
6695 // not fast track: max notification period is resampled equivalent of one HAL buffer time
6696 // or 20 ms if there is a fast capture
6697 // TODO This could be a roundupRatio inline, and const
6698 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6699 * sampleRate + mSampleRate - 1) / mSampleRate;
6700 // minimum number of notification periods is at least kMinNotifications,
6701 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6702 static const size_t kMinNotifications = 3;
6703 static const uint32_t kMinMs = 30;
6704 // TODO This could be a roundupRatio inline
6705 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6706 // TODO This could be a roundupRatio inline
6707 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6708 maxNotificationFrames;
6709 const size_t minFrameCount = maxNotificationFrames *
6710 max(kMinNotifications, minNotificationsByMs);
6711 frameCount = max(frameCount, minFrameCount);
6712 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6713 *notificationFrames = maxNotificationFrames;
6714 }
6715 }
6716 *pFrameCount = frameCount;
6717
6718 lStatus = initCheck();
6719 if (lStatus != NO_ERROR) {
6720 ALOGE("createRecordTrack_l() audio driver not initialized");
6721 goto Exit;
6722 }
6723
6724 { // scope for mLock
6725 Mutex::Autolock _l(mLock);
6726
6727 track = new RecordTrack(this, client, sampleRate,
6728 format, channelMask, frameCount,
6729 nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, uid,
6730 *flags, TrackBase::TYPE_DEFAULT, portId);
6731
6732 lStatus = track->initCheck();
6733 if (lStatus != NO_ERROR) {
6734 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6735 // track must be cleared from the caller as the caller has the AF lock
6736 goto Exit;
6737 }
6738 mTracks.add(track);
6739
6740 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6741 pid_t callingPid = IPCThreadState::self()->getCallingPid();
6742 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6743 // so ask activity manager to do this on our behalf
6744 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
6745 }
6746 }
6747
6748 lStatus = NO_ERROR;
6749
6750 Exit:
6751 *status = lStatus;
6752 return track;
6753 }
6754
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)6755 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6756 AudioSystem::sync_event_t event,
6757 audio_session_t triggerSession)
6758 {
6759 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6760 sp<ThreadBase> strongMe = this;
6761 status_t status = NO_ERROR;
6762
6763 if (event == AudioSystem::SYNC_EVENT_NONE) {
6764 recordTrack->clearSyncStartEvent();
6765 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6766 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6767 triggerSession,
6768 recordTrack->sessionId(),
6769 syncStartEventCallback,
6770 recordTrack);
6771 // Sync event can be cancelled by the trigger session if the track is not in a
6772 // compatible state in which case we start record immediately
6773 if (recordTrack->mSyncStartEvent->isCancelled()) {
6774 recordTrack->clearSyncStartEvent();
6775 } else {
6776 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6777 recordTrack->mFramesToDrop = -
6778 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6779 }
6780 }
6781
6782 {
6783 // This section is a rendezvous between binder thread executing start() and RecordThread
6784 AutoMutex lock(mLock);
6785 if (mActiveTracks.indexOf(recordTrack) >= 0) {
6786 if (recordTrack->mState == TrackBase::PAUSING) {
6787 ALOGV("active record track PAUSING -> ACTIVE");
6788 recordTrack->mState = TrackBase::ACTIVE;
6789 } else {
6790 ALOGV("active record track state %d", recordTrack->mState);
6791 }
6792 return status;
6793 }
6794
6795 // TODO consider other ways of handling this, such as changing the state to :STARTING and
6796 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6797 // or using a separate command thread
6798 recordTrack->mState = TrackBase::STARTING_1;
6799 mActiveTracks.add(recordTrack);
6800 status_t status = NO_ERROR;
6801 if (recordTrack->isExternalTrack()) {
6802 mLock.unlock();
6803 status = AudioSystem::startInput(mId, recordTrack->sessionId());
6804 mLock.lock();
6805 // FIXME should verify that recordTrack is still in mActiveTracks
6806 if (status != NO_ERROR) {
6807 mActiveTracks.remove(recordTrack);
6808 recordTrack->clearSyncStartEvent();
6809 ALOGV("RecordThread::start error %d", status);
6810 return status;
6811 }
6812 }
6813 // Catch up with current buffer indices if thread is already running.
6814 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
6815 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6816 // see previously buffered data before it called start(), but with greater risk of overrun.
6817
6818 recordTrack->mResamplerBufferProvider->reset();
6819 // clear any converter state as new data will be discontinuous
6820 recordTrack->mRecordBufferConverter->reset();
6821 recordTrack->mState = TrackBase::STARTING_2;
6822 // signal thread to start
6823 mWaitWorkCV.broadcast();
6824 if (mActiveTracks.indexOf(recordTrack) < 0) {
6825 ALOGV("Record failed to start");
6826 status = BAD_VALUE;
6827 goto startError;
6828 }
6829 return status;
6830 }
6831
6832 startError:
6833 if (recordTrack->isExternalTrack()) {
6834 AudioSystem::stopInput(mId, recordTrack->sessionId());
6835 }
6836 recordTrack->clearSyncStartEvent();
6837 // FIXME I wonder why we do not reset the state here?
6838 return status;
6839 }
6840
syncStartEventCallback(const wp<SyncEvent> & event)6841 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6842 {
6843 sp<SyncEvent> strongEvent = event.promote();
6844
6845 if (strongEvent != 0) {
6846 sp<RefBase> ptr = strongEvent->cookie().promote();
6847 if (ptr != 0) {
6848 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6849 recordTrack->handleSyncStartEvent(strongEvent);
6850 }
6851 }
6852 }
6853
stop(RecordThread::RecordTrack * recordTrack)6854 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6855 ALOGV("RecordThread::stop");
6856 AutoMutex _l(mLock);
6857 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
6858 return false;
6859 }
6860 // note that threadLoop may still be processing the track at this point [without lock]
6861 recordTrack->mState = TrackBase::PAUSING;
6862 // signal thread to stop
6863 mWaitWorkCV.broadcast();
6864 // do not wait for mStartStopCond if exiting
6865 if (exitPending()) {
6866 return true;
6867 }
6868 // FIXME incorrect usage of wait: no explicit predicate or loop
6869 mStartStopCond.wait(mLock);
6870 // if we have been restarted, recordTrack is in mActiveTracks here
6871 if (exitPending() || mActiveTracks.indexOf(recordTrack) < 0) {
6872 ALOGV("Record stopped OK");
6873 return true;
6874 }
6875 return false;
6876 }
6877
isValidSyncEvent(const sp<SyncEvent> & event __unused) const6878 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6879 {
6880 return false;
6881 }
6882
setSyncEvent(const sp<SyncEvent> & event __unused)6883 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6884 {
6885 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
6886 if (!isValidSyncEvent(event)) {
6887 return BAD_VALUE;
6888 }
6889
6890 audio_session_t eventSession = event->triggerSession();
6891 status_t ret = NAME_NOT_FOUND;
6892
6893 Mutex::Autolock _l(mLock);
6894
6895 for (size_t i = 0; i < mTracks.size(); i++) {
6896 sp<RecordTrack> track = mTracks[i];
6897 if (eventSession == track->sessionId()) {
6898 (void) track->setSyncEvent(event);
6899 ret = NO_ERROR;
6900 }
6901 }
6902 return ret;
6903 #else
6904 return BAD_VALUE;
6905 #endif
6906 }
6907
6908 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)6909 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6910 {
6911 track->terminate();
6912 track->mState = TrackBase::STOPPED;
6913 // active tracks are removed by threadLoop()
6914 if (mActiveTracks.indexOf(track) < 0) {
6915 removeTrack_l(track);
6916 }
6917 }
6918
removeTrack_l(const sp<RecordTrack> & track)6919 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6920 {
6921 String8 result;
6922 track->appendDump(result, false /* active */);
6923 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
6924
6925 mTracks.remove(track);
6926 // need anything related to effects here?
6927 if (track->isFastTrack()) {
6928 ALOG_ASSERT(!mFastTrackAvail);
6929 mFastTrackAvail = true;
6930 }
6931 }
6932
dump(int fd,const Vector<String16> & args)6933 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6934 {
6935 dumpInternals(fd, args);
6936 dumpTracks(fd, args);
6937 dumpEffectChains(fd, args);
6938 dprintf(fd, " Local log:\n");
6939 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
6940 }
6941
dumpInternals(int fd,const Vector<String16> & args)6942 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6943 {
6944 dumpBase(fd, args);
6945
6946 AudioStreamIn *input = mInput;
6947 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
6948 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
6949 input, flags, inputFlagsToString(flags).c_str());
6950 if (mActiveTracks.size() == 0) {
6951 dprintf(fd, " No active record clients\n");
6952 }
6953
6954 if (input != nullptr) {
6955 dprintf(fd, " Hal stream dump:\n");
6956 (void)input->stream->dump(fd);
6957 }
6958
6959 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6960 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6961
6962 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6963 // while we are dumping it. It may be inconsistent, but it won't mutate!
6964 // This is a large object so we place it on the heap.
6965 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6966 const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6967 copy->dump(fd);
6968 delete copy;
6969 }
6970
dumpTracks(int fd,const Vector<String16> & args __unused)6971 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6972 {
6973 String8 result;
6974 size_t numtracks = mTracks.size();
6975 size_t numactive = mActiveTracks.size();
6976 size_t numactiveseen = 0;
6977 dprintf(fd, " %zu Tracks", numtracks);
6978 const char *prefix = " ";
6979 if (numtracks) {
6980 dprintf(fd, " of which %zu are active\n", numactive);
6981 result.append(prefix);
6982 RecordTrack::appendDumpHeader(result);
6983 for (size_t i = 0; i < numtracks ; ++i) {
6984 sp<RecordTrack> track = mTracks[i];
6985 if (track != 0) {
6986 bool active = mActiveTracks.indexOf(track) >= 0;
6987 if (active) {
6988 numactiveseen++;
6989 }
6990 result.append(prefix);
6991 track->appendDump(result, active);
6992 }
6993 }
6994 } else {
6995 dprintf(fd, "\n");
6996 }
6997
6998 if (numactiveseen != numactive) {
6999 result.append(" The following tracks are in the active list but"
7000 " not in the track list\n");
7001 result.append(prefix);
7002 RecordTrack::appendDumpHeader(result);
7003 for (size_t i = 0; i < numactive; ++i) {
7004 sp<RecordTrack> track = mActiveTracks[i];
7005 if (mTracks.indexOf(track) < 0) {
7006 result.append(prefix);
7007 track->appendDump(result, true /* active */);
7008 }
7009 }
7010
7011 }
7012 write(fd, result.string(), result.size());
7013 }
7014
7015
reset()7016 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
7017 {
7018 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7019 RecordThread *recordThread = (RecordThread *) threadBase.get();
7020 mRsmpInFront = recordThread->mRsmpInRear;
7021 mRsmpInUnrel = 0;
7022 }
7023
sync(size_t * framesAvailable,bool * hasOverrun)7024 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
7025 size_t *framesAvailable, bool *hasOverrun)
7026 {
7027 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7028 RecordThread *recordThread = (RecordThread *) threadBase.get();
7029 const int32_t rear = recordThread->mRsmpInRear;
7030 const int32_t front = mRsmpInFront;
7031 const ssize_t filled = rear - front;
7032
7033 size_t framesIn;
7034 bool overrun = false;
7035 if (filled < 0) {
7036 // should not happen, but treat like a massive overrun and re-sync
7037 framesIn = 0;
7038 mRsmpInFront = rear;
7039 overrun = true;
7040 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
7041 framesIn = (size_t) filled;
7042 } else {
7043 // client is not keeping up with server, but give it latest data
7044 framesIn = recordThread->mRsmpInFrames;
7045 mRsmpInFront = /* front = */ rear - framesIn;
7046 overrun = true;
7047 }
7048 if (framesAvailable != NULL) {
7049 *framesAvailable = framesIn;
7050 }
7051 if (hasOverrun != NULL) {
7052 *hasOverrun = overrun;
7053 }
7054 }
7055
7056 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)7057 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
7058 AudioBufferProvider::Buffer* buffer)
7059 {
7060 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7061 if (threadBase == 0) {
7062 buffer->frameCount = 0;
7063 buffer->raw = NULL;
7064 return NOT_ENOUGH_DATA;
7065 }
7066 RecordThread *recordThread = (RecordThread *) threadBase.get();
7067 int32_t rear = recordThread->mRsmpInRear;
7068 int32_t front = mRsmpInFront;
7069 ssize_t filled = rear - front;
7070 // FIXME should not be P2 (don't want to increase latency)
7071 // FIXME if client not keeping up, discard
7072 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
7073 // 'filled' may be non-contiguous, so return only the first contiguous chunk
7074 front &= recordThread->mRsmpInFramesP2 - 1;
7075 size_t part1 = recordThread->mRsmpInFramesP2 - front;
7076 if (part1 > (size_t) filled) {
7077 part1 = filled;
7078 }
7079 size_t ask = buffer->frameCount;
7080 ALOG_ASSERT(ask > 0);
7081 if (part1 > ask) {
7082 part1 = ask;
7083 }
7084 if (part1 == 0) {
7085 // out of data is fine since the resampler will return a short-count.
7086 buffer->raw = NULL;
7087 buffer->frameCount = 0;
7088 mRsmpInUnrel = 0;
7089 return NOT_ENOUGH_DATA;
7090 }
7091
7092 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
7093 buffer->frameCount = part1;
7094 mRsmpInUnrel = part1;
7095 return NO_ERROR;
7096 }
7097
7098 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)7099 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
7100 AudioBufferProvider::Buffer* buffer)
7101 {
7102 size_t stepCount = buffer->frameCount;
7103 if (stepCount == 0) {
7104 return;
7105 }
7106 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
7107 mRsmpInUnrel -= stepCount;
7108 mRsmpInFront += stepCount;
7109 buffer->raw = NULL;
7110 buffer->frameCount = 0;
7111 }
7112
checkBtNrec()7113 void AudioFlinger::RecordThread::checkBtNrec()
7114 {
7115 Mutex::Autolock _l(mLock);
7116 checkBtNrec_l();
7117 }
7118
checkBtNrec_l()7119 void AudioFlinger::RecordThread::checkBtNrec_l()
7120 {
7121 // disable AEC and NS if the device is a BT SCO headset supporting those
7122 // pre processings
7123 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7124 mAudioFlinger->btNrecIsOff();
7125 if (mBtNrecSuspended.exchange(suspend) != suspend) {
7126 for (size_t i = 0; i < mEffectChains.size(); i++) {
7127 setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
7128 setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
7129 }
7130 }
7131 }
7132
7133
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7134 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7135 status_t& status)
7136 {
7137 bool reconfig = false;
7138
7139 status = NO_ERROR;
7140
7141 audio_format_t reqFormat = mFormat;
7142 uint32_t samplingRate = mSampleRate;
7143 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7144 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7145
7146 AudioParameter param = AudioParameter(keyValuePair);
7147 int value;
7148
7149 // scope for AutoPark extends to end of method
7150 AutoPark<FastCapture> park(mFastCapture);
7151
7152 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7153 // channel count change can be requested. Do we mandate the first client defines the
7154 // HAL sampling rate and channel count or do we allow changes on the fly?
7155 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7156 samplingRate = value;
7157 reconfig = true;
7158 }
7159 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7160 if (!audio_is_linear_pcm((audio_format_t) value)) {
7161 status = BAD_VALUE;
7162 } else {
7163 reqFormat = (audio_format_t) value;
7164 reconfig = true;
7165 }
7166 }
7167 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7168 audio_channel_mask_t mask = (audio_channel_mask_t) value;
7169 if (!audio_is_input_channel(mask) ||
7170 audio_channel_count_from_in_mask(mask) > FCC_8) {
7171 status = BAD_VALUE;
7172 } else {
7173 channelMask = mask;
7174 reconfig = true;
7175 }
7176 }
7177 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7178 // do not accept frame count changes if tracks are open as the track buffer
7179 // size depends on frame count and correct behavior would not be guaranteed
7180 // if frame count is changed after track creation
7181 if (mActiveTracks.size() > 0) {
7182 status = INVALID_OPERATION;
7183 } else {
7184 reconfig = true;
7185 }
7186 }
7187 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7188 // forward device change to effects that have requested to be
7189 // aware of attached audio device.
7190 for (size_t i = 0; i < mEffectChains.size(); i++) {
7191 mEffectChains[i]->setDevice_l(value);
7192 }
7193
7194 // store input device and output device but do not forward output device to audio HAL.
7195 // Note that status is ignored by the caller for output device
7196 // (see AudioFlinger::setParameters()
7197 if (audio_is_output_devices(value)) {
7198 mOutDevice = value;
7199 status = BAD_VALUE;
7200 } else {
7201 mInDevice = value;
7202 if (value != AUDIO_DEVICE_NONE) {
7203 mPrevInDevice = value;
7204 }
7205 checkBtNrec_l();
7206 }
7207 }
7208 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7209 mAudioSource != (audio_source_t)value) {
7210 // forward device change to effects that have requested to be
7211 // aware of attached audio device.
7212 for (size_t i = 0; i < mEffectChains.size(); i++) {
7213 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7214 }
7215 mAudioSource = (audio_source_t)value;
7216 }
7217
7218 if (status == NO_ERROR) {
7219 status = mInput->stream->setParameters(keyValuePair);
7220 if (status == INVALID_OPERATION) {
7221 inputStandBy();
7222 status = mInput->stream->setParameters(keyValuePair);
7223 }
7224 if (reconfig) {
7225 if (status == BAD_VALUE) {
7226 uint32_t sRate;
7227 audio_channel_mask_t channelMask;
7228 audio_format_t format;
7229 if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
7230 audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
7231 sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
7232 audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
7233 status = NO_ERROR;
7234 }
7235 }
7236 if (status == NO_ERROR) {
7237 readInputParameters_l();
7238 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7239 }
7240 }
7241 }
7242
7243 return reconfig;
7244 }
7245
getParameters(const String8 & keys)7246 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7247 {
7248 Mutex::Autolock _l(mLock);
7249 if (initCheck() == NO_ERROR) {
7250 String8 out_s8;
7251 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
7252 return out_s8;
7253 }
7254 }
7255 return String8();
7256 }
7257
ioConfigChanged(audio_io_config_event event,pid_t pid)7258 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7259 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7260
7261 desc->mIoHandle = mId;
7262
7263 switch (event) {
7264 case AUDIO_INPUT_OPENED:
7265 case AUDIO_INPUT_REGISTERED:
7266 case AUDIO_INPUT_CONFIG_CHANGED:
7267 desc->mPatch = mPatch;
7268 desc->mChannelMask = mChannelMask;
7269 desc->mSamplingRate = mSampleRate;
7270 desc->mFormat = mFormat;
7271 desc->mFrameCount = mFrameCount;
7272 desc->mFrameCountHAL = mFrameCount;
7273 desc->mLatency = 0;
7274 break;
7275
7276 case AUDIO_INPUT_CLOSED:
7277 default:
7278 break;
7279 }
7280 mAudioFlinger->ioConfigChanged(event, desc, pid);
7281 }
7282
readInputParameters_l()7283 void AudioFlinger::RecordThread::readInputParameters_l()
7284 {
7285 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
7286 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
7287 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7288 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d", mChannelCount, FCC_8);
7289 mFormat = mHALFormat;
7290 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
7291 result = mInput->stream->getFrameSize(&mFrameSize);
7292 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
7293 result = mInput->stream->getBufferSize(&mBufferSize);
7294 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
7295 mFrameCount = mBufferSize / mFrameSize;
7296 ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%lld, "
7297 "mBufferSize=%lld, mFrameCount=%lld",
7298 this, mChannelCount, mFormat, (long long)mFrameSize, (long long)mBufferSize,
7299 (long long)mFrameCount);
7300 // This is the formula for calculating the temporary buffer size.
7301 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7302 // 1 full output buffer, regardless of the alignment of the available input.
7303 // The value is somewhat arbitrary, and could probably be even larger.
7304 // A larger value should allow more old data to be read after a track calls start(),
7305 // without increasing latency.
7306 //
7307 // Note this is independent of the maximum downsampling ratio permitted for capture.
7308 mRsmpInFrames = mFrameCount * 7;
7309 mRsmpInFramesP2 = roundup(mRsmpInFrames);
7310 free(mRsmpInBuffer);
7311 mRsmpInBuffer = NULL;
7312
7313 // TODO optimize audio capture buffer sizes ...
7314 // Here we calculate the size of the sliding buffer used as a source
7315 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7316 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
7317 // be better to have it derived from the pipe depth in the long term.
7318 // The current value is higher than necessary. However it should not add to latency.
7319
7320 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7321 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
7322 (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
7323 // if posix_memalign fails, will segv here.
7324 memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
7325
7326 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7327 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7328 }
7329
getInputFramesLost()7330 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7331 {
7332 Mutex::Autolock _l(mLock);
7333 uint32_t result;
7334 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
7335 return result;
7336 }
7337 return 0;
7338 }
7339
7340 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const7341 uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7342 {
7343 uint32_t result = 0;
7344 if (getEffectChain_l(sessionId) != 0) {
7345 result = EFFECT_SESSION;
7346 }
7347
7348 for (size_t i = 0; i < mTracks.size(); ++i) {
7349 if (sessionId == mTracks[i]->sessionId()) {
7350 result |= TRACK_SESSION;
7351 if (mTracks[i]->isFastTrack()) {
7352 result |= FAST_SESSION;
7353 }
7354 break;
7355 }
7356 }
7357
7358 return result;
7359 }
7360
sessionIds() const7361 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7362 {
7363 KeyedVector<audio_session_t, bool> ids;
7364 Mutex::Autolock _l(mLock);
7365 for (size_t j = 0; j < mTracks.size(); ++j) {
7366 sp<RecordThread::RecordTrack> track = mTracks[j];
7367 audio_session_t sessionId = track->sessionId();
7368 if (ids.indexOfKey(sessionId) < 0) {
7369 ids.add(sessionId, true);
7370 }
7371 }
7372 return ids;
7373 }
7374
clearInput()7375 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7376 {
7377 Mutex::Autolock _l(mLock);
7378 AudioStreamIn *input = mInput;
7379 mInput = NULL;
7380 return input;
7381 }
7382
7383 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const7384 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
7385 {
7386 if (mInput == NULL) {
7387 return NULL;
7388 }
7389 return mInput->stream;
7390 }
7391
addEffectChain_l(const sp<EffectChain> & chain)7392 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7393 {
7394 // only one chain per input thread
7395 if (mEffectChains.size() != 0) {
7396 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7397 return INVALID_OPERATION;
7398 }
7399 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7400 chain->setThread(this);
7401 chain->setInBuffer(NULL);
7402 chain->setOutBuffer(NULL);
7403
7404 checkSuspendOnAddEffectChain_l(chain);
7405
7406 // make sure enabled pre processing effects state is communicated to the HAL as we
7407 // just moved them to a new input stream.
7408 chain->syncHalEffectsState();
7409
7410 mEffectChains.add(chain);
7411
7412 return NO_ERROR;
7413 }
7414
removeEffectChain_l(const sp<EffectChain> & chain)7415 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7416 {
7417 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7418 ALOGW_IF(mEffectChains.size() != 1,
7419 "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7420 chain.get(), mEffectChains.size(), this);
7421 if (mEffectChains.size() == 1) {
7422 mEffectChains.removeAt(0);
7423 }
7424 return 0;
7425 }
7426
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7427 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7428 audio_patch_handle_t *handle)
7429 {
7430 status_t status = NO_ERROR;
7431
7432 // store new device and send to effects
7433 mInDevice = patch->sources[0].ext.device.type;
7434 mPatch = *patch;
7435 for (size_t i = 0; i < mEffectChains.size(); i++) {
7436 mEffectChains[i]->setDevice_l(mInDevice);
7437 }
7438
7439 checkBtNrec_l();
7440
7441 // store new source and send to effects
7442 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7443 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7444 for (size_t i = 0; i < mEffectChains.size(); i++) {
7445 mEffectChains[i]->setAudioSource_l(mAudioSource);
7446 }
7447 }
7448
7449 if (mInput->audioHwDev->supportsAudioPatches()) {
7450 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7451 status = hwDevice->createAudioPatch(patch->num_sources,
7452 patch->sources,
7453 patch->num_sinks,
7454 patch->sinks,
7455 handle);
7456 } else {
7457 char *address;
7458 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7459 address = audio_device_address_to_parameter(
7460 patch->sources[0].ext.device.type,
7461 patch->sources[0].ext.device.address);
7462 } else {
7463 address = (char *)calloc(1, 1);
7464 }
7465 AudioParameter param = AudioParameter(String8(address));
7466 free(address);
7467 param.addInt(String8(AudioParameter::keyRouting),
7468 (int)patch->sources[0].ext.device.type);
7469 param.addInt(String8(AudioParameter::keyInputSource),
7470 (int)patch->sinks[0].ext.mix.usecase.source);
7471 status = mInput->stream->setParameters(param.toString());
7472 *handle = AUDIO_PATCH_HANDLE_NONE;
7473 }
7474
7475 if (mInDevice != mPrevInDevice) {
7476 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7477 mPrevInDevice = mInDevice;
7478 }
7479
7480 return status;
7481 }
7482
releaseAudioPatch_l(const audio_patch_handle_t handle)7483 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7484 {
7485 status_t status = NO_ERROR;
7486
7487 mInDevice = AUDIO_DEVICE_NONE;
7488
7489 if (mInput->audioHwDev->supportsAudioPatches()) {
7490 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7491 status = hwDevice->releaseAudioPatch(handle);
7492 } else {
7493 AudioParameter param;
7494 param.addInt(String8(AudioParameter::keyRouting), 0);
7495 status = mInput->stream->setParameters(param.toString());
7496 }
7497 return status;
7498 }
7499
addPatchRecord(const sp<PatchRecord> & record)7500 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7501 {
7502 Mutex::Autolock _l(mLock);
7503 mTracks.add(record);
7504 }
7505
deletePatchRecord(const sp<PatchRecord> & record)7506 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7507 {
7508 Mutex::Autolock _l(mLock);
7509 destroyTrack_l(record);
7510 }
7511
getAudioPortConfig(struct audio_port_config * config)7512 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7513 {
7514 ThreadBase::getAudioPortConfig(config);
7515 config->role = AUDIO_PORT_ROLE_SINK;
7516 config->ext.mix.hw_module = mInput->audioHwDev->handle();
7517 config->ext.mix.usecase.source = mAudioSource;
7518 }
7519
7520 // ----------------------------------------------------------------------------
7521 // Mmap
7522 // ----------------------------------------------------------------------------
7523
MmapThreadHandle(const sp<MmapThread> & thread)7524 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
7525 : mThread(thread)
7526 {
7527 assert(thread != 0); // thread must start non-null and stay non-null
7528 }
7529
~MmapThreadHandle()7530 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
7531 {
7532 mThread->disconnect();
7533 }
7534
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)7535 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
7536 struct audio_mmap_buffer_info *info)
7537 {
7538 return mThread->createMmapBuffer(minSizeFrames, info);
7539 }
7540
getMmapPosition(struct audio_mmap_position * position)7541 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
7542 {
7543 return mThread->getMmapPosition(position);
7544 }
7545
start(const AudioClient & client,audio_port_handle_t * handle)7546 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
7547 audio_port_handle_t *handle)
7548
7549 {
7550 return mThread->start(client, handle);
7551 }
7552
stop(audio_port_handle_t handle)7553 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
7554 {
7555 return mThread->stop(handle);
7556 }
7557
standby()7558 status_t AudioFlinger::MmapThreadHandle::standby()
7559 {
7560 return mThread->standby();
7561 }
7562
7563
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)7564 AudioFlinger::MmapThread::MmapThread(
7565 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
7566 AudioHwDevice *hwDev, sp<StreamHalInterface> stream,
7567 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
7568 : ThreadBase(audioFlinger, id, outDevice, inDevice, MMAP, systemReady),
7569 mSessionId(AUDIO_SESSION_NONE),
7570 mDeviceId(AUDIO_PORT_HANDLE_NONE), mPortId(AUDIO_PORT_HANDLE_NONE),
7571 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
7572 mActiveTracks(&this->mLocalLog)
7573 {
7574 mStandby = true;
7575 readHalParameters_l();
7576 }
7577
~MmapThread()7578 AudioFlinger::MmapThread::~MmapThread()
7579 {
7580 releaseWakeLock_l();
7581 }
7582
onFirstRef()7583 void AudioFlinger::MmapThread::onFirstRef()
7584 {
7585 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
7586 }
7587
disconnect()7588 void AudioFlinger::MmapThread::disconnect()
7589 {
7590 for (const sp<MmapTrack> &t : mActiveTracks) {
7591 stop(t->portId());
7592 }
7593 // This will decrement references and may cause the destruction of this thread.
7594 if (isOutput()) {
7595 AudioSystem::releaseOutput(mId, streamType(), mSessionId);
7596 } else {
7597 AudioSystem::releaseInput(mId, mSessionId);
7598 }
7599 }
7600
7601
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)7602 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
7603 audio_stream_type_t streamType __unused,
7604 audio_session_t sessionId,
7605 const sp<MmapStreamCallback>& callback,
7606 audio_port_handle_t deviceId,
7607 audio_port_handle_t portId)
7608 {
7609 mAttr = *attr;
7610 mSessionId = sessionId;
7611 mCallback = callback;
7612 mDeviceId = deviceId;
7613 mPortId = portId;
7614 }
7615
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)7616 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
7617 struct audio_mmap_buffer_info *info)
7618 {
7619 if (mHalStream == 0) {
7620 return NO_INIT;
7621 }
7622 mStandby = true;
7623 acquireWakeLock();
7624 return mHalStream->createMmapBuffer(minSizeFrames, info);
7625 }
7626
getMmapPosition(struct audio_mmap_position * position)7627 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
7628 {
7629 if (mHalStream == 0) {
7630 return NO_INIT;
7631 }
7632 return mHalStream->getMmapPosition(position);
7633 }
7634
start(const AudioClient & client,audio_port_handle_t * handle)7635 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
7636 audio_port_handle_t *handle)
7637 {
7638 ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
7639 client.clientUid, mStandby, mPortId, *handle);
7640 if (mHalStream == 0) {
7641 return NO_INIT;
7642 }
7643
7644 status_t ret;
7645
7646 if (*handle == mPortId) {
7647 // for the first track, reuse portId and session allocated when the stream was opened
7648 ret = mHalStream->start();
7649 if (ret != NO_ERROR) {
7650 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
7651 return ret;
7652 }
7653 mStandby = false;
7654 return NO_ERROR;
7655 }
7656
7657 if (!isOutput() && !recordingAllowed(client.packageName, client.clientPid, client.clientUid)) {
7658 return PERMISSION_DENIED;
7659 }
7660
7661 audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
7662
7663 audio_io_handle_t io = mId;
7664 if (isOutput()) {
7665 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
7666 config.sample_rate = mSampleRate;
7667 config.channel_mask = mChannelMask;
7668 config.format = mFormat;
7669 audio_stream_type_t stream = streamType();
7670 audio_output_flags_t flags =
7671 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
7672 audio_port_handle_t deviceId = mDeviceId;
7673 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
7674 mSessionId,
7675 &stream,
7676 client.clientUid,
7677 &config,
7678 flags,
7679 &deviceId,
7680 &portId);
7681 } else {
7682 audio_config_base_t config;
7683 config.sample_rate = mSampleRate;
7684 config.channel_mask = mChannelMask;
7685 config.format = mFormat;
7686 audio_port_handle_t deviceId = mDeviceId;
7687 ret = AudioSystem::getInputForAttr(&mAttr, &io,
7688 mSessionId,
7689 client.clientPid,
7690 client.clientUid,
7691 &config,
7692 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
7693 &deviceId,
7694 &portId);
7695 }
7696 // APM should not chose a different input or output stream for the same set of attributes
7697 // and audo configuration
7698 if (ret != NO_ERROR || io != mId) {
7699 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
7700 __FUNCTION__, ret, io, mId);
7701 return BAD_VALUE;
7702 }
7703
7704 if (isOutput()) {
7705 ret = AudioSystem::startOutput(mId, streamType(), mSessionId);
7706 } else {
7707 ret = AudioSystem::startInput(mId, mSessionId);
7708 }
7709
7710 // abort if start is rejected by audio policy manager
7711 if (ret != NO_ERROR) {
7712 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
7713 if (mActiveTracks.size() != 0) {
7714 if (isOutput()) {
7715 AudioSystem::releaseOutput(mId, streamType(), mSessionId);
7716 } else {
7717 AudioSystem::releaseInput(mId, mSessionId);
7718 }
7719 } else {
7720 mHalStream->stop();
7721 }
7722 return PERMISSION_DENIED;
7723 }
7724
7725 sp<MmapTrack> track = new MmapTrack(this, mSampleRate, mFormat, mChannelMask, mSessionId,
7726 client.clientUid, client.clientPid, portId);
7727
7728 mActiveTracks.add(track);
7729 sp<EffectChain> chain = getEffectChain_l(mSessionId);
7730 if (chain != 0) {
7731 chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
7732 chain->incTrackCnt();
7733 chain->incActiveTrackCnt();
7734 }
7735
7736 *handle = portId;
7737 broadcast_l();
7738
7739 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
7740
7741 return NO_ERROR;
7742 }
7743
stop(audio_port_handle_t handle)7744 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
7745 {
7746 ALOGV("%s handle %d", __FUNCTION__, handle);
7747
7748 if (mHalStream == 0) {
7749 return NO_INIT;
7750 }
7751
7752 if (handle == mPortId) {
7753 mHalStream->stop();
7754 return NO_ERROR;
7755 }
7756
7757 sp<MmapTrack> track;
7758 for (const sp<MmapTrack> &t : mActiveTracks) {
7759 if (handle == t->portId()) {
7760 track = t;
7761 break;
7762 }
7763 }
7764 if (track == 0) {
7765 return BAD_VALUE;
7766 }
7767
7768 mActiveTracks.remove(track);
7769
7770 if (isOutput()) {
7771 AudioSystem::stopOutput(mId, streamType(), track->sessionId());
7772 AudioSystem::releaseOutput(mId, streamType(), track->sessionId());
7773 } else {
7774 AudioSystem::stopInput(mId, track->sessionId());
7775 AudioSystem::releaseInput(mId, track->sessionId());
7776 }
7777
7778 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
7779 if (chain != 0) {
7780 chain->decActiveTrackCnt();
7781 chain->decTrackCnt();
7782 }
7783
7784 broadcast_l();
7785
7786 return NO_ERROR;
7787 }
7788
standby()7789 status_t AudioFlinger::MmapThread::standby()
7790 {
7791 ALOGV("%s", __FUNCTION__);
7792
7793 if (mHalStream == 0) {
7794 return NO_INIT;
7795 }
7796 if (mActiveTracks.size() != 0) {
7797 return INVALID_OPERATION;
7798 }
7799 mHalStream->standby();
7800 mStandby = true;
7801 releaseWakeLock();
7802 return NO_ERROR;
7803 }
7804
7805
readHalParameters_l()7806 void AudioFlinger::MmapThread::readHalParameters_l()
7807 {
7808 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
7809 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
7810 mFormat = mHALFormat;
7811 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
7812 result = mHalStream->getFrameSize(&mFrameSize);
7813 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
7814 result = mHalStream->getBufferSize(&mBufferSize);
7815 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
7816 mFrameCount = mBufferSize / mFrameSize;
7817 }
7818
threadLoop()7819 bool AudioFlinger::MmapThread::threadLoop()
7820 {
7821 checkSilentMode_l();
7822
7823 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
7824
7825 while (!exitPending())
7826 {
7827 Mutex::Autolock _l(mLock);
7828 Vector< sp<EffectChain> > effectChains;
7829
7830 if (mSignalPending) {
7831 // A signal was raised while we were unlocked
7832 mSignalPending = false;
7833 } else {
7834 if (mConfigEvents.isEmpty()) {
7835 // we're about to wait, flush the binder command buffer
7836 IPCThreadState::self()->flushCommands();
7837
7838 if (exitPending()) {
7839 break;
7840 }
7841
7842 // wait until we have something to do...
7843 ALOGV("%s going to sleep", myName.string());
7844 mWaitWorkCV.wait(mLock);
7845 ALOGV("%s waking up", myName.string());
7846
7847 checkSilentMode_l();
7848
7849 continue;
7850 }
7851 }
7852
7853 processConfigEvents_l();
7854
7855 processVolume_l();
7856
7857 checkInvalidTracks_l();
7858
7859 mActiveTracks.updatePowerState(this);
7860
7861 lockEffectChains_l(effectChains);
7862 for (size_t i = 0; i < effectChains.size(); i ++) {
7863 effectChains[i]->process_l();
7864 }
7865 // enable changes in effect chain
7866 unlockEffectChains(effectChains);
7867 // Effect chains will be actually deleted here if they were removed from
7868 // mEffectChains list during mixing or effects processing
7869 }
7870
7871 threadLoop_exit();
7872
7873 if (!mStandby) {
7874 threadLoop_standby();
7875 mStandby = true;
7876 }
7877
7878 ALOGV("Thread %p type %d exiting", this, mType);
7879 return false;
7880 }
7881
7882 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7883 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
7884 status_t& status)
7885 {
7886 AudioParameter param = AudioParameter(keyValuePair);
7887 int value;
7888 bool sendToHal = true;
7889 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7890 audio_devices_t device = (audio_devices_t)value;
7891 // forward device change to effects that have requested to be
7892 // aware of attached audio device.
7893 if (device != AUDIO_DEVICE_NONE) {
7894 for (size_t i = 0; i < mEffectChains.size(); i++) {
7895 mEffectChains[i]->setDevice_l(device);
7896 }
7897 }
7898 if (audio_is_output_devices(device)) {
7899 mOutDevice = device;
7900 if (!isOutput()) {
7901 sendToHal = false;
7902 }
7903 } else {
7904 mInDevice = device;
7905 if (device != AUDIO_DEVICE_NONE) {
7906 mPrevInDevice = value;
7907 }
7908 // TODO: implement and call checkBtNrec_l();
7909 }
7910 }
7911 if (sendToHal) {
7912 status = mHalStream->setParameters(keyValuePair);
7913 } else {
7914 status = NO_ERROR;
7915 }
7916
7917 return false;
7918 }
7919
getParameters(const String8 & keys)7920 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
7921 {
7922 Mutex::Autolock _l(mLock);
7923 String8 out_s8;
7924 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
7925 return out_s8;
7926 }
7927 return String8();
7928 }
7929
ioConfigChanged(audio_io_config_event event,pid_t pid)7930 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7931 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7932
7933 desc->mIoHandle = mId;
7934
7935 switch (event) {
7936 case AUDIO_INPUT_OPENED:
7937 case AUDIO_INPUT_REGISTERED:
7938 case AUDIO_INPUT_CONFIG_CHANGED:
7939 case AUDIO_OUTPUT_OPENED:
7940 case AUDIO_OUTPUT_REGISTERED:
7941 case AUDIO_OUTPUT_CONFIG_CHANGED:
7942 desc->mPatch = mPatch;
7943 desc->mChannelMask = mChannelMask;
7944 desc->mSamplingRate = mSampleRate;
7945 desc->mFormat = mFormat;
7946 desc->mFrameCount = mFrameCount;
7947 desc->mFrameCountHAL = mFrameCount;
7948 desc->mLatency = 0;
7949 break;
7950
7951 case AUDIO_INPUT_CLOSED:
7952 case AUDIO_OUTPUT_CLOSED:
7953 default:
7954 break;
7955 }
7956 mAudioFlinger->ioConfigChanged(event, desc, pid);
7957 }
7958
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7959 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
7960 audio_patch_handle_t *handle)
7961 {
7962 status_t status = NO_ERROR;
7963
7964 // store new device and send to effects
7965 audio_devices_t type = AUDIO_DEVICE_NONE;
7966 audio_port_handle_t deviceId;
7967 if (isOutput()) {
7968 for (unsigned int i = 0; i < patch->num_sinks; i++) {
7969 type |= patch->sinks[i].ext.device.type;
7970 }
7971 deviceId = patch->sinks[0].id;
7972 } else {
7973 type = patch->sources[0].ext.device.type;
7974 deviceId = patch->sources[0].id;
7975 }
7976
7977 for (size_t i = 0; i < mEffectChains.size(); i++) {
7978 mEffectChains[i]->setDevice_l(type);
7979 }
7980
7981 if (isOutput()) {
7982 mOutDevice = type;
7983 } else {
7984 mInDevice = type;
7985 // store new source and send to effects
7986 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7987 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7988 for (size_t i = 0; i < mEffectChains.size(); i++) {
7989 mEffectChains[i]->setAudioSource_l(mAudioSource);
7990 }
7991 }
7992 }
7993
7994 if (mAudioHwDev->supportsAudioPatches()) {
7995 status = mHalDevice->createAudioPatch(patch->num_sources,
7996 patch->sources,
7997 patch->num_sinks,
7998 patch->sinks,
7999 handle);
8000 } else {
8001 char *address;
8002 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
8003 //FIXME: we only support address on first sink with HAL version < 3.0
8004 address = audio_device_address_to_parameter(
8005 patch->sinks[0].ext.device.type,
8006 patch->sinks[0].ext.device.address);
8007 } else {
8008 address = (char *)calloc(1, 1);
8009 }
8010 AudioParameter param = AudioParameter(String8(address));
8011 free(address);
8012 param.addInt(String8(AudioParameter::keyRouting), (int)type);
8013 if (!isOutput()) {
8014 param.addInt(String8(AudioParameter::keyInputSource),
8015 (int)patch->sinks[0].ext.mix.usecase.source);
8016 }
8017 status = mHalStream->setParameters(param.toString());
8018 *handle = AUDIO_PATCH_HANDLE_NONE;
8019 }
8020
8021 if (isOutput() && mPrevOutDevice != mOutDevice) {
8022 mPrevOutDevice = type;
8023 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
8024 sp<MmapStreamCallback> callback = mCallback.promote();
8025 if (mDeviceId != deviceId && callback != 0) {
8026 callback->onRoutingChanged(deviceId);
8027 }
8028 mDeviceId = deviceId;
8029 }
8030 if (!isOutput() && mPrevInDevice != mInDevice) {
8031 mPrevInDevice = type;
8032 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8033 sp<MmapStreamCallback> callback = mCallback.promote();
8034 if (mDeviceId != deviceId && callback != 0) {
8035 callback->onRoutingChanged(deviceId);
8036 }
8037 mDeviceId = deviceId;
8038 }
8039 return status;
8040 }
8041
releaseAudioPatch_l(const audio_patch_handle_t handle)8042 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
8043 {
8044 status_t status = NO_ERROR;
8045
8046 mInDevice = AUDIO_DEVICE_NONE;
8047
8048 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
8049 supportsAudioPatches : false;
8050
8051 if (supportsAudioPatches) {
8052 status = mHalDevice->releaseAudioPatch(handle);
8053 } else {
8054 AudioParameter param;
8055 param.addInt(String8(AudioParameter::keyRouting), 0);
8056 status = mHalStream->setParameters(param.toString());
8057 }
8058 return status;
8059 }
8060
getAudioPortConfig(struct audio_port_config * config)8061 void AudioFlinger::MmapThread::getAudioPortConfig(struct audio_port_config *config)
8062 {
8063 ThreadBase::getAudioPortConfig(config);
8064 if (isOutput()) {
8065 config->role = AUDIO_PORT_ROLE_SOURCE;
8066 config->ext.mix.hw_module = mAudioHwDev->handle();
8067 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
8068 } else {
8069 config->role = AUDIO_PORT_ROLE_SINK;
8070 config->ext.mix.hw_module = mAudioHwDev->handle();
8071 config->ext.mix.usecase.source = mAudioSource;
8072 }
8073 }
8074
addEffectChain_l(const sp<EffectChain> & chain)8075 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
8076 {
8077 audio_session_t session = chain->sessionId();
8078
8079 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
8080 // Attach all tracks with same session ID to this chain.
8081 // indicate all active tracks in the chain
8082 for (const sp<MmapTrack> &track : mActiveTracks) {
8083 if (session == track->sessionId()) {
8084 chain->incTrackCnt();
8085 chain->incActiveTrackCnt();
8086 }
8087 }
8088
8089 chain->setThread(this);
8090 chain->setInBuffer(nullptr);
8091 chain->setOutBuffer(nullptr);
8092 chain->syncHalEffectsState();
8093
8094 mEffectChains.add(chain);
8095 checkSuspendOnAddEffectChain_l(chain);
8096 return NO_ERROR;
8097 }
8098
removeEffectChain_l(const sp<EffectChain> & chain)8099 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
8100 {
8101 audio_session_t session = chain->sessionId();
8102
8103 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
8104
8105 for (size_t i = 0; i < mEffectChains.size(); i++) {
8106 if (chain == mEffectChains[i]) {
8107 mEffectChains.removeAt(i);
8108 // detach all active tracks from the chain
8109 // detach all tracks with same session ID from this chain
8110 for (const sp<MmapTrack> &track : mActiveTracks) {
8111 if (session == track->sessionId()) {
8112 chain->decActiveTrackCnt();
8113 chain->decTrackCnt();
8114 }
8115 }
8116 break;
8117 }
8118 }
8119 return mEffectChains.size();
8120 }
8121
8122 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const8123 uint32_t AudioFlinger::MmapThread::hasAudioSession_l(audio_session_t sessionId) const
8124 {
8125 uint32_t result = 0;
8126 if (getEffectChain_l(sessionId) != 0) {
8127 result = EFFECT_SESSION;
8128 }
8129
8130 for (size_t i = 0; i < mActiveTracks.size(); i++) {
8131 sp<MmapTrack> track = mActiveTracks[i];
8132 if (sessionId == track->sessionId()) {
8133 result |= TRACK_SESSION;
8134 if (track->isFastTrack()) {
8135 result |= FAST_SESSION;
8136 }
8137 break;
8138 }
8139 }
8140
8141 return result;
8142 }
8143
threadLoop_standby()8144 void AudioFlinger::MmapThread::threadLoop_standby()
8145 {
8146 mHalStream->standby();
8147 }
8148
threadLoop_exit()8149 void AudioFlinger::MmapThread::threadLoop_exit()
8150 {
8151 // Do not call callback->onTearDown() because it is redundant for thread exit
8152 // and because it can cause a recursive mutex lock on stop().
8153 }
8154
setSyncEvent(const sp<SyncEvent> & event __unused)8155 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
8156 {
8157 return BAD_VALUE;
8158 }
8159
isValidSyncEvent(const sp<SyncEvent> & event __unused) const8160 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
8161 {
8162 return false;
8163 }
8164
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)8165 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
8166 const effect_descriptor_t *desc, audio_session_t sessionId)
8167 {
8168 // No global effect sessions on mmap threads
8169 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
8170 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
8171 desc->name, mThreadName);
8172 return BAD_VALUE;
8173 }
8174
8175 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
8176 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
8177 desc->name);
8178 return BAD_VALUE;
8179 }
8180 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
8181 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
8182 "thread", desc->name);
8183 return BAD_VALUE;
8184 }
8185
8186 // Only allow effects without processing load or latency
8187 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
8188 return BAD_VALUE;
8189 }
8190
8191 return NO_ERROR;
8192
8193 }
8194
checkInvalidTracks_l()8195 void AudioFlinger::MmapThread::checkInvalidTracks_l()
8196 {
8197 for (const sp<MmapTrack> &track : mActiveTracks) {
8198 if (track->isInvalid()) {
8199 sp<MmapStreamCallback> callback = mCallback.promote();
8200 if (callback != 0) {
8201 callback->onTearDown();
8202 }
8203 break;
8204 }
8205 }
8206 }
8207
dump(int fd,const Vector<String16> & args)8208 void AudioFlinger::MmapThread::dump(int fd, const Vector<String16>& args)
8209 {
8210 dumpInternals(fd, args);
8211 dumpTracks(fd, args);
8212 dumpEffectChains(fd, args);
8213 dprintf(fd, " Local log:\n");
8214 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
8215 }
8216
dumpInternals(int fd,const Vector<String16> & args)8217 void AudioFlinger::MmapThread::dumpInternals(int fd, const Vector<String16>& args)
8218 {
8219 dumpBase(fd, args);
8220
8221 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
8222 mAttr.content_type, mAttr.usage, mAttr.source);
8223 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
8224 if (mActiveTracks.size() == 0) {
8225 dprintf(fd, " No active clients\n");
8226 }
8227 }
8228
dumpTracks(int fd,const Vector<String16> & args __unused)8229 void AudioFlinger::MmapThread::dumpTracks(int fd, const Vector<String16>& args __unused)
8230 {
8231 String8 result;
8232 size_t numtracks = mActiveTracks.size();
8233 dprintf(fd, " %zu Tracks\n", numtracks);
8234 const char *prefix = " ";
8235 if (numtracks) {
8236 result.append(prefix);
8237 MmapTrack::appendDumpHeader(result);
8238 for (size_t i = 0; i < numtracks ; ++i) {
8239 sp<MmapTrack> track = mActiveTracks[i];
8240 result.append(prefix);
8241 track->appendDump(result, true /* active */);
8242 }
8243 } else {
8244 dprintf(fd, "\n");
8245 }
8246 write(fd, result.string(), result.size());
8247 }
8248
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)8249 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
8250 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8251 AudioHwDevice *hwDev, AudioStreamOut *output,
8252 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
8253 : MmapThread(audioFlinger, id, hwDev, output->stream, outDevice, inDevice, systemReady),
8254 mStreamType(AUDIO_STREAM_MUSIC),
8255 mStreamVolume(1.0), mStreamMute(false), mOutput(output)
8256 {
8257 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
8258 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
8259 mMasterVolume = audioFlinger->masterVolume_l();
8260 mMasterMute = audioFlinger->masterMute_l();
8261 if (mAudioHwDev) {
8262 if (mAudioHwDev->canSetMasterVolume()) {
8263 mMasterVolume = 1.0;
8264 }
8265
8266 if (mAudioHwDev->canSetMasterMute()) {
8267 mMasterMute = false;
8268 }
8269 }
8270 }
8271
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)8272 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
8273 audio_stream_type_t streamType,
8274 audio_session_t sessionId,
8275 const sp<MmapStreamCallback>& callback,
8276 audio_port_handle_t deviceId,
8277 audio_port_handle_t portId)
8278 {
8279 MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
8280 mStreamType = streamType;
8281 }
8282
clearOutput()8283 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
8284 {
8285 Mutex::Autolock _l(mLock);
8286 AudioStreamOut *output = mOutput;
8287 mOutput = NULL;
8288 return output;
8289 }
8290
setMasterVolume(float value)8291 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
8292 {
8293 Mutex::Autolock _l(mLock);
8294 // Don't apply master volume in SW if our HAL can do it for us.
8295 if (mAudioHwDev &&
8296 mAudioHwDev->canSetMasterVolume()) {
8297 mMasterVolume = 1.0;
8298 } else {
8299 mMasterVolume = value;
8300 }
8301 }
8302
setMasterMute(bool muted)8303 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
8304 {
8305 Mutex::Autolock _l(mLock);
8306 // Don't apply master mute in SW if our HAL can do it for us.
8307 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
8308 mMasterMute = false;
8309 } else {
8310 mMasterMute = muted;
8311 }
8312 }
8313
setStreamVolume(audio_stream_type_t stream,float value)8314 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
8315 {
8316 Mutex::Autolock _l(mLock);
8317 if (stream == mStreamType) {
8318 mStreamVolume = value;
8319 broadcast_l();
8320 }
8321 }
8322
streamVolume(audio_stream_type_t stream) const8323 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
8324 {
8325 Mutex::Autolock _l(mLock);
8326 if (stream == mStreamType) {
8327 return mStreamVolume;
8328 }
8329 return 0.0f;
8330 }
8331
setStreamMute(audio_stream_type_t stream,bool muted)8332 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
8333 {
8334 Mutex::Autolock _l(mLock);
8335 if (stream == mStreamType) {
8336 mStreamMute= muted;
8337 broadcast_l();
8338 }
8339 }
8340
invalidateTracks(audio_stream_type_t streamType)8341 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
8342 {
8343 Mutex::Autolock _l(mLock);
8344 if (streamType == mStreamType) {
8345 for (const sp<MmapTrack> &track : mActiveTracks) {
8346 track->invalidate();
8347 }
8348 broadcast_l();
8349 }
8350 }
8351
processVolume_l()8352 void AudioFlinger::MmapPlaybackThread::processVolume_l()
8353 {
8354 float volume;
8355
8356 if (mMasterMute || mStreamMute) {
8357 volume = 0;
8358 } else {
8359 volume = mMasterVolume * mStreamVolume;
8360 }
8361
8362 if (volume != mHalVolFloat) {
8363 mHalVolFloat = volume;
8364
8365 // Convert volumes from float to 8.24
8366 uint32_t vol = (uint32_t)(volume * (1 << 24));
8367
8368 // Delegate volume control to effect in track effect chain if needed
8369 // only one effect chain can be present on DirectOutputThread, so if
8370 // there is one, the track is connected to it
8371 if (!mEffectChains.isEmpty()) {
8372 mEffectChains[0]->setVolume_l(&vol, &vol);
8373 volume = (float)vol / (1 << 24);
8374 }
8375 // Try to use HW volume control and fall back to SW control if not implemented
8376 if (mOutput->stream->setVolume(volume, volume) != NO_ERROR) {
8377 sp<MmapStreamCallback> callback = mCallback.promote();
8378 if (callback != 0) {
8379 int channelCount;
8380 if (isOutput()) {
8381 channelCount = audio_channel_count_from_out_mask(mChannelMask);
8382 } else {
8383 channelCount = audio_channel_count_from_in_mask(mChannelMask);
8384 }
8385 Vector<float> values;
8386 for (int i = 0; i < channelCount; i++) {
8387 values.add(volume);
8388 }
8389 callback->onVolumeChanged(mChannelMask, values);
8390 } else {
8391 ALOGW("Could not set MMAP stream volume: no volume callback!");
8392 }
8393 }
8394 }
8395 }
8396
checkSilentMode_l()8397 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
8398 {
8399 if (!mMasterMute) {
8400 char value[PROPERTY_VALUE_MAX];
8401 if (property_get("ro.audio.silent", value, "0") > 0) {
8402 char *endptr;
8403 unsigned long ul = strtoul(value, &endptr, 0);
8404 if (*endptr == '\0' && ul != 0) {
8405 ALOGD("Silence is golden");
8406 // The setprop command will not allow a property to be changed after
8407 // the first time it is set, so we don't have to worry about un-muting.
8408 setMasterMute_l(true);
8409 }
8410 }
8411 }
8412 }
8413
dumpInternals(int fd,const Vector<String16> & args)8414 void AudioFlinger::MmapPlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
8415 {
8416 MmapThread::dumpInternals(fd, args);
8417
8418 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
8419 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
8420 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
8421 }
8422
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)8423 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
8424 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8425 AudioHwDevice *hwDev, AudioStreamIn *input,
8426 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
8427 : MmapThread(audioFlinger, id, hwDev, input->stream, outDevice, inDevice, systemReady),
8428 mInput(input)
8429 {
8430 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
8431 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8432 }
8433
clearInput()8434 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
8435 {
8436 Mutex::Autolock _l(mLock);
8437 AudioStreamIn *input = mInput;
8438 mInput = NULL;
8439 return input;
8440 }
8441 } // namespace android
8442