• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600_shader.h"
27 #include "r600d.h"
28 
29 #include <errno.h>
30 #include "util/u_bitcast.h"
31 #include "util/u_dump.h"
32 #include "util/u_memory.h"
33 #include "util/u_math.h"
34 #include "pipe/p_shader_tokens.h"
35 
36 #include "sb/sb_public.h"
37 
38 #define NUM_OF_CYCLES 3
39 #define NUM_OF_COMPONENTS 4
40 
alu_writes(struct r600_bytecode_alu * alu)41 static inline bool alu_writes(struct r600_bytecode_alu *alu)
42 {
43 	return alu->dst.write || alu->is_op3;
44 }
45 
r600_bytecode_get_num_operands(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)46 static inline unsigned int r600_bytecode_get_num_operands(
47 		struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
48 {
49 	return r600_isa_alu(alu->op)->src_count;
50 }
51 
52 int r700_bytecode_alu_build(struct r600_bytecode *bc,
53 		struct r600_bytecode_alu *alu, unsigned id);
54 
r600_bytecode_cf(void)55 static struct r600_bytecode_cf *r600_bytecode_cf(void)
56 {
57 	struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
58 
59 	if (!cf)
60 		return NULL;
61 	LIST_INITHEAD(&cf->list);
62 	LIST_INITHEAD(&cf->alu);
63 	LIST_INITHEAD(&cf->vtx);
64 	LIST_INITHEAD(&cf->tex);
65 	LIST_INITHEAD(&cf->gds);
66 	return cf;
67 }
68 
r600_bytecode_alu(void)69 static struct r600_bytecode_alu *r600_bytecode_alu(void)
70 {
71 	struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
72 
73 	if (!alu)
74 		return NULL;
75 	LIST_INITHEAD(&alu->list);
76 	return alu;
77 }
78 
r600_bytecode_vtx(void)79 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
80 {
81 	struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
82 
83 	if (!vtx)
84 		return NULL;
85 	LIST_INITHEAD(&vtx->list);
86 	return vtx;
87 }
88 
r600_bytecode_tex(void)89 static struct r600_bytecode_tex *r600_bytecode_tex(void)
90 {
91 	struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
92 
93 	if (!tex)
94 		return NULL;
95 	LIST_INITHEAD(&tex->list);
96 	return tex;
97 }
98 
r600_bytecode_gds(void)99 static struct r600_bytecode_gds *r600_bytecode_gds(void)
100 {
101 	struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
102 
103 	if (gds == NULL)
104 		return NULL;
105 	LIST_INITHEAD(&gds->list);
106 	return gds;
107 }
108 
stack_entry_size(enum radeon_family chip)109 static unsigned stack_entry_size(enum radeon_family chip) {
110 	/* Wavefront size:
111 	 *   64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
112 	 *       Aruba/Sumo/Sumo2/redwood/juniper
113 	 *   32: R630/R730/R710/Palm/Cedar
114 	 *   16: R610/Rs780
115 	 *
116 	 * Stack row size:
117 	 * 	Wavefront Size                        16  32  48  64
118 	 * 	Columns per Row (R6xx/R7xx/R8xx only)  8   8   4   4
119 	 * 	Columns per Row (R9xx+)                8   4   4   4 */
120 
121 	switch (chip) {
122 	/* FIXME: are some chips missing here? */
123 	/* wavefront size 16 */
124 	case CHIP_RV610:
125 	case CHIP_RS780:
126 	case CHIP_RV620:
127 	case CHIP_RS880:
128 	/* wavefront size 32 */
129 	case CHIP_RV630:
130 	case CHIP_RV635:
131 	case CHIP_RV730:
132 	case CHIP_RV710:
133 	case CHIP_PALM:
134 	case CHIP_CEDAR:
135 		return 8;
136 
137 	/* wavefront size 64 */
138 	default:
139 		return 4;
140 	}
141 }
142 
r600_bytecode_init(struct r600_bytecode * bc,enum chip_class chip_class,enum radeon_family family,bool has_compressed_msaa_texturing)143 void r600_bytecode_init(struct r600_bytecode *bc,
144 			enum chip_class chip_class,
145 			enum radeon_family family,
146 			bool has_compressed_msaa_texturing)
147 {
148 	static unsigned next_shader_id = 0;
149 
150 	bc->debug_id = ++next_shader_id;
151 
152 	if ((chip_class == R600) &&
153 	    (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
154 		bc->ar_handling = AR_HANDLE_RV6XX;
155 		bc->r6xx_nop_after_rel_dst = 1;
156 	} else {
157 		bc->ar_handling = AR_HANDLE_NORMAL;
158 		bc->r6xx_nop_after_rel_dst = 0;
159 	}
160 
161 	LIST_INITHEAD(&bc->cf);
162 	bc->chip_class = chip_class;
163 	bc->family = family;
164 	bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
165 	bc->stack.entry_size = stack_entry_size(family);
166 }
167 
r600_bytecode_add_cf(struct r600_bytecode * bc)168 int r600_bytecode_add_cf(struct r600_bytecode *bc)
169 {
170 	struct r600_bytecode_cf *cf = r600_bytecode_cf();
171 
172 	if (!cf)
173 		return -ENOMEM;
174 	LIST_ADDTAIL(&cf->list, &bc->cf);
175 	if (bc->cf_last) {
176 		cf->id = bc->cf_last->id + 2;
177 		if (bc->cf_last->eg_alu_extended) {
178 			/* take into account extended alu size */
179 			cf->id += 2;
180 			bc->ndw += 2;
181 		}
182 	}
183 	bc->cf_last = cf;
184 	bc->ncf++;
185 	bc->ndw += 2;
186 	bc->force_add_cf = 0;
187 	bc->ar_loaded = 0;
188 	return 0;
189 }
190 
r600_bytecode_add_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)191 int r600_bytecode_add_output(struct r600_bytecode *bc,
192 		const struct r600_bytecode_output *output)
193 {
194 	int r;
195 
196 	if (output->gpr >= bc->ngpr)
197 		bc->ngpr = output->gpr + 1;
198 
199 	if (bc->cf_last && (bc->cf_last->op == output->op ||
200 		(bc->cf_last->op == CF_OP_EXPORT &&
201 		output->op == CF_OP_EXPORT_DONE)) &&
202 		output->type == bc->cf_last->output.type &&
203 		output->elem_size == bc->cf_last->output.elem_size &&
204 		output->swizzle_x == bc->cf_last->output.swizzle_x &&
205 		output->swizzle_y == bc->cf_last->output.swizzle_y &&
206 		output->swizzle_z == bc->cf_last->output.swizzle_z &&
207 		output->swizzle_w == bc->cf_last->output.swizzle_w &&
208 		output->comp_mask == bc->cf_last->output.comp_mask &&
209 		(output->burst_count + bc->cf_last->output.burst_count) <= 16) {
210 
211 		if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
212 			(output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
213 
214 			bc->cf_last->op = bc->cf_last->output.op = output->op;
215 			bc->cf_last->output.gpr = output->gpr;
216 			bc->cf_last->output.array_base = output->array_base;
217 			bc->cf_last->output.burst_count += output->burst_count;
218 			return 0;
219 
220 		} else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
221 			output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
222 
223 			bc->cf_last->op = bc->cf_last->output.op = output->op;
224 			bc->cf_last->output.burst_count += output->burst_count;
225 			return 0;
226 		}
227 	}
228 
229 	r = r600_bytecode_add_cf(bc);
230 	if (r)
231 		return r;
232 	bc->cf_last->op = output->op;
233 	memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
234 	bc->cf_last->barrier = 1;
235 	return 0;
236 }
237 
238 /* alu instructions that can ony exits once per group */
is_alu_once_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)239 static int is_alu_once_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
240 {
241 	return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
242 }
243 
is_alu_reduction_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)244 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
245 {
246 	return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
247 			(r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
248 }
249 
is_alu_mova_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)250 static int is_alu_mova_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
251 {
252 	return r600_isa_alu(alu->op)->flags & AF_MOVA;
253 }
254 
alu_uses_rel(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)255 static int alu_uses_rel(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
256 {
257 	unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
258 	unsigned src;
259 
260 	if (alu->dst.rel) {
261 		return 1;
262 	}
263 
264 	for (src = 0; src < num_src; ++src) {
265 		if (alu->src[src].rel) {
266 			return 1;
267 		}
268 	}
269 	return 0;
270 }
271 
is_lds_read(int sel)272 static int is_lds_read(int sel)
273 {
274   return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
275 }
276 
alu_uses_lds(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)277 static int alu_uses_lds(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
278 {
279 	unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
280 	unsigned src;
281 
282 	for (src = 0; src < num_src; ++src) {
283 		if (is_lds_read(alu->src[src].sel)) {
284 			return 1;
285 		}
286 	}
287 	return 0;
288 }
289 
is_alu_64bit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)290 static int is_alu_64bit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
291 {
292 	const struct alu_op_info *op = r600_isa_alu(alu->op);
293 	return (op->flags & AF_64);
294 }
295 
is_alu_vec_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)296 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
297 {
298 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
299 	return !(slots & AF_S);
300 }
301 
is_alu_trans_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)302 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
303 {
304 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
305 	return !(slots & AF_V);
306 }
307 
308 /* alu instructions that can execute on any unit */
is_alu_any_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)309 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
310 {
311 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
312 	return slots == AF_VS;
313 }
314 
is_nop_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)315 static int is_nop_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
316 {
317 	return alu->op == ALU_OP0_NOP;
318 }
319 
assign_alu_units(struct r600_bytecode * bc,struct r600_bytecode_alu * alu_first,struct r600_bytecode_alu * assignment[5])320 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
321 			    struct r600_bytecode_alu *assignment[5])
322 {
323 	struct r600_bytecode_alu *alu;
324 	unsigned i, chan, trans;
325 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
326 
327 	for (i = 0; i < max_slots; i++)
328 		assignment[i] = NULL;
329 
330 	for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
331 		chan = alu->dst.chan;
332 		if (max_slots == 4)
333 			trans = 0;
334 		else if (is_alu_trans_unit_inst(bc, alu))
335 			trans = 1;
336 		else if (is_alu_vec_unit_inst(bc, alu))
337 			trans = 0;
338 		else if (assignment[chan])
339 			trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
340 		else
341 			trans = 0;
342 
343 		if (trans) {
344 			if (assignment[4]) {
345 				assert(0); /* ALU.Trans has already been allocated. */
346 				return -1;
347 			}
348 			assignment[4] = alu;
349 		} else {
350 			if (assignment[chan]) {
351 				assert(0); /* ALU.chan has already been allocated. */
352 				return -1;
353 			}
354 			assignment[chan] = alu;
355 		}
356 
357 		if (alu->last)
358 			break;
359 	}
360 	return 0;
361 }
362 
363 struct alu_bank_swizzle {
364 	int	hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
365 	int	hw_cfile_addr[4];
366 	int	hw_cfile_elem[4];
367 };
368 
369 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
370 	[SQ_ALU_VEC_012] = { 0, 1, 2 },
371 	[SQ_ALU_VEC_021] = { 0, 2, 1 },
372 	[SQ_ALU_VEC_120] = { 1, 2, 0 },
373 	[SQ_ALU_VEC_102] = { 1, 0, 2 },
374 	[SQ_ALU_VEC_201] = { 2, 0, 1 },
375 	[SQ_ALU_VEC_210] = { 2, 1, 0 }
376 };
377 
378 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
379 	[SQ_ALU_SCL_210] = { 2, 1, 0 },
380 	[SQ_ALU_SCL_122] = { 1, 2, 2 },
381 	[SQ_ALU_SCL_212] = { 2, 1, 2 },
382 	[SQ_ALU_SCL_221] = { 2, 2, 1 }
383 };
384 
init_bank_swizzle(struct alu_bank_swizzle * bs)385 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
386 {
387 	int i, cycle, component;
388 	/* set up gpr use */
389 	for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
390 		for (component = 0; component < NUM_OF_COMPONENTS; component++)
391 			 bs->hw_gpr[cycle][component] = -1;
392 	for (i = 0; i < 4; i++)
393 		bs->hw_cfile_addr[i] = -1;
394 	for (i = 0; i < 4; i++)
395 		bs->hw_cfile_elem[i] = -1;
396 }
397 
reserve_gpr(struct alu_bank_swizzle * bs,unsigned sel,unsigned chan,unsigned cycle)398 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
399 {
400 	if (bs->hw_gpr[cycle][chan] == -1)
401 		bs->hw_gpr[cycle][chan] = sel;
402 	else if (bs->hw_gpr[cycle][chan] != (int)sel) {
403 		/* Another scalar operation has already used the GPR read port for the channel. */
404 		return -1;
405 	}
406 	return 0;
407 }
408 
reserve_cfile(struct r600_bytecode * bc,struct alu_bank_swizzle * bs,unsigned sel,unsigned chan)409 static int reserve_cfile(struct r600_bytecode *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
410 {
411 	int res, num_res = 4;
412 	if (bc->chip_class >= R700) {
413 		num_res = 2;
414 		chan /= 2;
415 	}
416 	for (res = 0; res < num_res; ++res) {
417 		if (bs->hw_cfile_addr[res] == -1) {
418 			bs->hw_cfile_addr[res] = sel;
419 			bs->hw_cfile_elem[res] = chan;
420 			return 0;
421 		} else if (bs->hw_cfile_addr[res] == sel &&
422 			bs->hw_cfile_elem[res] == chan)
423 			return 0; /* Read for this scalar element already reserved, nothing to do here. */
424 	}
425 	/* All cfile read ports are used, cannot reference vector element. */
426 	return -1;
427 }
428 
is_gpr(unsigned sel)429 static int is_gpr(unsigned sel)
430 {
431 	return (sel <= 127);
432 }
433 
434 /* CB constants start at 512, and get translated to a kcache index when ALU
435  * clauses are constructed. Note that we handle kcache constants the same way
436  * as (the now gone) cfile constants, is that really required? */
is_cfile(unsigned sel)437 static int is_cfile(unsigned sel)
438 {
439 	return (sel > 255 && sel < 512) ||
440 		(sel > 511 && sel < 4607) || /* Kcache before translation. */
441 		(sel > 127 && sel < 192); /* Kcache after translation. */
442 }
443 
is_const(int sel)444 static int is_const(int sel)
445 {
446 	return is_cfile(sel) ||
447 		(sel >= V_SQ_ALU_SRC_0 &&
448 		sel <= V_SQ_ALU_SRC_LITERAL);
449 }
450 
check_vector(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)451 static int check_vector(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
452 			struct alu_bank_swizzle *bs, int bank_swizzle)
453 {
454 	int r, src, num_src, sel, elem, cycle;
455 
456 	num_src = r600_bytecode_get_num_operands(bc, alu);
457 	for (src = 0; src < num_src; src++) {
458 		sel = alu->src[src].sel;
459 		elem = alu->src[src].chan;
460 		if (is_gpr(sel)) {
461 			cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
462 			if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
463 				/* Nothing to do; special-case optimization,
464 				 * second source uses first source’s reservation. */
465 				continue;
466 			else {
467 				r = reserve_gpr(bs, sel, elem, cycle);
468 				if (r)
469 					return r;
470 			}
471 		} else if (is_cfile(sel)) {
472 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
473 			if (r)
474 				return r;
475 		}
476 		/* No restrictions on PV, PS, literal or special constants. */
477 	}
478 	return 0;
479 }
480 
check_scalar(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)481 static int check_scalar(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
482 			struct alu_bank_swizzle *bs, int bank_swizzle)
483 {
484 	int r, src, num_src, const_count, sel, elem, cycle;
485 
486 	num_src = r600_bytecode_get_num_operands(bc, alu);
487 	for (const_count = 0, src = 0; src < num_src; ++src) {
488 		sel = alu->src[src].sel;
489 		elem = alu->src[src].chan;
490 		if (is_const(sel)) { /* Any constant, including literal and inline constants. */
491 			if (const_count >= 2)
492 				/* More than two references to a constant in
493 				 * transcendental operation. */
494 				return -1;
495 			else
496 				const_count++;
497 		}
498 		if (is_cfile(sel)) {
499 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
500 			if (r)
501 				return r;
502 		}
503 	}
504 	for (src = 0; src < num_src; ++src) {
505 		sel = alu->src[src].sel;
506 		elem = alu->src[src].chan;
507 		if (is_gpr(sel)) {
508 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
509 			if (cycle < const_count)
510 				/* Cycle for GPR load conflicts with
511 				 * constant load in transcendental operation. */
512 				return -1;
513 			r = reserve_gpr(bs, sel, elem, cycle);
514 			if (r)
515 				return r;
516 		}
517 		/* PV PS restrictions */
518 		if (const_count && (sel == 254 || sel == 255)) {
519 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
520 			if (cycle < const_count)
521 				return -1;
522 		}
523 	}
524 	return 0;
525 }
526 
check_and_set_bank_swizzle(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5])527 static int check_and_set_bank_swizzle(struct r600_bytecode *bc,
528 				      struct r600_bytecode_alu *slots[5])
529 {
530 	struct alu_bank_swizzle bs;
531 	int bank_swizzle[5];
532 	int i, r = 0, forced = 1;
533 	boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
534 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
535 
536 	for (i = 0; i < max_slots; i++) {
537 		if (slots[i]) {
538 			if (slots[i]->bank_swizzle_force) {
539 				slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
540 			} else {
541 				forced = 0;
542 			}
543 		}
544 
545 		if (i < 4 && slots[i])
546 			scalar_only = false;
547 	}
548 	if (forced)
549 		return 0;
550 
551 	/* Just check every possible combination of bank swizzle.
552 	 * Not very efficent, but works on the first try in most of the cases. */
553 	for (i = 0; i < 4; i++)
554 		if (!slots[i] || !slots[i]->bank_swizzle_force)
555 			bank_swizzle[i] = SQ_ALU_VEC_012;
556 		else
557 			bank_swizzle[i] = slots[i]->bank_swizzle;
558 
559 	bank_swizzle[4] = SQ_ALU_SCL_210;
560 	while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
561 
562 		init_bank_swizzle(&bs);
563 		if (scalar_only == false) {
564 			for (i = 0; i < 4; i++) {
565 				if (slots[i]) {
566 					r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
567 					if (r)
568 						break;
569 				}
570 			}
571 		} else
572 			r = 0;
573 
574 		if (!r && max_slots == 5 && slots[4]) {
575 			r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
576 		}
577 		if (!r) {
578 			for (i = 0; i < max_slots; i++) {
579 				if (slots[i])
580 					slots[i]->bank_swizzle = bank_swizzle[i];
581 			}
582 			return 0;
583 		}
584 
585 		if (scalar_only) {
586 			bank_swizzle[4]++;
587 		} else {
588 			for (i = 0; i < max_slots; i++) {
589 				if (!slots[i] || !slots[i]->bank_swizzle_force) {
590 					bank_swizzle[i]++;
591 					if (bank_swizzle[i] <= SQ_ALU_VEC_210)
592 						break;
593 					else if (i < max_slots - 1)
594 						bank_swizzle[i] = SQ_ALU_VEC_012;
595 					else
596 						return -1;
597 				}
598 			}
599 		}
600 	}
601 
602 	/* Couldn't find a working swizzle. */
603 	return -1;
604 }
605 
replace_gpr_with_pv_ps(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)606 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
607 				  struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
608 {
609 	struct r600_bytecode_alu *prev[5];
610 	int gpr[5], chan[5];
611 	int i, j, r, src, num_src;
612 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
613 
614 	r = assign_alu_units(bc, alu_prev, prev);
615 	if (r)
616 		return r;
617 
618 	for (i = 0; i < max_slots; ++i) {
619 		if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
620 
621 			if (is_alu_64bit_inst(bc, prev[i])) {
622 				gpr[i] = -1;
623 				continue;
624 			}
625 
626 			gpr[i] = prev[i]->dst.sel;
627 			/* cube writes more than PV.X */
628 			if (is_alu_reduction_inst(bc, prev[i]))
629 				chan[i] = 0;
630 			else
631 				chan[i] = prev[i]->dst.chan;
632 		} else
633 			gpr[i] = -1;
634 	}
635 
636 	for (i = 0; i < max_slots; ++i) {
637 		struct r600_bytecode_alu *alu = slots[i];
638 		if (!alu)
639 			continue;
640 
641 		if (is_alu_64bit_inst(bc, alu))
642 			continue;
643 		num_src = r600_bytecode_get_num_operands(bc, alu);
644 		for (src = 0; src < num_src; ++src) {
645 			if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
646 				continue;
647 
648 			if (bc->chip_class < CAYMAN) {
649 				if (alu->src[src].sel == gpr[4] &&
650 				    alu->src[src].chan == chan[4] &&
651 				    alu_prev->pred_sel == alu->pred_sel) {
652 					alu->src[src].sel = V_SQ_ALU_SRC_PS;
653 					alu->src[src].chan = 0;
654 					continue;
655 				}
656 			}
657 
658 			for (j = 0; j < 4; ++j) {
659 				if (alu->src[src].sel == gpr[j] &&
660 					alu->src[src].chan == j &&
661 				      alu_prev->pred_sel == alu->pred_sel) {
662 					alu->src[src].sel = V_SQ_ALU_SRC_PV;
663 					alu->src[src].chan = chan[j];
664 					break;
665 				}
666 			}
667 		}
668 	}
669 
670 	return 0;
671 }
672 
r600_bytecode_special_constants(uint32_t value,unsigned * sel,unsigned * neg,unsigned abs)673 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg, unsigned abs)
674 {
675 	switch(value) {
676 	case 0:
677 		*sel = V_SQ_ALU_SRC_0;
678 		break;
679 	case 1:
680 		*sel = V_SQ_ALU_SRC_1_INT;
681 		break;
682 	case -1:
683 		*sel = V_SQ_ALU_SRC_M_1_INT;
684 		break;
685 	case 0x3F800000: /* 1.0f */
686 		*sel = V_SQ_ALU_SRC_1;
687 		break;
688 	case 0x3F000000: /* 0.5f */
689 		*sel = V_SQ_ALU_SRC_0_5;
690 		break;
691 	case 0xBF800000: /* -1.0f */
692 		*sel = V_SQ_ALU_SRC_1;
693 		*neg ^= !abs;
694 		break;
695 	case 0xBF000000: /* -0.5f */
696 		*sel = V_SQ_ALU_SRC_0_5;
697 		*neg ^= !abs;
698 		break;
699 	default:
700 		*sel = V_SQ_ALU_SRC_LITERAL;
701 		break;
702 	}
703 }
704 
705 /* compute how many literal are needed */
r600_bytecode_alu_nliterals(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned * nliteral)706 static int r600_bytecode_alu_nliterals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
707 				 uint32_t literal[4], unsigned *nliteral)
708 {
709 	unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
710 	unsigned i, j;
711 
712 	for (i = 0; i < num_src; ++i) {
713 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
714 			uint32_t value = alu->src[i].value;
715 			unsigned found = 0;
716 			for (j = 0; j < *nliteral; ++j) {
717 				if (literal[j] == value) {
718 					found = 1;
719 					break;
720 				}
721 			}
722 			if (!found) {
723 				if (*nliteral >= 4)
724 					return -EINVAL;
725 				literal[(*nliteral)++] = value;
726 			}
727 		}
728 	}
729 	return 0;
730 }
731 
r600_bytecode_alu_adjust_literals(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned nliteral)732 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode *bc,
733 					struct r600_bytecode_alu *alu,
734 					uint32_t literal[4], unsigned nliteral)
735 {
736 	unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
737 	unsigned i, j;
738 
739 	for (i = 0; i < num_src; ++i) {
740 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
741 			uint32_t value = alu->src[i].value;
742 			for (j = 0; j < nliteral; ++j) {
743 				if (literal[j] == value) {
744 					alu->src[i].chan = j;
745 					break;
746 				}
747 			}
748 		}
749 	}
750 }
751 
merge_inst_groups(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)752 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
753 			     struct r600_bytecode_alu *alu_prev)
754 {
755 	struct r600_bytecode_alu *prev[5];
756 	struct r600_bytecode_alu *result[5] = { NULL };
757 
758 	uint32_t literal[4], prev_literal[4];
759 	unsigned nliteral = 0, prev_nliteral = 0;
760 
761 	int i, j, r, src, num_src;
762 	int num_once_inst = 0;
763 	int have_mova = 0, have_rel = 0;
764 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
765 
766 	r = assign_alu_units(bc, alu_prev, prev);
767 	if (r)
768 		return r;
769 
770 	for (i = 0; i < max_slots; ++i) {
771 		if (prev[i]) {
772 		      if (prev[i]->pred_sel)
773 			      return 0;
774 		      if (is_alu_once_inst(bc, prev[i]))
775 			      return 0;
776 		}
777 		if (slots[i]) {
778 			if (slots[i]->pred_sel)
779 				return 0;
780 			if (is_alu_once_inst(bc, slots[i]))
781 				return 0;
782 		}
783 	}
784 
785 	for (i = 0; i < max_slots; ++i) {
786 		struct r600_bytecode_alu *alu;
787 
788 		if (num_once_inst > 0)
789 		   return 0;
790 
791 		/* check number of literals */
792 		if (prev[i]) {
793 			if (r600_bytecode_alu_nliterals(bc, prev[i], literal, &nliteral))
794 				return 0;
795 			if (r600_bytecode_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral))
796 				return 0;
797 			if (is_alu_mova_inst(bc, prev[i])) {
798 				if (have_rel)
799 					return 0;
800 				have_mova = 1;
801 			}
802 
803 			if (alu_uses_rel(bc, prev[i])) {
804 				if (have_mova) {
805 					return 0;
806 				}
807 				have_rel = 1;
808 			}
809 			if (alu_uses_lds(bc, prev[i]))
810 				return 0;
811 
812 			num_once_inst += is_alu_once_inst(bc, prev[i]);
813 		}
814 		if (slots[i] && r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral))
815 			return 0;
816 
817 		/* Let's check used slots. */
818 		if (prev[i] && !slots[i]) {
819 			result[i] = prev[i];
820 			continue;
821 		} else if (prev[i] && slots[i]) {
822 			if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
823 				/* Trans unit is still free try to use it. */
824 				if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(bc, slots[i])) {
825 					result[i] = prev[i];
826 					result[4] = slots[i];
827 				} else if (is_alu_any_unit_inst(bc, prev[i])) {
828 					if (slots[i]->dst.sel == prev[i]->dst.sel &&
829 					    alu_writes(slots[i]) &&
830 					    alu_writes(prev[i]))
831 						return 0;
832 
833 					result[i] = slots[i];
834 					result[4] = prev[i];
835 				} else
836 					return 0;
837 			} else
838 				return 0;
839 		} else if(!slots[i]) {
840 			continue;
841 		} else {
842 			if (max_slots == 5 && slots[i] && prev[4] &&
843 					slots[i]->dst.sel == prev[4]->dst.sel &&
844 					slots[i]->dst.chan == prev[4]->dst.chan &&
845 					alu_writes(slots[i]) &&
846 					alu_writes(prev[4]))
847 				return 0;
848 
849 			result[i] = slots[i];
850 		}
851 
852 		alu = slots[i];
853 		num_once_inst += is_alu_once_inst(bc, alu);
854 
855 		/* don't reschedule NOPs */
856 		if (is_nop_inst(bc, alu))
857 			return 0;
858 
859 		if (is_alu_mova_inst(bc, alu)) {
860 			if (have_rel) {
861 				return 0;
862 			}
863 			have_mova = 1;
864 		}
865 
866 		if (alu_uses_rel(bc, alu)) {
867 			if (have_mova) {
868 				return 0;
869 			}
870 			have_rel = 1;
871 		}
872 
873 		if (alu->op == ALU_OP0_SET_CF_IDX0 ||
874 			alu->op == ALU_OP0_SET_CF_IDX1)
875 			return 0; /* data hazard with MOVA */
876 
877 		/* Let's check source gprs */
878 		num_src = r600_bytecode_get_num_operands(bc, alu);
879 		for (src = 0; src < num_src; ++src) {
880 
881 			/* Constants don't matter. */
882 			if (!is_gpr(alu->src[src].sel))
883 				continue;
884 
885 			for (j = 0; j < max_slots; ++j) {
886 				if (!prev[j] || !alu_writes(prev[j]))
887 					continue;
888 
889 				/* If it's relative then we can't determin which gpr is really used. */
890 				if (prev[j]->dst.chan == alu->src[src].chan &&
891 					(prev[j]->dst.sel == alu->src[src].sel ||
892 					prev[j]->dst.rel || alu->src[src].rel))
893 					return 0;
894 			}
895 		}
896 	}
897 
898 	/* more than one PRED_ or KILL_ ? */
899 	if (num_once_inst > 1)
900 		return 0;
901 
902 	/* check if the result can still be swizzlet */
903 	r = check_and_set_bank_swizzle(bc, result);
904 	if (r)
905 		return 0;
906 
907 	/* looks like everything worked out right, apply the changes */
908 
909 	/* undo adding previus literals */
910 	bc->cf_last->ndw -= align(prev_nliteral, 2);
911 
912 	/* sort instructions */
913 	for (i = 0; i < max_slots; ++i) {
914 		slots[i] = result[i];
915 		if (result[i]) {
916 			LIST_DEL(&result[i]->list);
917 			result[i]->last = 0;
918 			LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
919 		}
920 	}
921 
922 	/* determine new last instruction */
923 	LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
924 
925 	/* determine new first instruction */
926 	for (i = 0; i < max_slots; ++i) {
927 		if (result[i]) {
928 			bc->cf_last->curr_bs_head = result[i];
929 			break;
930 		}
931 	}
932 
933 	bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
934 	bc->cf_last->prev2_bs_head = NULL;
935 
936 	return 0;
937 }
938 
939 /* we'll keep kcache sets sorted by bank & addr */
r600_bytecode_alloc_kcache_line(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,unsigned bank,unsigned line,unsigned index_mode)940 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
941 		struct r600_bytecode_kcache *kcache,
942 		unsigned bank, unsigned line, unsigned index_mode)
943 {
944 	int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
945 
946 	for (i = 0; i < kcache_banks; i++) {
947 		if (kcache[i].mode) {
948 			int d;
949 
950 			if (kcache[i].bank < bank)
951 				continue;
952 
953 			if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
954 					kcache[i].bank > bank) {
955 				/* try to insert new line */
956 				if (kcache[kcache_banks-1].mode) {
957 					/* all sets are in use */
958 					return -ENOMEM;
959 				}
960 
961 				memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
962 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
963 				kcache[i].bank = bank;
964 				kcache[i].addr = line;
965 				kcache[i].index_mode = index_mode;
966 				return 0;
967 			}
968 
969 			d = line - kcache[i].addr;
970 
971 			if (d == -1) {
972 				kcache[i].addr--;
973 				if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
974 					/* we are prepending the line to the current set,
975 					 * discarding the existing second line,
976 					 * so we'll have to insert line+2 after it */
977 					line += 2;
978 					continue;
979 				} else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
980 					kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
981 					return 0;
982 				} else {
983 					/* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
984 					return -ENOMEM;
985 				}
986 			} else if (d == 1) {
987 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
988 				return 0;
989 			} else if (d == 0)
990 				return 0;
991 		} else { /* free kcache set - use it */
992 			kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
993 			kcache[i].bank = bank;
994 			kcache[i].addr = line;
995 			kcache[i].index_mode = index_mode;
996 			return 0;
997 		}
998 	}
999 	return -ENOMEM;
1000 }
1001 
r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,struct r600_bytecode_alu * alu)1002 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1003 		struct r600_bytecode_kcache *kcache,
1004 		struct r600_bytecode_alu *alu)
1005 {
1006 	int i, r;
1007 
1008 	for (i = 0; i < 3; i++) {
1009 		unsigned bank, line, sel = alu->src[i].sel, index_mode;
1010 
1011 		if (sel < 512)
1012 			continue;
1013 
1014 		bank = alu->src[i].kc_bank;
1015 		line = (sel-512)>>4;
1016 		index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
1017 
1018 		if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
1019 			return r;
1020 	}
1021 	return 0;
1022 }
1023 
r600_bytecode_assign_kcache_banks(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,struct r600_bytecode_kcache * kcache)1024 static int r600_bytecode_assign_kcache_banks(struct r600_bytecode *bc,
1025 		struct r600_bytecode_alu *alu,
1026 		struct r600_bytecode_kcache * kcache)
1027 {
1028 	int i, j;
1029 
1030 	/* Alter the src operands to refer to the kcache. */
1031 	for (i = 0; i < 3; ++i) {
1032 		static const unsigned int base[] = {128, 160, 256, 288};
1033 		unsigned int line, sel = alu->src[i].sel, found = 0;
1034 
1035 		if (sel < 512)
1036 			continue;
1037 
1038 		sel -= 512;
1039 		line = sel>>4;
1040 
1041 		for (j = 0; j < 4 && !found; ++j) {
1042 			switch (kcache[j].mode) {
1043 			case V_SQ_CF_KCACHE_NOP:
1044 			case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1045 				R600_ERR("unexpected kcache line mode\n");
1046 				return -ENOMEM;
1047 			default:
1048 				if (kcache[j].bank == alu->src[i].kc_bank &&
1049 						kcache[j].addr <= line &&
1050 						line < kcache[j].addr + kcache[j].mode) {
1051 					alu->src[i].sel = sel - (kcache[j].addr<<4);
1052 					alu->src[i].sel += base[j];
1053 					found=1;
1054 			    }
1055 			}
1056 		}
1057 	}
1058 	return 0;
1059 }
1060 
r600_bytecode_alloc_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned type)1061 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1062 		struct r600_bytecode_alu *alu,
1063 		unsigned type)
1064 {
1065 	struct r600_bytecode_kcache kcache_sets[4];
1066 	struct r600_bytecode_kcache *kcache = kcache_sets;
1067 	int r;
1068 
1069 	memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1070 
1071 	if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1072 		/* can't alloc, need to start new clause */
1073 		if ((r = r600_bytecode_add_cf(bc))) {
1074 			return r;
1075 		}
1076 		bc->cf_last->op = type;
1077 
1078 		/* retry with the new clause */
1079 		kcache = bc->cf_last->kcache;
1080 		if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1081 			/* can't alloc again- should never happen */
1082 			return r;
1083 		}
1084 	} else {
1085 		/* update kcache sets */
1086 		memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1087 	}
1088 
1089 	/* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
1090 	if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
1091 		kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
1092 		if (bc->chip_class < EVERGREEN)
1093 			return -ENOMEM;
1094 		bc->cf_last->eg_alu_extended = 1;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
insert_nop_r6xx(struct r600_bytecode * bc)1100 static int insert_nop_r6xx(struct r600_bytecode *bc)
1101 {
1102 	struct r600_bytecode_alu alu;
1103 	int r, i;
1104 
1105 	for (i = 0; i < 4; i++) {
1106 		memset(&alu, 0, sizeof(alu));
1107 		alu.op = ALU_OP0_NOP;
1108 		alu.src[0].chan = i;
1109 		alu.dst.chan = i;
1110 		alu.last = (i == 3);
1111 		r = r600_bytecode_add_alu(bc, &alu);
1112 		if (r)
1113 			return r;
1114 	}
1115 	return 0;
1116 }
1117 
1118 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar_r6xx(struct r600_bytecode * bc)1119 static int load_ar_r6xx(struct r600_bytecode *bc)
1120 {
1121 	struct r600_bytecode_alu alu;
1122 	int r;
1123 
1124 	if (bc->ar_loaded)
1125 		return 0;
1126 
1127 	/* hack to avoid making MOVA the last instruction in the clause */
1128 	if ((bc->cf_last->ndw>>1) >= 110)
1129 		bc->force_add_cf = 1;
1130 
1131 	memset(&alu, 0, sizeof(alu));
1132 	alu.op = ALU_OP1_MOVA_GPR_INT;
1133 	alu.src[0].sel = bc->ar_reg;
1134 	alu.src[0].chan = bc->ar_chan;
1135 	alu.last = 1;
1136 	alu.index_mode = INDEX_MODE_LOOP;
1137 	r = r600_bytecode_add_alu(bc, &alu);
1138 	if (r)
1139 		return r;
1140 
1141 	/* no requirement to set uses waterfall on MOVA_GPR_INT */
1142 	bc->ar_loaded = 1;
1143 	return 0;
1144 }
1145 
1146 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar(struct r600_bytecode * bc)1147 static int load_ar(struct r600_bytecode *bc)
1148 {
1149 	struct r600_bytecode_alu alu;
1150 	int r;
1151 
1152 	if (bc->ar_handling)
1153 		return load_ar_r6xx(bc);
1154 
1155 	if (bc->ar_loaded)
1156 		return 0;
1157 
1158 	/* hack to avoid making MOVA the last instruction in the clause */
1159 	if ((bc->cf_last->ndw>>1) >= 110)
1160 		bc->force_add_cf = 1;
1161 
1162 	memset(&alu, 0, sizeof(alu));
1163 	alu.op = ALU_OP1_MOVA_INT;
1164 	alu.src[0].sel = bc->ar_reg;
1165 	alu.src[0].chan = bc->ar_chan;
1166 	alu.last = 1;
1167 	r = r600_bytecode_add_alu(bc, &alu);
1168 	if (r)
1169 		return r;
1170 
1171 	bc->cf_last->r6xx_uses_waterfall = 1;
1172 	bc->ar_loaded = 1;
1173 	return 0;
1174 }
1175 
r600_bytecode_add_alu_type(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,unsigned type)1176 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1177 		const struct r600_bytecode_alu *alu, unsigned type)
1178 {
1179 	struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1180 	struct r600_bytecode_alu *lalu;
1181 	int i, r;
1182 
1183 	if (!nalu)
1184 		return -ENOMEM;
1185 	memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1186 
1187 	if (alu->is_op3) {
1188 		/* will fail later since alu does not support it. */
1189 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1190 	}
1191 
1192 	if (bc->cf_last != NULL && bc->cf_last->op != type) {
1193 		/* check if we could add it anyway */
1194 		if (bc->cf_last->op == CF_OP_ALU &&
1195 			type == CF_OP_ALU_PUSH_BEFORE) {
1196 			LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1197 				if (lalu->execute_mask) {
1198 					bc->force_add_cf = 1;
1199 					break;
1200 				}
1201 			}
1202 		} else
1203 			bc->force_add_cf = 1;
1204 	}
1205 
1206 	/* cf can contains only alu or only vtx or only tex */
1207 	if (bc->cf_last == NULL || bc->force_add_cf) {
1208 		r = r600_bytecode_add_cf(bc);
1209 		if (r) {
1210 			free(nalu);
1211 			return r;
1212 		}
1213 	}
1214 	bc->cf_last->op = type;
1215 
1216 	/* Load index register if required */
1217 	if (bc->chip_class >= EVERGREEN) {
1218 		for (i = 0; i < 3; i++)
1219 			if (nalu->src[i].kc_bank && nalu->src[i].kc_rel)
1220 				egcm_load_index_reg(bc, 0, true);
1221 	}
1222 
1223 	/* Check AR usage and load it if required */
1224 	for (i = 0; i < 3; i++)
1225 		if (nalu->src[i].rel && !bc->ar_loaded)
1226 			load_ar(bc);
1227 
1228 	if (nalu->dst.rel && !bc->ar_loaded)
1229 		load_ar(bc);
1230 
1231 	/* Setup the kcache for this ALU instruction. This will start a new
1232 	 * ALU clause if needed. */
1233 	if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1234 		free(nalu);
1235 		return r;
1236 	}
1237 
1238 	if (!bc->cf_last->curr_bs_head) {
1239 		bc->cf_last->curr_bs_head = nalu;
1240 	}
1241 	/* number of gpr == the last gpr used in any alu */
1242 	for (i = 0; i < 3; i++) {
1243 		if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1244 			bc->ngpr = nalu->src[i].sel + 1;
1245 		}
1246 		if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1247 			r600_bytecode_special_constants(nalu->src[i].value,
1248 				&nalu->src[i].sel, &nalu->src[i].neg, nalu->src[i].abs);
1249 	}
1250 	if (nalu->dst.sel >= bc->ngpr) {
1251 		bc->ngpr = nalu->dst.sel + 1;
1252 	}
1253 	LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1254 	/* each alu use 2 dwords */
1255 	bc->cf_last->ndw += 2;
1256 	bc->ndw += 2;
1257 
1258 	/* process cur ALU instructions for bank swizzle */
1259 	if (nalu->last) {
1260 		uint32_t literal[4];
1261 		unsigned nliteral;
1262 		struct r600_bytecode_alu *slots[5];
1263 		int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1264 		r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1265 		if (r)
1266 			return r;
1267 
1268 		if (bc->cf_last->prev_bs_head) {
1269 			r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1270 			if (r)
1271 				return r;
1272 		}
1273 
1274 		if (bc->cf_last->prev_bs_head) {
1275 			r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1276 			if (r)
1277 				return r;
1278 		}
1279 
1280 		r = check_and_set_bank_swizzle(bc, slots);
1281 		if (r)
1282 			return r;
1283 
1284 		for (i = 0, nliteral = 0; i < max_slots; i++) {
1285 			if (slots[i]) {
1286 				r = r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral);
1287 				if (r)
1288 					return r;
1289 			}
1290 		}
1291 		bc->cf_last->ndw += align(nliteral, 2);
1292 
1293 		/* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1294 		 * worst case */
1295 		if ((bc->cf_last->ndw >> 1) >= 120) {
1296 			bc->force_add_cf = 1;
1297 		}
1298 
1299 		bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1300 		bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1301 		bc->cf_last->curr_bs_head = NULL;
1302 	}
1303 
1304 	if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1305 		insert_nop_r6xx(bc);
1306 
1307 	return 0;
1308 }
1309 
r600_bytecode_add_alu(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu)1310 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1311 {
1312 	return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1313 }
1314 
r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode * bc)1315 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1316 {
1317 	switch (bc->chip_class) {
1318 	case R600:
1319 		return 8;
1320 
1321 	case R700:
1322 	case EVERGREEN:
1323 	case CAYMAN:
1324 		return 16;
1325 
1326 	default:
1327 		R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1328 		return 8;
1329 	}
1330 }
1331 
last_inst_was_not_vtx_fetch(struct r600_bytecode * bc)1332 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1333 {
1334 	return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1335 			(bc->chip_class == CAYMAN ||
1336 			bc->cf_last->op != CF_OP_TEX));
1337 }
1338 
r600_bytecode_add_vtx(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1339 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1340 {
1341 	struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1342 	int r;
1343 
1344 	if (!nvtx)
1345 		return -ENOMEM;
1346 	memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1347 
1348 	/* Load index register if required */
1349 	if (bc->chip_class >= EVERGREEN) {
1350 		if (vtx->buffer_index_mode)
1351 			egcm_load_index_reg(bc, 0, false);
1352 	}
1353 
1354 	/* cf can contains only alu or only vtx or only tex */
1355 	if (bc->cf_last == NULL ||
1356 	    last_inst_was_not_vtx_fetch(bc) ||
1357 	    bc->force_add_cf) {
1358 		r = r600_bytecode_add_cf(bc);
1359 		if (r) {
1360 			free(nvtx);
1361 			return r;
1362 		}
1363 		switch (bc->chip_class) {
1364 		case R600:
1365 		case R700:
1366 		case EVERGREEN:
1367 			bc->cf_last->op = CF_OP_VTX;
1368 			break;
1369 		case CAYMAN:
1370 			bc->cf_last->op = CF_OP_TEX;
1371 			break;
1372 		default:
1373 			R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1374 			free(nvtx);
1375 			return -EINVAL;
1376 		}
1377 	}
1378 	LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1379 	/* each fetch use 4 dwords */
1380 	bc->cf_last->ndw += 4;
1381 	bc->ndw += 4;
1382 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1383 		bc->force_add_cf = 1;
1384 
1385 	bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1386 	bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1387 
1388 	return 0;
1389 }
1390 
r600_bytecode_add_tex(struct r600_bytecode * bc,const struct r600_bytecode_tex * tex)1391 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1392 {
1393 	struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1394 	int r;
1395 
1396 	if (!ntex)
1397 		return -ENOMEM;
1398 	memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1399 
1400 	/* Load index register if required */
1401 	if (bc->chip_class >= EVERGREEN) {
1402 		if (tex->sampler_index_mode || tex->resource_index_mode)
1403 			egcm_load_index_reg(bc, 1, false);
1404 	}
1405 
1406 	/* we can't fetch data und use it as texture lookup address in the same TEX clause */
1407 	if (bc->cf_last != NULL &&
1408 		bc->cf_last->op == CF_OP_TEX) {
1409 		struct r600_bytecode_tex *ttex;
1410 		LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1411 			if (ttex->dst_gpr == ntex->src_gpr) {
1412 				bc->force_add_cf = 1;
1413 				break;
1414 			}
1415 		}
1416 		/* slight hack to make gradients always go into same cf */
1417 		if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1418 			bc->force_add_cf = 1;
1419 	}
1420 
1421 	/* cf can contains only alu or only vtx or only tex */
1422 	if (bc->cf_last == NULL ||
1423 		bc->cf_last->op != CF_OP_TEX ||
1424 	        bc->force_add_cf) {
1425 		r = r600_bytecode_add_cf(bc);
1426 		if (r) {
1427 			free(ntex);
1428 			return r;
1429 		}
1430 		bc->cf_last->op = CF_OP_TEX;
1431 	}
1432 	if (ntex->src_gpr >= bc->ngpr) {
1433 		bc->ngpr = ntex->src_gpr + 1;
1434 	}
1435 	if (ntex->dst_gpr >= bc->ngpr) {
1436 		bc->ngpr = ntex->dst_gpr + 1;
1437 	}
1438 	LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1439 	/* each texture fetch use 4 dwords */
1440 	bc->cf_last->ndw += 4;
1441 	bc->ndw += 4;
1442 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1443 		bc->force_add_cf = 1;
1444 	return 0;
1445 }
1446 
r600_bytecode_add_gds(struct r600_bytecode * bc,const struct r600_bytecode_gds * gds)1447 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
1448 {
1449 	struct r600_bytecode_gds *ngds = r600_bytecode_gds();
1450 	int r;
1451 
1452 	if (ngds == NULL)
1453 		return -ENOMEM;
1454 	memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
1455 
1456 	if (bc->cf_last == NULL ||
1457 	    bc->cf_last->op != CF_OP_GDS ||
1458 	    bc->force_add_cf) {
1459 		r = r600_bytecode_add_cf(bc);
1460 		if (r) {
1461 			free(ngds);
1462 			return r;
1463 		}
1464 		bc->cf_last->op = CF_OP_GDS;
1465 	}
1466 
1467 	LIST_ADDTAIL(&ngds->list, &bc->cf_last->gds);
1468 	bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
1469 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1470 		bc->force_add_cf = 1;
1471 	return 0;
1472 }
1473 
r600_bytecode_add_cfinst(struct r600_bytecode * bc,unsigned op)1474 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1475 {
1476 	int r;
1477 	r = r600_bytecode_add_cf(bc);
1478 	if (r)
1479 		return r;
1480 
1481 	bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1482 	bc->cf_last->op = op;
1483 	return 0;
1484 }
1485 
cm_bytecode_add_cf_end(struct r600_bytecode * bc)1486 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1487 {
1488 	return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1489 }
1490 
1491 /* common to all 3 families */
r600_bytecode_vtx_build(struct r600_bytecode * bc,struct r600_bytecode_vtx * vtx,unsigned id)1492 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1493 {
1494 	bc->bytecode[id] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1495 			S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1496 			S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1497 			S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1498 	if (bc->chip_class < CAYMAN)
1499 		bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1500 	id++;
1501 	bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1502 				S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1503 				S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1504 				S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1505 				S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1506 				S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1507 				S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1508 				S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1509 				S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1510 				S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1511 	bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1512 				S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1513 	if (bc->chip_class >= EVERGREEN)
1514 		bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
1515 	if (bc->chip_class < CAYMAN)
1516 		bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1517 	id++;
1518 	bc->bytecode[id++] = 0;
1519 	return 0;
1520 }
1521 
1522 /* common to all 3 families */
r600_bytecode_tex_build(struct r600_bytecode * bc,struct r600_bytecode_tex * tex,unsigned id)1523 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1524 {
1525 	bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
1526 					r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1527 			    EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1528 				S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1529 				S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1530 				S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1531 	if (bc->chip_class >= EVERGREEN)
1532 		bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
1533 				((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
1534 	id++;
1535 	bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1536 				S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1537 				S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1538 				S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1539 				S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1540 				S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1541 				S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1542 				S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1543 				S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1544 				S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1545 				S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1546 	bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1547 				S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1548 				S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1549 				S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1550 				S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1551 				S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1552 				S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1553 				S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1554 	bc->bytecode[id++] = 0;
1555 	return 0;
1556 }
1557 
1558 /* r600 only, r700/eg bits in r700_asm.c */
r600_bytecode_alu_build(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned id)1559 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1560 {
1561 	unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1562 
1563 	/* don't replace gpr by pv or ps for destination register */
1564 	bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1565 				S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1566 				S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1567 				S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1568 				S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1569 				S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1570 				S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1571 				S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1572 				S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1573 				S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1574 				S_SQ_ALU_WORD0_LAST(alu->last);
1575 
1576 	if (alu->is_op3) {
1577 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1578 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1579 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1580 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1581 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1582 					S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1583 					S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1584 					S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1585 					S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1586 					S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1587 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1588 	} else {
1589 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1590 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1591 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1592 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1593 					S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1594 					S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1595 					S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1596 					S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1597 					S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1598 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1599 					S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1600 					S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1601 	}
1602 	return 0;
1603 }
1604 
r600_bytecode_cf_vtx_build(uint32_t * bytecode,const struct r600_bytecode_cf * cf)1605 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1606 {
1607 	*bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1608 	*bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1609 			S_SQ_CF_WORD1_BARRIER(1) |
1610 			S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1);
1611 }
1612 
1613 /* common for r600/r700 - eg in eg_asm.c */
r600_bytecode_cf_build(struct r600_bytecode * bc,struct r600_bytecode_cf * cf)1614 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1615 {
1616 	unsigned id = cf->id;
1617 	const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1618 	unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1619 
1620 
1621 	if (cf->op == CF_NATIVE) {
1622 		bc->bytecode[id++] = cf->isa[0];
1623 		bc->bytecode[id++] = cf->isa[1];
1624 	} else if (cfop->flags & CF_ALU) {
1625 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1626 			S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1627 			S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1628 			S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1629 
1630 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1631 			S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1632 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1633 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1634 					S_SQ_CF_ALU_WORD1_BARRIER(1) |
1635 					S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1636 					S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1637 	} else if (cfop->flags & CF_FETCH) {
1638 		if (bc->chip_class == R700)
1639 			r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1640 		else
1641 			r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1642 	} else if (cfop->flags & CF_EXP) {
1643 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1644 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1645 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1646 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1647 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1648 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1649 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1650 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1651 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1652 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1653 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1654 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1655 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
1656 	} else if (cfop->flags & CF_MEM) {
1657 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1658 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1659 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1660 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1661 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1662 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1663 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1664 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1665 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
1666 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1667 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1668 	} else {
1669 		bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1670 		bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1671 					S_SQ_CF_WORD1_BARRIER(1) |
1672 			                S_SQ_CF_WORD1_COND(cf->cond) |
1673 			                S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
1674 					S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1675 	}
1676 	return 0;
1677 }
1678 
r600_bytecode_build(struct r600_bytecode * bc)1679 int r600_bytecode_build(struct r600_bytecode *bc)
1680 {
1681 	struct r600_bytecode_cf *cf;
1682 	struct r600_bytecode_alu *alu;
1683 	struct r600_bytecode_vtx *vtx;
1684 	struct r600_bytecode_tex *tex;
1685 	struct r600_bytecode_gds *gds;
1686 	uint32_t literal[4];
1687 	unsigned nliteral;
1688 	unsigned addr;
1689 	int i, r;
1690 
1691 	if (!bc->nstack) // If not 0, Stack_size already provided by llvm
1692 		bc->nstack = bc->stack.max_entries;
1693 
1694 	if ((bc->type == PIPE_SHADER_VERTEX || bc->type == PIPE_SHADER_TESS_EVAL || bc->type == PIPE_SHADER_TESS_CTRL) && !bc->nstack) {
1695 		bc->nstack = 1;
1696 	}
1697 
1698 	/* first path compute addr of each CF block */
1699 	/* addr start after all the CF instructions */
1700 	addr = bc->cf_last->id + 2;
1701 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1702 		if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1703 			addr += 3;
1704 			addr &= 0xFFFFFFFCUL;
1705 		}
1706 		cf->addr = addr;
1707 		addr += cf->ndw;
1708 		bc->ndw = cf->addr + cf->ndw;
1709 	}
1710 	free(bc->bytecode);
1711 	bc->bytecode = calloc(4, bc->ndw);
1712 	if (bc->bytecode == NULL)
1713 		return -ENOMEM;
1714 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1715 		const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1716 		addr = cf->addr;
1717 		if (bc->chip_class >= EVERGREEN)
1718 			r = eg_bytecode_cf_build(bc, cf);
1719 		else
1720 			r = r600_bytecode_cf_build(bc, cf);
1721 		if (r)
1722 			return r;
1723 		if (cfop->flags & CF_ALU) {
1724 			nliteral = 0;
1725 			memset(literal, 0, sizeof(literal));
1726 			LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1727 				r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
1728 				if (r)
1729 					return r;
1730 				r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
1731 				r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
1732 
1733 				switch(bc->chip_class) {
1734 				case R600:
1735 					r = r600_bytecode_alu_build(bc, alu, addr);
1736 					break;
1737 				case R700:
1738 					r = r700_bytecode_alu_build(bc, alu, addr);
1739 					break;
1740 				case EVERGREEN:
1741 				case CAYMAN:
1742 					r = eg_bytecode_alu_build(bc, alu, addr);
1743 					break;
1744 				default:
1745 					R600_ERR("unknown chip class %d.\n", bc->chip_class);
1746 					return -EINVAL;
1747 				}
1748 				if (r)
1749 					return r;
1750 				addr += 2;
1751 				if (alu->last) {
1752 					for (i = 0; i < align(nliteral, 2); ++i) {
1753 						bc->bytecode[addr++] = literal[i];
1754 					}
1755 					nliteral = 0;
1756 					memset(literal, 0, sizeof(literal));
1757 				}
1758 			}
1759 		} else if (cf->op == CF_OP_VTX) {
1760 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1761 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1762 				if (r)
1763 					return r;
1764 				addr += 4;
1765 			}
1766 		} else if (cf->op == CF_OP_GDS) {
1767 			assert(bc->chip_class >= EVERGREEN);
1768 			LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
1769 				r = eg_bytecode_gds_build(bc, gds, addr);
1770 				if (r)
1771 					return r;
1772 				addr += 4;
1773 			}
1774 		} else if (cf->op == CF_OP_TEX) {
1775 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1776 				assert(bc->chip_class >= EVERGREEN);
1777 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1778 				if (r)
1779 					return r;
1780 				addr += 4;
1781 			}
1782 			LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1783 				r = r600_bytecode_tex_build(bc, tex, addr);
1784 				if (r)
1785 					return r;
1786 				addr += 4;
1787 			}
1788 		}
1789 	}
1790 	return 0;
1791 }
1792 
r600_bytecode_clear(struct r600_bytecode * bc)1793 void r600_bytecode_clear(struct r600_bytecode *bc)
1794 {
1795 	struct r600_bytecode_cf *cf = NULL, *next_cf;
1796 
1797 	free(bc->bytecode);
1798 	bc->bytecode = NULL;
1799 
1800 	LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1801 		struct r600_bytecode_alu *alu = NULL, *next_alu;
1802 		struct r600_bytecode_tex *tex = NULL, *next_tex;
1803 		struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1804 		struct r600_bytecode_gds *gds = NULL, *next_gds;
1805 
1806 		LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1807 			free(alu);
1808 		}
1809 
1810 		LIST_INITHEAD(&cf->alu);
1811 
1812 		LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1813 			free(tex);
1814 		}
1815 
1816 		LIST_INITHEAD(&cf->tex);
1817 
1818 		LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1819 			free(vtx);
1820 		}
1821 
1822 		LIST_INITHEAD(&cf->vtx);
1823 
1824 		LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
1825 			free(gds);
1826 		}
1827 
1828 		LIST_INITHEAD(&cf->gds);
1829 
1830 		free(cf);
1831 	}
1832 
1833 	LIST_INITHEAD(&cf->list);
1834 }
1835 
print_swizzle(unsigned swz)1836 static int print_swizzle(unsigned swz)
1837 {
1838 	const char * swzchars = "xyzw01?_";
1839 	assert(swz<8 && swz != 6);
1840 	return fprintf(stderr, "%c", swzchars[swz]);
1841 }
1842 
print_sel(unsigned sel,unsigned rel,unsigned index_mode,unsigned need_brackets)1843 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
1844 		unsigned need_brackets)
1845 {
1846 	int o = 0;
1847 	if (rel && index_mode >= 5 && sel < 128)
1848 		o += fprintf(stderr, "G");
1849 	if (rel || need_brackets) {
1850 		o += fprintf(stderr, "[");
1851 	}
1852 	o += fprintf(stderr, "%d", sel);
1853 	if (rel) {
1854 		if (index_mode == 0 || index_mode == 6)
1855 			o += fprintf(stderr, "+AR");
1856 		else if (index_mode == 4)
1857 			o += fprintf(stderr, "+AL");
1858 	}
1859 	if (rel || need_brackets) {
1860 		o += fprintf(stderr, "]");
1861 	}
1862 	return o;
1863 }
1864 
print_dst(struct r600_bytecode_alu * alu)1865 static int print_dst(struct r600_bytecode_alu *alu)
1866 {
1867 	int o = 0;
1868 	unsigned sel = alu->dst.sel;
1869 	char reg_char = 'R';
1870 	if (sel > 128 - 4) { /* clause temporary gpr */
1871 		sel -= 128 - 4;
1872 		reg_char = 'T';
1873 	}
1874 
1875 	if (alu_writes(alu)) {
1876 		o += fprintf(stderr, "%c", reg_char);
1877 		o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
1878 	} else {
1879 		o += fprintf(stderr, "__");
1880 	}
1881 	o += fprintf(stderr, ".");
1882 	o += print_swizzle(alu->dst.chan);
1883 	return o;
1884 }
1885 
print_src(struct r600_bytecode_alu * alu,unsigned idx)1886 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
1887 {
1888 	int o = 0;
1889 	struct r600_bytecode_alu_src *src = &alu->src[idx];
1890 	unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
1891 
1892 	if (src->neg)
1893 		o += fprintf(stderr,"-");
1894 	if (src->abs)
1895 		o += fprintf(stderr,"|");
1896 
1897 	if (sel < 128 - 4) {
1898 		o += fprintf(stderr, "R");
1899 	} else if (sel < 128) {
1900 		o += fprintf(stderr, "T");
1901 		sel -= 128 - 4;
1902 	} else if (sel < 160) {
1903 		o += fprintf(stderr, "KC0");
1904 		need_brackets = 1;
1905 		sel -= 128;
1906 	} else if (sel < 192) {
1907 		o += fprintf(stderr, "KC1");
1908 		need_brackets = 1;
1909 		sel -= 160;
1910 	} else if (sel >= 512) {
1911 		o += fprintf(stderr, "C%d", src->kc_bank);
1912 		need_brackets = 1;
1913 		sel -= 512;
1914 	} else if (sel >= 448) {
1915 		o += fprintf(stderr, "Param");
1916 		sel -= 448;
1917 		need_chan = 0;
1918 	} else if (sel >= 288) {
1919 		o += fprintf(stderr, "KC3");
1920 		need_brackets = 1;
1921 		sel -= 288;
1922 	} else if (sel >= 256) {
1923 		o += fprintf(stderr, "KC2");
1924 		need_brackets = 1;
1925 		sel -= 256;
1926 	} else {
1927 		need_sel = 0;
1928 		need_chan = 0;
1929 		switch (sel) {
1930 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
1931 			o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
1932 			break;
1933 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
1934 			o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
1935 			break;
1936 		case EG_V_SQ_ALU_SRC_LDS_OQ_A:
1937 			o += fprintf(stderr, "LDS_OQ_A");
1938 			need_chan = 1;
1939 			break;
1940 		case EG_V_SQ_ALU_SRC_LDS_OQ_B:
1941 			o += fprintf(stderr, "LDS_OQ_B");
1942 			need_chan = 1;
1943 			break;
1944 		case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
1945 			o += fprintf(stderr, "LDS_OQ_A_POP");
1946 			need_chan = 1;
1947 			break;
1948 		case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
1949 			o += fprintf(stderr, "LDS_OQ_B_POP");
1950 			need_chan = 1;
1951 			break;
1952 		case V_SQ_ALU_SRC_PS:
1953 			o += fprintf(stderr, "PS");
1954 			break;
1955 		case V_SQ_ALU_SRC_PV:
1956 			o += fprintf(stderr, "PV");
1957 			need_chan = 1;
1958 			break;
1959 		case V_SQ_ALU_SRC_LITERAL:
1960 			o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
1961 			break;
1962 		case V_SQ_ALU_SRC_0_5:
1963 			o += fprintf(stderr, "0.5");
1964 			break;
1965 		case V_SQ_ALU_SRC_M_1_INT:
1966 			o += fprintf(stderr, "-1");
1967 			break;
1968 		case V_SQ_ALU_SRC_1_INT:
1969 			o += fprintf(stderr, "1");
1970 			break;
1971 		case V_SQ_ALU_SRC_1:
1972 			o += fprintf(stderr, "1.0");
1973 			break;
1974 		case V_SQ_ALU_SRC_0:
1975 			o += fprintf(stderr, "0");
1976 			break;
1977 		default:
1978 			o += fprintf(stderr, "??IMM_%d", sel);
1979 			break;
1980 		}
1981 	}
1982 
1983 	if (need_sel)
1984 		o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
1985 
1986 	if (need_chan) {
1987 		o += fprintf(stderr, ".");
1988 		o += print_swizzle(src->chan);
1989 	}
1990 
1991 	if (src->abs)
1992 		o += fprintf(stderr,"|");
1993 
1994 	return o;
1995 }
1996 
print_indent(int p,int c)1997 static int print_indent(int p, int c)
1998 {
1999 	int o = 0;
2000 	while (p++ < c)
2001 		o += fprintf(stderr, " ");
2002 	return o;
2003 }
2004 
r600_bytecode_disasm(struct r600_bytecode * bc)2005 void r600_bytecode_disasm(struct r600_bytecode *bc)
2006 {
2007 	const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
2008 	static int index = 0;
2009 	struct r600_bytecode_cf *cf = NULL;
2010 	struct r600_bytecode_alu *alu = NULL;
2011 	struct r600_bytecode_vtx *vtx = NULL;
2012 	struct r600_bytecode_tex *tex = NULL;
2013 	struct r600_bytecode_gds *gds = NULL;
2014 
2015 	unsigned i, id, ngr = 0, last;
2016 	uint32_t literal[4];
2017 	unsigned nliteral;
2018 	char chip = '6';
2019 
2020 	switch (bc->chip_class) {
2021 	case R700:
2022 		chip = '7';
2023 		break;
2024 	case EVERGREEN:
2025 		chip = 'E';
2026 		break;
2027 	case CAYMAN:
2028 		chip = 'C';
2029 		break;
2030 	case R600:
2031 	default:
2032 		chip = '6';
2033 		break;
2034 	}
2035 	fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
2036 	        bc->ndw, bc->ngpr, bc->nstack);
2037 	fprintf(stderr, "shader %d -- %c\n", index++, chip);
2038 
2039 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2040 		id = cf->id;
2041 		if (cf->op == CF_NATIVE) {
2042 			fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
2043 					bc->bytecode[id + 1]);
2044 		} else {
2045 			const struct cf_op_info *cfop = r600_isa_cf(cf->op);
2046 			if (cfop->flags & CF_ALU) {
2047 				if (cf->eg_alu_extended) {
2048 					fprintf(stderr, "%04d %08X %08X  %s\n", id, bc->bytecode[id],
2049 							bc->bytecode[id + 1], "ALU_EXT");
2050 					id += 2;
2051 				}
2052 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2053 						bc->bytecode[id + 1], cfop->name);
2054 				fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
2055 				for (i = 0; i < 4; ++i) {
2056 					if (cf->kcache[i].mode) {
2057 						int c_start = (cf->kcache[i].addr << 4);
2058 						int c_end = c_start + (cf->kcache[i].mode << 4);
2059 						fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
2060 						        i, cf->kcache[i].bank, c_start, c_end,
2061 						        cf->kcache[i].index_mode ? " " : "",
2062 						        cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
2063 					}
2064 				}
2065 				fprintf(stderr, "\n");
2066 			} else if (cfop->flags & CF_FETCH) {
2067 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2068 						bc->bytecode[id + 1], cfop->name);
2069 				fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
2070 				fprintf(stderr, "\n");
2071 			} else if (cfop->flags & CF_EXP) {
2072 				int o = 0;
2073 				const char *exp_type[] = {"PIXEL", "POS  ", "PARAM"};
2074 				o += fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2075 						bc->bytecode[id + 1], cfop->name);
2076 				o += print_indent(o, 43);
2077 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2078 				if (cf->output.burst_count > 1) {
2079 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2080 							cf->output.array_base + cf->output.burst_count - 1);
2081 
2082 					o += print_indent(o, 55);
2083 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2084 							cf->output.gpr + cf->output.burst_count - 1);
2085 				} else {
2086 					o += fprintf(stderr, "%d ", cf->output.array_base);
2087 					o += print_indent(o, 55);
2088 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2089 				}
2090 
2091 				o += print_swizzle(cf->output.swizzle_x);
2092 				o += print_swizzle(cf->output.swizzle_y);
2093 				o += print_swizzle(cf->output.swizzle_z);
2094 				o += print_swizzle(cf->output.swizzle_w);
2095 
2096 				print_indent(o, 67);
2097 
2098 				fprintf(stderr, " ES:%X ", cf->output.elem_size);
2099 				if (!cf->barrier)
2100 					fprintf(stderr, "NO_BARRIER ");
2101 				if (cf->end_of_program)
2102 					fprintf(stderr, "EOP ");
2103 				fprintf(stderr, "\n");
2104 			} else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
2105 				int o = 0;
2106 				const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
2107 						"WRITE_IND_ACK"};
2108 				o += fprintf(stderr, "%04d %08X %08X  %s ", id,
2109 						bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
2110 				o += print_indent(o, 43);
2111 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2112 				if (cf->output.burst_count > 1) {
2113 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2114 							cf->output.array_base + cf->output.burst_count - 1);
2115 					o += print_indent(o, 55);
2116 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2117 							cf->output.gpr + cf->output.burst_count - 1);
2118 				} else {
2119 					o += fprintf(stderr, "%d ", cf->output.array_base);
2120 					o += print_indent(o, 55);
2121 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2122 				}
2123 				for (i = 0; i < 4; ++i) {
2124 					if (cf->output.comp_mask & (1 << i))
2125 						o += print_swizzle(i);
2126 					else
2127 						o += print_swizzle(7);
2128 				}
2129 
2130 				if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND)
2131 					o += fprintf(stderr, " R%d", cf->output.index_gpr);
2132 
2133 				o += print_indent(o, 67);
2134 
2135 				fprintf(stderr, " ES:%i ", cf->output.elem_size);
2136 				if (cf->output.array_size != 0xFFF)
2137 					fprintf(stderr, "AS:%i ", cf->output.array_size);
2138 				if (!cf->barrier)
2139 					fprintf(stderr, "NO_BARRIER ");
2140 				if (cf->end_of_program)
2141 					fprintf(stderr, "EOP ");
2142 				fprintf(stderr, "\n");
2143 			} else {
2144 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2145 						bc->bytecode[id + 1], cfop->name);
2146 				fprintf(stderr, "@%d ", cf->cf_addr);
2147 				if (cf->cond)
2148 					fprintf(stderr, "CND:%X ", cf->cond);
2149 				if (cf->pop_count)
2150 					fprintf(stderr, "POP:%X ", cf->pop_count);
2151 				if (cf->count && (cfop->flags & CF_EMIT))
2152 					fprintf(stderr, "STREAM%d ", cf->count);
2153 				if (cf->end_of_program)
2154 					fprintf(stderr, "EOP ");
2155 				fprintf(stderr, "\n");
2156 			}
2157 		}
2158 
2159 		id = cf->addr;
2160 		nliteral = 0;
2161 		last = 1;
2162 		LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2163 			const char *omod_str[] = {"","*2","*4","/2"};
2164 			const struct alu_op_info *aop = r600_isa_alu(alu->op);
2165 			int o = 0;
2166 
2167 			r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2168 			o += fprintf(stderr, " %04d %08X %08X  ", id, bc->bytecode[id], bc->bytecode[id+1]);
2169 			if (last)
2170 				o += fprintf(stderr, "%4d ", ++ngr);
2171 			else
2172 				o += fprintf(stderr, "     ");
2173 			o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2174 					alu->update_pred ? 'P':' ',
2175 					alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2176 
2177 			o += fprintf(stderr, "%s%s%s ", aop->name,
2178 					omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2179 
2180 			o += print_indent(o,60);
2181 			o += print_dst(alu);
2182 			for (i = 0; i < aop->src_count; ++i) {
2183 				o += fprintf(stderr, i == 0 ? ",  ": ", ");
2184 				o += print_src(alu, i);
2185 			}
2186 
2187 			if (alu->bank_swizzle) {
2188 				o += print_indent(o,75);
2189 				o += fprintf(stderr, "  BS:%d", alu->bank_swizzle);
2190 			}
2191 
2192 			fprintf(stderr, "\n");
2193 			id += 2;
2194 
2195 			if (alu->last) {
2196 				for (i = 0; i < nliteral; i++, id++) {
2197 					float *f = (float*)(bc->bytecode + id);
2198 					o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2199 					print_indent(o, 60);
2200 					fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2201 				}
2202 				id += nliteral & 1;
2203 				nliteral = 0;
2204 			}
2205 			last = alu->last;
2206 		}
2207 
2208 		LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2209 			int o = 0;
2210 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2211 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2212 
2213 			o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2214 
2215 			o += print_indent(o, 50);
2216 
2217 			o += fprintf(stderr, "R%d.", tex->dst_gpr);
2218 			o += print_swizzle(tex->dst_sel_x);
2219 			o += print_swizzle(tex->dst_sel_y);
2220 			o += print_swizzle(tex->dst_sel_z);
2221 			o += print_swizzle(tex->dst_sel_w);
2222 
2223 			o += fprintf(stderr, ", R%d.", tex->src_gpr);
2224 			o += print_swizzle(tex->src_sel_x);
2225 			o += print_swizzle(tex->src_sel_y);
2226 			o += print_swizzle(tex->src_sel_z);
2227 			o += print_swizzle(tex->src_sel_w);
2228 
2229 			o += fprintf(stderr, ",  RID:%d", tex->resource_id);
2230 			o += fprintf(stderr, ", SID:%d  ", tex->sampler_id);
2231 
2232 			if (tex->sampler_index_mode)
2233 				fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
2234 
2235 			if (tex->lod_bias)
2236 				fprintf(stderr, "LB:%d ", tex->lod_bias);
2237 
2238 			fprintf(stderr, "CT:%c%c%c%c ",
2239 					tex->coord_type_x ? 'N' : 'U',
2240 					tex->coord_type_y ? 'N' : 'U',
2241 					tex->coord_type_z ? 'N' : 'U',
2242 					tex->coord_type_w ? 'N' : 'U');
2243 
2244 			if (tex->offset_x)
2245 				fprintf(stderr, "OX:%d ", tex->offset_x);
2246 			if (tex->offset_y)
2247 				fprintf(stderr, "OY:%d ", tex->offset_y);
2248 			if (tex->offset_z)
2249 				fprintf(stderr, "OZ:%d ", tex->offset_z);
2250 
2251 			id += 4;
2252 			fprintf(stderr, "\n");
2253 		}
2254 
2255 		LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2256 			int o = 0;
2257 			const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2258 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2259 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2260 
2261 			o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2262 
2263 			o += print_indent(o, 50);
2264 
2265 			o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2266 			o += print_swizzle(vtx->dst_sel_x);
2267 			o += print_swizzle(vtx->dst_sel_y);
2268 			o += print_swizzle(vtx->dst_sel_z);
2269 			o += print_swizzle(vtx->dst_sel_w);
2270 
2271 			o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2272 			o += print_swizzle(vtx->src_sel_x);
2273 
2274 			if (vtx->offset)
2275 				fprintf(stderr, " +%db", vtx->offset);
2276 
2277 			o += print_indent(o, 55);
2278 
2279 			fprintf(stderr, ",  RID:%d ", vtx->buffer_id);
2280 
2281 			fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2282 
2283 			if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
2284 				fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2285 
2286 			if (bc->chip_class >= EVERGREEN && vtx->buffer_index_mode)
2287 				fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
2288 
2289 			fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2290 			fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2291 			fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2292 			fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2293 			fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2294 
2295 			id += 4;
2296 		}
2297 
2298 		LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
2299 			int o = 0;
2300 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2301 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2302 
2303 			o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
2304 
2305 			if (gds->op != FETCH_OP_TF_WRITE) {
2306 				o += fprintf(stderr, "R%d.", gds->dst_gpr);
2307 				o += print_swizzle(gds->dst_sel_x);
2308 				o += print_swizzle(gds->dst_sel_y);
2309 				o += print_swizzle(gds->dst_sel_z);
2310 				o += print_swizzle(gds->dst_sel_w);
2311 			}
2312 
2313 			o += fprintf(stderr, ", R%d.", gds->src_gpr);
2314 			o += print_swizzle(gds->src_sel_x);
2315 			o += print_swizzle(gds->src_sel_y);
2316 			o += print_swizzle(gds->src_sel_z);
2317 
2318 			if (gds->op != FETCH_OP_TF_WRITE) {
2319 				o += fprintf(stderr, ", R%d.", gds->src_gpr2);
2320 			}
2321 			fprintf(stderr, "\n");
2322 			id += 4;
2323 		}
2324 	}
2325 
2326 	fprintf(stderr, "--------------------------------------\n");
2327 }
2328 
r600_vertex_data_type(enum pipe_format pformat,unsigned * format,unsigned * num_format,unsigned * format_comp,unsigned * endian)2329 void r600_vertex_data_type(enum pipe_format pformat,
2330 				  unsigned *format,
2331 				  unsigned *num_format, unsigned *format_comp, unsigned *endian)
2332 {
2333 	const struct util_format_description *desc;
2334 	unsigned i;
2335 
2336 	*format = 0;
2337 	*num_format = 0;
2338 	*format_comp = 0;
2339 	*endian = ENDIAN_NONE;
2340 
2341 	if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
2342 		*format = FMT_10_11_11_FLOAT;
2343 		*endian = r600_endian_swap(32);
2344 		return;
2345 	}
2346 
2347 	if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
2348 		*format = FMT_5_6_5;
2349 		*endian = r600_endian_swap(16);
2350 		return;
2351 	}
2352 
2353 	desc = util_format_description(pformat);
2354 	if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2355 		goto out_unknown;
2356 	}
2357 
2358 	/* Find the first non-VOID channel. */
2359 	for (i = 0; i < 4; i++) {
2360 		if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2361 			break;
2362 		}
2363 	}
2364 
2365 	*endian = r600_endian_swap(desc->channel[i].size);
2366 
2367 	switch (desc->channel[i].type) {
2368 	/* Half-floats, floats, ints */
2369 	case UTIL_FORMAT_TYPE_FLOAT:
2370 		switch (desc->channel[i].size) {
2371 		case 16:
2372 			switch (desc->nr_channels) {
2373 			case 1:
2374 				*format = FMT_16_FLOAT;
2375 				break;
2376 			case 2:
2377 				*format = FMT_16_16_FLOAT;
2378 				break;
2379 			case 3:
2380 			case 4:
2381 				*format = FMT_16_16_16_16_FLOAT;
2382 				break;
2383 			}
2384 			break;
2385 		case 32:
2386 			switch (desc->nr_channels) {
2387 			case 1:
2388 				*format = FMT_32_FLOAT;
2389 				break;
2390 			case 2:
2391 				*format = FMT_32_32_FLOAT;
2392 				break;
2393 			case 3:
2394 				*format = FMT_32_32_32_FLOAT;
2395 				break;
2396 			case 4:
2397 				*format = FMT_32_32_32_32_FLOAT;
2398 				break;
2399 			}
2400 			break;
2401 		default:
2402 			goto out_unknown;
2403 		}
2404 		break;
2405 		/* Unsigned ints */
2406 	case UTIL_FORMAT_TYPE_UNSIGNED:
2407 		/* Signed ints */
2408 	case UTIL_FORMAT_TYPE_SIGNED:
2409 		switch (desc->channel[i].size) {
2410 		case 8:
2411 			switch (desc->nr_channels) {
2412 			case 1:
2413 				*format = FMT_8;
2414 				break;
2415 			case 2:
2416 				*format = FMT_8_8;
2417 				break;
2418 			case 3:
2419 			case 4:
2420 				*format = FMT_8_8_8_8;
2421 				break;
2422 			}
2423 			break;
2424 		case 10:
2425 			if (desc->nr_channels != 4)
2426 				goto out_unknown;
2427 
2428 			*format = FMT_2_10_10_10;
2429 			break;
2430 		case 16:
2431 			switch (desc->nr_channels) {
2432 			case 1:
2433 				*format = FMT_16;
2434 				break;
2435 			case 2:
2436 				*format = FMT_16_16;
2437 				break;
2438 			case 3:
2439 			case 4:
2440 				*format = FMT_16_16_16_16;
2441 				break;
2442 			}
2443 			break;
2444 		case 32:
2445 			switch (desc->nr_channels) {
2446 			case 1:
2447 				*format = FMT_32;
2448 				break;
2449 			case 2:
2450 				*format = FMT_32_32;
2451 				break;
2452 			case 3:
2453 				*format = FMT_32_32_32;
2454 				break;
2455 			case 4:
2456 				*format = FMT_32_32_32_32;
2457 				break;
2458 			}
2459 			break;
2460 		default:
2461 			goto out_unknown;
2462 		}
2463 		break;
2464 	default:
2465 		goto out_unknown;
2466 	}
2467 
2468 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2469 		*format_comp = 1;
2470 	}
2471 
2472 	*num_format = 0;
2473 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2474 	    desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2475 		if (!desc->channel[i].normalized) {
2476 			if (desc->channel[i].pure_integer)
2477 				*num_format = 1;
2478 			else
2479 				*num_format = 2;
2480 		}
2481 	}
2482 	return;
2483 out_unknown:
2484 	R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2485 }
2486 
r600_create_vertex_fetch_shader(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_element * elements)2487 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
2488 				      unsigned count,
2489 				      const struct pipe_vertex_element *elements)
2490 {
2491 	struct r600_context *rctx = (struct r600_context *)ctx;
2492 	struct r600_bytecode bc;
2493 	struct r600_bytecode_vtx vtx;
2494 	const struct util_format_description *desc;
2495 	unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
2496 	unsigned format, num_format, format_comp, endian;
2497 	uint32_t *bytecode;
2498 	int i, j, r, fs_size;
2499 	struct r600_fetch_shader *shader;
2500 	unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB;
2501 	unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
2502 
2503 	assert(count < 32);
2504 
2505 	memset(&bc, 0, sizeof(bc));
2506 	r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
2507 			   rctx->screen->has_compressed_msaa_texturing);
2508 
2509 	bc.isa = rctx->isa;
2510 
2511 	for (i = 0; i < count; i++) {
2512 		if (elements[i].instance_divisor > 1) {
2513 			if (rctx->b.chip_class == CAYMAN) {
2514 				for (j = 0; j < 4; j++) {
2515 					struct r600_bytecode_alu alu;
2516 					memset(&alu, 0, sizeof(alu));
2517 					alu.op = ALU_OP2_MULHI_UINT;
2518 					alu.src[0].sel = 0;
2519 					alu.src[0].chan = 3;
2520 					alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2521 					alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2522 					alu.dst.sel = i + 1;
2523 					alu.dst.chan = j;
2524 					alu.dst.write = j == 3;
2525 					alu.last = j == 3;
2526 					if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2527 						r600_bytecode_clear(&bc);
2528 						return NULL;
2529 					}
2530 				}
2531 			} else {
2532 				struct r600_bytecode_alu alu;
2533 				memset(&alu, 0, sizeof(alu));
2534 				alu.op = ALU_OP2_MULHI_UINT;
2535 				alu.src[0].sel = 0;
2536 				alu.src[0].chan = 3;
2537 				alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2538 				alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2539 				alu.dst.sel = i + 1;
2540 				alu.dst.chan = 3;
2541 				alu.dst.write = 1;
2542 				alu.last = 1;
2543 				if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2544 					r600_bytecode_clear(&bc);
2545 					return NULL;
2546 				}
2547 			}
2548 		}
2549 	}
2550 
2551 	for (i = 0; i < count; i++) {
2552 		r600_vertex_data_type(elements[i].src_format,
2553 				      &format, &num_format, &format_comp, &endian);
2554 
2555 		desc = util_format_description(elements[i].src_format);
2556 		if (!desc) {
2557 			r600_bytecode_clear(&bc);
2558 			R600_ERR("unknown format %d\n", elements[i].src_format);
2559 			return NULL;
2560 		}
2561 
2562 		if (elements[i].src_offset > 65535) {
2563 			r600_bytecode_clear(&bc);
2564 			R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2565 			return NULL;
2566 		}
2567 
2568 		memset(&vtx, 0, sizeof(vtx));
2569 		vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2570 		vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
2571 		vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2572 		vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2573 		vtx.mega_fetch_count = 0x1F;
2574 		vtx.dst_gpr = i + 1;
2575 		vtx.dst_sel_x = desc->swizzle[0];
2576 		vtx.dst_sel_y = desc->swizzle[1];
2577 		vtx.dst_sel_z = desc->swizzle[2];
2578 		vtx.dst_sel_w = desc->swizzle[3];
2579 		vtx.data_format = format;
2580 		vtx.num_format_all = num_format;
2581 		vtx.format_comp_all = format_comp;
2582 		vtx.offset = elements[i].src_offset;
2583 		vtx.endian = endian;
2584 
2585 		if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2586 			r600_bytecode_clear(&bc);
2587 			return NULL;
2588 		}
2589 	}
2590 
2591 	r600_bytecode_add_cfinst(&bc, CF_OP_RET);
2592 
2593 	if ((r = r600_bytecode_build(&bc))) {
2594 		r600_bytecode_clear(&bc);
2595 		return NULL;
2596 	}
2597 
2598 	if (rctx->screen->b.debug_flags & DBG_FS) {
2599 		fprintf(stderr, "--------------------------------------------------------------\n");
2600 		fprintf(stderr, "Vertex elements state:\n");
2601 		for (i = 0; i < count; i++) {
2602 			fprintf(stderr, "   ");
2603 			util_dump_vertex_element(stderr, elements+i);
2604 			fprintf(stderr, "\n");
2605 		}
2606 
2607 		if (!sb_disasm) {
2608 			r600_bytecode_disasm(&bc);
2609 
2610 			fprintf(stderr, "______________________________________________________________\n");
2611 		} else {
2612 			r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
2613 		}
2614 	}
2615 
2616 	fs_size = bc.ndw*4;
2617 
2618 	/* Allocate the CSO. */
2619 	shader = CALLOC_STRUCT(r600_fetch_shader);
2620 	if (!shader) {
2621 		r600_bytecode_clear(&bc);
2622 		return NULL;
2623 	}
2624 
2625 	u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, 256,
2626 			     &shader->offset,
2627 			     (struct pipe_resource**)&shader->buffer);
2628 	if (!shader->buffer) {
2629 		r600_bytecode_clear(&bc);
2630 		FREE(shader);
2631 		return NULL;
2632 	}
2633 
2634 	bytecode = r600_buffer_map_sync_with_rings(&rctx->b, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED);
2635 	bytecode += shader->offset / 4;
2636 
2637 	if (R600_BIG_ENDIAN) {
2638 		for (i = 0; i < fs_size / 4; ++i) {
2639 			bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
2640 		}
2641 	} else {
2642 		memcpy(bytecode, bc.bytecode, fs_size);
2643 	}
2644 	rctx->b.ws->buffer_unmap(shader->buffer->buf);
2645 
2646 	r600_bytecode_clear(&bc);
2647 	return shader;
2648 }
2649 
r600_bytecode_alu_read(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t word0,uint32_t word1)2650 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2651 		struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2652 {
2653 	/* WORD0 */
2654 	alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2655 	alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2656 	alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2657 	alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2658 	alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2659 	alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2660 	alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2661 	alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2662 	alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2663 	alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2664 	alu->last = G_SQ_ALU_WORD0_LAST(word0);
2665 
2666 	/* WORD1 */
2667 	alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2668 	if (alu->bank_swizzle)
2669 		alu->bank_swizzle_force = alu->bank_swizzle;
2670 	alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2671 	alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2672 	alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2673 	alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2674 	if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2675 	{
2676 		alu->is_op3 = 1;
2677 		alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2678 		alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2679 		alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2680 		alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2681 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2682 				G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2683 
2684 	}
2685 	else /*ALU_DWORD1_OP2*/
2686 	{
2687 		alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2688 		alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2689 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2690 				G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2691 		alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2692 		alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2693 		alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2694 		alu->execute_mask =
2695 			G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2696 	}
2697 }
2698 
2699 #if 0
2700 void r600_bytecode_export_read(struct r600_bytecode *bc,
2701 		struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2702 {
2703 	output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2704 	output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2705 	output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2706 	output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2707 
2708 	output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2709 	output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2710 	output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2711 	output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2712 	output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2713 	output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2714     output->op = r600_isa_cf_by_opcode(bc->isa,
2715 			G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2716 	output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2717 	output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2718 	output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2719 }
2720 #endif
2721