1 /*
2 * Copyright 2013 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors: Marek Olšák <maraeo@gmail.com>
24 *
25 */
26
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "tgsi/tgsi_parse.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "os/os_time.h"
36 #include "vl/vl_decoder.h"
37 #include "vl/vl_video_buffer.h"
38 #include "radeon/radeon_video.h"
39 #include <inttypes.h>
40 #include <sys/utsname.h>
41
42 #ifndef HAVE_LLVM
43 #define HAVE_LLVM 0
44 #endif
45
46 #ifndef MESA_LLVM_VERSION_PATCH
47 #define MESA_LLVM_VERSION_PATCH 0
48 #endif
49
50 struct r600_multi_fence {
51 struct pipe_reference reference;
52 struct pipe_fence_handle *gfx;
53 struct pipe_fence_handle *sdma;
54
55 /* If the context wasn't flushed at fence creation, this is non-NULL. */
56 struct {
57 struct r600_common_context *ctx;
58 unsigned ib_index;
59 } gfx_unflushed;
60 };
61
62 /*
63 * shader binary helpers.
64 */
radeon_shader_binary_init(struct radeon_shader_binary * b)65 void radeon_shader_binary_init(struct radeon_shader_binary *b)
66 {
67 memset(b, 0, sizeof(*b));
68 }
69
radeon_shader_binary_clean(struct radeon_shader_binary * b)70 void radeon_shader_binary_clean(struct radeon_shader_binary *b)
71 {
72 if (!b)
73 return;
74 FREE(b->code);
75 FREE(b->config);
76 FREE(b->rodata);
77 FREE(b->global_symbol_offsets);
78 FREE(b->relocs);
79 FREE(b->disasm_string);
80 FREE(b->llvm_ir_string);
81 }
82
83 /*
84 * pipe_context
85 */
86
87 /**
88 * Write an EOP event.
89 *
90 * \param event EVENT_TYPE_*
91 * \param event_flags Optional cache flush flags (TC)
92 * \param data_sel 1 = fence, 3 = timestamp
93 * \param buf Buffer
94 * \param va GPU address
95 * \param old_value Previous fence value (for a bug workaround)
96 * \param new_value Fence value to write for this event.
97 */
r600_gfx_write_event_eop(struct r600_common_context * ctx,unsigned event,unsigned event_flags,unsigned data_sel,struct r600_resource * buf,uint64_t va,uint32_t old_fence,uint32_t new_fence)98 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
99 unsigned event, unsigned event_flags,
100 unsigned data_sel,
101 struct r600_resource *buf, uint64_t va,
102 uint32_t old_fence, uint32_t new_fence)
103 {
104 struct radeon_winsys_cs *cs = ctx->gfx.cs;
105 unsigned op = EVENT_TYPE(event) |
106 EVENT_INDEX(5) |
107 event_flags;
108
109 if (ctx->chip_class == CIK ||
110 ctx->chip_class == VI) {
111 /* Two EOP events are required to make all engines go idle
112 * (and optional cache flushes executed) before the timestamp
113 * is written.
114 */
115 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
116 radeon_emit(cs, op);
117 radeon_emit(cs, va);
118 radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
119 radeon_emit(cs, old_fence); /* immediate data */
120 radeon_emit(cs, 0); /* unused */
121 }
122
123 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
124 radeon_emit(cs, op);
125 radeon_emit(cs, va);
126 radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
127 radeon_emit(cs, new_fence); /* immediate data */
128 radeon_emit(cs, 0); /* unused */
129
130 if (buf)
131 r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
132 RADEON_PRIO_QUERY);
133 }
134
r600_gfx_write_fence_dwords(struct r600_common_screen * screen)135 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
136 {
137 unsigned dwords = 6;
138
139 if (screen->chip_class == CIK ||
140 screen->chip_class == VI)
141 dwords *= 2;
142
143 if (!screen->info.has_virtual_memory)
144 dwords += 2;
145
146 return dwords;
147 }
148
r600_gfx_wait_fence(struct r600_common_context * ctx,uint64_t va,uint32_t ref,uint32_t mask)149 void r600_gfx_wait_fence(struct r600_common_context *ctx,
150 uint64_t va, uint32_t ref, uint32_t mask)
151 {
152 struct radeon_winsys_cs *cs = ctx->gfx.cs;
153
154 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
155 radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
156 radeon_emit(cs, va);
157 radeon_emit(cs, va >> 32);
158 radeon_emit(cs, ref); /* reference value */
159 radeon_emit(cs, mask); /* mask */
160 radeon_emit(cs, 4); /* poll interval */
161 }
162
r600_draw_rectangle(struct blitter_context * blitter,int x1,int y1,int x2,int y2,float depth,enum blitter_attrib_type type,const union pipe_color_union * attrib)163 void r600_draw_rectangle(struct blitter_context *blitter,
164 int x1, int y1, int x2, int y2, float depth,
165 enum blitter_attrib_type type,
166 const union pipe_color_union *attrib)
167 {
168 struct r600_common_context *rctx =
169 (struct r600_common_context*)util_blitter_get_pipe(blitter);
170 struct pipe_viewport_state viewport;
171 struct pipe_resource *buf = NULL;
172 unsigned offset = 0;
173 float *vb;
174
175 if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
176 util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
177 return;
178 }
179
180 /* Some operations (like color resolve on r6xx) don't work
181 * with the conventional primitive types.
182 * One that works is PT_RECTLIST, which we use here. */
183
184 /* setup viewport */
185 viewport.scale[0] = 1.0f;
186 viewport.scale[1] = 1.0f;
187 viewport.scale[2] = 1.0f;
188 viewport.translate[0] = 0.0f;
189 viewport.translate[1] = 0.0f;
190 viewport.translate[2] = 0.0f;
191 rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
192
193 /* Upload vertices. The hw rectangle has only 3 vertices,
194 * I guess the 4th one is derived from the first 3.
195 * The vertex specification should match u_blitter's vertex element state. */
196 u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
197 if (!buf)
198 return;
199
200 vb[0] = x1;
201 vb[1] = y1;
202 vb[2] = depth;
203 vb[3] = 1;
204
205 vb[8] = x1;
206 vb[9] = y2;
207 vb[10] = depth;
208 vb[11] = 1;
209
210 vb[16] = x2;
211 vb[17] = y1;
212 vb[18] = depth;
213 vb[19] = 1;
214
215 if (attrib) {
216 memcpy(vb+4, attrib->f, sizeof(float)*4);
217 memcpy(vb+12, attrib->f, sizeof(float)*4);
218 memcpy(vb+20, attrib->f, sizeof(float)*4);
219 }
220
221 /* draw */
222 util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
223 R600_PRIM_RECTANGLE_LIST, 3, 2);
224 pipe_resource_reference(&buf, NULL);
225 }
226
r600_dma_emit_wait_idle(struct r600_common_context * rctx)227 static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
228 {
229 struct radeon_winsys_cs *cs = rctx->dma.cs;
230
231 /* NOP waits for idle on Evergreen and later. */
232 if (rctx->chip_class >= CIK)
233 radeon_emit(cs, 0x00000000); /* NOP */
234 else if (rctx->chip_class >= EVERGREEN)
235 radeon_emit(cs, 0xf0000000); /* NOP */
236 else {
237 /* TODO: R600-R700 should use the FENCE packet.
238 * CS checker support is required. */
239 }
240 }
241
r600_need_dma_space(struct r600_common_context * ctx,unsigned num_dw,struct r600_resource * dst,struct r600_resource * src)242 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
243 struct r600_resource *dst, struct r600_resource *src)
244 {
245 uint64_t vram = ctx->dma.cs->used_vram;
246 uint64_t gtt = ctx->dma.cs->used_gart;
247
248 if (dst) {
249 vram += dst->vram_usage;
250 gtt += dst->gart_usage;
251 }
252 if (src) {
253 vram += src->vram_usage;
254 gtt += src->gart_usage;
255 }
256
257 /* Flush the GFX IB if DMA depends on it. */
258 if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
259 ((dst &&
260 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
261 RADEON_USAGE_READWRITE)) ||
262 (src &&
263 ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
264 RADEON_USAGE_WRITE))))
265 ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
266
267 /* Flush if there's not enough space, or if the memory usage per IB
268 * is too large.
269 *
270 * IBs using too little memory are limited by the IB submission overhead.
271 * IBs using too much memory are limited by the kernel/TTM overhead.
272 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
273 *
274 * This heuristic makes sure that DMA requests are executed
275 * very soon after the call is made and lowers memory usage.
276 * It improves texture upload performance by keeping the DMA
277 * engine busy while uploads are being submitted.
278 */
279 num_dw++; /* for emit_wait_idle below */
280 if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
281 ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 ||
282 !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
283 ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
284 assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
285 }
286
287 /* Wait for idle if either buffer has been used in the IB before to
288 * prevent read-after-write hazards.
289 */
290 if ((dst &&
291 ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf,
292 RADEON_USAGE_READWRITE)) ||
293 (src &&
294 ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf,
295 RADEON_USAGE_WRITE)))
296 r600_dma_emit_wait_idle(ctx);
297
298 /* If GPUVM is not supported, the CS checker needs 2 entries
299 * in the buffer list per packet, which has to be done manually.
300 */
301 if (ctx->screen->info.has_virtual_memory) {
302 if (dst)
303 radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
304 RADEON_USAGE_WRITE,
305 RADEON_PRIO_SDMA_BUFFER);
306 if (src)
307 radeon_add_to_buffer_list(ctx, &ctx->dma, src,
308 RADEON_USAGE_READ,
309 RADEON_PRIO_SDMA_BUFFER);
310 }
311
312 /* this function is called before all DMA calls, so increment this. */
313 ctx->num_dma_calls++;
314 }
315
r600_memory_barrier(struct pipe_context * ctx,unsigned flags)316 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
317 {
318 }
319
r600_preflush_suspend_features(struct r600_common_context * ctx)320 void r600_preflush_suspend_features(struct r600_common_context *ctx)
321 {
322 /* suspend queries */
323 if (!LIST_IS_EMPTY(&ctx->active_queries))
324 r600_suspend_queries(ctx);
325
326 ctx->streamout.suspended = false;
327 if (ctx->streamout.begin_emitted) {
328 r600_emit_streamout_end(ctx);
329 ctx->streamout.suspended = true;
330 }
331 }
332
r600_postflush_resume_features(struct r600_common_context * ctx)333 void r600_postflush_resume_features(struct r600_common_context *ctx)
334 {
335 if (ctx->streamout.suspended) {
336 ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
337 r600_streamout_buffers_dirty(ctx);
338 }
339
340 /* resume queries */
341 if (!LIST_IS_EMPTY(&ctx->active_queries))
342 r600_resume_queries(ctx);
343 }
344
r600_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)345 static void r600_flush_from_st(struct pipe_context *ctx,
346 struct pipe_fence_handle **fence,
347 unsigned flags)
348 {
349 struct pipe_screen *screen = ctx->screen;
350 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
351 struct radeon_winsys *ws = rctx->ws;
352 unsigned rflags = 0;
353 struct pipe_fence_handle *gfx_fence = NULL;
354 struct pipe_fence_handle *sdma_fence = NULL;
355 bool deferred_fence = false;
356
357 if (flags & PIPE_FLUSH_END_OF_FRAME)
358 rflags |= RADEON_FLUSH_END_OF_FRAME;
359 if (flags & PIPE_FLUSH_DEFERRED)
360 rflags |= RADEON_FLUSH_ASYNC;
361
362 /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
363 if (rctx->dma.cs)
364 rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
365
366 if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
367 if (fence)
368 ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
369 if (!(rflags & RADEON_FLUSH_ASYNC))
370 ws->cs_sync_flush(rctx->gfx.cs);
371 } else {
372 /* Instead of flushing, create a deferred fence. Constraints:
373 * - The state tracker must allow a deferred flush.
374 * - The state tracker must request a fence.
375 * Thread safety in fence_finish must be ensured by the state tracker.
376 */
377 if (flags & PIPE_FLUSH_DEFERRED && fence) {
378 gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
379 deferred_fence = true;
380 } else {
381 rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
382 }
383 }
384
385 /* Both engines can signal out of order, so we need to keep both fences. */
386 if (fence) {
387 struct r600_multi_fence *multi_fence =
388 CALLOC_STRUCT(r600_multi_fence);
389 if (!multi_fence)
390 return;
391
392 multi_fence->reference.count = 1;
393 /* If both fences are NULL, fence_finish will always return true. */
394 multi_fence->gfx = gfx_fence;
395 multi_fence->sdma = sdma_fence;
396
397 if (deferred_fence) {
398 multi_fence->gfx_unflushed.ctx = rctx;
399 multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
400 }
401
402 screen->fence_reference(screen, fence, NULL);
403 *fence = (struct pipe_fence_handle*)multi_fence;
404 }
405 }
406
r600_flush_dma_ring(void * ctx,unsigned flags,struct pipe_fence_handle ** fence)407 static void r600_flush_dma_ring(void *ctx, unsigned flags,
408 struct pipe_fence_handle **fence)
409 {
410 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
411 struct radeon_winsys_cs *cs = rctx->dma.cs;
412 struct radeon_saved_cs saved;
413 bool check_vm =
414 (rctx->screen->debug_flags & DBG_CHECK_VM) &&
415 rctx->check_vm_faults;
416
417 if (!radeon_emitted(cs, 0)) {
418 if (fence)
419 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
420 return;
421 }
422
423 if (check_vm)
424 radeon_save_cs(rctx->ws, cs, &saved);
425
426 rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
427 if (fence)
428 rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
429
430 if (check_vm) {
431 /* Use conservative timeout 800ms, after which we won't wait any
432 * longer and assume the GPU is hung.
433 */
434 rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
435
436 rctx->check_vm_faults(rctx, &saved, RING_DMA);
437 radeon_clear_saved_cs(&saved);
438 }
439 }
440
441 /**
442 * Store a linearized copy of all chunks of \p cs together with the buffer
443 * list in \p saved.
444 */
radeon_save_cs(struct radeon_winsys * ws,struct radeon_winsys_cs * cs,struct radeon_saved_cs * saved)445 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
446 struct radeon_saved_cs *saved)
447 {
448 void *buf;
449 unsigned i;
450
451 /* Save the IB chunks. */
452 saved->num_dw = cs->prev_dw + cs->current.cdw;
453 saved->ib = MALLOC(4 * saved->num_dw);
454 if (!saved->ib)
455 goto oom;
456
457 buf = saved->ib;
458 for (i = 0; i < cs->num_prev; ++i) {
459 memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
460 buf += cs->prev[i].cdw;
461 }
462 memcpy(buf, cs->current.buf, cs->current.cdw * 4);
463
464 /* Save the buffer list. */
465 saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
466 saved->bo_list = CALLOC(saved->bo_count,
467 sizeof(saved->bo_list[0]));
468 if (!saved->bo_list) {
469 FREE(saved->ib);
470 goto oom;
471 }
472 ws->cs_get_buffer_list(cs, saved->bo_list);
473
474 return;
475
476 oom:
477 fprintf(stderr, "%s: out of memory\n", __func__);
478 memset(saved, 0, sizeof(*saved));
479 }
480
radeon_clear_saved_cs(struct radeon_saved_cs * saved)481 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
482 {
483 FREE(saved->ib);
484 FREE(saved->bo_list);
485
486 memset(saved, 0, sizeof(*saved));
487 }
488
r600_get_reset_status(struct pipe_context * ctx)489 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
490 {
491 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
492 unsigned latest = rctx->ws->query_value(rctx->ws,
493 RADEON_GPU_RESET_COUNTER);
494
495 if (rctx->gpu_reset_counter == latest)
496 return PIPE_NO_RESET;
497
498 rctx->gpu_reset_counter = latest;
499 return PIPE_UNKNOWN_CONTEXT_RESET;
500 }
501
r600_set_debug_callback(struct pipe_context * ctx,const struct pipe_debug_callback * cb)502 static void r600_set_debug_callback(struct pipe_context *ctx,
503 const struct pipe_debug_callback *cb)
504 {
505 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
506
507 if (cb)
508 rctx->debug = *cb;
509 else
510 memset(&rctx->debug, 0, sizeof(rctx->debug));
511 }
512
r600_set_device_reset_callback(struct pipe_context * ctx,const struct pipe_device_reset_callback * cb)513 static void r600_set_device_reset_callback(struct pipe_context *ctx,
514 const struct pipe_device_reset_callback *cb)
515 {
516 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
517
518 if (cb)
519 rctx->device_reset_callback = *cb;
520 else
521 memset(&rctx->device_reset_callback, 0,
522 sizeof(rctx->device_reset_callback));
523 }
524
r600_check_device_reset(struct r600_common_context * rctx)525 bool r600_check_device_reset(struct r600_common_context *rctx)
526 {
527 enum pipe_reset_status status;
528
529 if (!rctx->device_reset_callback.reset)
530 return false;
531
532 if (!rctx->b.get_device_reset_status)
533 return false;
534
535 status = rctx->b.get_device_reset_status(&rctx->b);
536 if (status == PIPE_NO_RESET)
537 return false;
538
539 rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
540 return true;
541 }
542
r600_dma_clear_buffer_fallback(struct pipe_context * ctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)543 static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
544 struct pipe_resource *dst,
545 uint64_t offset, uint64_t size,
546 unsigned value)
547 {
548 struct r600_common_context *rctx = (struct r600_common_context *)ctx;
549
550 rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
551 }
552
r600_common_context_init(struct r600_common_context * rctx,struct r600_common_screen * rscreen,unsigned context_flags)553 bool r600_common_context_init(struct r600_common_context *rctx,
554 struct r600_common_screen *rscreen,
555 unsigned context_flags)
556 {
557 slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
558
559 rctx->screen = rscreen;
560 rctx->ws = rscreen->ws;
561 rctx->family = rscreen->family;
562 rctx->chip_class = rscreen->chip_class;
563
564 if (rscreen->chip_class >= CIK)
565 rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
566 else if (rscreen->chip_class >= EVERGREEN)
567 rctx->max_db = 8;
568 else
569 rctx->max_db = 4;
570
571 rctx->b.invalidate_resource = r600_invalidate_resource;
572 rctx->b.transfer_map = u_transfer_map_vtbl;
573 rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
574 rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
575 rctx->b.texture_subdata = u_default_texture_subdata;
576 rctx->b.memory_barrier = r600_memory_barrier;
577 rctx->b.flush = r600_flush_from_st;
578 rctx->b.set_debug_callback = r600_set_debug_callback;
579 rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
580
581 /* evergreen_compute.c has a special codepath for global buffers.
582 * Everything else can use the direct path.
583 */
584 if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
585 (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
586 rctx->b.buffer_subdata = u_default_buffer_subdata;
587 else
588 rctx->b.buffer_subdata = r600_buffer_subdata;
589
590 if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
591 rctx->b.get_device_reset_status = r600_get_reset_status;
592 rctx->gpu_reset_counter =
593 rctx->ws->query_value(rctx->ws,
594 RADEON_GPU_RESET_COUNTER);
595 }
596
597 rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
598
599 r600_init_context_texture_functions(rctx);
600 r600_init_viewport_functions(rctx);
601 r600_streamout_init(rctx);
602 r600_query_init(rctx);
603 cayman_init_msaa(&rctx->b);
604
605 rctx->allocator_zeroed_memory =
606 u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
607 0, PIPE_USAGE_DEFAULT, true);
608 if (!rctx->allocator_zeroed_memory)
609 return false;
610
611 rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
612 PIPE_BIND_INDEX_BUFFER |
613 PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
614 if (!rctx->uploader)
615 return false;
616
617 rctx->ctx = rctx->ws->ctx_create(rctx->ws);
618 if (!rctx->ctx)
619 return false;
620
621 if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
622 rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
623 r600_flush_dma_ring,
624 rctx);
625 rctx->dma.flush = r600_flush_dma_ring;
626 }
627
628 return true;
629 }
630
r600_common_context_cleanup(struct r600_common_context * rctx)631 void r600_common_context_cleanup(struct r600_common_context *rctx)
632 {
633 unsigned i,j;
634
635 /* Release DCC stats. */
636 for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
637 assert(!rctx->dcc_stats[i].query_active);
638
639 for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++)
640 if (rctx->dcc_stats[i].ps_stats[j])
641 rctx->b.destroy_query(&rctx->b,
642 rctx->dcc_stats[i].ps_stats[j]);
643
644 r600_texture_reference(&rctx->dcc_stats[i].tex, NULL);
645 }
646
647 if (rctx->query_result_shader)
648 rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
649
650 if (rctx->gfx.cs)
651 rctx->ws->cs_destroy(rctx->gfx.cs);
652 if (rctx->dma.cs)
653 rctx->ws->cs_destroy(rctx->dma.cs);
654 if (rctx->ctx)
655 rctx->ws->ctx_destroy(rctx->ctx);
656
657 if (rctx->uploader) {
658 u_upload_destroy(rctx->uploader);
659 }
660
661 slab_destroy_child(&rctx->pool_transfers);
662
663 if (rctx->allocator_zeroed_memory) {
664 u_suballocator_destroy(rctx->allocator_zeroed_memory);
665 }
666 rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
667 rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
668 }
669
670 /*
671 * pipe_screen
672 */
673
674 static const struct debug_named_value common_debug_options[] = {
675 /* logging */
676 { "tex", DBG_TEX, "Print texture info" },
677 { "compute", DBG_COMPUTE, "Print compute info" },
678 { "vm", DBG_VM, "Print virtual addresses when creating resources" },
679 { "info", DBG_INFO, "Print driver information" },
680
681 /* shaders */
682 { "fs", DBG_FS, "Print fetch shaders" },
683 { "vs", DBG_VS, "Print vertex shaders" },
684 { "gs", DBG_GS, "Print geometry shaders" },
685 { "ps", DBG_PS, "Print pixel shaders" },
686 { "cs", DBG_CS, "Print compute shaders" },
687 { "tcs", DBG_TCS, "Print tessellation control shaders" },
688 { "tes", DBG_TES, "Print tessellation evaluation shaders" },
689 { "noir", DBG_NO_IR, "Don't print the LLVM IR"},
690 { "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
691 { "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
692 { "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
693 { "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
694 { "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." },
695
696 { "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
697
698 /* features */
699 { "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
700 { "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
701 /* GL uses the word INVALIDATE, gallium uses the word DISCARD */
702 { "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
703 { "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
704 { "notiling", DBG_NO_TILING, "Disable tiling" },
705 { "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
706 { "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
707 { "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
708 { "nowc", DBG_NO_WC, "Disable GTT write combining" },
709 { "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
710 { "nodcc", DBG_NO_DCC, "Disable DCC." },
711 { "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
712 { "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
713 { "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
714 { "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
715 { "noce", DBG_NO_CE, "Disable the constant engine"},
716 { "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
717 { "nodccfb", DBG_NO_DCC_FB, "Disable separate DCC on the main framebuffer" },
718
719 DEBUG_NAMED_VALUE_END /* must be last */
720 };
721
r600_get_vendor(struct pipe_screen * pscreen)722 static const char* r600_get_vendor(struct pipe_screen* pscreen)
723 {
724 return "X.Org";
725 }
726
r600_get_device_vendor(struct pipe_screen * pscreen)727 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
728 {
729 return "AMD";
730 }
731
r600_get_chip_name(struct r600_common_screen * rscreen)732 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
733 {
734 switch (rscreen->info.family) {
735 case CHIP_R600: return "AMD R600";
736 case CHIP_RV610: return "AMD RV610";
737 case CHIP_RV630: return "AMD RV630";
738 case CHIP_RV670: return "AMD RV670";
739 case CHIP_RV620: return "AMD RV620";
740 case CHIP_RV635: return "AMD RV635";
741 case CHIP_RS780: return "AMD RS780";
742 case CHIP_RS880: return "AMD RS880";
743 case CHIP_RV770: return "AMD RV770";
744 case CHIP_RV730: return "AMD RV730";
745 case CHIP_RV710: return "AMD RV710";
746 case CHIP_RV740: return "AMD RV740";
747 case CHIP_CEDAR: return "AMD CEDAR";
748 case CHIP_REDWOOD: return "AMD REDWOOD";
749 case CHIP_JUNIPER: return "AMD JUNIPER";
750 case CHIP_CYPRESS: return "AMD CYPRESS";
751 case CHIP_HEMLOCK: return "AMD HEMLOCK";
752 case CHIP_PALM: return "AMD PALM";
753 case CHIP_SUMO: return "AMD SUMO";
754 case CHIP_SUMO2: return "AMD SUMO2";
755 case CHIP_BARTS: return "AMD BARTS";
756 case CHIP_TURKS: return "AMD TURKS";
757 case CHIP_CAICOS: return "AMD CAICOS";
758 case CHIP_CAYMAN: return "AMD CAYMAN";
759 case CHIP_ARUBA: return "AMD ARUBA";
760 case CHIP_TAHITI: return "AMD TAHITI";
761 case CHIP_PITCAIRN: return "AMD PITCAIRN";
762 case CHIP_VERDE: return "AMD CAPE VERDE";
763 case CHIP_OLAND: return "AMD OLAND";
764 case CHIP_HAINAN: return "AMD HAINAN";
765 case CHIP_BONAIRE: return "AMD BONAIRE";
766 case CHIP_KAVERI: return "AMD KAVERI";
767 case CHIP_KABINI: return "AMD KABINI";
768 case CHIP_HAWAII: return "AMD HAWAII";
769 case CHIP_MULLINS: return "AMD MULLINS";
770 case CHIP_TONGA: return "AMD TONGA";
771 case CHIP_ICELAND: return "AMD ICELAND";
772 case CHIP_CARRIZO: return "AMD CARRIZO";
773 case CHIP_FIJI: return "AMD FIJI";
774 case CHIP_POLARIS10: return "AMD POLARIS10";
775 case CHIP_POLARIS11: return "AMD POLARIS11";
776 case CHIP_POLARIS12: return "AMD POLARIS12";
777 case CHIP_STONEY: return "AMD STONEY";
778 default: return "AMD unknown";
779 }
780 }
781
r600_get_name(struct pipe_screen * pscreen)782 static const char* r600_get_name(struct pipe_screen* pscreen)
783 {
784 struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
785
786 return rscreen->renderer_string;
787 }
788
r600_get_paramf(struct pipe_screen * pscreen,enum pipe_capf param)789 static float r600_get_paramf(struct pipe_screen* pscreen,
790 enum pipe_capf param)
791 {
792 struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
793
794 switch (param) {
795 case PIPE_CAPF_MAX_LINE_WIDTH:
796 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
797 case PIPE_CAPF_MAX_POINT_WIDTH:
798 case PIPE_CAPF_MAX_POINT_WIDTH_AA:
799 if (rscreen->family >= CHIP_CEDAR)
800 return 16384.0f;
801 else
802 return 8192.0f;
803 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
804 return 16.0f;
805 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
806 return 16.0f;
807 case PIPE_CAPF_GUARD_BAND_LEFT:
808 case PIPE_CAPF_GUARD_BAND_TOP:
809 case PIPE_CAPF_GUARD_BAND_RIGHT:
810 case PIPE_CAPF_GUARD_BAND_BOTTOM:
811 return 0.0f;
812 }
813 return 0.0f;
814 }
815
r600_get_video_param(struct pipe_screen * screen,enum pipe_video_profile profile,enum pipe_video_entrypoint entrypoint,enum pipe_video_cap param)816 static int r600_get_video_param(struct pipe_screen *screen,
817 enum pipe_video_profile profile,
818 enum pipe_video_entrypoint entrypoint,
819 enum pipe_video_cap param)
820 {
821 switch (param) {
822 case PIPE_VIDEO_CAP_SUPPORTED:
823 return vl_profile_supported(screen, profile, entrypoint);
824 case PIPE_VIDEO_CAP_NPOT_TEXTURES:
825 return 1;
826 case PIPE_VIDEO_CAP_MAX_WIDTH:
827 case PIPE_VIDEO_CAP_MAX_HEIGHT:
828 return vl_video_buffer_max_size(screen);
829 case PIPE_VIDEO_CAP_PREFERED_FORMAT:
830 return PIPE_FORMAT_NV12;
831 case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
832 return false;
833 case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
834 return false;
835 case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
836 return true;
837 case PIPE_VIDEO_CAP_MAX_LEVEL:
838 return vl_level_supported(screen, profile);
839 default:
840 return 0;
841 }
842 }
843
r600_get_llvm_processor_name(enum radeon_family family)844 const char *r600_get_llvm_processor_name(enum radeon_family family)
845 {
846 switch (family) {
847 case CHIP_R600:
848 case CHIP_RV630:
849 case CHIP_RV635:
850 case CHIP_RV670:
851 return "r600";
852 case CHIP_RV610:
853 case CHIP_RV620:
854 case CHIP_RS780:
855 case CHIP_RS880:
856 return "rs880";
857 case CHIP_RV710:
858 return "rv710";
859 case CHIP_RV730:
860 return "rv730";
861 case CHIP_RV740:
862 case CHIP_RV770:
863 return "rv770";
864 case CHIP_PALM:
865 case CHIP_CEDAR:
866 return "cedar";
867 case CHIP_SUMO:
868 case CHIP_SUMO2:
869 return "sumo";
870 case CHIP_REDWOOD:
871 return "redwood";
872 case CHIP_JUNIPER:
873 return "juniper";
874 case CHIP_HEMLOCK:
875 case CHIP_CYPRESS:
876 return "cypress";
877 case CHIP_BARTS:
878 return "barts";
879 case CHIP_TURKS:
880 return "turks";
881 case CHIP_CAICOS:
882 return "caicos";
883 case CHIP_CAYMAN:
884 case CHIP_ARUBA:
885 return "cayman";
886
887 case CHIP_TAHITI: return "tahiti";
888 case CHIP_PITCAIRN: return "pitcairn";
889 case CHIP_VERDE: return "verde";
890 case CHIP_OLAND: return "oland";
891 case CHIP_HAINAN: return "hainan";
892 case CHIP_BONAIRE: return "bonaire";
893 case CHIP_KABINI: return "kabini";
894 case CHIP_KAVERI: return "kaveri";
895 case CHIP_HAWAII: return "hawaii";
896 case CHIP_MULLINS:
897 return "mullins";
898 case CHIP_TONGA: return "tonga";
899 case CHIP_ICELAND: return "iceland";
900 case CHIP_CARRIZO: return "carrizo";
901 case CHIP_FIJI:
902 return HAVE_LLVM >= 0x0308 ? "fiji" : "carrizo";
903 case CHIP_STONEY:
904 return HAVE_LLVM >= 0x0308 ? "stoney" : "carrizo";
905 case CHIP_POLARIS10:
906 return HAVE_LLVM >= 0x0309 ? "polaris10" : "carrizo";
907 case CHIP_POLARIS11:
908 case CHIP_POLARIS12: /* same as polaris11 */
909 return HAVE_LLVM >= 0x0309 ? "polaris11" : "carrizo";
910 default:
911 return "";
912 }
913 }
914
r600_get_compute_param(struct pipe_screen * screen,enum pipe_shader_ir ir_type,enum pipe_compute_cap param,void * ret)915 static int r600_get_compute_param(struct pipe_screen *screen,
916 enum pipe_shader_ir ir_type,
917 enum pipe_compute_cap param,
918 void *ret)
919 {
920 struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
921
922 //TODO: select these params by asic
923 switch (param) {
924 case PIPE_COMPUTE_CAP_IR_TARGET: {
925 const char *gpu;
926 const char *triple;
927 if (rscreen->family <= CHIP_ARUBA) {
928 triple = "r600--";
929 } else {
930 if (HAVE_LLVM < 0x0400) {
931 triple = "amdgcn--";
932 } else {
933 triple = "amdgcn-mesa-mesa3d";
934 }
935 }
936 switch(rscreen->family) {
937 /* Clang < 3.6 is missing Hainan in its list of
938 * GPUs, so we need to use the name of a similar GPU.
939 */
940 default:
941 gpu = r600_get_llvm_processor_name(rscreen->family);
942 break;
943 }
944 if (ret) {
945 sprintf(ret, "%s-%s", gpu, triple);
946 }
947 /* +2 for dash and terminating NIL byte */
948 return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
949 }
950 case PIPE_COMPUTE_CAP_GRID_DIMENSION:
951 if (ret) {
952 uint64_t *grid_dimension = ret;
953 grid_dimension[0] = 3;
954 }
955 return 1 * sizeof(uint64_t);
956
957 case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
958 if (ret) {
959 uint64_t *grid_size = ret;
960 grid_size[0] = 65535;
961 grid_size[1] = 65535;
962 grid_size[2] = 65535;
963 }
964 return 3 * sizeof(uint64_t) ;
965
966 case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
967 if (ret) {
968 uint64_t *block_size = ret;
969 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
970 ir_type == PIPE_SHADER_IR_TGSI) {
971 block_size[0] = 2048;
972 block_size[1] = 2048;
973 block_size[2] = 2048;
974 } else {
975 block_size[0] = 256;
976 block_size[1] = 256;
977 block_size[2] = 256;
978 }
979 }
980 return 3 * sizeof(uint64_t);
981
982 case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
983 if (ret) {
984 uint64_t *max_threads_per_block = ret;
985 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
986 ir_type == PIPE_SHADER_IR_TGSI)
987 *max_threads_per_block = 2048;
988 else
989 *max_threads_per_block = 256;
990 }
991 return sizeof(uint64_t);
992 case PIPE_COMPUTE_CAP_ADDRESS_BITS:
993 if (ret) {
994 uint32_t *address_bits = ret;
995 address_bits[0] = 32;
996 if (rscreen->chip_class >= SI)
997 address_bits[0] = 64;
998 }
999 return 1 * sizeof(uint32_t);
1000
1001 case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
1002 if (ret) {
1003 uint64_t *max_global_size = ret;
1004 uint64_t max_mem_alloc_size;
1005
1006 r600_get_compute_param(screen, ir_type,
1007 PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
1008 &max_mem_alloc_size);
1009
1010 /* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
1011 * 1/4 of the MAX_GLOBAL_SIZE. Since the
1012 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
1013 * make sure we never report more than
1014 * 4 * MAX_MEM_ALLOC_SIZE.
1015 */
1016 *max_global_size = MIN2(4 * max_mem_alloc_size,
1017 MAX2(rscreen->info.gart_size,
1018 rscreen->info.vram_size));
1019 }
1020 return sizeof(uint64_t);
1021
1022 case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
1023 if (ret) {
1024 uint64_t *max_local_size = ret;
1025 /* Value reported by the closed source driver. */
1026 *max_local_size = 32768;
1027 }
1028 return sizeof(uint64_t);
1029
1030 case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1031 if (ret) {
1032 uint64_t *max_input_size = ret;
1033 /* Value reported by the closed source driver. */
1034 *max_input_size = 1024;
1035 }
1036 return sizeof(uint64_t);
1037
1038 case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1039 if (ret) {
1040 uint64_t *max_mem_alloc_size = ret;
1041
1042 *max_mem_alloc_size = rscreen->info.max_alloc_size;
1043 }
1044 return sizeof(uint64_t);
1045
1046 case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1047 if (ret) {
1048 uint32_t *max_clock_frequency = ret;
1049 *max_clock_frequency = rscreen->info.max_shader_clock;
1050 }
1051 return sizeof(uint32_t);
1052
1053 case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1054 if (ret) {
1055 uint32_t *max_compute_units = ret;
1056 *max_compute_units = rscreen->info.num_good_compute_units;
1057 }
1058 return sizeof(uint32_t);
1059
1060 case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1061 if (ret) {
1062 uint32_t *images_supported = ret;
1063 *images_supported = 0;
1064 }
1065 return sizeof(uint32_t);
1066 case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1067 break; /* unused */
1068 case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
1069 if (ret) {
1070 uint32_t *subgroup_size = ret;
1071 *subgroup_size = r600_wavefront_size(rscreen->family);
1072 }
1073 return sizeof(uint32_t);
1074 case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1075 if (ret) {
1076 uint64_t *max_variable_threads_per_block = ret;
1077 if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
1078 ir_type == PIPE_SHADER_IR_TGSI)
1079 *max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
1080 else
1081 *max_variable_threads_per_block = 0;
1082 }
1083 return sizeof(uint64_t);
1084 }
1085
1086 fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1087 return 0;
1088 }
1089
r600_get_timestamp(struct pipe_screen * screen)1090 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1091 {
1092 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1093
1094 return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1095 rscreen->info.clock_crystal_freq;
1096 }
1097
r600_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)1098 static void r600_fence_reference(struct pipe_screen *screen,
1099 struct pipe_fence_handle **dst,
1100 struct pipe_fence_handle *src)
1101 {
1102 struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1103 struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1104 struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1105
1106 if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1107 ws->fence_reference(&(*rdst)->gfx, NULL);
1108 ws->fence_reference(&(*rdst)->sdma, NULL);
1109 FREE(*rdst);
1110 }
1111 *rdst = rsrc;
1112 }
1113
r600_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)1114 static boolean r600_fence_finish(struct pipe_screen *screen,
1115 struct pipe_context *ctx,
1116 struct pipe_fence_handle *fence,
1117 uint64_t timeout)
1118 {
1119 struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1120 struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1121 struct r600_common_context *rctx =
1122 ctx ? (struct r600_common_context*)ctx : NULL;
1123 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1124
1125 if (rfence->sdma) {
1126 if (!rws->fence_wait(rws, rfence->sdma, timeout))
1127 return false;
1128
1129 /* Recompute the timeout after waiting. */
1130 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1131 int64_t time = os_time_get_nano();
1132 timeout = abs_timeout > time ? abs_timeout - time : 0;
1133 }
1134 }
1135
1136 if (!rfence->gfx)
1137 return true;
1138
1139 /* Flush the gfx IB if it hasn't been flushed yet. */
1140 if (rctx &&
1141 rfence->gfx_unflushed.ctx == rctx &&
1142 rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1143 rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
1144 rfence->gfx_unflushed.ctx = NULL;
1145
1146 if (!timeout)
1147 return false;
1148
1149 /* Recompute the timeout after all that. */
1150 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
1151 int64_t time = os_time_get_nano();
1152 timeout = abs_timeout > time ? abs_timeout - time : 0;
1153 }
1154 }
1155
1156 return rws->fence_wait(rws, rfence->gfx, timeout);
1157 }
1158
r600_query_memory_info(struct pipe_screen * screen,struct pipe_memory_info * info)1159 static void r600_query_memory_info(struct pipe_screen *screen,
1160 struct pipe_memory_info *info)
1161 {
1162 struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1163 struct radeon_winsys *ws = rscreen->ws;
1164 unsigned vram_usage, gtt_usage;
1165
1166 info->total_device_memory = rscreen->info.vram_size / 1024;
1167 info->total_staging_memory = rscreen->info.gart_size / 1024;
1168
1169 /* The real TTM memory usage is somewhat random, because:
1170 *
1171 * 1) TTM delays freeing memory, because it can only free it after
1172 * fences expire.
1173 *
1174 * 2) The memory usage can be really low if big VRAM evictions are
1175 * taking place, but the real usage is well above the size of VRAM.
1176 *
1177 * Instead, return statistics of this process.
1178 */
1179 vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1180 gtt_usage = ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1181
1182 info->avail_device_memory =
1183 vram_usage <= info->total_device_memory ?
1184 info->total_device_memory - vram_usage : 0;
1185 info->avail_staging_memory =
1186 gtt_usage <= info->total_staging_memory ?
1187 info->total_staging_memory - gtt_usage : 0;
1188
1189 info->device_memory_evicted =
1190 ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1191
1192 if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4)
1193 info->nr_device_memory_evictions =
1194 ws->query_value(ws, RADEON_NUM_EVICTIONS);
1195 else
1196 /* Just return the number of evicted 64KB pages. */
1197 info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1198 }
1199
r600_resource_create_common(struct pipe_screen * screen,const struct pipe_resource * templ)1200 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1201 const struct pipe_resource *templ)
1202 {
1203 if (templ->target == PIPE_BUFFER) {
1204 return r600_buffer_create(screen, templ, 256);
1205 } else {
1206 return r600_texture_create(screen, templ);
1207 }
1208 }
1209
r600_common_screen_init(struct r600_common_screen * rscreen,struct radeon_winsys * ws)1210 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1211 struct radeon_winsys *ws)
1212 {
1213 char llvm_string[32] = {}, kernel_version[128] = {};
1214 struct utsname uname_data;
1215
1216 ws->query_info(ws, &rscreen->info);
1217
1218 if (uname(&uname_data) == 0)
1219 snprintf(kernel_version, sizeof(kernel_version),
1220 " / %s", uname_data.release);
1221
1222 if (HAVE_LLVM > 0) {
1223 snprintf(llvm_string, sizeof(llvm_string),
1224 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
1225 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
1226 }
1227
1228 snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1229 "%s (DRM %i.%i.%i%s%s)",
1230 r600_get_chip_name(rscreen), rscreen->info.drm_major,
1231 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1232 kernel_version, llvm_string);
1233
1234 rscreen->b.get_name = r600_get_name;
1235 rscreen->b.get_vendor = r600_get_vendor;
1236 rscreen->b.get_device_vendor = r600_get_device_vendor;
1237 rscreen->b.get_compute_param = r600_get_compute_param;
1238 rscreen->b.get_paramf = r600_get_paramf;
1239 rscreen->b.get_timestamp = r600_get_timestamp;
1240 rscreen->b.fence_finish = r600_fence_finish;
1241 rscreen->b.fence_reference = r600_fence_reference;
1242 rscreen->b.resource_destroy = u_resource_destroy_vtbl;
1243 rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1244 rscreen->b.query_memory_info = r600_query_memory_info;
1245
1246 if (rscreen->info.has_uvd) {
1247 rscreen->b.get_video_param = rvid_get_video_param;
1248 rscreen->b.is_video_format_supported = rvid_is_format_supported;
1249 } else {
1250 rscreen->b.get_video_param = r600_get_video_param;
1251 rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1252 }
1253
1254 r600_init_screen_texture_functions(rscreen);
1255 r600_init_screen_query_functions(rscreen);
1256
1257 rscreen->ws = ws;
1258 rscreen->family = rscreen->info.family;
1259 rscreen->chip_class = rscreen->info.chip_class;
1260 rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1261
1262 slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1263
1264 rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1265 if (rscreen->force_aniso >= 0) {
1266 printf("radeon: Forcing anisotropy filter to %ix\n",
1267 /* round down to a power of two */
1268 1 << util_logbase2(rscreen->force_aniso));
1269 }
1270
1271 util_format_s3tc_init();
1272 pipe_mutex_init(rscreen->aux_context_lock);
1273 pipe_mutex_init(rscreen->gpu_load_mutex);
1274
1275 if (rscreen->debug_flags & DBG_INFO) {
1276 printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1277 printf("family = %i (%s)\n", rscreen->info.family,
1278 r600_get_chip_name(rscreen));
1279 printf("chip_class = %i\n", rscreen->info.chip_class);
1280 printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
1281 printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
1282 printf("max_alloc_size = %i MB\n",
1283 (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
1284 printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
1285 printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1286 printf("has_sdma = %i\n", rscreen->info.has_sdma);
1287 printf("has_uvd = %i\n", rscreen->info.has_uvd);
1288 printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1289 printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1290 printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
1291 printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
1292 printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1293 printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1294 printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1295 rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1296 printf("has_userptr = %i\n", rscreen->info.has_userptr);
1297
1298 printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1299 printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
1300 printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
1301 printf("max_se = %i\n", rscreen->info.max_se);
1302 printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
1303
1304 printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1305 printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1306 printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1307 printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
1308 printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1309 printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1310 }
1311 return true;
1312 }
1313
r600_destroy_common_screen(struct r600_common_screen * rscreen)1314 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1315 {
1316 r600_perfcounters_destroy(rscreen);
1317 r600_gpu_load_kill_thread(rscreen);
1318
1319 pipe_mutex_destroy(rscreen->gpu_load_mutex);
1320 pipe_mutex_destroy(rscreen->aux_context_lock);
1321 rscreen->aux_context->destroy(rscreen->aux_context);
1322
1323 slab_destroy_parent(&rscreen->pool_transfers);
1324
1325 rscreen->ws->destroy(rscreen->ws);
1326 FREE(rscreen);
1327 }
1328
r600_can_dump_shader(struct r600_common_screen * rscreen,unsigned processor)1329 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1330 unsigned processor)
1331 {
1332 switch (processor) {
1333 case PIPE_SHADER_VERTEX:
1334 return (rscreen->debug_flags & DBG_VS) != 0;
1335 case PIPE_SHADER_TESS_CTRL:
1336 return (rscreen->debug_flags & DBG_TCS) != 0;
1337 case PIPE_SHADER_TESS_EVAL:
1338 return (rscreen->debug_flags & DBG_TES) != 0;
1339 case PIPE_SHADER_GEOMETRY:
1340 return (rscreen->debug_flags & DBG_GS) != 0;
1341 case PIPE_SHADER_FRAGMENT:
1342 return (rscreen->debug_flags & DBG_PS) != 0;
1343 case PIPE_SHADER_COMPUTE:
1344 return (rscreen->debug_flags & DBG_CS) != 0;
1345 default:
1346 return false;
1347 }
1348 }
1349
r600_extra_shader_checks(struct r600_common_screen * rscreen,unsigned processor)1350 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1351 {
1352 return (rscreen->debug_flags & DBG_CHECK_IR) ||
1353 r600_can_dump_shader(rscreen, processor);
1354 }
1355
r600_screen_clear_buffer(struct r600_common_screen * rscreen,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)1356 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1357 uint64_t offset, uint64_t size, unsigned value)
1358 {
1359 struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1360
1361 pipe_mutex_lock(rscreen->aux_context_lock);
1362 rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
1363 rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1364 pipe_mutex_unlock(rscreen->aux_context_lock);
1365 }
1366