• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <bl_common.h>
35 #include <context.h>
36 #include <context_mgmt.h>
37 #include <platform.h>
38 #include <stddef.h>
39 #include "psci_private.h"
40 
41 /*******************************************************************************
42  * Per cpu non-secure contexts used to program the architectural state prior
43  * return to the normal world.
44  * TODO: Use the memory allocator to set aside memory for the contexts instead
45  * of relying on platform defined constants. Using PSCI_NUM_AFFS will be an
46  * overkill.
47  ******************************************************************************/
48 static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
49 
50 /*******************************************************************************
51  * In a system, a certain number of affinity instances are present at an
52  * affinity level. The cumulative number of instances across all levels are
53  * stored in 'psci_aff_map'. The topology tree has been flattenned into this
54  * array. To retrieve nodes, information about the extents of each affinity
55  * level i.e. start index and end index needs to be present. 'psci_aff_limits'
56  * stores this information.
57  ******************************************************************************/
58 aff_limits_node_t psci_aff_limits[MPIDR_MAX_AFFLVL + 1];
59 
60 /******************************************************************************
61  * Define the psci capability variable.
62  *****************************************************************************/
63 uint32_t psci_caps;
64 
65 
66 /*******************************************************************************
67  * Routines for retrieving the node corresponding to an affinity level instance
68  * in the mpidr. The first one uses binary search to find the node corresponding
69  * to the mpidr (key) at a particular affinity level. The second routine decides
70  * extents of the binary search at each affinity level.
71  ******************************************************************************/
psci_aff_map_get_idx(unsigned long key,int min_idx,int max_idx)72 static int psci_aff_map_get_idx(unsigned long key,
73 				int min_idx,
74 				int max_idx)
75 {
76 	int mid;
77 
78 	/*
79 	 * Terminating condition: If the max and min indices have crossed paths
80 	 * during the binary search then the key has not been found.
81 	 */
82 	if (max_idx < min_idx)
83 		return PSCI_E_INVALID_PARAMS;
84 
85 	/*
86 	 * Make sure we are within array limits.
87 	 */
88 	assert(min_idx >= 0 && max_idx < PSCI_NUM_AFFS);
89 
90 	/*
91 	 * Bisect the array around 'mid' and then recurse into the array chunk
92 	 * where the key is likely to be found. The mpidrs in each node in the
93 	 * 'psci_aff_map' for a given affinity level are stored in an ascending
94 	 * order which makes the binary search possible.
95 	 */
96 	mid = min_idx + ((max_idx - min_idx) >> 1);	/* Divide by 2 */
97 
98 	if (psci_aff_map[mid].mpidr > key)
99 		return psci_aff_map_get_idx(key, min_idx, mid - 1);
100 	else if (psci_aff_map[mid].mpidr < key)
101 		return psci_aff_map_get_idx(key, mid + 1, max_idx);
102 	else
103 		return mid;
104 }
105 
psci_get_aff_map_node(unsigned long mpidr,int aff_lvl)106 aff_map_node_t *psci_get_aff_map_node(unsigned long mpidr, int aff_lvl)
107 {
108 	int rc;
109 
110 	if (aff_lvl > get_max_afflvl())
111 		return NULL;
112 
113 	/* Right shift the mpidr to the required affinity level */
114 	mpidr = mpidr_mask_lower_afflvls(mpidr, aff_lvl);
115 
116 	rc = psci_aff_map_get_idx(mpidr,
117 				  psci_aff_limits[aff_lvl].min,
118 				  psci_aff_limits[aff_lvl].max);
119 	if (rc >= 0)
120 		return &psci_aff_map[rc];
121 	else
122 		return NULL;
123 }
124 
125 /*******************************************************************************
126  * This function populates an array with nodes corresponding to a given range of
127  * affinity levels in an mpidr. It returns successfully only when the affinity
128  * levels are correct, the mpidr is valid i.e. no affinity level is absent from
129  * the topology tree & the affinity instance at level 0 is not absent.
130  ******************************************************************************/
psci_get_aff_map_nodes(unsigned long mpidr,int start_afflvl,int end_afflvl,aff_map_node_t * mpidr_nodes[])131 int psci_get_aff_map_nodes(unsigned long mpidr,
132 			   int start_afflvl,
133 			   int end_afflvl,
134 			   aff_map_node_t *mpidr_nodes[])
135 {
136 	int rc = PSCI_E_INVALID_PARAMS, level;
137 	aff_map_node_t *node;
138 
139 	rc = psci_check_afflvl_range(start_afflvl, end_afflvl);
140 	if (rc != PSCI_E_SUCCESS)
141 		return rc;
142 
143 	for (level = start_afflvl; level <= end_afflvl; level++) {
144 
145 		/*
146 		 * Grab the node for each affinity level. No affinity level
147 		 * can be missing as that would mean that the topology tree
148 		 * is corrupted.
149 		 */
150 		node = psci_get_aff_map_node(mpidr, level);
151 		if (node == NULL) {
152 			rc = PSCI_E_INVALID_PARAMS;
153 			break;
154 		}
155 
156 		/*
157 		 * Skip absent affinity levels unless it's afffinity level 0.
158 		 * An absent cpu means that the mpidr is invalid. Save the
159 		 * pointer to the node for the present affinity level
160 		 */
161 		if (!(node->state & PSCI_AFF_PRESENT)) {
162 			if (level == MPIDR_AFFLVL0) {
163 				rc = PSCI_E_INVALID_PARAMS;
164 				break;
165 			}
166 
167 			mpidr_nodes[level] = NULL;
168 		} else
169 			mpidr_nodes[level] = node;
170 	}
171 
172 	return rc;
173 }
174 
175 /*******************************************************************************
176  * Function which initializes the 'aff_map_node' corresponding to an affinity
177  * level instance. Each node has a unique mpidr, level and bakery lock. The data
178  * field is opaque and holds affinity level specific data e.g. for affinity
179  * level 0 it contains the index into arrays that hold the secure/non-secure
180  * state for a cpu that's been turned on/off
181  ******************************************************************************/
psci_init_aff_map_node(unsigned long mpidr,int level,unsigned int idx)182 static void psci_init_aff_map_node(unsigned long mpidr,
183 				   int level,
184 				   unsigned int idx)
185 {
186 	unsigned char state;
187 	uint32_t linear_id;
188 	psci_aff_map[idx].mpidr = mpidr;
189 	psci_aff_map[idx].level = level;
190 	psci_lock_init(psci_aff_map, idx);
191 
192 	/*
193 	 * If an affinity instance is present then mark it as OFF to begin with.
194 	 */
195 	state = plat_get_aff_state(level, mpidr);
196 	psci_aff_map[idx].state = state;
197 
198 	if (level == MPIDR_AFFLVL0) {
199 
200 		/*
201 		 * Mark the cpu as OFF. Higher affinity level reference counts
202 		 * have already been memset to 0
203 		 */
204 		if (state & PSCI_AFF_PRESENT)
205 			psci_set_state(&psci_aff_map[idx], PSCI_STATE_OFF);
206 
207 		/*
208 		 * Associate a non-secure context with this affinity
209 		 * instance through the context management library.
210 		 */
211 		linear_id = platform_get_core_pos(mpidr);
212 		assert(linear_id < PLATFORM_CORE_COUNT);
213 
214 		/* Invalidate the suspend context for the node */
215 		set_cpu_data_by_index(linear_id,
216 				      psci_svc_cpu_data.power_state,
217 				      PSCI_INVALID_DATA);
218 
219 		/*
220 		 * There is no state associated with the current execution
221 		 * context so ensure that any reads of the highest affinity
222 		 * level in a powered down state return PSCI_INVALID_DATA.
223 		 */
224 		set_cpu_data_by_index(linear_id,
225 				      psci_svc_cpu_data.max_phys_off_afflvl,
226 				      PSCI_INVALID_DATA);
227 
228 		flush_cpu_data_by_index(linear_id, psci_svc_cpu_data);
229 
230 		cm_set_context_by_mpidr(mpidr,
231 					(void *) &psci_ns_context[linear_id],
232 					NON_SECURE);
233 	}
234 
235 	return;
236 }
237 
238 /*******************************************************************************
239  * Core routine used by the Breadth-First-Search algorithm to populate the
240  * affinity tree. Each level in the tree corresponds to an affinity level. This
241  * routine's aim is to traverse to the target affinity level and populate nodes
242  * in the 'psci_aff_map' for all the siblings at that level. It uses the current
243  * affinity level to keep track of how many levels from the root of the tree
244  * have been traversed. If the current affinity level != target affinity level,
245  * then the platform is asked to return the number of children that each
246  * affinity instance has at the current affinity level. Traversal is then done
247  * for each child at the next lower level i.e. current affinity level - 1.
248  *
249  * CAUTION: This routine assumes that affinity instance ids are allocated in a
250  * monotonically increasing manner at each affinity level in a mpidr starting
251  * from 0. If the platform breaks this assumption then this code will have to
252  * be reworked accordingly.
253  ******************************************************************************/
psci_init_aff_map(unsigned long mpidr,unsigned int affmap_idx,int cur_afflvl,int tgt_afflvl)254 static unsigned int psci_init_aff_map(unsigned long mpidr,
255 				      unsigned int affmap_idx,
256 				      int cur_afflvl,
257 				      int tgt_afflvl)
258 {
259 	unsigned int ctr, aff_count;
260 
261 	assert(cur_afflvl >= tgt_afflvl);
262 
263 	/*
264 	 * Find the number of siblings at the current affinity level &
265 	 * assert if there are none 'cause then we have been invoked with
266 	 * an invalid mpidr.
267 	 */
268 	aff_count = plat_get_aff_count(cur_afflvl, mpidr);
269 	assert(aff_count);
270 
271 	if (tgt_afflvl < cur_afflvl) {
272 		for (ctr = 0; ctr < aff_count; ctr++) {
273 			mpidr = mpidr_set_aff_inst(mpidr, ctr, cur_afflvl);
274 			affmap_idx = psci_init_aff_map(mpidr,
275 						       affmap_idx,
276 						       cur_afflvl - 1,
277 						       tgt_afflvl);
278 		}
279 	} else {
280 		for (ctr = 0; ctr < aff_count; ctr++, affmap_idx++) {
281 			mpidr = mpidr_set_aff_inst(mpidr, ctr, cur_afflvl);
282 			psci_init_aff_map_node(mpidr, cur_afflvl, affmap_idx);
283 		}
284 
285 		/* affmap_idx is 1 greater than the max index of cur_afflvl */
286 		psci_aff_limits[cur_afflvl].max = affmap_idx - 1;
287 	}
288 
289 	return affmap_idx;
290 }
291 
292 /*******************************************************************************
293  * This function initializes the topology tree by querying the platform. To do
294  * so, it's helper routines implement a Breadth-First-Search. At each affinity
295  * level the platform conveys the number of affinity instances that exist i.e.
296  * the affinity count. The algorithm populates the psci_aff_map recursively
297  * using this information. On a platform that implements two clusters of 4 cpus
298  * each, the populated aff_map_array would look like this:
299  *
300  *            <- cpus cluster0 -><- cpus cluster1 ->
301  * ---------------------------------------------------
302  * | 0  | 1  | 0  | 1  | 2  | 3  | 0  | 1  | 2  | 3  |
303  * ---------------------------------------------------
304  *           ^                                       ^
305  * cluster __|                                 cpu __|
306  * limit                                      limit
307  *
308  * The first 2 entries are of the cluster nodes. The next 4 entries are of cpus
309  * within cluster 0. The last 4 entries are of cpus within cluster 1.
310  * The 'psci_aff_limits' array contains the max & min index of each affinity
311  * level within the 'psci_aff_map' array. This allows restricting search of a
312  * node at an affinity level between the indices in the limits array.
313  ******************************************************************************/
psci_setup(void)314 int32_t psci_setup(void)
315 {
316 	unsigned long mpidr = read_mpidr();
317 	int afflvl, affmap_idx, max_afflvl;
318 	aff_map_node_t *node;
319 
320 	psci_plat_pm_ops = NULL;
321 
322 	/* Find out the maximum affinity level that the platform implements */
323 	max_afflvl = get_max_afflvl();
324 	assert(max_afflvl <= MPIDR_MAX_AFFLVL);
325 
326 	/*
327 	 * This call traverses the topology tree with help from the platform and
328 	 * populates the affinity map using a breadth-first-search recursively.
329 	 * We assume that the platform allocates affinity instance ids from 0
330 	 * onwards at each affinity level in the mpidr. FIRST_MPIDR = 0.0.0.0
331 	 */
332 	affmap_idx = 0;
333 	for (afflvl = max_afflvl; afflvl >= MPIDR_AFFLVL0; afflvl--) {
334 		affmap_idx = psci_init_aff_map(FIRST_MPIDR,
335 					       affmap_idx,
336 					       max_afflvl,
337 					       afflvl);
338 	}
339 
340 #if !USE_COHERENT_MEM
341 	/*
342 	 * The psci_aff_map only needs flushing when it's not allocated in
343 	 * coherent memory.
344 	 */
345 	flush_dcache_range((uint64_t) &psci_aff_map, sizeof(psci_aff_map));
346 #endif
347 
348 	/*
349 	 * Set the bounds for the affinity counts of each level in the map. Also
350 	 * flush out the entire array so that it's visible to subsequent power
351 	 * management operations. The 'psci_aff_limits' array is allocated in
352 	 * normal memory. It will be accessed when the mmu is off e.g. after
353 	 * reset. Hence it needs to be flushed.
354 	 */
355 	for (afflvl = MPIDR_AFFLVL0; afflvl < max_afflvl; afflvl++) {
356 		psci_aff_limits[afflvl].min =
357 			psci_aff_limits[afflvl + 1].max + 1;
358 	}
359 
360 	flush_dcache_range((unsigned long) psci_aff_limits,
361 			   sizeof(psci_aff_limits));
362 
363 	/*
364 	 * Mark the affinity instances in our mpidr as ON. No need to lock as
365 	 * this is the primary cpu.
366 	 */
367 	mpidr &= MPIDR_AFFINITY_MASK;
368 	for (afflvl = MPIDR_AFFLVL0; afflvl <= max_afflvl; afflvl++) {
369 
370 		node = psci_get_aff_map_node(mpidr, afflvl);
371 		assert(node);
372 
373 		/* Mark each present node as ON. */
374 		if (node->state & PSCI_AFF_PRESENT)
375 			psci_set_state(node, PSCI_STATE_ON);
376 	}
377 
378 	platform_setup_pm(&psci_plat_pm_ops);
379 	assert(psci_plat_pm_ops);
380 
381 	/* Initialize the psci capability */
382 	psci_caps = PSCI_GENERIC_CAP;
383 
384 	if (psci_plat_pm_ops->affinst_off)
385 		psci_caps |=  define_psci_cap(PSCI_CPU_OFF);
386 	if (psci_plat_pm_ops->affinst_on && psci_plat_pm_ops->affinst_on_finish)
387 		psci_caps |=  define_psci_cap(PSCI_CPU_ON_AARCH64);
388 	if (psci_plat_pm_ops->affinst_suspend &&
389 			psci_plat_pm_ops->affinst_suspend_finish) {
390 		psci_caps |=  define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
391 		if (psci_plat_pm_ops->get_sys_suspend_power_state)
392 			psci_caps |=  define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
393 	}
394 	if (psci_plat_pm_ops->system_off)
395 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_OFF);
396 	if (psci_plat_pm_ops->system_reset)
397 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_RESET);
398 
399 	return 0;
400 }
401