• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <pthread.h>
30 
31 #include <errno.h>
32 #include <limits.h>
33 #include <stdatomic.h>
34 #include <string.h>
35 #include <sys/cdefs.h>
36 #include <sys/mman.h>
37 #include <unistd.h>
38 
39 #include "pthread_internal.h"
40 
41 #include "private/bionic_constants.h"
42 #include "private/bionic_futex.h"
43 #include "private/bionic_systrace.h"
44 #include "private/bionic_time_conversions.h"
45 #include "private/bionic_tls.h"
46 
47 /* a mutex attribute holds the following fields
48  *
49  * bits:     name       description
50  * 0-3       type       type of mutex
51  * 4         shared     process-shared flag
52  */
53 #define  MUTEXATTR_TYPE_MASK   0x000f
54 #define  MUTEXATTR_SHARED_MASK 0x0010
55 
pthread_mutexattr_init(pthread_mutexattr_t * attr)56 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
57 {
58     *attr = PTHREAD_MUTEX_DEFAULT;
59     return 0;
60 }
61 
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)62 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
63 {
64     *attr = -1;
65     return 0;
66 }
67 
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type_p)68 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
69 {
70     int type = (*attr & MUTEXATTR_TYPE_MASK);
71 
72     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
73         return EINVAL;
74     }
75 
76     *type_p = type;
77     return 0;
78 }
79 
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)80 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
81 {
82     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
83         return EINVAL;
84     }
85 
86     *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
87     return 0;
88 }
89 
90 /* process-shared mutexes are not supported at the moment */
91 
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)92 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
93 {
94     switch (pshared) {
95     case PTHREAD_PROCESS_PRIVATE:
96         *attr &= ~MUTEXATTR_SHARED_MASK;
97         return 0;
98 
99     case PTHREAD_PROCESS_SHARED:
100         /* our current implementation of pthread actually supports shared
101          * mutexes but won't cleanup if a process dies with the mutex held.
102          * Nevertheless, it's better than nothing. Shared mutexes are used
103          * by surfaceflinger and audioflinger.
104          */
105         *attr |= MUTEXATTR_SHARED_MASK;
106         return 0;
107     }
108     return EINVAL;
109 }
110 
pthread_mutexattr_getpshared(const pthread_mutexattr_t * attr,int * pshared)111 int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
112     *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
113     return 0;
114 }
115 
116 /* a mutex contains a state value and a owner_tid.
117  * The value is implemented as a 16-bit integer holding the following fields:
118  *
119  * bits:     name     description
120  * 15-14     type     mutex type
121  * 13        shared   process-shared flag
122  * 12-2      counter  counter of recursive mutexes
123  * 1-0       state    lock state (0, 1 or 2)
124  *
125  * The owner_tid is used only in recursive and errorcheck mutex to hold the mutex owner thread tid.
126  */
127 
128 /* Convenience macro, creates a mask of 'bits' bits that starts from
129  * the 'shift'-th least significant bit in a 32-bit word.
130  *
131  * Examples: FIELD_MASK(0,4)  -> 0xf
132  *           FIELD_MASK(16,9) -> 0x1ff0000
133  */
134 #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
135 
136 /* This one is used to create a bit pattern from a given field value */
137 #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
138 
139 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
140 #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
141 
142 
143 /* Convenience macros.
144  *
145  * These are used to form or modify the bit pattern of a given mutex value
146  */
147 
148 /* Mutex state:
149  *
150  * 0 for unlocked
151  * 1 for locked, no waiters
152  * 2 for locked, maybe waiters
153  */
154 #define  MUTEX_STATE_SHIFT      0
155 #define  MUTEX_STATE_LEN        2
156 
157 #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
158 #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
159 #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
160 
161 #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match PTHREAD_MUTEX_INITIALIZER */
162 #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
163 #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
164 
165 #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
166 #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
167 #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
168 
169 // Return true iff the mutex is unlocked.
170 #define MUTEX_STATE_BITS_IS_UNLOCKED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_UNLOCKED)
171 
172 // Return true iff the mutex is locked with no waiters.
173 #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
174 
175 // return true iff the mutex is locked with maybe waiters.
176 #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
177 
178 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
179 #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
180 
181 /* Mutex counter:
182  *
183  * We need to check for overflow before incrementing, and we also need to
184  * detect when the counter is 0
185  */
186 #define  MUTEX_COUNTER_SHIFT         2
187 #define  MUTEX_COUNTER_LEN           11
188 #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
189 
190 #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
191 #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
192 
193 /* Used to increment the counter directly after overflow has been checked */
194 #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
195 
196 /* Mutex shared bit flag
197  *
198  * This flag is set to indicate that the mutex is shared among processes.
199  * This changes the futex opcode we use for futex wait/wake operations
200  * (non-shared operations are much faster).
201  */
202 #define  MUTEX_SHARED_SHIFT    13
203 #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
204 
205 /* Mutex type:
206  * We support normal, recursive and errorcheck mutexes.
207  */
208 #define  MUTEX_TYPE_SHIFT      14
209 #define  MUTEX_TYPE_LEN        2
210 #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
211 
212 #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
213 
214 #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL)
215 #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE)
216 #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK)
217 
218 struct pthread_mutex_internal_t {
219   _Atomic(uint16_t) state;
220 #if defined(__LP64__)
221   uint16_t __pad;
222   atomic_int owner_tid;
223   char __reserved[32];
224 #else
225   _Atomic(uint16_t) owner_tid;
226 #endif
227 } __attribute__((aligned(4)));
228 
229 static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t),
230               "pthread_mutex_t should actually be pthread_mutex_internal_t in implementation.");
231 
232 // For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment
233 // than 4-byte alignment.
234 static_assert(alignof(pthread_mutex_t) == 4,
235               "pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t.");
236 
__get_internal_mutex(pthread_mutex_t * mutex_interface)237 static inline pthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface) {
238   return reinterpret_cast<pthread_mutex_internal_t*>(mutex_interface);
239 }
240 
pthread_mutex_init(pthread_mutex_t * mutex_interface,const pthread_mutexattr_t * attr)241 int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) {
242     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
243 
244     memset(mutex, 0, sizeof(pthread_mutex_internal_t));
245 
246     if (__predict_true(attr == NULL)) {
247         atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL);
248         return 0;
249     }
250 
251     uint16_t state = 0;
252     if ((*attr & MUTEXATTR_SHARED_MASK) != 0) {
253         state |= MUTEX_SHARED_MASK;
254     }
255 
256     switch (*attr & MUTEXATTR_TYPE_MASK) {
257     case PTHREAD_MUTEX_NORMAL:
258       state |= MUTEX_TYPE_BITS_NORMAL;
259       break;
260     case PTHREAD_MUTEX_RECURSIVE:
261       state |= MUTEX_TYPE_BITS_RECURSIVE;
262       break;
263     case PTHREAD_MUTEX_ERRORCHECK:
264       state |= MUTEX_TYPE_BITS_ERRORCHECK;
265       break;
266     default:
267         return EINVAL;
268     }
269 
270     atomic_init(&mutex->state, state);
271     atomic_init(&mutex->owner_tid, 0);
272     return 0;
273 }
274 
__pthread_normal_mutex_trylock(pthread_mutex_internal_t * mutex,uint16_t shared)275 static inline __always_inline int __pthread_normal_mutex_trylock(pthread_mutex_internal_t* mutex,
276                                                                  uint16_t shared) {
277     const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
278     const uint16_t locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
279 
280     uint16_t old_state = unlocked;
281     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
282                          locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
283         return 0;
284     }
285     return EBUSY;
286 }
287 
288 /*
289  * Lock a mutex of type NORMAL.
290  *
291  * As noted above, there are three states:
292  *   0 (unlocked, no contention)
293  *   1 (locked, no contention)
294  *   2 (locked, contention)
295  *
296  * Non-recursive mutexes don't use the thread-id or counter fields, and the
297  * "type" value is zero, so the only bits that will be set are the ones in
298  * the lock state field.
299  */
__pthread_normal_mutex_lock(pthread_mutex_internal_t * mutex,uint16_t shared,bool use_realtime_clock,const timespec * abs_timeout_or_null)300 static inline __always_inline int __pthread_normal_mutex_lock(pthread_mutex_internal_t* mutex,
301                                                               uint16_t shared,
302                                                               bool use_realtime_clock,
303                                                               const timespec* abs_timeout_or_null) {
304     if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) {
305         return 0;
306     }
307     int result = check_timespec(abs_timeout_or_null, true);
308     if (result != 0) {
309         return result;
310     }
311 
312     ScopedTrace trace("Contending for pthread mutex");
313 
314     const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
315     const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
316 
317     // We want to go to sleep until the mutex is available, which requires
318     // promoting it to locked_contended. We need to swap in the new state
319     // and then wait until somebody wakes us up.
320     // An atomic_exchange is used to compete with other threads for the lock.
321     // If it returns unlocked, we have acquired the lock, otherwise another
322     // thread still holds the lock and we should wait again.
323     // If lock is acquired, an acquire fence is needed to make all memory accesses
324     // made by other threads visible to the current CPU.
325     while (atomic_exchange_explicit(&mutex->state, locked_contended,
326                                     memory_order_acquire) != unlocked) {
327         if (__futex_wait_ex(&mutex->state, shared, locked_contended, use_realtime_clock,
328                             abs_timeout_or_null) == -ETIMEDOUT) {
329             return ETIMEDOUT;
330         }
331     }
332     return 0;
333 }
334 
335 /*
336  * Release a normal mutex.  The caller is responsible for determining
337  * that we are in fact the owner of this lock.
338  */
__pthread_normal_mutex_unlock(pthread_mutex_internal_t * mutex,uint16_t shared)339 static inline __always_inline void __pthread_normal_mutex_unlock(pthread_mutex_internal_t* mutex,
340                                                                  uint16_t shared) {
341     const uint16_t unlocked         = shared | MUTEX_STATE_BITS_UNLOCKED;
342     const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
343 
344     // We use an atomic_exchange to release the lock. If locked_contended state
345     // is returned, some threads is waiting for the lock and we need to wake up
346     // one of them.
347     // A release fence is required to make previous stores visible to next
348     // lock owner threads.
349     if (atomic_exchange_explicit(&mutex->state, unlocked,
350                                  memory_order_release) == locked_contended) {
351         // Wake up one waiting thread. We don't know which thread will be
352         // woken or when it'll start executing -- futexes make no guarantees
353         // here. There may not even be a thread waiting.
354         //
355         // The newly-woken thread will replace the unlocked state we just set above
356         // with locked_contended state, which means that when it eventually releases
357         // the mutex it will also call FUTEX_WAKE. This results in one extra wake
358         // call whenever a lock is contended, but let us avoid forgetting anyone
359         // without requiring us to track the number of sleepers.
360         //
361         // It's possible for another thread to sneak in and grab the lock between
362         // the exchange above and the wake call below. If the new thread is "slow"
363         // and holds the lock for a while, we'll wake up a sleeper, which will swap
364         // in locked_uncontended state and then go back to sleep since the lock is
365         // still held. If the new thread is "fast", running to completion before
366         // we call wake, the thread we eventually wake will find an unlocked mutex
367         // and will execute. Either way we have correct behavior and nobody is
368         // orphaned on the wait queue.
369         __futex_wake_ex(&mutex->state, shared, 1);
370     }
371 }
372 
373 /* This common inlined function is used to increment the counter of a recursive mutex.
374  *
375  * If the counter overflows, it will return EAGAIN.
376  * Otherwise, it atomically increments the counter and returns 0.
377  *
378  */
__recursive_increment(pthread_mutex_internal_t * mutex,uint16_t old_state)379 static inline __always_inline int __recursive_increment(pthread_mutex_internal_t* mutex,
380                                                         uint16_t old_state) {
381     // Detect recursive lock overflow and return EAGAIN.
382     // This is safe because only the owner thread can modify the
383     // counter bits in the mutex value.
384     if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)) {
385         return EAGAIN;
386     }
387 
388     // Other threads are able to change the lower bits (e.g. promoting it to "contended"),
389     // but the mutex counter will not overflow. So we use atomic_fetch_add operation here.
390     // The mutex is still locked by current thread, so we don't need a release fence.
391     atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
392     return 0;
393 }
394 
__recursive_or_errorcheck_mutex_wait(pthread_mutex_internal_t * mutex,uint16_t shared,uint16_t old_state,bool use_realtime_clock,const timespec * abs_timeout)395 static inline __always_inline int __recursive_or_errorcheck_mutex_wait(
396                                                       pthread_mutex_internal_t* mutex,
397                                                       uint16_t shared,
398                                                       uint16_t old_state,
399                                                       bool use_realtime_clock,
400                                                       const timespec* abs_timeout) {
401 // __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid
402 // field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used.
403 // But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the
404 // owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error.
405 
406 #if defined(__LP64__)
407   return __futex_wait_ex(&mutex->state, shared, old_state, use_realtime_clock, abs_timeout);
408 
409 #else
410   // This implementation works only when the layout of pthread_mutex_internal_t matches below expectation.
411   // And it is based on the assumption that Android is always in little-endian devices.
412   static_assert(offsetof(pthread_mutex_internal_t, state) == 0, "");
413   static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, "");
414 
415   uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed);
416   return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state,
417                          use_realtime_clock, abs_timeout);
418 #endif
419 }
420 
__pthread_mutex_lock_with_timeout(pthread_mutex_internal_t * mutex,bool use_realtime_clock,const timespec * abs_timeout_or_null)421 static int __pthread_mutex_lock_with_timeout(pthread_mutex_internal_t* mutex,
422                                              bool use_realtime_clock,
423                                              const timespec* abs_timeout_or_null) {
424     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
425     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
426     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
427 
428     // Handle common case first.
429     if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
430         return __pthread_normal_mutex_lock(mutex, shared, use_realtime_clock, abs_timeout_or_null);
431     }
432 
433     // Do we already own this recursive or error-check mutex?
434     pid_t tid = __get_thread()->tid;
435     if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
436         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
437             return EDEADLK;
438         }
439         return __recursive_increment(mutex, old_state);
440     }
441 
442     const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
443     const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
444     const uint16_t locked_contended   = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
445 
446     // First, if the mutex is unlocked, try to quickly acquire it.
447     // In the optimistic case where this works, set the state to locked_uncontended.
448     if (old_state == unlocked) {
449         // If exchanged successfully, an acquire fence is required to make
450         // all memory accesses made by other threads visible to the current CPU.
451         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
452                              locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
453             atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
454             return 0;
455         }
456     }
457 
458     ScopedTrace trace("Contending for pthread mutex");
459 
460     while (true) {
461         if (old_state == unlocked) {
462             // NOTE: We put the state to locked_contended since we _know_ there
463             // is contention when we are in this loop. This ensures all waiters
464             // will be unlocked.
465 
466             // If exchanged successfully, an acquire fence is required to make
467             // all memory accesses made by other threads visible to the current CPU.
468             if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state,
469                                                                      &old_state, locked_contended,
470                                                                      memory_order_acquire,
471                                                                      memory_order_relaxed))) {
472                 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
473                 return 0;
474             }
475             continue;
476         } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)) {
477             // We should set it to locked_contended beforing going to sleep. This can make
478             // sure waiters will be woken up eventually.
479 
480             int new_state = MUTEX_STATE_BITS_FLIP_CONTENTION(old_state);
481             if (__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state,
482                                                                        &old_state, new_state,
483                                                                        memory_order_relaxed,
484                                                                        memory_order_relaxed))) {
485                 continue;
486             }
487             old_state = new_state;
488         }
489 
490         int result = check_timespec(abs_timeout_or_null, true);
491         if (result != 0) {
492             return result;
493         }
494         // We are in locked_contended state, sleep until someone wakes us up.
495         if (__recursive_or_errorcheck_mutex_wait(mutex, shared, old_state, use_realtime_clock,
496                                                  abs_timeout_or_null) == -ETIMEDOUT) {
497             return ETIMEDOUT;
498         }
499         old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
500     }
501 }
502 
pthread_mutex_lock(pthread_mutex_t * mutex_interface)503 int pthread_mutex_lock(pthread_mutex_t* mutex_interface) {
504 #if !defined(__LP64__)
505     // Some apps depend on being able to pass NULL as a mutex and get EINVAL
506     // back. Don't need to worry about it for LP64 since the ABI is brand new,
507     // but keep compatibility for LP32. http://b/19995172.
508     if (mutex_interface == NULL) {
509         return EINVAL;
510     }
511 #endif
512 
513     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
514 
515     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
516     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
517     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
518     // Avoid slowing down fast path of normal mutex lock operation.
519     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
520       if (__predict_true(__pthread_normal_mutex_trylock(mutex, shared) == 0)) {
521         return 0;
522       }
523     }
524     return __pthread_mutex_lock_with_timeout(mutex, false, nullptr);
525 }
526 
pthread_mutex_unlock(pthread_mutex_t * mutex_interface)527 int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
528 #if !defined(__LP64__)
529     // Some apps depend on being able to pass NULL as a mutex and get EINVAL
530     // back. Don't need to worry about it for LP64 since the ABI is brand new,
531     // but keep compatibility for LP32. http://b/19995172.
532     if (mutex_interface == NULL) {
533         return EINVAL;
534     }
535 #endif
536 
537     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
538 
539     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
540     uint16_t mtype  = (old_state & MUTEX_TYPE_MASK);
541     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
542 
543     // Handle common case first.
544     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
545         __pthread_normal_mutex_unlock(mutex, shared);
546         return 0;
547     }
548 
549     // Do we already own this recursive or error-check mutex?
550     pid_t tid = __get_thread()->tid;
551     if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) {
552         return EPERM;
553     }
554 
555     // If the counter is > 0, we can simply decrement it atomically.
556     // Since other threads can mutate the lower state bits (and only the
557     // lower state bits), use a compare_exchange loop to do it.
558     if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) {
559         // We still own the mutex, so a release fence is not needed.
560         atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
561         return 0;
562     }
563 
564     // The counter is 0, so we'are going to unlock the mutex by resetting its
565     // state to unlocked, we need to perform a atomic_exchange inorder to read
566     // the current state, which will be locked_contended if there may have waiters
567     // to awake.
568     // A release fence is required to make previous stores visible to next
569     // lock owner threads.
570     atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed);
571     const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
572     old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release);
573     if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) {
574         __futex_wake_ex(&mutex->state, shared, 1);
575     }
576 
577     return 0;
578 }
579 
pthread_mutex_trylock(pthread_mutex_t * mutex_interface)580 int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
581     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
582 
583     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
584     uint16_t mtype  = (old_state & MUTEX_TYPE_MASK);
585     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
586 
587     const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
588     const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
589 
590     // Handle common case first.
591     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
592         return __pthread_normal_mutex_trylock(mutex, shared);
593     }
594 
595     // Do we already own this recursive or error-check mutex?
596     pid_t tid = __get_thread()->tid;
597     if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
598         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
599             return EBUSY;
600         }
601         return __recursive_increment(mutex, old_state);
602     }
603 
604     // Same as pthread_mutex_lock, except that we don't want to wait, and
605     // the only operation that can succeed is a single compare_exchange to acquire the
606     // lock if it is released / not owned by anyone. No need for a complex loop.
607     // If exchanged successfully, an acquire fence is required to make
608     // all memory accesses made by other threads visible to the current CPU.
609     old_state = unlocked;
610     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
611                                                                locked_uncontended,
612                                                                memory_order_acquire,
613                                                                memory_order_relaxed))) {
614         atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
615         return 0;
616     }
617     return EBUSY;
618 }
619 
620 #if !defined(__LP64__)
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex_interface,unsigned ms)621 extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) {
622     timespec ts;
623     timespec_from_ms(ts, ms);
624     timespec abs_timeout;
625     absolute_timespec_from_timespec(abs_timeout, ts, CLOCK_MONOTONIC);
626     int error = __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface),
627                                                   false, &abs_timeout);
628     if (error == ETIMEDOUT) {
629         error = EBUSY;
630     }
631     return error;
632 }
633 #endif
634 
pthread_mutex_timedlock(pthread_mutex_t * mutex_interface,const timespec * abs_timeout)635 int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const timespec* abs_timeout) {
636     return __pthread_mutex_lock_with_timeout(__get_internal_mutex(mutex_interface),
637                                              true, abs_timeout);
638 }
639 
pthread_mutex_destroy(pthread_mutex_t * mutex_interface)640 int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) {
641     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
642     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
643     // Store 0xffff to make the mutex unusable. Although POSIX standard says it is undefined
644     // behavior to destroy a locked mutex, we prefer not to change mutex->state in that situation.
645     if (MUTEX_STATE_BITS_IS_UNLOCKED(old_state) &&
646         atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, 0xffff,
647                                                 memory_order_relaxed, memory_order_relaxed)) {
648       return 0;
649     }
650     return EBUSY;
651 }
652