1 /* 2 * Copyright (C) 2009 The Guava Authors 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.google.common.cache; 18 19 import static com.google.common.base.Preconditions.checkArgument; 20 import static com.google.common.base.Preconditions.checkNotNull; 21 import static com.google.common.base.Preconditions.checkState; 22 23 import com.google.common.annotations.Beta; 24 import com.google.common.annotations.GwtCompatible; 25 import com.google.common.annotations.GwtIncompatible; 26 import com.google.common.base.Ascii; 27 import com.google.common.base.Equivalence; 28 import com.google.common.base.MoreObjects; 29 import com.google.common.base.Supplier; 30 import com.google.common.base.Suppliers; 31 import com.google.common.base.Ticker; 32 import com.google.common.cache.AbstractCache.SimpleStatsCounter; 33 import com.google.common.cache.AbstractCache.StatsCounter; 34 import com.google.common.cache.LocalCache.Strength; 35 36 import java.lang.ref.SoftReference; 37 import java.lang.ref.WeakReference; 38 import java.util.ConcurrentModificationException; 39 import java.util.concurrent.ConcurrentHashMap; 40 import java.util.concurrent.TimeUnit; 41 import java.util.logging.Level; 42 import java.util.logging.Logger; 43 44 import javax.annotation.CheckReturnValue; 45 46 /** 47 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 48 * following features: 49 * 50 * <ul> 51 * <li>automatic loading of entries into the cache 52 * <li>least-recently-used eviction when a maximum size is exceeded 53 * <li>time-based expiration of entries, measured since last access or last write 54 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 55 * <li>values automatically wrapped in {@linkplain WeakReference weak} or 56 * {@linkplain SoftReference soft} references 57 * <li>notification of evicted (or otherwise removed) entries 58 * <li>accumulation of cache access statistics 59 * </ul> 60 * 61 * <p>These features are all optional; caches can be created using all or none of them. By default 62 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 63 * 64 * <p>Usage example: <pre> {@code 65 * 66 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 67 * .maximumSize(10000) 68 * .expireAfterWrite(10, TimeUnit.MINUTES) 69 * .removalListener(MY_LISTENER) 70 * .build( 71 * new CacheLoader<Key, Graph>() { 72 * public Graph load(Key key) throws AnyException { 73 * return createExpensiveGraph(key); 74 * } 75 * });}</pre> 76 * 77 * <p>Or equivalently, <pre> {@code 78 * 79 * // In real life this would come from a command-line flag or config file 80 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 81 * 82 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 83 * .removalListener(MY_LISTENER) 84 * .build( 85 * new CacheLoader<Key, Graph>() { 86 * public Graph load(Key key) throws AnyException { 87 * return createExpensiveGraph(key); 88 * } 89 * });}</pre> 90 * 91 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 92 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 93 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 94 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 95 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 96 * are reflected in that iterator. These iterators never throw {@link 97 * ConcurrentModificationException}. 98 * 99 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 100 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 101 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) 102 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was 103 * specified, the cache uses identity comparisons for values. 104 * 105 * <p>Entries are automatically evicted from the cache when any of 106 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, 107 * {@linkplain #expireAfterWrite expireAfterWrite}, 108 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 109 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested. 110 * 111 * <p>If {@linkplain #maximumSize(long) maximumSize} or 112 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache 113 * modification. 114 * 115 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or 116 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each 117 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired 118 * entries may be counted by {@link Cache#size}, but will never be visible to read or write 119 * operations. 120 * 121 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 122 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 123 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be 124 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to 125 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be 126 * visible to read or write operations. 127 * 128 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 129 * will be performed during write operations, or during occasional read operations in the absence of 130 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 131 * calling it should not be necessary with a high throughput cache. Only caches built with 132 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 133 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 134 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 135 * maintenance. 136 * 137 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 138 * retain all the configuration properties of the original cache. Note that the serialized form does 139 * <i>not</i> include cache contents, but only configuration. 140 * 141 * <p>See the Guava User Guide article on <a href= 142 * "http://code.google.com/p/guava-libraries/wiki/CachesExplained">caching</a> for a higher-level 143 * explanation. 144 * 145 * @param <K> the base key type for all caches created by this builder 146 * @param <V> the base value type for all caches created by this builder 147 * @author Charles Fry 148 * @author Kevin Bourrillion 149 * @since 10.0 150 */ 151 @GwtCompatible(emulated = true) 152 public final class CacheBuilder<K, V> { 153 private static final int DEFAULT_INITIAL_CAPACITY = 16; 154 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 155 private static final int DEFAULT_EXPIRATION_NANOS = 0; 156 private static final int DEFAULT_REFRESH_NANOS = 0; 157 158 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( 159 new StatsCounter() { 160 @Override 161 public void recordHits(int count) {} 162 163 @Override 164 public void recordMisses(int count) {} 165 166 @Override 167 public void recordLoadSuccess(long loadTime) {} 168 169 @Override 170 public void recordLoadException(long loadTime) {} 171 172 @Override 173 public void recordEviction() {} 174 175 @Override 176 public CacheStats snapshot() { 177 return EMPTY_STATS; 178 } 179 }); 180 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 181 182 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 183 new Supplier<StatsCounter>() { 184 @Override 185 public StatsCounter get() { 186 return new SimpleStatsCounter(); 187 } 188 }; 189 190 enum NullListener implements RemovalListener<Object, Object> { 191 INSTANCE; 192 193 @Override onRemoval(RemovalNotification<Object, Object> notification)194 public void onRemoval(RemovalNotification<Object, Object> notification) {} 195 } 196 197 enum OneWeigher implements Weigher<Object, Object> { 198 INSTANCE; 199 200 @Override weigh(Object key, Object value)201 public int weigh(Object key, Object value) { 202 return 1; 203 } 204 } 205 206 static final Ticker NULL_TICKER = new Ticker() { 207 @Override 208 public long read() { 209 return 0; 210 } 211 }; 212 213 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 214 215 static final int UNSET_INT = -1; 216 217 boolean strictParsing = true; 218 219 int initialCapacity = UNSET_INT; 220 int concurrencyLevel = UNSET_INT; 221 long maximumSize = UNSET_INT; 222 long maximumWeight = UNSET_INT; 223 Weigher<? super K, ? super V> weigher; 224 225 Strength keyStrength; 226 Strength valueStrength; 227 228 long expireAfterWriteNanos = UNSET_INT; 229 long expireAfterAccessNanos = UNSET_INT; 230 long refreshNanos = UNSET_INT; 231 232 Equivalence<Object> keyEquivalence; 233 Equivalence<Object> valueEquivalence; 234 235 RemovalListener<? super K, ? super V> removalListener; 236 Ticker ticker; 237 238 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 239 240 // TODO(fry): make constructor private and update tests to use newBuilder CacheBuilder()241 CacheBuilder() {} 242 243 /** 244 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 245 * strong values, and no automatic eviction of any kind. 246 */ newBuilder()247 public static CacheBuilder<Object, Object> newBuilder() { 248 return new CacheBuilder<Object, Object>(); 249 } 250 251 /** 252 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 253 * 254 * @since 12.0 255 */ 256 @Beta 257 @GwtIncompatible("To be supported") from(CacheBuilderSpec spec)258 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 259 return spec.toCacheBuilder() 260 .lenientParsing(); 261 } 262 263 /** 264 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 265 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 266 * 267 * @param spec a String in the format specified by {@link CacheBuilderSpec} 268 * @since 12.0 269 */ 270 @Beta 271 @GwtIncompatible("To be supported") from(String spec)272 public static CacheBuilder<Object, Object> from(String spec) { 273 return from(CacheBuilderSpec.parse(spec)); 274 } 275 276 /** 277 * Enables lenient parsing. Useful for tests and spec parsing. 278 */ 279 @GwtIncompatible("To be supported") lenientParsing()280 CacheBuilder<K, V> lenientParsing() { 281 strictParsing = false; 282 return this; 283 } 284 285 /** 286 * Sets a custom {@code Equivalence} strategy for comparing keys. 287 * 288 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 289 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 290 */ 291 @GwtIncompatible("To be supported") keyEquivalence(Equivalence<Object> equivalence)292 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 293 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 294 keyEquivalence = checkNotNull(equivalence); 295 return this; 296 } 297 getKeyEquivalence()298 Equivalence<Object> getKeyEquivalence() { 299 return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 300 } 301 302 /** 303 * Sets a custom {@code Equivalence} strategy for comparing values. 304 * 305 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 306 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 307 * otherwise. 308 */ 309 @GwtIncompatible("To be supported") valueEquivalence(Equivalence<Object> equivalence)310 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 311 checkState(valueEquivalence == null, 312 "value equivalence was already set to %s", valueEquivalence); 313 this.valueEquivalence = checkNotNull(equivalence); 314 return this; 315 } 316 getValueEquivalence()317 Equivalence<Object> getValueEquivalence() { 318 return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 319 } 320 321 /** 322 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 323 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 324 * having a hash table of size eight. Providing a large enough estimate at construction time 325 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 326 * high wastes memory. 327 * 328 * @throws IllegalArgumentException if {@code initialCapacity} is negative 329 * @throws IllegalStateException if an initial capacity was already set 330 */ initialCapacity(int initialCapacity)331 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 332 checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", 333 this.initialCapacity); 334 checkArgument(initialCapacity >= 0); 335 this.initialCapacity = initialCapacity; 336 return this; 337 } 338 getInitialCapacity()339 int getInitialCapacity() { 340 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 341 } 342 343 /** 344 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 345 * table is internally partitioned to try to permit the indicated number of concurrent updates 346 * without contention. Because assignment of entries to these partitions is not necessarily 347 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 348 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 349 * higher value than you need can waste space and time, and a significantly lower value can lead 350 * to thread contention. But overestimates and underestimates within an order of magnitude do not 351 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 352 * at a time, but since read operations and cache loading computations can proceed concurrently, 353 * this still yields higher concurrency than full synchronization. 354 * 355 * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 356 * value, you should always choose it explicitly. 357 * 358 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 359 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 360 * write, and twice for each cache loading computation (once prior to loading the new value, 361 * and once after loading completes). Much internal cache management is performed at the segment 362 * granularity. For example, access queues and write queues are kept per segment when they are 363 * required by the selected eviction algorithm. As such, when writing unit tests it is not 364 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 365 * behavior. 366 * 367 * <p>Note that future implementations may abandon segment locking in favor of more advanced 368 * concurrency controls. 369 * 370 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 371 * @throws IllegalStateException if a concurrency level was already set 372 */ concurrencyLevel(int concurrencyLevel)373 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 374 checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", 375 this.concurrencyLevel); 376 checkArgument(concurrencyLevel > 0); 377 this.concurrencyLevel = concurrencyLevel; 378 return this; 379 } 380 getConcurrencyLevel()381 int getConcurrencyLevel() { 382 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 383 } 384 385 /** 386 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 387 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 388 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 389 * entry because it hasn't been used recently or very often. 390 * 391 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 392 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 393 * 394 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 395 * 396 * @param size the maximum size of the cache 397 * @throws IllegalArgumentException if {@code size} is negative 398 * @throws IllegalStateException if a maximum size or weight was already set 399 */ maximumSize(long size)400 public CacheBuilder<K, V> maximumSize(long size) { 401 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 402 this.maximumSize); 403 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 404 this.maximumWeight); 405 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 406 checkArgument(size >= 0, "maximum size must not be negative"); 407 this.maximumSize = size; 408 return this; 409 } 410 411 /** 412 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 413 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 414 * corresponding call to {@link #weigher} prior to calling {@link #build}. 415 * 416 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 417 * size grows close to the maximum, the cache evicts entries that are less likely to be used 418 * again. For example, the cache may evict an entry because it hasn't been used recently or very 419 * often. 420 * 421 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 422 * cache. This can be useful in testing, or to disable caching temporarily without a code 423 * change. 424 * 425 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 426 * effect on selecting which entry should be evicted next. 427 * 428 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 429 * 430 * @param weight the maximum total weight of entries the cache may contain 431 * @throws IllegalArgumentException if {@code weight} is negative 432 * @throws IllegalStateException if a maximum weight or size was already set 433 * @since 11.0 434 */ 435 @GwtIncompatible("To be supported") maximumWeight(long weight)436 public CacheBuilder<K, V> maximumWeight(long weight) { 437 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 438 this.maximumWeight); 439 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 440 this.maximumSize); 441 this.maximumWeight = weight; 442 checkArgument(weight >= 0, "maximum weight must not be negative"); 443 return this; 444 } 445 446 /** 447 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken 448 * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and 449 * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to 450 * calling {@link #build}. Weights are measured and recorded when entries are inserted into the 451 * cache, and are thus effectively static during the lifetime of a cache entry. 452 * 453 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 454 * (though it still may be evicted by other means). 455 * 456 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 457 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 458 * original reference or the returned reference may be used to complete configuration and build 459 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 460 * building caches whose key or value types are incompatible with the types accepted by the 461 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 462 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 463 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 464 * 465 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 466 * a cache whose key or value type is incompatible with the weigher, you will likely experience 467 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 468 * 469 * @param weigher the weigher to use in calculating the weight of cache entries 470 * @throws IllegalArgumentException if {@code size} is negative 471 * @throws IllegalStateException if a maximum size was already set 472 * @since 11.0 473 */ 474 @GwtIncompatible("To be supported") weigher( Weigher<? super K1, ? super V1> weigher)475 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 476 Weigher<? super K1, ? super V1> weigher) { 477 checkState(this.weigher == null); 478 if (strictParsing) { 479 checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", 480 this.maximumSize); 481 } 482 483 // safely limiting the kinds of caches this can produce 484 @SuppressWarnings("unchecked") 485 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 486 me.weigher = checkNotNull(weigher); 487 return me; 488 } 489 getMaximumWeight()490 long getMaximumWeight() { 491 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 492 return 0; 493 } 494 return (weigher == null) ? maximumSize : maximumWeight; 495 } 496 497 // Make a safe contravariant cast now so we don't have to do it over and over. 498 @SuppressWarnings("unchecked") getWeigher()499 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 500 return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); 501 } 502 503 /** 504 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 505 * WeakReference} (by default, strong references are used). 506 * 507 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 508 * comparison to determine equality of keys. 509 * 510 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, 511 * but will never be visible to read or write operations; such entries are cleaned up as part of 512 * the routine maintenance described in the class javadoc. 513 * 514 * @throws IllegalStateException if the key strength was already set 515 */ 516 @GwtIncompatible("java.lang.ref.WeakReference") weakKeys()517 public CacheBuilder<K, V> weakKeys() { 518 return setKeyStrength(Strength.WEAK); 519 } 520 setKeyStrength(Strength strength)521 CacheBuilder<K, V> setKeyStrength(Strength strength) { 522 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 523 keyStrength = checkNotNull(strength); 524 return this; 525 } 526 getKeyStrength()527 Strength getKeyStrength() { 528 return MoreObjects.firstNonNull(keyStrength, Strength.STRONG); 529 } 530 531 /** 532 * Specifies that each value (not key) stored in the cache should be wrapped in a 533 * {@link WeakReference} (by default, strong references are used). 534 * 535 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 536 * candidate for caching; consider {@link #softValues} instead. 537 * 538 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 539 * comparison to determine equality of values. 540 * 541 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 542 * but will never be visible to read or write operations; such entries are cleaned up as part of 543 * the routine maintenance described in the class javadoc. 544 * 545 * @throws IllegalStateException if the value strength was already set 546 */ 547 @GwtIncompatible("java.lang.ref.WeakReference") weakValues()548 public CacheBuilder<K, V> weakValues() { 549 return setValueStrength(Strength.WEAK); 550 } 551 552 /** 553 * Specifies that each value (not key) stored in the cache should be wrapped in a 554 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 555 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 556 * demand. 557 * 558 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 559 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 560 * method if you are well familiar with the practical consequences of soft references. 561 * 562 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 563 * comparison to determine equality of values. 564 * 565 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 566 * but will never be visible to read or write operations; such entries are cleaned up as part of 567 * the routine maintenance described in the class javadoc. 568 * 569 * @throws IllegalStateException if the value strength was already set 570 */ 571 @GwtIncompatible("java.lang.ref.SoftReference") softValues()572 public CacheBuilder<K, V> softValues() { 573 return setValueStrength(Strength.SOFT); 574 } 575 setValueStrength(Strength strength)576 CacheBuilder<K, V> setValueStrength(Strength strength) { 577 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 578 valueStrength = checkNotNull(strength); 579 return this; 580 } 581 getValueStrength()582 Strength getValueStrength() { 583 return MoreObjects.firstNonNull(valueStrength, Strength.STRONG); 584 } 585 586 /** 587 * Specifies that each entry should be automatically removed from the cache once a fixed duration 588 * has elapsed after the entry's creation, or the most recent replacement of its value. 589 * 590 * <p>When {@code duration} is zero, this method hands off to 591 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 592 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 593 * change. 594 * 595 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 596 * write operations. Expired entries are cleaned up as part of the routine maintenance described 597 * in the class javadoc. 598 * 599 * @param duration the length of time after an entry is created that it should be automatically 600 * removed 601 * @param unit the unit that {@code duration} is expressed in 602 * @throws IllegalArgumentException if {@code duration} is negative 603 * @throws IllegalStateException if the time to live or time to idle was already set 604 */ expireAfterWrite(long duration, TimeUnit unit)605 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 606 checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", 607 expireAfterWriteNanos); 608 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 609 this.expireAfterWriteNanos = unit.toNanos(duration); 610 return this; 611 } 612 getExpireAfterWriteNanos()613 long getExpireAfterWriteNanos() { 614 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 615 } 616 617 /** 618 * Specifies that each entry should be automatically removed from the cache once a fixed duration 619 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 620 * access. Access time is reset by all cache read and write operations (including 621 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 622 * on the collection-views of {@link Cache#asMap}. 623 * 624 * <p>When {@code duration} is zero, this method hands off to 625 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 626 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 627 * change. 628 * 629 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 630 * write operations. Expired entries are cleaned up as part of the routine maintenance described 631 * in the class javadoc. 632 * 633 * @param duration the length of time after an entry is last accessed that it should be 634 * automatically removed 635 * @param unit the unit that {@code duration} is expressed in 636 * @throws IllegalArgumentException if {@code duration} is negative 637 * @throws IllegalStateException if the time to idle or time to live was already set 638 */ expireAfterAccess(long duration, TimeUnit unit)639 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 640 checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", 641 expireAfterAccessNanos); 642 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 643 this.expireAfterAccessNanos = unit.toNanos(duration); 644 return this; 645 } 646 getExpireAfterAccessNanos()647 long getExpireAfterAccessNanos() { 648 return (expireAfterAccessNanos == UNSET_INT) 649 ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; 650 } 651 652 /** 653 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 654 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 655 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 656 * {@link CacheLoader#reload}. 657 * 658 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 659 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 660 * implementation; otherwise refreshes will be performed during unrelated cache read and write 661 * operations. 662 * 663 * <p>Currently automatic refreshes are performed when the first stale request for an entry 664 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 665 * and immediately return the new value if the returned future is complete, and the old value 666 * otherwise. 667 * 668 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 669 * 670 * @param duration the length of time after an entry is created that it should be considered 671 * stale, and thus eligible for refresh 672 * @param unit the unit that {@code duration} is expressed in 673 * @throws IllegalArgumentException if {@code duration} is negative 674 * @throws IllegalStateException if the refresh interval was already set 675 * @since 11.0 676 */ 677 @Beta 678 @GwtIncompatible("To be supported (synchronously).") refreshAfterWrite(long duration, TimeUnit unit)679 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 680 checkNotNull(unit); 681 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 682 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 683 this.refreshNanos = unit.toNanos(duration); 684 return this; 685 } 686 getRefreshNanos()687 long getRefreshNanos() { 688 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 689 } 690 691 /** 692 * Specifies a nanosecond-precision time source for use in determining when entries should be 693 * expired. By default, {@link System#nanoTime} is used. 694 * 695 * <p>The primary intent of this method is to facilitate testing of caches which have been 696 * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}. 697 * 698 * @throws IllegalStateException if a ticker was already set 699 */ ticker(Ticker ticker)700 public CacheBuilder<K, V> ticker(Ticker ticker) { 701 checkState(this.ticker == null); 702 this.ticker = checkNotNull(ticker); 703 return this; 704 } 705 getTicker(boolean recordsTime)706 Ticker getTicker(boolean recordsTime) { 707 if (ticker != null) { 708 return ticker; 709 } 710 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 711 } 712 713 /** 714 * Specifies a listener instance that caches should notify each time an entry is removed for any 715 * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 716 * as part of the routine maintenance described in the class documentation above. 717 * 718 * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache 719 * builder reference; instead use the reference this method <i>returns</i>. At runtime, these 720 * point to the same instance, but only the returned reference has the correct generic type 721 * information so as to ensure type safety. For best results, use the standard method-chaining 722 * idiom illustrated in the class documentation above, configuring a builder and building your 723 * cache in a single statement. Failure to heed this advice can result in a {@link 724 * ClassCastException} being thrown by a cache operation at some <i>undefined</i> point in the 725 * future. 726 * 727 * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 728 * the {@code Cache} user, only logged via a {@link Logger}. 729 * 730 * @return the cache builder reference that should be used instead of {@code this} for any 731 * remaining configuration and cache building 732 * @throws IllegalStateException if a removal listener was already set 733 */ 734 @CheckReturnValue removalListener( RemovalListener<? super K1, ? super V1> listener)735 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 736 RemovalListener<? super K1, ? super V1> listener) { 737 checkState(this.removalListener == null); 738 739 // safely limiting the kinds of caches this can produce 740 @SuppressWarnings("unchecked") 741 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 742 me.removalListener = checkNotNull(listener); 743 return me; 744 } 745 746 // Make a safe contravariant cast now so we don't have to do it over and over. 747 @SuppressWarnings("unchecked") getRemovalListener()748 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 749 return (RemovalListener<K1, V1>) 750 MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); 751 } 752 753 /** 754 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 755 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 756 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 757 * cache operation. 758 * 759 * @since 12.0 (previously, stats collection was automatic) 760 */ recordStats()761 public CacheBuilder<K, V> recordStats() { 762 statsCounterSupplier = CACHE_STATS_COUNTER; 763 return this; 764 } 765 isRecordingStats()766 boolean isRecordingStats() { 767 return statsCounterSupplier == CACHE_STATS_COUNTER; 768 } 769 getStatsCounterSupplier()770 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 771 return statsCounterSupplier; 772 } 773 774 /** 775 * Builds a cache, which either returns an already-loaded value for a given key or atomically 776 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 777 * loading the value for this key, simply waits for that thread to finish and returns its 778 * loaded value. Note that multiple threads can concurrently load values for distinct keys. 779 * 780 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 781 * invoked again to create multiple independent caches. 782 * 783 * @param loader the cache loader used to obtain new values 784 * @return a cache having the requested features 785 */ build( CacheLoader<? super K1, V1> loader)786 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 787 CacheLoader<? super K1, V1> loader) { 788 checkWeightWithWeigher(); 789 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 790 } 791 792 /** 793 * Builds a cache which does not automatically load values when keys are requested. 794 * 795 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 796 * {@code CacheLoader}. 797 * 798 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 799 * invoked again to create multiple independent caches. 800 * 801 * @return a cache having the requested features 802 * @since 11.0 803 */ build()804 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 805 checkWeightWithWeigher(); 806 checkNonLoadingCache(); 807 return new LocalCache.LocalManualCache<K1, V1>(this); 808 } 809 checkNonLoadingCache()810 private void checkNonLoadingCache() { 811 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 812 } 813 checkWeightWithWeigher()814 private void checkWeightWithWeigher() { 815 if (weigher == null) { 816 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 817 } else { 818 if (strictParsing) { 819 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 820 } else { 821 if (maximumWeight == UNSET_INT) { 822 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 823 } 824 } 825 } 826 } 827 828 /** 829 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 830 * string is not specified. 831 */ 832 @Override toString()833 public String toString() { 834 MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this); 835 if (initialCapacity != UNSET_INT) { 836 s.add("initialCapacity", initialCapacity); 837 } 838 if (concurrencyLevel != UNSET_INT) { 839 s.add("concurrencyLevel", concurrencyLevel); 840 } 841 if (maximumSize != UNSET_INT) { 842 s.add("maximumSize", maximumSize); 843 } 844 if (maximumWeight != UNSET_INT) { 845 s.add("maximumWeight", maximumWeight); 846 } 847 if (expireAfterWriteNanos != UNSET_INT) { 848 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 849 } 850 if (expireAfterAccessNanos != UNSET_INT) { 851 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 852 } 853 if (keyStrength != null) { 854 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 855 } 856 if (valueStrength != null) { 857 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 858 } 859 if (keyEquivalence != null) { 860 s.addValue("keyEquivalence"); 861 } 862 if (valueEquivalence != null) { 863 s.addValue("valueEquivalence"); 864 } 865 if (removalListener != null) { 866 s.addValue("removalListener"); 867 } 868 return s.toString(); 869 } 870 } 871