• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.common.cache;
18 
19 import static com.google.common.base.Preconditions.checkArgument;
20 import static com.google.common.base.Preconditions.checkNotNull;
21 import static com.google.common.base.Preconditions.checkState;
22 
23 import com.google.common.annotations.Beta;
24 import com.google.common.annotations.GwtCompatible;
25 import com.google.common.annotations.GwtIncompatible;
26 import com.google.common.base.Ascii;
27 import com.google.common.base.Equivalence;
28 import com.google.common.base.MoreObjects;
29 import com.google.common.base.Supplier;
30 import com.google.common.base.Suppliers;
31 import com.google.common.base.Ticker;
32 import com.google.common.cache.AbstractCache.SimpleStatsCounter;
33 import com.google.common.cache.AbstractCache.StatsCounter;
34 import com.google.common.cache.LocalCache.Strength;
35 
36 import java.lang.ref.SoftReference;
37 import java.lang.ref.WeakReference;
38 import java.util.ConcurrentModificationException;
39 import java.util.concurrent.ConcurrentHashMap;
40 import java.util.concurrent.TimeUnit;
41 import java.util.logging.Level;
42 import java.util.logging.Logger;
43 
44 import javax.annotation.CheckReturnValue;
45 
46 /**
47  * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the
48  * following features:
49  *
50  * <ul>
51  * <li>automatic loading of entries into the cache
52  * <li>least-recently-used eviction when a maximum size is exceeded
53  * <li>time-based expiration of entries, measured since last access or last write
54  * <li>keys automatically wrapped in {@linkplain WeakReference weak} references
55  * <li>values automatically wrapped in {@linkplain WeakReference weak} or
56  *     {@linkplain SoftReference soft} references
57  * <li>notification of evicted (or otherwise removed) entries
58  * <li>accumulation of cache access statistics
59  * </ul>
60  *
61  * <p>These features are all optional; caches can be created using all or none of them. By default
62  * cache instances created by {@code CacheBuilder} will not perform any type of eviction.
63  *
64  * <p>Usage example: <pre>   {@code
65  *
66  *   LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
67  *       .maximumSize(10000)
68  *       .expireAfterWrite(10, TimeUnit.MINUTES)
69  *       .removalListener(MY_LISTENER)
70  *       .build(
71  *           new CacheLoader<Key, Graph>() {
72  *             public Graph load(Key key) throws AnyException {
73  *               return createExpensiveGraph(key);
74  *             }
75  *           });}</pre>
76  *
77  * <p>Or equivalently, <pre>   {@code
78  *
79  *   // In real life this would come from a command-line flag or config file
80  *   String spec = "maximumSize=10000,expireAfterWrite=10m";
81  *
82  *   LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec)
83  *       .removalListener(MY_LISTENER)
84  *       .build(
85  *           new CacheLoader<Key, Graph>() {
86  *             public Graph load(Key key) throws AnyException {
87  *               return createExpensiveGraph(key);
88  *             }
89  *           });}</pre>
90  *
91  * <p>The returned cache is implemented as a hash table with similar performance characteristics to
92  * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and
93  * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly
94  * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads
95  * modify the cache after the iterator is created, it is undefined which of these changes, if any,
96  * are reflected in that iterator. These iterators never throw {@link
97  * ConcurrentModificationException}.
98  *
99  * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the
100  * {@link Object#equals equals} method) to determine equality for keys or values. However, if
101  * {@link #weakKeys} was specified, the cache uses identity ({@code ==})
102  * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was
103  * specified, the cache uses identity comparisons for values.
104  *
105  * <p>Entries are automatically evicted from the cache when any of
106  * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight},
107  * {@linkplain #expireAfterWrite expireAfterWrite},
108  * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys},
109  * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested.
110  *
111  * <p>If {@linkplain #maximumSize(long) maximumSize} or
112  * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache
113  * modification.
114  *
115  * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or
116  * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each
117  * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired
118  * entries may be counted by {@link Cache#size}, but will never be visible to read or write
119  * operations.
120  *
121  * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or
122  * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in
123  * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be
124  * removed from the cache on each cache modification, on occasional cache accesses, or on calls to
125  * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be
126  * visible to read or write operations.
127  *
128  * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which
129  * will be performed during write operations, or during occasional read operations in the absence of
130  * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but
131  * calling it should not be necessary with a high throughput cache. Only caches built with
132  * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite},
133  * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys},
134  * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic
135  * maintenance.
136  *
137  * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches
138  * retain all the configuration properties of the original cache. Note that the serialized form does
139  * <i>not</i> include cache contents, but only configuration.
140  *
141  * <p>See the Guava User Guide article on <a href=
142  * "http://code.google.com/p/guava-libraries/wiki/CachesExplained">caching</a> for a higher-level
143  * explanation.
144  *
145  * @param <K> the base key type for all caches created by this builder
146  * @param <V> the base value type for all caches created by this builder
147  * @author Charles Fry
148  * @author Kevin Bourrillion
149  * @since 10.0
150  */
151 @GwtCompatible(emulated = true)
152 public final class CacheBuilder<K, V> {
153   private static final int DEFAULT_INITIAL_CAPACITY = 16;
154   private static final int DEFAULT_CONCURRENCY_LEVEL = 4;
155   private static final int DEFAULT_EXPIRATION_NANOS = 0;
156   private static final int DEFAULT_REFRESH_NANOS = 0;
157 
158   static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance(
159       new StatsCounter() {
160         @Override
161         public void recordHits(int count) {}
162 
163         @Override
164         public void recordMisses(int count) {}
165 
166         @Override
167         public void recordLoadSuccess(long loadTime) {}
168 
169         @Override
170         public void recordLoadException(long loadTime) {}
171 
172         @Override
173         public void recordEviction() {}
174 
175         @Override
176         public CacheStats snapshot() {
177           return EMPTY_STATS;
178         }
179       });
180   static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0);
181 
182   static final Supplier<StatsCounter> CACHE_STATS_COUNTER =
183       new Supplier<StatsCounter>() {
184     @Override
185     public StatsCounter get() {
186       return new SimpleStatsCounter();
187     }
188   };
189 
190   enum NullListener implements RemovalListener<Object, Object> {
191     INSTANCE;
192 
193     @Override
onRemoval(RemovalNotification<Object, Object> notification)194     public void onRemoval(RemovalNotification<Object, Object> notification) {}
195   }
196 
197   enum OneWeigher implements Weigher<Object, Object> {
198     INSTANCE;
199 
200     @Override
weigh(Object key, Object value)201     public int weigh(Object key, Object value) {
202       return 1;
203     }
204   }
205 
206   static final Ticker NULL_TICKER = new Ticker() {
207     @Override
208     public long read() {
209       return 0;
210     }
211   };
212 
213   private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName());
214 
215   static final int UNSET_INT = -1;
216 
217   boolean strictParsing = true;
218 
219   int initialCapacity = UNSET_INT;
220   int concurrencyLevel = UNSET_INT;
221   long maximumSize = UNSET_INT;
222   long maximumWeight = UNSET_INT;
223   Weigher<? super K, ? super V> weigher;
224 
225   Strength keyStrength;
226   Strength valueStrength;
227 
228   long expireAfterWriteNanos = UNSET_INT;
229   long expireAfterAccessNanos = UNSET_INT;
230   long refreshNanos = UNSET_INT;
231 
232   Equivalence<Object> keyEquivalence;
233   Equivalence<Object> valueEquivalence;
234 
235   RemovalListener<? super K, ? super V> removalListener;
236   Ticker ticker;
237 
238   Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER;
239 
240   // TODO(fry): make constructor private and update tests to use newBuilder
CacheBuilder()241   CacheBuilder() {}
242 
243   /**
244    * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys,
245    * strong values, and no automatic eviction of any kind.
246    */
newBuilder()247   public static CacheBuilder<Object, Object> newBuilder() {
248     return new CacheBuilder<Object, Object>();
249   }
250 
251   /**
252    * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
253    *
254    * @since 12.0
255    */
256   @Beta
257   @GwtIncompatible("To be supported")
from(CacheBuilderSpec spec)258   public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) {
259     return spec.toCacheBuilder()
260         .lenientParsing();
261   }
262 
263   /**
264    * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
265    * This is especially useful for command-line configuration of a {@code CacheBuilder}.
266    *
267    * @param spec a String in the format specified by {@link CacheBuilderSpec}
268    * @since 12.0
269    */
270   @Beta
271   @GwtIncompatible("To be supported")
from(String spec)272   public static CacheBuilder<Object, Object> from(String spec) {
273     return from(CacheBuilderSpec.parse(spec));
274   }
275 
276   /**
277    * Enables lenient parsing. Useful for tests and spec parsing.
278    */
279   @GwtIncompatible("To be supported")
lenientParsing()280   CacheBuilder<K, V> lenientParsing() {
281     strictParsing = false;
282     return this;
283   }
284 
285   /**
286    * Sets a custom {@code Equivalence} strategy for comparing keys.
287    *
288    * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when
289    * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise.
290    */
291   @GwtIncompatible("To be supported")
keyEquivalence(Equivalence<Object> equivalence)292   CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) {
293     checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence);
294     keyEquivalence = checkNotNull(equivalence);
295     return this;
296   }
297 
getKeyEquivalence()298   Equivalence<Object> getKeyEquivalence() {
299     return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence());
300   }
301 
302   /**
303    * Sets a custom {@code Equivalence} strategy for comparing values.
304    *
305    * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when
306    * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()}
307    * otherwise.
308    */
309   @GwtIncompatible("To be supported")
valueEquivalence(Equivalence<Object> equivalence)310   CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) {
311     checkState(valueEquivalence == null,
312         "value equivalence was already set to %s", valueEquivalence);
313     this.valueEquivalence = checkNotNull(equivalence);
314     return this;
315   }
316 
getValueEquivalence()317   Equivalence<Object> getValueEquivalence() {
318     return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence());
319   }
320 
321   /**
322    * Sets the minimum total size for the internal hash tables. For example, if the initial capacity
323    * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each
324    * having a hash table of size eight. Providing a large enough estimate at construction time
325    * avoids the need for expensive resizing operations later, but setting this value unnecessarily
326    * high wastes memory.
327    *
328    * @throws IllegalArgumentException if {@code initialCapacity} is negative
329    * @throws IllegalStateException if an initial capacity was already set
330    */
initialCapacity(int initialCapacity)331   public CacheBuilder<K, V> initialCapacity(int initialCapacity) {
332     checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s",
333         this.initialCapacity);
334     checkArgument(initialCapacity >= 0);
335     this.initialCapacity = initialCapacity;
336     return this;
337   }
338 
getInitialCapacity()339   int getInitialCapacity() {
340     return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity;
341   }
342 
343   /**
344    * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The
345    * table is internally partitioned to try to permit the indicated number of concurrent updates
346    * without contention. Because assignment of entries to these partitions is not necessarily
347    * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to
348    * accommodate as many threads as will ever concurrently modify the table. Using a significantly
349    * higher value than you need can waste space and time, and a significantly lower value can lead
350    * to thread contention. But overestimates and underestimates within an order of magnitude do not
351    * usually have much noticeable impact. A value of one permits only one thread to modify the cache
352    * at a time, but since read operations and cache loading computations can proceed concurrently,
353    * this still yields higher concurrency than full synchronization.
354    *
355    * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this
356    * value, you should always choose it explicitly.
357    *
358    * <p>The current implementation uses the concurrency level to create a fixed number of hashtable
359    * segments, each governed by its own write lock. The segment lock is taken once for each explicit
360    * write, and twice for each cache loading computation (once prior to loading the new value,
361    * and once after loading completes). Much internal cache management is performed at the segment
362    * granularity. For example, access queues and write queues are kept per segment when they are
363    * required by the selected eviction algorithm. As such, when writing unit tests it is not
364    * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction
365    * behavior.
366    *
367    * <p>Note that future implementations may abandon segment locking in favor of more advanced
368    * concurrency controls.
369    *
370    * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive
371    * @throws IllegalStateException if a concurrency level was already set
372    */
concurrencyLevel(int concurrencyLevel)373   public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) {
374     checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s",
375         this.concurrencyLevel);
376     checkArgument(concurrencyLevel > 0);
377     this.concurrencyLevel = concurrencyLevel;
378     return this;
379   }
380 
getConcurrencyLevel()381   int getConcurrencyLevel() {
382     return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel;
383   }
384 
385   /**
386    * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict
387    * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the
388    * cache evicts entries that are less likely to be used again. For example, the cache may evict an
389    * entry because it hasn't been used recently or very often.
390    *
391    * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the
392    * cache. This can be useful in testing, or to disable caching temporarily without a code change.
393    *
394    * <p>This feature cannot be used in conjunction with {@link #maximumWeight}.
395    *
396    * @param size the maximum size of the cache
397    * @throws IllegalArgumentException if {@code size} is negative
398    * @throws IllegalStateException if a maximum size or weight was already set
399    */
maximumSize(long size)400   public CacheBuilder<K, V> maximumSize(long size) {
401     checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
402         this.maximumSize);
403     checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
404         this.maximumWeight);
405     checkState(this.weigher == null, "maximum size can not be combined with weigher");
406     checkArgument(size >= 0, "maximum size must not be negative");
407     this.maximumSize = size;
408     return this;
409   }
410 
411   /**
412    * Specifies the maximum weight of entries the cache may contain. Weight is determined using the
413    * {@link Weigher} specified with {@link #weigher}, and use of this method requires a
414    * corresponding call to {@link #weigher} prior to calling {@link #build}.
415    *
416    * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache
417    * size grows close to the maximum, the cache evicts entries that are less likely to be used
418    * again. For example, the cache may evict an entry because it hasn't been used recently or very
419    * often.
420    *
421    * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into
422    * cache. This can be useful in testing, or to disable caching temporarily without a code
423    * change.
424    *
425    * <p>Note that weight is only used to determine whether the cache is over capacity; it has no
426    * effect on selecting which entry should be evicted next.
427    *
428    * <p>This feature cannot be used in conjunction with {@link #maximumSize}.
429    *
430    * @param weight the maximum total weight of entries the cache may contain
431    * @throws IllegalArgumentException if {@code weight} is negative
432    * @throws IllegalStateException if a maximum weight or size was already set
433    * @since 11.0
434    */
435   @GwtIncompatible("To be supported")
maximumWeight(long weight)436   public CacheBuilder<K, V> maximumWeight(long weight) {
437     checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
438         this.maximumWeight);
439     checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
440         this.maximumSize);
441     this.maximumWeight = weight;
442     checkArgument(weight >= 0, "maximum weight must not be negative");
443     return this;
444   }
445 
446   /**
447    * Specifies the weigher to use in determining the weight of entries. Entry weight is taken
448    * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and
449    * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to
450    * calling {@link #build}. Weights are measured and recorded when entries are inserted into the
451    * cache, and are thus effectively static during the lifetime of a cache entry.
452    *
453    * <p>When the weight of an entry is zero it will not be considered for size-based eviction
454    * (though it still may be evicted by other means).
455    *
456    * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder}
457    * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the
458    * original reference or the returned reference may be used to complete configuration and build
459    * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from
460    * building caches whose key or value types are incompatible with the types accepted by the
461    * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results,
462    * simply use the standard method-chaining idiom, as illustrated in the documentation at top,
463    * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement.
464    *
465    * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build
466    * a cache whose key or value type is incompatible with the weigher, you will likely experience
467    * a {@link ClassCastException} at some <i>undefined</i> point in the future.
468    *
469    * @param weigher the weigher to use in calculating the weight of cache entries
470    * @throws IllegalArgumentException if {@code size} is negative
471    * @throws IllegalStateException if a maximum size was already set
472    * @since 11.0
473    */
474   @GwtIncompatible("To be supported")
weigher( Weigher<? super K1, ? super V1> weigher)475   public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher(
476       Weigher<? super K1, ? super V1> weigher) {
477     checkState(this.weigher == null);
478     if (strictParsing) {
479       checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size",
480           this.maximumSize);
481     }
482 
483     // safely limiting the kinds of caches this can produce
484     @SuppressWarnings("unchecked")
485     CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
486     me.weigher = checkNotNull(weigher);
487     return me;
488   }
489 
getMaximumWeight()490   long getMaximumWeight() {
491     if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) {
492       return 0;
493     }
494     return (weigher == null) ? maximumSize : maximumWeight;
495   }
496 
497   // Make a safe contravariant cast now so we don't have to do it over and over.
498   @SuppressWarnings("unchecked")
getWeigher()499   <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() {
500     return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE);
501   }
502 
503   /**
504    * Specifies that each key (not value) stored in the cache should be wrapped in a {@link
505    * WeakReference} (by default, strong references are used).
506    *
507    * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==})
508    * comparison to determine equality of keys.
509    *
510    * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size},
511    * but will never be visible to read or write operations; such entries are cleaned up as part of
512    * the routine maintenance described in the class javadoc.
513    *
514    * @throws IllegalStateException if the key strength was already set
515    */
516   @GwtIncompatible("java.lang.ref.WeakReference")
weakKeys()517   public CacheBuilder<K, V> weakKeys() {
518     return setKeyStrength(Strength.WEAK);
519   }
520 
setKeyStrength(Strength strength)521   CacheBuilder<K, V> setKeyStrength(Strength strength) {
522     checkState(keyStrength == null, "Key strength was already set to %s", keyStrength);
523     keyStrength = checkNotNull(strength);
524     return this;
525   }
526 
getKeyStrength()527   Strength getKeyStrength() {
528     return MoreObjects.firstNonNull(keyStrength, Strength.STRONG);
529   }
530 
531   /**
532    * Specifies that each value (not key) stored in the cache should be wrapped in a
533    * {@link WeakReference} (by default, strong references are used).
534    *
535    * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor
536    * candidate for caching; consider {@link #softValues} instead.
537    *
538    * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
539    * comparison to determine equality of values.
540    *
541    * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
542    * but will never be visible to read or write operations; such entries are cleaned up as part of
543    * the routine maintenance described in the class javadoc.
544    *
545    * @throws IllegalStateException if the value strength was already set
546    */
547   @GwtIncompatible("java.lang.ref.WeakReference")
weakValues()548   public CacheBuilder<K, V> weakValues() {
549     return setValueStrength(Strength.WEAK);
550   }
551 
552   /**
553    * Specifies that each value (not key) stored in the cache should be wrapped in a
554    * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will
555    * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory
556    * demand.
557    *
558    * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain
559    * #maximumSize(long) maximum size} instead of using soft references. You should only use this
560    * method if you are well familiar with the practical consequences of soft references.
561    *
562    * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
563    * comparison to determine equality of values.
564    *
565    * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
566    * but will never be visible to read or write operations; such entries are cleaned up as part of
567    * the routine maintenance described in the class javadoc.
568    *
569    * @throws IllegalStateException if the value strength was already set
570    */
571   @GwtIncompatible("java.lang.ref.SoftReference")
softValues()572   public CacheBuilder<K, V> softValues() {
573     return setValueStrength(Strength.SOFT);
574   }
575 
setValueStrength(Strength strength)576   CacheBuilder<K, V> setValueStrength(Strength strength) {
577     checkState(valueStrength == null, "Value strength was already set to %s", valueStrength);
578     valueStrength = checkNotNull(strength);
579     return this;
580   }
581 
getValueStrength()582   Strength getValueStrength() {
583     return MoreObjects.firstNonNull(valueStrength, Strength.STRONG);
584   }
585 
586   /**
587    * Specifies that each entry should be automatically removed from the cache once a fixed duration
588    * has elapsed after the entry's creation, or the most recent replacement of its value.
589    *
590    * <p>When {@code duration} is zero, this method hands off to
591    * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
592    * size or weight. This can be useful in testing, or to disable caching temporarily without a code
593    * change.
594    *
595    * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
596    * write operations. Expired entries are cleaned up as part of the routine maintenance described
597    * in the class javadoc.
598    *
599    * @param duration the length of time after an entry is created that it should be automatically
600    *     removed
601    * @param unit the unit that {@code duration} is expressed in
602    * @throws IllegalArgumentException if {@code duration} is negative
603    * @throws IllegalStateException if the time to live or time to idle was already set
604    */
expireAfterWrite(long duration, TimeUnit unit)605   public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
606     checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns",
607         expireAfterWriteNanos);
608     checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
609     this.expireAfterWriteNanos = unit.toNanos(duration);
610     return this;
611   }
612 
getExpireAfterWriteNanos()613   long getExpireAfterWriteNanos() {
614     return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos;
615   }
616 
617   /**
618    * Specifies that each entry should be automatically removed from the cache once a fixed duration
619    * has elapsed after the entry's creation, the most recent replacement of its value, or its last
620    * access. Access time is reset by all cache read and write operations (including
621    * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations
622    * on the collection-views of {@link Cache#asMap}.
623    *
624    * <p>When {@code duration} is zero, this method hands off to
625    * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
626    * size or weight. This can be useful in testing, or to disable caching temporarily without a code
627    * change.
628    *
629    * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
630    * write operations. Expired entries are cleaned up as part of the routine maintenance described
631    * in the class javadoc.
632    *
633    * @param duration the length of time after an entry is last accessed that it should be
634    *     automatically removed
635    * @param unit the unit that {@code duration} is expressed in
636    * @throws IllegalArgumentException if {@code duration} is negative
637    * @throws IllegalStateException if the time to idle or time to live was already set
638    */
expireAfterAccess(long duration, TimeUnit unit)639   public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) {
640     checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns",
641         expireAfterAccessNanos);
642     checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
643     this.expireAfterAccessNanos = unit.toNanos(duration);
644     return this;
645   }
646 
getExpireAfterAccessNanos()647   long getExpireAfterAccessNanos() {
648     return (expireAfterAccessNanos == UNSET_INT)
649         ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos;
650   }
651 
652   /**
653    * Specifies that active entries are eligible for automatic refresh once a fixed duration has
654    * elapsed after the entry's creation, or the most recent replacement of its value. The semantics
655    * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling
656    * {@link CacheLoader#reload}.
657    *
658    * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is
659    * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous
660    * implementation; otherwise refreshes will be performed during unrelated cache read and write
661    * operations.
662    *
663    * <p>Currently automatic refreshes are performed when the first stale request for an entry
664    * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload}
665    * and immediately return the new value if the returned future is complete, and the old value
666    * otherwise.
667    *
668    * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>.
669    *
670    * @param duration the length of time after an entry is created that it should be considered
671    *     stale, and thus eligible for refresh
672    * @param unit the unit that {@code duration} is expressed in
673    * @throws IllegalArgumentException if {@code duration} is negative
674    * @throws IllegalStateException if the refresh interval was already set
675    * @since 11.0
676    */
677   @Beta
678   @GwtIncompatible("To be supported (synchronously).")
refreshAfterWrite(long duration, TimeUnit unit)679   public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) {
680     checkNotNull(unit);
681     checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos);
682     checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit);
683     this.refreshNanos = unit.toNanos(duration);
684     return this;
685   }
686 
getRefreshNanos()687   long getRefreshNanos() {
688     return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos;
689   }
690 
691   /**
692    * Specifies a nanosecond-precision time source for use in determining when entries should be
693    * expired. By default, {@link System#nanoTime} is used.
694    *
695    * <p>The primary intent of this method is to facilitate testing of caches which have been
696    * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}.
697    *
698    * @throws IllegalStateException if a ticker was already set
699    */
ticker(Ticker ticker)700   public CacheBuilder<K, V> ticker(Ticker ticker) {
701     checkState(this.ticker == null);
702     this.ticker = checkNotNull(ticker);
703     return this;
704   }
705 
getTicker(boolean recordsTime)706   Ticker getTicker(boolean recordsTime) {
707     if (ticker != null) {
708       return ticker;
709     }
710     return recordsTime ? Ticker.systemTicker() : NULL_TICKER;
711   }
712 
713   /**
714    * Specifies a listener instance that caches should notify each time an entry is removed for any
715    * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener
716    * as part of the routine maintenance described in the class documentation above.
717    *
718    * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache
719    * builder reference; instead use the reference this method <i>returns</i>. At runtime, these
720    * point to the same instance, but only the returned reference has the correct generic type
721    * information so as to ensure type safety. For best results, use the standard method-chaining
722    * idiom illustrated in the class documentation above, configuring a builder and building your
723    * cache in a single statement. Failure to heed this advice can result in a {@link
724    * ClassCastException} being thrown by a cache operation at some <i>undefined</i> point in the
725    * future.
726    *
727    * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to
728    * the {@code Cache} user, only logged via a {@link Logger}.
729    *
730    * @return the cache builder reference that should be used instead of {@code this} for any
731    *     remaining configuration and cache building
732    * @throws IllegalStateException if a removal listener was already set
733    */
734   @CheckReturnValue
removalListener( RemovalListener<? super K1, ? super V1> listener)735   public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener(
736       RemovalListener<? super K1, ? super V1> listener) {
737     checkState(this.removalListener == null);
738 
739     // safely limiting the kinds of caches this can produce
740     @SuppressWarnings("unchecked")
741     CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
742     me.removalListener = checkNotNull(listener);
743     return me;
744   }
745 
746   // Make a safe contravariant cast now so we don't have to do it over and over.
747   @SuppressWarnings("unchecked")
getRemovalListener()748   <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() {
749     return (RemovalListener<K1, V1>)
750         MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE);
751   }
752 
753   /**
754    * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this
755    * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires
756    * bookkeeping to be performed with each operation, and thus imposes a performance penalty on
757    * cache operation.
758    *
759    * @since 12.0 (previously, stats collection was automatic)
760    */
recordStats()761   public CacheBuilder<K, V> recordStats() {
762     statsCounterSupplier = CACHE_STATS_COUNTER;
763     return this;
764   }
765 
isRecordingStats()766   boolean isRecordingStats() {
767     return statsCounterSupplier == CACHE_STATS_COUNTER;
768   }
769 
getStatsCounterSupplier()770   Supplier<? extends StatsCounter> getStatsCounterSupplier() {
771     return statsCounterSupplier;
772   }
773 
774   /**
775    * Builds a cache, which either returns an already-loaded value for a given key or atomically
776    * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently
777    * loading the value for this key, simply waits for that thread to finish and returns its
778    * loaded value. Note that multiple threads can concurrently load values for distinct keys.
779    *
780    * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
781    * invoked again to create multiple independent caches.
782    *
783    * @param loader the cache loader used to obtain new values
784    * @return a cache having the requested features
785    */
build( CacheLoader<? super K1, V1> loader)786   public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build(
787       CacheLoader<? super K1, V1> loader) {
788     checkWeightWithWeigher();
789     return new LocalCache.LocalLoadingCache<K1, V1>(this, loader);
790   }
791 
792   /**
793    * Builds a cache which does not automatically load values when keys are requested.
794    *
795    * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a
796    * {@code CacheLoader}.
797    *
798    * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
799    * invoked again to create multiple independent caches.
800    *
801    * @return a cache having the requested features
802    * @since 11.0
803    */
build()804   public <K1 extends K, V1 extends V> Cache<K1, V1> build() {
805     checkWeightWithWeigher();
806     checkNonLoadingCache();
807     return new LocalCache.LocalManualCache<K1, V1>(this);
808   }
809 
checkNonLoadingCache()810   private void checkNonLoadingCache() {
811     checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache");
812   }
813 
checkWeightWithWeigher()814   private void checkWeightWithWeigher() {
815     if (weigher == null) {
816       checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher");
817     } else {
818       if (strictParsing) {
819         checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight");
820       } else {
821         if (maximumWeight == UNSET_INT) {
822           logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight");
823         }
824       }
825     }
826   }
827 
828   /**
829    * Returns a string representation for this CacheBuilder instance. The exact form of the returned
830    * string is not specified.
831    */
832   @Override
toString()833   public String toString() {
834     MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this);
835     if (initialCapacity != UNSET_INT) {
836       s.add("initialCapacity", initialCapacity);
837     }
838     if (concurrencyLevel != UNSET_INT) {
839       s.add("concurrencyLevel", concurrencyLevel);
840     }
841     if (maximumSize != UNSET_INT) {
842       s.add("maximumSize", maximumSize);
843     }
844     if (maximumWeight != UNSET_INT) {
845       s.add("maximumWeight", maximumWeight);
846     }
847     if (expireAfterWriteNanos != UNSET_INT) {
848       s.add("expireAfterWrite", expireAfterWriteNanos + "ns");
849     }
850     if (expireAfterAccessNanos != UNSET_INT) {
851       s.add("expireAfterAccess", expireAfterAccessNanos + "ns");
852     }
853     if (keyStrength != null) {
854       s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString()));
855     }
856     if (valueStrength != null) {
857       s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString()));
858     }
859     if (keyEquivalence != null) {
860       s.addValue("keyEquivalence");
861     }
862     if (valueEquivalence != null) {
863       s.addValue("valueEquivalence");
864     }
865     if (removalListener != null) {
866       s.addValue("removalListener");
867     }
868     return s.toString();
869   }
870 }
871