• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,Optional<ISD::NodeType> AssertOp=None)128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
diagnosePossiblyInvalidConstraint(LLVMContext & Ctx,const Value * V,const Twine & ErrMsg)257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V)276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V)513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
RegsForValue()616 RegsForValue::RegsForValue() {}
617 
RegsForValue(const SmallVector<unsigned,4> & regs,MVT regvt,EVT valuevt)618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
RegsForValue(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL,unsigned Reg,Type * Ty)622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V) const640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
getCopyToRegs(SDValue Val,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V,ISD::NodeType PreferredExtendType) const745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,const SDLoc & dl,SelectionDAG & DAG,std::vector<SDValue> & Ops) const801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo()->
837             hasOpaqueSPAdjustment());
838       }
839     }
840   }
841 }
842 
init(GCFunctionInfo * gfi,AliasAnalysis & aa,const TargetLibraryInfo * li)843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
844                                const TargetLibraryInfo *li) {
845   AA = &aa;
846   GFI = gfi;
847   LibInfo = li;
848   DL = &DAG.getDataLayout();
849   Context = DAG.getContext();
850   LPadToCallSiteMap.clear();
851 }
852 
853 /// clear - Clear out the current SelectionDAG and the associated
854 /// state and prepare this SelectionDAGBuilder object to be used
855 /// for a new block. This doesn't clear out information about
856 /// additional blocks that are needed to complete switch lowering
857 /// or PHI node updating; that information is cleared out as it is
858 /// consumed.
clear()859 void SelectionDAGBuilder::clear() {
860   NodeMap.clear();
861   UnusedArgNodeMap.clear();
862   PendingLoads.clear();
863   PendingExports.clear();
864   CurInst = nullptr;
865   HasTailCall = false;
866   SDNodeOrder = LowestSDNodeOrder;
867   StatepointLowering.clear();
868 }
869 
870 /// clearDanglingDebugInfo - Clear the dangling debug information
871 /// map. This function is separated from the clear so that debug
872 /// information that is dangling in a basic block can be properly
873 /// resolved in a different basic block. This allows the
874 /// SelectionDAG to resolve dangling debug information attached
875 /// to PHI nodes.
clearDanglingDebugInfo()876 void SelectionDAGBuilder::clearDanglingDebugInfo() {
877   DanglingDebugInfoMap.clear();
878 }
879 
880 /// getRoot - Return the current virtual root of the Selection DAG,
881 /// flushing any PendingLoad items. This must be done before emitting
882 /// a store or any other node that may need to be ordered after any
883 /// prior load instructions.
884 ///
getRoot()885 SDValue SelectionDAGBuilder::getRoot() {
886   if (PendingLoads.empty())
887     return DAG.getRoot();
888 
889   if (PendingLoads.size() == 1) {
890     SDValue Root = PendingLoads[0];
891     DAG.setRoot(Root);
892     PendingLoads.clear();
893     return Root;
894   }
895 
896   // Otherwise, we have to make a token factor node.
897   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
898                              PendingLoads);
899   PendingLoads.clear();
900   DAG.setRoot(Root);
901   return Root;
902 }
903 
904 /// getControlRoot - Similar to getRoot, but instead of flushing all the
905 /// PendingLoad items, flush all the PendingExports items. It is necessary
906 /// to do this before emitting a terminator instruction.
907 ///
getControlRoot()908 SDValue SelectionDAGBuilder::getControlRoot() {
909   SDValue Root = DAG.getRoot();
910 
911   if (PendingExports.empty())
912     return Root;
913 
914   // Turn all of the CopyToReg chains into one factored node.
915   if (Root.getOpcode() != ISD::EntryToken) {
916     unsigned i = 0, e = PendingExports.size();
917     for (; i != e; ++i) {
918       assert(PendingExports[i].getNode()->getNumOperands() > 1);
919       if (PendingExports[i].getNode()->getOperand(0) == Root)
920         break;  // Don't add the root if we already indirectly depend on it.
921     }
922 
923     if (i == e)
924       PendingExports.push_back(Root);
925   }
926 
927   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
928                      PendingExports);
929   PendingExports.clear();
930   DAG.setRoot(Root);
931   return Root;
932 }
933 
934 /// Copy swift error to the final virtual register at end of a basic block, as
935 /// specified by SwiftErrorWorklist, if necessary.
copySwiftErrorsToFinalVRegs(SelectionDAGBuilder & SDB)936 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
937   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
938   if (!TLI.supportSwiftError())
939     return;
940 
941   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
942     return;
943 
944   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
945   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
946       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
947   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
948       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
949   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
950     unsigned WorkReg = WorklistEntry[I];
951 
952     // Find the swifterror virtual register for the value in SwiftErrorMap.
953     unsigned MapReg = MapEntry[I];
954     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
955            "Entries in SwiftErrorMap should be virtual registers");
956 
957     if (WorkReg == MapReg)
958       continue;
959 
960     // Create copy from SwiftErrorMap to SwiftWorklist.
961     auto &DL = SDB.DAG.getDataLayout();
962     SDValue CopyNode = SDB.DAG.getCopyToReg(
963         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
964         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
965     MapEntry[I] = WorkReg;
966     SDB.DAG.setRoot(CopyNode);
967   }
968 }
969 
visit(const Instruction & I)970 void SelectionDAGBuilder::visit(const Instruction &I) {
971   // Set up outgoing PHI node register values before emitting the terminator.
972   if (isa<TerminatorInst>(&I)) {
973     copySwiftErrorsToFinalVRegs(*this);
974     HandlePHINodesInSuccessorBlocks(I.getParent());
975   }
976 
977   ++SDNodeOrder;
978 
979   CurInst = &I;
980 
981   visit(I.getOpcode(), I);
982 
983   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
984       !isStatepoint(&I)) // statepoints handle their exports internally
985     CopyToExportRegsIfNeeded(&I);
986 
987   CurInst = nullptr;
988 }
989 
visitPHI(const PHINode &)990 void SelectionDAGBuilder::visitPHI(const PHINode &) {
991   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
992 }
993 
visit(unsigned Opcode,const User & I)994 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
995   // Note: this doesn't use InstVisitor, because it has to work with
996   // ConstantExpr's in addition to instructions.
997   switch (Opcode) {
998   default: llvm_unreachable("Unknown instruction type encountered!");
999     // Build the switch statement using the Instruction.def file.
1000 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1001     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1002 #include "llvm/IR/Instruction.def"
1003   }
1004 }
1005 
1006 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1007 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)1008 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1009                                                    SDValue Val) {
1010   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1011   if (DDI.getDI()) {
1012     const DbgValueInst *DI = DDI.getDI();
1013     DebugLoc dl = DDI.getdl();
1014     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1015     DILocalVariable *Variable = DI->getVariable();
1016     DIExpression *Expr = DI->getExpression();
1017     assert(Variable->isValidLocationForIntrinsic(dl) &&
1018            "Expected inlined-at fields to agree");
1019     uint64_t Offset = DI->getOffset();
1020     SDDbgValue *SDV;
1021     if (Val.getNode()) {
1022       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1023                                     Val)) {
1024         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1025                               false, Offset, dl, DbgSDNodeOrder);
1026         DAG.AddDbgValue(SDV, Val.getNode(), false);
1027       }
1028     } else
1029       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1030     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1031   }
1032 }
1033 
1034 /// getCopyFromRegs - If there was virtual register allocated for the value V
1035 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
getCopyFromRegs(const Value * V,Type * Ty)1036 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1037   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1038   SDValue Result;
1039 
1040   if (It != FuncInfo.ValueMap.end()) {
1041     unsigned InReg = It->second;
1042     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1043                      DAG.getDataLayout(), InReg, Ty);
1044     SDValue Chain = DAG.getEntryNode();
1045     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1046     resolveDanglingDebugInfo(V, Result);
1047   }
1048 
1049   return Result;
1050 }
1051 
1052 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1053 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1054   // If we already have an SDValue for this value, use it. It's important
1055   // to do this first, so that we don't create a CopyFromReg if we already
1056   // have a regular SDValue.
1057   SDValue &N = NodeMap[V];
1058   if (N.getNode()) return N;
1059 
1060   // If there's a virtual register allocated and initialized for this
1061   // value, use it.
1062   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1063     return copyFromReg;
1064 
1065   // Otherwise create a new SDValue and remember it.
1066   SDValue Val = getValueImpl(V);
1067   NodeMap[V] = Val;
1068   resolveDanglingDebugInfo(V, Val);
1069   return Val;
1070 }
1071 
1072 // Return true if SDValue exists for the given Value
findValue(const Value * V) const1073 bool SelectionDAGBuilder::findValue(const Value *V) const {
1074   return (NodeMap.find(V) != NodeMap.end()) ||
1075     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1076 }
1077 
1078 /// getNonRegisterValue - Return an SDValue for the given Value, but
1079 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1080 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1081   // If we already have an SDValue for this value, use it.
1082   SDValue &N = NodeMap[V];
1083   if (N.getNode()) {
1084     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1085       // Remove the debug location from the node as the node is about to be used
1086       // in a location which may differ from the original debug location.  This
1087       // is relevant to Constant and ConstantFP nodes because they can appear
1088       // as constant expressions inside PHI nodes.
1089       N->setDebugLoc(DebugLoc());
1090     }
1091     return N;
1092   }
1093 
1094   // Otherwise create a new SDValue and remember it.
1095   SDValue Val = getValueImpl(V);
1096   NodeMap[V] = Val;
1097   resolveDanglingDebugInfo(V, Val);
1098   return Val;
1099 }
1100 
1101 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1102 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1103 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1104   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1105 
1106   if (const Constant *C = dyn_cast<Constant>(V)) {
1107     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1108 
1109     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1110       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1111 
1112     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1113       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1114 
1115     if (isa<ConstantPointerNull>(C)) {
1116       unsigned AS = V->getType()->getPointerAddressSpace();
1117       return DAG.getConstant(0, getCurSDLoc(),
1118                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1119     }
1120 
1121     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1122       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1123 
1124     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1125       return DAG.getUNDEF(VT);
1126 
1127     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1128       visit(CE->getOpcode(), *CE);
1129       SDValue N1 = NodeMap[V];
1130       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1131       return N1;
1132     }
1133 
1134     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1135       SmallVector<SDValue, 4> Constants;
1136       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1137            OI != OE; ++OI) {
1138         SDNode *Val = getValue(*OI).getNode();
1139         // If the operand is an empty aggregate, there are no values.
1140         if (!Val) continue;
1141         // Add each leaf value from the operand to the Constants list
1142         // to form a flattened list of all the values.
1143         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1144           Constants.push_back(SDValue(Val, i));
1145       }
1146 
1147       return DAG.getMergeValues(Constants, getCurSDLoc());
1148     }
1149 
1150     if (const ConstantDataSequential *CDS =
1151           dyn_cast<ConstantDataSequential>(C)) {
1152       SmallVector<SDValue, 4> Ops;
1153       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1154         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1155         // Add each leaf value from the operand to the Constants list
1156         // to form a flattened list of all the values.
1157         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1158           Ops.push_back(SDValue(Val, i));
1159       }
1160 
1161       if (isa<ArrayType>(CDS->getType()))
1162         return DAG.getMergeValues(Ops, getCurSDLoc());
1163       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1164                                       VT, Ops);
1165     }
1166 
1167     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1168       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1169              "Unknown struct or array constant!");
1170 
1171       SmallVector<EVT, 4> ValueVTs;
1172       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1173       unsigned NumElts = ValueVTs.size();
1174       if (NumElts == 0)
1175         return SDValue(); // empty struct
1176       SmallVector<SDValue, 4> Constants(NumElts);
1177       for (unsigned i = 0; i != NumElts; ++i) {
1178         EVT EltVT = ValueVTs[i];
1179         if (isa<UndefValue>(C))
1180           Constants[i] = DAG.getUNDEF(EltVT);
1181         else if (EltVT.isFloatingPoint())
1182           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1183         else
1184           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1185       }
1186 
1187       return DAG.getMergeValues(Constants, getCurSDLoc());
1188     }
1189 
1190     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1191       return DAG.getBlockAddress(BA, VT);
1192 
1193     VectorType *VecTy = cast<VectorType>(V->getType());
1194     unsigned NumElements = VecTy->getNumElements();
1195 
1196     // Now that we know the number and type of the elements, get that number of
1197     // elements into the Ops array based on what kind of constant it is.
1198     SmallVector<SDValue, 16> Ops;
1199     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1200       for (unsigned i = 0; i != NumElements; ++i)
1201         Ops.push_back(getValue(CV->getOperand(i)));
1202     } else {
1203       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1204       EVT EltVT =
1205           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1206 
1207       SDValue Op;
1208       if (EltVT.isFloatingPoint())
1209         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1210       else
1211         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1212       Ops.assign(NumElements, Op);
1213     }
1214 
1215     // Create a BUILD_VECTOR node.
1216     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1217   }
1218 
1219   // If this is a static alloca, generate it as the frameindex instead of
1220   // computation.
1221   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1222     DenseMap<const AllocaInst*, int>::iterator SI =
1223       FuncInfo.StaticAllocaMap.find(AI);
1224     if (SI != FuncInfo.StaticAllocaMap.end())
1225       return DAG.getFrameIndex(SI->second,
1226                                TLI.getPointerTy(DAG.getDataLayout()));
1227   }
1228 
1229   // If this is an instruction which fast-isel has deferred, select it now.
1230   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1231     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1232     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1233                      Inst->getType());
1234     SDValue Chain = DAG.getEntryNode();
1235     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1236   }
1237 
1238   llvm_unreachable("Can't get register for value!");
1239 }
1240 
visitCatchPad(const CatchPadInst & I)1241 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1242   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1243   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1244   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1245   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1246   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1247   if (IsMSVCCXX || IsCoreCLR)
1248     CatchPadMBB->setIsEHFuncletEntry();
1249 
1250   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1251 }
1252 
visitCatchRet(const CatchReturnInst & I)1253 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1254   // Update machine-CFG edge.
1255   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1256   FuncInfo.MBB->addSuccessor(TargetMBB);
1257 
1258   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1259   bool IsSEH = isAsynchronousEHPersonality(Pers);
1260   if (IsSEH) {
1261     // If this is not a fall-through branch or optimizations are switched off,
1262     // emit the branch.
1263     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1264         TM.getOptLevel() == CodeGenOpt::None)
1265       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1266                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1267     return;
1268   }
1269 
1270   // Figure out the funclet membership for the catchret's successor.
1271   // This will be used by the FuncletLayout pass to determine how to order the
1272   // BB's.
1273   // A 'catchret' returns to the outer scope's color.
1274   Value *ParentPad = I.getCatchSwitchParentPad();
1275   const BasicBlock *SuccessorColor;
1276   if (isa<ConstantTokenNone>(ParentPad))
1277     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1278   else
1279     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1280   assert(SuccessorColor && "No parent funclet for catchret!");
1281   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1282   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1283 
1284   // Create the terminator node.
1285   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1286                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1287                             DAG.getBasicBlock(SuccessorColorMBB));
1288   DAG.setRoot(Ret);
1289 }
1290 
visitCleanupPad(const CleanupPadInst & CPI)1291 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1292   // Don't emit any special code for the cleanuppad instruction. It just marks
1293   // the start of a funclet.
1294   FuncInfo.MBB->setIsEHFuncletEntry();
1295   FuncInfo.MBB->setIsCleanupFuncletEntry();
1296 }
1297 
1298 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1299 /// many places it could ultimately go. In the IR, we have a single unwind
1300 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1301 /// This function skips over imaginary basic blocks that hold catchswitch
1302 /// instructions, and finds all the "real" machine
1303 /// basic block destinations. As those destinations may not be successors of
1304 /// EHPadBB, here we also calculate the edge probability to those destinations.
1305 /// The passed-in Prob is the edge probability to EHPadBB.
findUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)1306 static void findUnwindDestinations(
1307     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1308     BranchProbability Prob,
1309     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1310         &UnwindDests) {
1311   EHPersonality Personality =
1312     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1313   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1314   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1315 
1316   while (EHPadBB) {
1317     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1318     BasicBlock *NewEHPadBB = nullptr;
1319     if (isa<LandingPadInst>(Pad)) {
1320       // Stop on landingpads. They are not funclets.
1321       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1322       break;
1323     } else if (isa<CleanupPadInst>(Pad)) {
1324       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1325       // personalities.
1326       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1327       UnwindDests.back().first->setIsEHFuncletEntry();
1328       break;
1329     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1330       // Add the catchpad handlers to the possible destinations.
1331       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1332         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1333         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1334         if (IsMSVCCXX || IsCoreCLR)
1335           UnwindDests.back().first->setIsEHFuncletEntry();
1336       }
1337       NewEHPadBB = CatchSwitch->getUnwindDest();
1338     } else {
1339       continue;
1340     }
1341 
1342     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1343     if (BPI && NewEHPadBB)
1344       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1345     EHPadBB = NewEHPadBB;
1346   }
1347 }
1348 
visitCleanupRet(const CleanupReturnInst & I)1349 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1350   // Update successor info.
1351   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1352   auto UnwindDest = I.getUnwindDest();
1353   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1354   BranchProbability UnwindDestProb =
1355       (BPI && UnwindDest)
1356           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1357           : BranchProbability::getZero();
1358   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1359   for (auto &UnwindDest : UnwindDests) {
1360     UnwindDest.first->setIsEHPad();
1361     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1362   }
1363   FuncInfo.MBB->normalizeSuccProbs();
1364 
1365   // Create the terminator node.
1366   SDValue Ret =
1367       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1368   DAG.setRoot(Ret);
1369 }
1370 
visitCatchSwitch(const CatchSwitchInst & CSI)1371 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1372   report_fatal_error("visitCatchSwitch not yet implemented!");
1373 }
1374 
visitRet(const ReturnInst & I)1375 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1376   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1377   auto &DL = DAG.getDataLayout();
1378   SDValue Chain = getControlRoot();
1379   SmallVector<ISD::OutputArg, 8> Outs;
1380   SmallVector<SDValue, 8> OutVals;
1381 
1382   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1383   // lower
1384   //
1385   //   %val = call <ty> @llvm.experimental.deoptimize()
1386   //   ret <ty> %val
1387   //
1388   // differently.
1389   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1390     LowerDeoptimizingReturn();
1391     return;
1392   }
1393 
1394   if (!FuncInfo.CanLowerReturn) {
1395     unsigned DemoteReg = FuncInfo.DemoteRegister;
1396     const Function *F = I.getParent()->getParent();
1397 
1398     // Emit a store of the return value through the virtual register.
1399     // Leave Outs empty so that LowerReturn won't try to load return
1400     // registers the usual way.
1401     SmallVector<EVT, 1> PtrValueVTs;
1402     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1403                     PtrValueVTs);
1404 
1405     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1406                                         DemoteReg, PtrValueVTs[0]);
1407     SDValue RetOp = getValue(I.getOperand(0));
1408 
1409     SmallVector<EVT, 4> ValueVTs;
1410     SmallVector<uint64_t, 4> Offsets;
1411     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1412     unsigned NumValues = ValueVTs.size();
1413 
1414     // An aggregate return value cannot wrap around the address space, so
1415     // offsets to its parts don't wrap either.
1416     SDNodeFlags Flags;
1417     Flags.setNoUnsignedWrap(true);
1418 
1419     SmallVector<SDValue, 4> Chains(NumValues);
1420     for (unsigned i = 0; i != NumValues; ++i) {
1421       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1422                                 RetPtr.getValueType(), RetPtr,
1423                                 DAG.getIntPtrConstant(Offsets[i],
1424                                                       getCurSDLoc()),
1425                                 &Flags);
1426       Chains[i] =
1427         DAG.getStore(Chain, getCurSDLoc(),
1428                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1429                      // FIXME: better loc info would be nice.
1430                      Add, MachinePointerInfo(), false, false, 0);
1431     }
1432 
1433     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1434                         MVT::Other, Chains);
1435   } else if (I.getNumOperands() != 0) {
1436     SmallVector<EVT, 4> ValueVTs;
1437     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1438     unsigned NumValues = ValueVTs.size();
1439     if (NumValues) {
1440       SDValue RetOp = getValue(I.getOperand(0));
1441 
1442       const Function *F = I.getParent()->getParent();
1443 
1444       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1445       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1446                                           Attribute::SExt))
1447         ExtendKind = ISD::SIGN_EXTEND;
1448       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1449                                                Attribute::ZExt))
1450         ExtendKind = ISD::ZERO_EXTEND;
1451 
1452       LLVMContext &Context = F->getContext();
1453       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1454                                                       Attribute::InReg);
1455 
1456       for (unsigned j = 0; j != NumValues; ++j) {
1457         EVT VT = ValueVTs[j];
1458 
1459         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1460           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1461 
1462         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1463         MVT PartVT = TLI.getRegisterType(Context, VT);
1464         SmallVector<SDValue, 4> Parts(NumParts);
1465         getCopyToParts(DAG, getCurSDLoc(),
1466                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1467                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1468 
1469         // 'inreg' on function refers to return value
1470         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1471         if (RetInReg)
1472           Flags.setInReg();
1473 
1474         // Propagate extension type if any
1475         if (ExtendKind == ISD::SIGN_EXTEND)
1476           Flags.setSExt();
1477         else if (ExtendKind == ISD::ZERO_EXTEND)
1478           Flags.setZExt();
1479 
1480         for (unsigned i = 0; i < NumParts; ++i) {
1481           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1482                                         VT, /*isfixed=*/true, 0, 0));
1483           OutVals.push_back(Parts[i]);
1484         }
1485       }
1486     }
1487   }
1488 
1489   // Push in swifterror virtual register as the last element of Outs. This makes
1490   // sure swifterror virtual register will be returned in the swifterror
1491   // physical register.
1492   const Function *F = I.getParent()->getParent();
1493   if (TLI.supportSwiftError() &&
1494       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1495     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1496     Flags.setSwiftError();
1497     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1498                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1499                                   true /*isfixed*/, 1 /*origidx*/,
1500                                   0 /*partOffs*/));
1501     // Create SDNode for the swifterror virtual register.
1502     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1503                                       EVT(TLI.getPointerTy(DL))));
1504   }
1505 
1506   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1507   CallingConv::ID CallConv =
1508     DAG.getMachineFunction().getFunction()->getCallingConv();
1509   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1510       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1511 
1512   // Verify that the target's LowerReturn behaved as expected.
1513   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1514          "LowerReturn didn't return a valid chain!");
1515 
1516   // Update the DAG with the new chain value resulting from return lowering.
1517   DAG.setRoot(Chain);
1518 }
1519 
1520 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1521 /// created for it, emit nodes to copy the value into the virtual
1522 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1523 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1524   // Skip empty types
1525   if (V->getType()->isEmptyTy())
1526     return;
1527 
1528   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1529   if (VMI != FuncInfo.ValueMap.end()) {
1530     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1531     CopyValueToVirtualRegister(V, VMI->second);
1532   }
1533 }
1534 
1535 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1536 /// the current basic block, add it to ValueMap now so that we'll get a
1537 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1538 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1539   // No need to export constants.
1540   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1541 
1542   // Already exported?
1543   if (FuncInfo.isExportedInst(V)) return;
1544 
1545   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1546   CopyValueToVirtualRegister(V, Reg);
1547 }
1548 
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1549 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1550                                                      const BasicBlock *FromBB) {
1551   // The operands of the setcc have to be in this block.  We don't know
1552   // how to export them from some other block.
1553   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1554     // Can export from current BB.
1555     if (VI->getParent() == FromBB)
1556       return true;
1557 
1558     // Is already exported, noop.
1559     return FuncInfo.isExportedInst(V);
1560   }
1561 
1562   // If this is an argument, we can export it if the BB is the entry block or
1563   // if it is already exported.
1564   if (isa<Argument>(V)) {
1565     if (FromBB == &FromBB->getParent()->getEntryBlock())
1566       return true;
1567 
1568     // Otherwise, can only export this if it is already exported.
1569     return FuncInfo.isExportedInst(V);
1570   }
1571 
1572   // Otherwise, constants can always be exported.
1573   return true;
1574 }
1575 
1576 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1577 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const1578 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1579                                         const MachineBasicBlock *Dst) const {
1580   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1581   const BasicBlock *SrcBB = Src->getBasicBlock();
1582   const BasicBlock *DstBB = Dst->getBasicBlock();
1583   if (!BPI) {
1584     // If BPI is not available, set the default probability as 1 / N, where N is
1585     // the number of successors.
1586     auto SuccSize = std::max<uint32_t>(
1587         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1588     return BranchProbability(1, SuccSize);
1589   }
1590   return BPI->getEdgeProbability(SrcBB, DstBB);
1591 }
1592 
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)1593 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1594                                                MachineBasicBlock *Dst,
1595                                                BranchProbability Prob) {
1596   if (!FuncInfo.BPI)
1597     Src->addSuccessorWithoutProb(Dst);
1598   else {
1599     if (Prob.isUnknown())
1600       Prob = getEdgeProbability(Src, Dst);
1601     Src->addSuccessor(Dst, Prob);
1602   }
1603 }
1604 
InBlock(const Value * V,const BasicBlock * BB)1605 static bool InBlock(const Value *V, const BasicBlock *BB) {
1606   if (const Instruction *I = dyn_cast<Instruction>(V))
1607     return I->getParent() == BB;
1608   return true;
1609 }
1610 
1611 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1612 /// This function emits a branch and is used at the leaves of an OR or an
1613 /// AND operator tree.
1614 ///
1615 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb)1616 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1617                                                   MachineBasicBlock *TBB,
1618                                                   MachineBasicBlock *FBB,
1619                                                   MachineBasicBlock *CurBB,
1620                                                   MachineBasicBlock *SwitchBB,
1621                                                   BranchProbability TProb,
1622                                                   BranchProbability FProb) {
1623   const BasicBlock *BB = CurBB->getBasicBlock();
1624 
1625   // If the leaf of the tree is a comparison, merge the condition into
1626   // the caseblock.
1627   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1628     // The operands of the cmp have to be in this block.  We don't know
1629     // how to export them from some other block.  If this is the first block
1630     // of the sequence, no exporting is needed.
1631     if (CurBB == SwitchBB ||
1632         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1633          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1634       ISD::CondCode Condition;
1635       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1636         Condition = getICmpCondCode(IC->getPredicate());
1637       } else {
1638         const FCmpInst *FC = cast<FCmpInst>(Cond);
1639         Condition = getFCmpCondCode(FC->getPredicate());
1640         if (TM.Options.NoNaNsFPMath)
1641           Condition = getFCmpCodeWithoutNaN(Condition);
1642       }
1643 
1644       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1645                    TBB, FBB, CurBB, TProb, FProb);
1646       SwitchCases.push_back(CB);
1647       return;
1648     }
1649   }
1650 
1651   // Create a CaseBlock record representing this branch.
1652   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1653                nullptr, TBB, FBB, CurBB, TProb, FProb);
1654   SwitchCases.push_back(CB);
1655 }
1656 
1657 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb)1658 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1659                                                MachineBasicBlock *TBB,
1660                                                MachineBasicBlock *FBB,
1661                                                MachineBasicBlock *CurBB,
1662                                                MachineBasicBlock *SwitchBB,
1663                                                Instruction::BinaryOps Opc,
1664                                                BranchProbability TProb,
1665                                                BranchProbability FProb) {
1666   // If this node is not part of the or/and tree, emit it as a branch.
1667   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1668   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1669       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1670       BOp->getParent() != CurBB->getBasicBlock() ||
1671       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1672       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1673     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1674                                  TProb, FProb);
1675     return;
1676   }
1677 
1678   //  Create TmpBB after CurBB.
1679   MachineFunction::iterator BBI(CurBB);
1680   MachineFunction &MF = DAG.getMachineFunction();
1681   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1682   CurBB->getParent()->insert(++BBI, TmpBB);
1683 
1684   if (Opc == Instruction::Or) {
1685     // Codegen X | Y as:
1686     // BB1:
1687     //   jmp_if_X TBB
1688     //   jmp TmpBB
1689     // TmpBB:
1690     //   jmp_if_Y TBB
1691     //   jmp FBB
1692     //
1693 
1694     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1695     // The requirement is that
1696     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1697     //     = TrueProb for original BB.
1698     // Assuming the original probabilities are A and B, one choice is to set
1699     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1700     // A/(1+B) and 2B/(1+B). This choice assumes that
1701     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1702     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1703     // TmpBB, but the math is more complicated.
1704 
1705     auto NewTrueProb = TProb / 2;
1706     auto NewFalseProb = TProb / 2 + FProb;
1707     // Emit the LHS condition.
1708     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1709                          NewTrueProb, NewFalseProb);
1710 
1711     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1712     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1713     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1714     // Emit the RHS condition into TmpBB.
1715     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1716                          Probs[0], Probs[1]);
1717   } else {
1718     assert(Opc == Instruction::And && "Unknown merge op!");
1719     // Codegen X & Y as:
1720     // BB1:
1721     //   jmp_if_X TmpBB
1722     //   jmp FBB
1723     // TmpBB:
1724     //   jmp_if_Y TBB
1725     //   jmp FBB
1726     //
1727     //  This requires creation of TmpBB after CurBB.
1728 
1729     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1730     // The requirement is that
1731     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1732     //     = FalseProb for original BB.
1733     // Assuming the original probabilities are A and B, one choice is to set
1734     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1735     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1736     // TrueProb for BB1 * FalseProb for TmpBB.
1737 
1738     auto NewTrueProb = TProb + FProb / 2;
1739     auto NewFalseProb = FProb / 2;
1740     // Emit the LHS condition.
1741     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1742                          NewTrueProb, NewFalseProb);
1743 
1744     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1745     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1746     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1747     // Emit the RHS condition into TmpBB.
1748     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1749                          Probs[0], Probs[1]);
1750   }
1751 }
1752 
1753 /// If the set of cases should be emitted as a series of branches, return true.
1754 /// If we should emit this as a bunch of and/or'd together conditions, return
1755 /// false.
1756 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1757 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1758   if (Cases.size() != 2) return true;
1759 
1760   // If this is two comparisons of the same values or'd or and'd together, they
1761   // will get folded into a single comparison, so don't emit two blocks.
1762   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1763        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1764       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1765        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1766     return false;
1767   }
1768 
1769   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1770   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1771   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1772       Cases[0].CC == Cases[1].CC &&
1773       isa<Constant>(Cases[0].CmpRHS) &&
1774       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1775     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1776       return false;
1777     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1778       return false;
1779   }
1780 
1781   return true;
1782 }
1783 
visitBr(const BranchInst & I)1784 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1785   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1786 
1787   // Update machine-CFG edges.
1788   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1789 
1790   if (I.isUnconditional()) {
1791     // Update machine-CFG edges.
1792     BrMBB->addSuccessor(Succ0MBB);
1793 
1794     // If this is not a fall-through branch or optimizations are switched off,
1795     // emit the branch.
1796     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1797       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1798                               MVT::Other, getControlRoot(),
1799                               DAG.getBasicBlock(Succ0MBB)));
1800 
1801     return;
1802   }
1803 
1804   // If this condition is one of the special cases we handle, do special stuff
1805   // now.
1806   const Value *CondVal = I.getCondition();
1807   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1808 
1809   // If this is a series of conditions that are or'd or and'd together, emit
1810   // this as a sequence of branches instead of setcc's with and/or operations.
1811   // As long as jumps are not expensive, this should improve performance.
1812   // For example, instead of something like:
1813   //     cmp A, B
1814   //     C = seteq
1815   //     cmp D, E
1816   //     F = setle
1817   //     or C, F
1818   //     jnz foo
1819   // Emit:
1820   //     cmp A, B
1821   //     je foo
1822   //     cmp D, E
1823   //     jle foo
1824   //
1825   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1826     Instruction::BinaryOps Opcode = BOp->getOpcode();
1827     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1828         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1829         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1830       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1831                            Opcode,
1832                            getEdgeProbability(BrMBB, Succ0MBB),
1833                            getEdgeProbability(BrMBB, Succ1MBB));
1834       // If the compares in later blocks need to use values not currently
1835       // exported from this block, export them now.  This block should always
1836       // be the first entry.
1837       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1838 
1839       // Allow some cases to be rejected.
1840       if (ShouldEmitAsBranches(SwitchCases)) {
1841         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1842           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1843           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1844         }
1845 
1846         // Emit the branch for this block.
1847         visitSwitchCase(SwitchCases[0], BrMBB);
1848         SwitchCases.erase(SwitchCases.begin());
1849         return;
1850       }
1851 
1852       // Okay, we decided not to do this, remove any inserted MBB's and clear
1853       // SwitchCases.
1854       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1855         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1856 
1857       SwitchCases.clear();
1858     }
1859   }
1860 
1861   // Create a CaseBlock record representing this branch.
1862   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1863                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1864 
1865   // Use visitSwitchCase to actually insert the fast branch sequence for this
1866   // cond branch.
1867   visitSwitchCase(CB, BrMBB);
1868 }
1869 
1870 /// visitSwitchCase - Emits the necessary code to represent a single node in
1871 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)1872 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1873                                           MachineBasicBlock *SwitchBB) {
1874   SDValue Cond;
1875   SDValue CondLHS = getValue(CB.CmpLHS);
1876   SDLoc dl = getCurSDLoc();
1877 
1878   // Build the setcc now.
1879   if (!CB.CmpMHS) {
1880     // Fold "(X == true)" to X and "(X == false)" to !X to
1881     // handle common cases produced by branch lowering.
1882     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1883         CB.CC == ISD::SETEQ)
1884       Cond = CondLHS;
1885     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1886              CB.CC == ISD::SETEQ) {
1887       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1888       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1889     } else
1890       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1891   } else {
1892     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1893 
1894     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1895     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1896 
1897     SDValue CmpOp = getValue(CB.CmpMHS);
1898     EVT VT = CmpOp.getValueType();
1899 
1900     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1901       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1902                           ISD::SETLE);
1903     } else {
1904       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1905                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1906       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1907                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1908     }
1909   }
1910 
1911   // Update successor info
1912   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1913   // TrueBB and FalseBB are always different unless the incoming IR is
1914   // degenerate. This only happens when running llc on weird IR.
1915   if (CB.TrueBB != CB.FalseBB)
1916     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1917   SwitchBB->normalizeSuccProbs();
1918 
1919   // If the lhs block is the next block, invert the condition so that we can
1920   // fall through to the lhs instead of the rhs block.
1921   if (CB.TrueBB == NextBlock(SwitchBB)) {
1922     std::swap(CB.TrueBB, CB.FalseBB);
1923     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1924     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1925   }
1926 
1927   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1928                                MVT::Other, getControlRoot(), Cond,
1929                                DAG.getBasicBlock(CB.TrueBB));
1930 
1931   // Insert the false branch. Do this even if it's a fall through branch,
1932   // this makes it easier to do DAG optimizations which require inverting
1933   // the branch condition.
1934   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1935                        DAG.getBasicBlock(CB.FalseBB));
1936 
1937   DAG.setRoot(BrCond);
1938 }
1939 
1940 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)1941 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1942   // Emit the code for the jump table
1943   assert(JT.Reg != -1U && "Should lower JT Header first!");
1944   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1945   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1946                                      JT.Reg, PTy);
1947   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1948   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1949                                     MVT::Other, Index.getValue(1),
1950                                     Table, Index);
1951   DAG.setRoot(BrJumpTable);
1952 }
1953 
1954 /// visitJumpTableHeader - This function emits necessary code to produce index
1955 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)1956 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1957                                                JumpTableHeader &JTH,
1958                                                MachineBasicBlock *SwitchBB) {
1959   SDLoc dl = getCurSDLoc();
1960 
1961   // Subtract the lowest switch case value from the value being switched on and
1962   // conditional branch to default mbb if the result is greater than the
1963   // difference between smallest and largest cases.
1964   SDValue SwitchOp = getValue(JTH.SValue);
1965   EVT VT = SwitchOp.getValueType();
1966   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1967                             DAG.getConstant(JTH.First, dl, VT));
1968 
1969   // The SDNode we just created, which holds the value being switched on minus
1970   // the smallest case value, needs to be copied to a virtual register so it
1971   // can be used as an index into the jump table in a subsequent basic block.
1972   // This value may be smaller or larger than the target's pointer type, and
1973   // therefore require extension or truncating.
1974   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1975   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1976 
1977   unsigned JumpTableReg =
1978       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1979   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1980                                     JumpTableReg, SwitchOp);
1981   JT.Reg = JumpTableReg;
1982 
1983   // Emit the range check for the jump table, and branch to the default block
1984   // for the switch statement if the value being switched on exceeds the largest
1985   // case in the switch.
1986   SDValue CMP = DAG.getSetCC(
1987       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1988                                  Sub.getValueType()),
1989       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1990 
1991   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1992                                MVT::Other, CopyTo, CMP,
1993                                DAG.getBasicBlock(JT.Default));
1994 
1995   // Avoid emitting unnecessary branches to the next block.
1996   if (JT.MBB != NextBlock(SwitchBB))
1997     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1998                          DAG.getBasicBlock(JT.MBB));
1999 
2000   DAG.setRoot(BrCond);
2001 }
2002 
2003 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2004 /// variable if there exists one.
getLoadStackGuard(SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain)2005 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2006                                  SDValue &Chain) {
2007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2008   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2009   MachineFunction &MF = DAG.getMachineFunction();
2010   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2011   MachineSDNode *Node =
2012       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2013   if (Global) {
2014     MachinePointerInfo MPInfo(Global);
2015     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2016     unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2017     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2018                                        DAG.getEVTAlignment(PtrTy));
2019     Node->setMemRefs(MemRefs, MemRefs + 1);
2020   }
2021   return SDValue(Node, 0);
2022 }
2023 
2024 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2025 /// tail spliced into a stack protector check success bb.
2026 ///
2027 /// For a high level explanation of how this fits into the stack protector
2028 /// generation see the comment on the declaration of class
2029 /// StackProtectorDescriptor.
visitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)2030 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2031                                                   MachineBasicBlock *ParentBB) {
2032 
2033   // First create the loads to the guard/stack slot for the comparison.
2034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2035   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2036 
2037   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2038   int FI = MFI->getStackProtectorIndex();
2039 
2040   SDValue Guard;
2041   SDLoc dl = getCurSDLoc();
2042   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2043   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2044   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2045 
2046   // Generate code to load the content of the guard slot.
2047   SDValue StackSlot = DAG.getLoad(
2048       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2049       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2050       false, false, Align);
2051 
2052   // Retrieve guard check function, nullptr if instrumentation is inlined.
2053   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2054     // The target provides a guard check function to validate the guard value.
2055     // Generate a call to that function with the content of the guard slot as
2056     // argument.
2057     auto *Fn = cast<Function>(GuardCheck);
2058     FunctionType *FnTy = Fn->getFunctionType();
2059     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2060 
2061     TargetLowering::ArgListTy Args;
2062     TargetLowering::ArgListEntry Entry;
2063     Entry.Node = StackSlot;
2064     Entry.Ty = FnTy->getParamType(0);
2065     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2066       Entry.isInReg = true;
2067     Args.push_back(Entry);
2068 
2069     TargetLowering::CallLoweringInfo CLI(DAG);
2070     CLI.setDebugLoc(getCurSDLoc())
2071       .setChain(DAG.getEntryNode())
2072       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2073                  getValue(GuardCheck), std::move(Args));
2074 
2075     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2076     DAG.setRoot(Result.second);
2077     return;
2078   }
2079 
2080   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2081   // Otherwise, emit a volatile load to retrieve the stack guard value.
2082   SDValue Chain = DAG.getEntryNode();
2083   if (TLI.useLoadStackGuardNode()) {
2084     Guard = getLoadStackGuard(DAG, dl, Chain);
2085   } else {
2086     const Value *IRGuard = TLI.getSDagStackGuard(M);
2087     SDValue GuardPtr = getValue(IRGuard);
2088 
2089     Guard =
2090         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2091                     true, false, false, Align);
2092   }
2093 
2094   // Perform the comparison via a subtract/getsetcc.
2095   EVT VT = Guard.getValueType();
2096   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2097 
2098   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2099                                                         *DAG.getContext(),
2100                                                         Sub.getValueType()),
2101                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2102 
2103   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2104   // branch to failure MBB.
2105   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2106                                MVT::Other, StackSlot.getOperand(0),
2107                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2108   // Otherwise branch to success MBB.
2109   SDValue Br = DAG.getNode(ISD::BR, dl,
2110                            MVT::Other, BrCond,
2111                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2112 
2113   DAG.setRoot(Br);
2114 }
2115 
2116 /// Codegen the failure basic block for a stack protector check.
2117 ///
2118 /// A failure stack protector machine basic block consists simply of a call to
2119 /// __stack_chk_fail().
2120 ///
2121 /// For a high level explanation of how this fits into the stack protector
2122 /// generation see the comment on the declaration of class
2123 /// StackProtectorDescriptor.
2124 void
visitSPDescriptorFailure(StackProtectorDescriptor & SPD)2125 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2126   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2127   SDValue Chain =
2128       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2129                       None, false, getCurSDLoc(), false, false).second;
2130   DAG.setRoot(Chain);
2131 }
2132 
2133 /// visitBitTestHeader - This function emits necessary code to produce value
2134 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)2135 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2136                                              MachineBasicBlock *SwitchBB) {
2137   SDLoc dl = getCurSDLoc();
2138 
2139   // Subtract the minimum value
2140   SDValue SwitchOp = getValue(B.SValue);
2141   EVT VT = SwitchOp.getValueType();
2142   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2143                             DAG.getConstant(B.First, dl, VT));
2144 
2145   // Check range
2146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2147   SDValue RangeCmp = DAG.getSetCC(
2148       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2149                                  Sub.getValueType()),
2150       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2151 
2152   // Determine the type of the test operands.
2153   bool UsePtrType = false;
2154   if (!TLI.isTypeLegal(VT))
2155     UsePtrType = true;
2156   else {
2157     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2158       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2159         // Switch table case range are encoded into series of masks.
2160         // Just use pointer type, it's guaranteed to fit.
2161         UsePtrType = true;
2162         break;
2163       }
2164   }
2165   if (UsePtrType) {
2166     VT = TLI.getPointerTy(DAG.getDataLayout());
2167     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2168   }
2169 
2170   B.RegVT = VT.getSimpleVT();
2171   B.Reg = FuncInfo.CreateReg(B.RegVT);
2172   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2173 
2174   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2175 
2176   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2177   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2178   SwitchBB->normalizeSuccProbs();
2179 
2180   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2181                                 MVT::Other, CopyTo, RangeCmp,
2182                                 DAG.getBasicBlock(B.Default));
2183 
2184   // Avoid emitting unnecessary branches to the next block.
2185   if (MBB != NextBlock(SwitchBB))
2186     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2187                           DAG.getBasicBlock(MBB));
2188 
2189   DAG.setRoot(BrRange);
2190 }
2191 
2192 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)2193 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2194                                            MachineBasicBlock* NextMBB,
2195                                            BranchProbability BranchProbToNext,
2196                                            unsigned Reg,
2197                                            BitTestCase &B,
2198                                            MachineBasicBlock *SwitchBB) {
2199   SDLoc dl = getCurSDLoc();
2200   MVT VT = BB.RegVT;
2201   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2202   SDValue Cmp;
2203   unsigned PopCount = countPopulation(B.Mask);
2204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2205   if (PopCount == 1) {
2206     // Testing for a single bit; just compare the shift count with what it
2207     // would need to be to shift a 1 bit in that position.
2208     Cmp = DAG.getSetCC(
2209         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2210         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2211         ISD::SETEQ);
2212   } else if (PopCount == BB.Range) {
2213     // There is only one zero bit in the range, test for it directly.
2214     Cmp = DAG.getSetCC(
2215         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2216         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2217         ISD::SETNE);
2218   } else {
2219     // Make desired shift
2220     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2221                                     DAG.getConstant(1, dl, VT), ShiftOp);
2222 
2223     // Emit bit tests and jumps
2224     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2225                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2226     Cmp = DAG.getSetCC(
2227         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2228         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2229   }
2230 
2231   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2232   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2233   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2234   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2235   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2236   // one as they are relative probabilities (and thus work more like weights),
2237   // and hence we need to normalize them to let the sum of them become one.
2238   SwitchBB->normalizeSuccProbs();
2239 
2240   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2241                               MVT::Other, getControlRoot(),
2242                               Cmp, DAG.getBasicBlock(B.TargetBB));
2243 
2244   // Avoid emitting unnecessary branches to the next block.
2245   if (NextMBB != NextBlock(SwitchBB))
2246     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2247                         DAG.getBasicBlock(NextMBB));
2248 
2249   DAG.setRoot(BrAnd);
2250 }
2251 
visitInvoke(const InvokeInst & I)2252 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2253   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2254 
2255   // Retrieve successors. Look through artificial IR level blocks like
2256   // catchswitch for successors.
2257   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2258   const BasicBlock *EHPadBB = I.getSuccessor(1);
2259 
2260   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2261   // have to do anything here to lower funclet bundles.
2262   assert(!I.hasOperandBundlesOtherThan(
2263              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2264          "Cannot lower invokes with arbitrary operand bundles yet!");
2265 
2266   const Value *Callee(I.getCalledValue());
2267   const Function *Fn = dyn_cast<Function>(Callee);
2268   if (isa<InlineAsm>(Callee))
2269     visitInlineAsm(&I);
2270   else if (Fn && Fn->isIntrinsic()) {
2271     switch (Fn->getIntrinsicID()) {
2272     default:
2273       llvm_unreachable("Cannot invoke this intrinsic");
2274     case Intrinsic::donothing:
2275       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2276       break;
2277     case Intrinsic::experimental_patchpoint_void:
2278     case Intrinsic::experimental_patchpoint_i64:
2279       visitPatchpoint(&I, EHPadBB);
2280       break;
2281     case Intrinsic::experimental_gc_statepoint:
2282       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2283       break;
2284     }
2285   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2286     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2287     // Eventually we will support lowering the @llvm.experimental.deoptimize
2288     // intrinsic, and right now there are no plans to support other intrinsics
2289     // with deopt state.
2290     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2291   } else {
2292     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2293   }
2294 
2295   // If the value of the invoke is used outside of its defining block, make it
2296   // available as a virtual register.
2297   // We already took care of the exported value for the statepoint instruction
2298   // during call to the LowerStatepoint.
2299   if (!isStatepoint(I)) {
2300     CopyToExportRegsIfNeeded(&I);
2301   }
2302 
2303   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2304   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2305   BranchProbability EHPadBBProb =
2306       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2307           : BranchProbability::getZero();
2308   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2309 
2310   // Update successor info.
2311   addSuccessorWithProb(InvokeMBB, Return);
2312   for (auto &UnwindDest : UnwindDests) {
2313     UnwindDest.first->setIsEHPad();
2314     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2315   }
2316   InvokeMBB->normalizeSuccProbs();
2317 
2318   // Drop into normal successor.
2319   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2320                           MVT::Other, getControlRoot(),
2321                           DAG.getBasicBlock(Return)));
2322 }
2323 
visitResume(const ResumeInst & RI)2324 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2325   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2326 }
2327 
visitLandingPad(const LandingPadInst & LP)2328 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2329   assert(FuncInfo.MBB->isEHPad() &&
2330          "Call to landingpad not in landing pad!");
2331 
2332   MachineBasicBlock *MBB = FuncInfo.MBB;
2333   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2334   AddLandingPadInfo(LP, MMI, MBB);
2335 
2336   // If there aren't registers to copy the values into (e.g., during SjLj
2337   // exceptions), then don't bother to create these DAG nodes.
2338   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2339   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2340   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2341       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2342     return;
2343 
2344   // If landingpad's return type is token type, we don't create DAG nodes
2345   // for its exception pointer and selector value. The extraction of exception
2346   // pointer or selector value from token type landingpads is not currently
2347   // supported.
2348   if (LP.getType()->isTokenTy())
2349     return;
2350 
2351   SmallVector<EVT, 2> ValueVTs;
2352   SDLoc dl = getCurSDLoc();
2353   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2354   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2355 
2356   // Get the two live-in registers as SDValues. The physregs have already been
2357   // copied into virtual registers.
2358   SDValue Ops[2];
2359   if (FuncInfo.ExceptionPointerVirtReg) {
2360     Ops[0] = DAG.getZExtOrTrunc(
2361         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2362                            FuncInfo.ExceptionPointerVirtReg,
2363                            TLI.getPointerTy(DAG.getDataLayout())),
2364         dl, ValueVTs[0]);
2365   } else {
2366     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2367   }
2368   Ops[1] = DAG.getZExtOrTrunc(
2369       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2370                          FuncInfo.ExceptionSelectorVirtReg,
2371                          TLI.getPointerTy(DAG.getDataLayout())),
2372       dl, ValueVTs[1]);
2373 
2374   // Merge into one.
2375   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2376                             DAG.getVTList(ValueVTs), Ops);
2377   setValue(&LP, Res);
2378 }
2379 
sortAndRangeify(CaseClusterVector & Clusters)2380 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2381 #ifndef NDEBUG
2382   for (const CaseCluster &CC : Clusters)
2383     assert(CC.Low == CC.High && "Input clusters must be single-case");
2384 #endif
2385 
2386   std::sort(Clusters.begin(), Clusters.end(),
2387             [](const CaseCluster &a, const CaseCluster &b) {
2388     return a.Low->getValue().slt(b.Low->getValue());
2389   });
2390 
2391   // Merge adjacent clusters with the same destination.
2392   const unsigned N = Clusters.size();
2393   unsigned DstIndex = 0;
2394   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2395     CaseCluster &CC = Clusters[SrcIndex];
2396     const ConstantInt *CaseVal = CC.Low;
2397     MachineBasicBlock *Succ = CC.MBB;
2398 
2399     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2400         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2401       // If this case has the same successor and is a neighbour, merge it into
2402       // the previous cluster.
2403       Clusters[DstIndex - 1].High = CaseVal;
2404       Clusters[DstIndex - 1].Prob += CC.Prob;
2405     } else {
2406       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2407                    sizeof(Clusters[SrcIndex]));
2408     }
2409   }
2410   Clusters.resize(DstIndex);
2411 }
2412 
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2413 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2414                                            MachineBasicBlock *Last) {
2415   // Update JTCases.
2416   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2417     if (JTCases[i].first.HeaderBB == First)
2418       JTCases[i].first.HeaderBB = Last;
2419 
2420   // Update BitTestCases.
2421   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2422     if (BitTestCases[i].Parent == First)
2423       BitTestCases[i].Parent = Last;
2424 }
2425 
visitIndirectBr(const IndirectBrInst & I)2426 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2427   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2428 
2429   // Update machine-CFG edges with unique successors.
2430   SmallSet<BasicBlock*, 32> Done;
2431   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2432     BasicBlock *BB = I.getSuccessor(i);
2433     bool Inserted = Done.insert(BB).second;
2434     if (!Inserted)
2435         continue;
2436 
2437     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2438     addSuccessorWithProb(IndirectBrMBB, Succ);
2439   }
2440   IndirectBrMBB->normalizeSuccProbs();
2441 
2442   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2443                           MVT::Other, getControlRoot(),
2444                           getValue(I.getAddress())));
2445 }
2446 
visitUnreachable(const UnreachableInst & I)2447 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2448   if (DAG.getTarget().Options.TrapUnreachable)
2449     DAG.setRoot(
2450         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2451 }
2452 
visitFSub(const User & I)2453 void SelectionDAGBuilder::visitFSub(const User &I) {
2454   // -0.0 - X --> fneg
2455   Type *Ty = I.getType();
2456   if (isa<Constant>(I.getOperand(0)) &&
2457       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2458     SDValue Op2 = getValue(I.getOperand(1));
2459     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2460                              Op2.getValueType(), Op2));
2461     return;
2462   }
2463 
2464   visitBinary(I, ISD::FSUB);
2465 }
2466 
2467 /// Checks if the given instruction performs a vector reduction, in which case
2468 /// we have the freedom to alter the elements in the result as long as the
2469 /// reduction of them stays unchanged.
isVectorReductionOp(const User * I)2470 static bool isVectorReductionOp(const User *I) {
2471   const Instruction *Inst = dyn_cast<Instruction>(I);
2472   if (!Inst || !Inst->getType()->isVectorTy())
2473     return false;
2474 
2475   auto OpCode = Inst->getOpcode();
2476   switch (OpCode) {
2477   case Instruction::Add:
2478   case Instruction::Mul:
2479   case Instruction::And:
2480   case Instruction::Or:
2481   case Instruction::Xor:
2482     break;
2483   case Instruction::FAdd:
2484   case Instruction::FMul:
2485     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2486       if (FPOp->getFastMathFlags().unsafeAlgebra())
2487         break;
2488     // Fall through.
2489   default:
2490     return false;
2491   }
2492 
2493   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2494   unsigned ElemNumToReduce = ElemNum;
2495 
2496   // Do DFS search on the def-use chain from the given instruction. We only
2497   // allow four kinds of operations during the search until we reach the
2498   // instruction that extracts the first element from the vector:
2499   //
2500   //   1. The reduction operation of the same opcode as the given instruction.
2501   //
2502   //   2. PHI node.
2503   //
2504   //   3. ShuffleVector instruction together with a reduction operation that
2505   //      does a partial reduction.
2506   //
2507   //   4. ExtractElement that extracts the first element from the vector, and we
2508   //      stop searching the def-use chain here.
2509   //
2510   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2511   // from 1-3 to the stack to continue the DFS. The given instruction is not
2512   // a reduction operation if we meet any other instructions other than those
2513   // listed above.
2514 
2515   SmallVector<const User *, 16> UsersToVisit{Inst};
2516   SmallPtrSet<const User *, 16> Visited;
2517   bool ReduxExtracted = false;
2518 
2519   while (!UsersToVisit.empty()) {
2520     auto User = UsersToVisit.back();
2521     UsersToVisit.pop_back();
2522     if (!Visited.insert(User).second)
2523       continue;
2524 
2525     for (const auto &U : User->users()) {
2526       auto Inst = dyn_cast<Instruction>(U);
2527       if (!Inst)
2528         return false;
2529 
2530       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2531         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2532           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2533             return false;
2534         UsersToVisit.push_back(U);
2535       } else if (const ShuffleVectorInst *ShufInst =
2536                      dyn_cast<ShuffleVectorInst>(U)) {
2537         // Detect the following pattern: A ShuffleVector instruction together
2538         // with a reduction that do partial reduction on the first and second
2539         // ElemNumToReduce / 2 elements, and store the result in
2540         // ElemNumToReduce / 2 elements in another vector.
2541 
2542         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2543         if (ResultElements < ElemNum)
2544           return false;
2545 
2546         if (ElemNumToReduce == 1)
2547           return false;
2548         if (!isa<UndefValue>(U->getOperand(1)))
2549           return false;
2550         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2551           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2552             return false;
2553         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2554           if (ShufInst->getMaskValue(i) != -1)
2555             return false;
2556 
2557         // There is only one user of this ShuffleVector instruction, which
2558         // must be a reduction operation.
2559         if (!U->hasOneUse())
2560           return false;
2561 
2562         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2563         if (!U2 || U2->getOpcode() != OpCode)
2564           return false;
2565 
2566         // Check operands of the reduction operation.
2567         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2568             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2569           UsersToVisit.push_back(U2);
2570           ElemNumToReduce /= 2;
2571         } else
2572           return false;
2573       } else if (isa<ExtractElementInst>(U)) {
2574         // At this moment we should have reduced all elements in the vector.
2575         if (ElemNumToReduce != 1)
2576           return false;
2577 
2578         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2579         if (!Val || Val->getZExtValue() != 0)
2580           return false;
2581 
2582         ReduxExtracted = true;
2583       } else
2584         return false;
2585     }
2586   }
2587   return ReduxExtracted;
2588 }
2589 
visitBinary(const User & I,unsigned OpCode)2590 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2591   SDValue Op1 = getValue(I.getOperand(0));
2592   SDValue Op2 = getValue(I.getOperand(1));
2593 
2594   bool nuw = false;
2595   bool nsw = false;
2596   bool exact = false;
2597   bool vec_redux = false;
2598   FastMathFlags FMF;
2599 
2600   if (const OverflowingBinaryOperator *OFBinOp =
2601           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2602     nuw = OFBinOp->hasNoUnsignedWrap();
2603     nsw = OFBinOp->hasNoSignedWrap();
2604   }
2605   if (const PossiblyExactOperator *ExactOp =
2606           dyn_cast<const PossiblyExactOperator>(&I))
2607     exact = ExactOp->isExact();
2608   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2609     FMF = FPOp->getFastMathFlags();
2610 
2611   if (isVectorReductionOp(&I)) {
2612     vec_redux = true;
2613     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2614   }
2615 
2616   SDNodeFlags Flags;
2617   Flags.setExact(exact);
2618   Flags.setNoSignedWrap(nsw);
2619   Flags.setNoUnsignedWrap(nuw);
2620   Flags.setVectorReduction(vec_redux);
2621   if (EnableFMFInDAG) {
2622     Flags.setAllowReciprocal(FMF.allowReciprocal());
2623     Flags.setNoInfs(FMF.noInfs());
2624     Flags.setNoNaNs(FMF.noNaNs());
2625     Flags.setNoSignedZeros(FMF.noSignedZeros());
2626     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2627   }
2628   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2629                                      Op1, Op2, &Flags);
2630   setValue(&I, BinNodeValue);
2631 }
2632 
visitShift(const User & I,unsigned Opcode)2633 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2634   SDValue Op1 = getValue(I.getOperand(0));
2635   SDValue Op2 = getValue(I.getOperand(1));
2636 
2637   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2638       Op2.getValueType(), DAG.getDataLayout());
2639 
2640   // Coerce the shift amount to the right type if we can.
2641   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2642     unsigned ShiftSize = ShiftTy.getSizeInBits();
2643     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2644     SDLoc DL = getCurSDLoc();
2645 
2646     // If the operand is smaller than the shift count type, promote it.
2647     if (ShiftSize > Op2Size)
2648       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2649 
2650     // If the operand is larger than the shift count type but the shift
2651     // count type has enough bits to represent any shift value, truncate
2652     // it now. This is a common case and it exposes the truncate to
2653     // optimization early.
2654     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2655       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2656     // Otherwise we'll need to temporarily settle for some other convenient
2657     // type.  Type legalization will make adjustments once the shiftee is split.
2658     else
2659       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2660   }
2661 
2662   bool nuw = false;
2663   bool nsw = false;
2664   bool exact = false;
2665 
2666   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2667 
2668     if (const OverflowingBinaryOperator *OFBinOp =
2669             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2670       nuw = OFBinOp->hasNoUnsignedWrap();
2671       nsw = OFBinOp->hasNoSignedWrap();
2672     }
2673     if (const PossiblyExactOperator *ExactOp =
2674             dyn_cast<const PossiblyExactOperator>(&I))
2675       exact = ExactOp->isExact();
2676   }
2677   SDNodeFlags Flags;
2678   Flags.setExact(exact);
2679   Flags.setNoSignedWrap(nsw);
2680   Flags.setNoUnsignedWrap(nuw);
2681   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2682                             &Flags);
2683   setValue(&I, Res);
2684 }
2685 
visitSDiv(const User & I)2686 void SelectionDAGBuilder::visitSDiv(const User &I) {
2687   SDValue Op1 = getValue(I.getOperand(0));
2688   SDValue Op2 = getValue(I.getOperand(1));
2689 
2690   SDNodeFlags Flags;
2691   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2692                  cast<PossiblyExactOperator>(&I)->isExact());
2693   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2694                            Op2, &Flags));
2695 }
2696 
visitICmp(const User & I)2697 void SelectionDAGBuilder::visitICmp(const User &I) {
2698   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2699   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2700     predicate = IC->getPredicate();
2701   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2702     predicate = ICmpInst::Predicate(IC->getPredicate());
2703   SDValue Op1 = getValue(I.getOperand(0));
2704   SDValue Op2 = getValue(I.getOperand(1));
2705   ISD::CondCode Opcode = getICmpCondCode(predicate);
2706 
2707   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2708                                                         I.getType());
2709   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2710 }
2711 
visitFCmp(const User & I)2712 void SelectionDAGBuilder::visitFCmp(const User &I) {
2713   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2714   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2715     predicate = FC->getPredicate();
2716   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2717     predicate = FCmpInst::Predicate(FC->getPredicate());
2718   SDValue Op1 = getValue(I.getOperand(0));
2719   SDValue Op2 = getValue(I.getOperand(1));
2720   ISD::CondCode Condition = getFCmpCondCode(predicate);
2721 
2722   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2723   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2724   // further optimization, but currently FMF is only applicable to binary nodes.
2725   if (TM.Options.NoNaNsFPMath)
2726     Condition = getFCmpCodeWithoutNaN(Condition);
2727   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2728                                                         I.getType());
2729   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2730 }
2731 
2732 // Check if the condition of the select has one use or two users that are both
2733 // selects with the same condition.
hasOnlySelectUsers(const Value * Cond)2734 static bool hasOnlySelectUsers(const Value *Cond) {
2735   return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) {
2736     return isa<SelectInst>(V);
2737   });
2738 }
2739 
visitSelect(const User & I)2740 void SelectionDAGBuilder::visitSelect(const User &I) {
2741   SmallVector<EVT, 4> ValueVTs;
2742   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2743                   ValueVTs);
2744   unsigned NumValues = ValueVTs.size();
2745   if (NumValues == 0) return;
2746 
2747   SmallVector<SDValue, 4> Values(NumValues);
2748   SDValue Cond     = getValue(I.getOperand(0));
2749   SDValue LHSVal   = getValue(I.getOperand(1));
2750   SDValue RHSVal   = getValue(I.getOperand(2));
2751   auto BaseOps = {Cond};
2752   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2753     ISD::VSELECT : ISD::SELECT;
2754 
2755   // Min/max matching is only viable if all output VTs are the same.
2756   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2757     EVT VT = ValueVTs[0];
2758     LLVMContext &Ctx = *DAG.getContext();
2759     auto &TLI = DAG.getTargetLoweringInfo();
2760 
2761     // We care about the legality of the operation after it has been type
2762     // legalized.
2763     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2764            VT != TLI.getTypeToTransformTo(Ctx, VT))
2765       VT = TLI.getTypeToTransformTo(Ctx, VT);
2766 
2767     // If the vselect is legal, assume we want to leave this as a vector setcc +
2768     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2769     // min/max is legal on the scalar type.
2770     bool UseScalarMinMax = VT.isVector() &&
2771       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2772 
2773     Value *LHS, *RHS;
2774     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2775     ISD::NodeType Opc = ISD::DELETED_NODE;
2776     switch (SPR.Flavor) {
2777     case SPF_UMAX:    Opc = ISD::UMAX; break;
2778     case SPF_UMIN:    Opc = ISD::UMIN; break;
2779     case SPF_SMAX:    Opc = ISD::SMAX; break;
2780     case SPF_SMIN:    Opc = ISD::SMIN; break;
2781     case SPF_FMINNUM:
2782       switch (SPR.NaNBehavior) {
2783       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2784       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2785       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2786       case SPNB_RETURNS_ANY: {
2787         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2788           Opc = ISD::FMINNUM;
2789         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2790           Opc = ISD::FMINNAN;
2791         else if (UseScalarMinMax)
2792           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2793             ISD::FMINNUM : ISD::FMINNAN;
2794         break;
2795       }
2796       }
2797       break;
2798     case SPF_FMAXNUM:
2799       switch (SPR.NaNBehavior) {
2800       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2801       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2802       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2803       case SPNB_RETURNS_ANY:
2804 
2805         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2806           Opc = ISD::FMAXNUM;
2807         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2808           Opc = ISD::FMAXNAN;
2809         else if (UseScalarMinMax)
2810           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2811             ISD::FMAXNUM : ISD::FMAXNAN;
2812         break;
2813       }
2814       break;
2815     default: break;
2816     }
2817 
2818     if (Opc != ISD::DELETED_NODE &&
2819         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2820          (UseScalarMinMax &&
2821           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2822         // If the underlying comparison instruction is used by any other
2823         // instruction, the consumed instructions won't be destroyed, so it is
2824         // not profitable to convert to a min/max.
2825         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2826       OpCode = Opc;
2827       LHSVal = getValue(LHS);
2828       RHSVal = getValue(RHS);
2829       BaseOps = {};
2830     }
2831   }
2832 
2833   for (unsigned i = 0; i != NumValues; ++i) {
2834     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2835     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2836     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2837     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2838                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2839                             Ops);
2840   }
2841 
2842   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2843                            DAG.getVTList(ValueVTs), Values));
2844 }
2845 
visitTrunc(const User & I)2846 void SelectionDAGBuilder::visitTrunc(const User &I) {
2847   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2848   SDValue N = getValue(I.getOperand(0));
2849   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850                                                         I.getType());
2851   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2852 }
2853 
visitZExt(const User & I)2854 void SelectionDAGBuilder::visitZExt(const User &I) {
2855   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2856   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2857   SDValue N = getValue(I.getOperand(0));
2858   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2859                                                         I.getType());
2860   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2861 }
2862 
visitSExt(const User & I)2863 void SelectionDAGBuilder::visitSExt(const User &I) {
2864   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2865   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2866   SDValue N = getValue(I.getOperand(0));
2867   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2868                                                         I.getType());
2869   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2870 }
2871 
visitFPTrunc(const User & I)2872 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2873   // FPTrunc is never a no-op cast, no need to check
2874   SDValue N = getValue(I.getOperand(0));
2875   SDLoc dl = getCurSDLoc();
2876   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2877   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2878   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2879                            DAG.getTargetConstant(
2880                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2881 }
2882 
visitFPExt(const User & I)2883 void SelectionDAGBuilder::visitFPExt(const User &I) {
2884   // FPExt is never a no-op cast, no need to check
2885   SDValue N = getValue(I.getOperand(0));
2886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887                                                         I.getType());
2888   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2889 }
2890 
visitFPToUI(const User & I)2891 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2892   // FPToUI is never a no-op cast, no need to check
2893   SDValue N = getValue(I.getOperand(0));
2894   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2895                                                         I.getType());
2896   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2897 }
2898 
visitFPToSI(const User & I)2899 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2900   // FPToSI is never a no-op cast, no need to check
2901   SDValue N = getValue(I.getOperand(0));
2902   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2903                                                         I.getType());
2904   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2905 }
2906 
visitUIToFP(const User & I)2907 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2908   // UIToFP is never a no-op cast, no need to check
2909   SDValue N = getValue(I.getOperand(0));
2910   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2911                                                         I.getType());
2912   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2913 }
2914 
visitSIToFP(const User & I)2915 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2916   // SIToFP is never a no-op cast, no need to check
2917   SDValue N = getValue(I.getOperand(0));
2918   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919                                                         I.getType());
2920   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2921 }
2922 
visitPtrToInt(const User & I)2923 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2924   // What to do depends on the size of the integer and the size of the pointer.
2925   // We can either truncate, zero extend, or no-op, accordingly.
2926   SDValue N = getValue(I.getOperand(0));
2927   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2928                                                         I.getType());
2929   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2930 }
2931 
visitIntToPtr(const User & I)2932 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2933   // What to do depends on the size of the integer and the size of the pointer.
2934   // We can either truncate, zero extend, or no-op, accordingly.
2935   SDValue N = getValue(I.getOperand(0));
2936   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2937                                                         I.getType());
2938   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2939 }
2940 
visitBitCast(const User & I)2941 void SelectionDAGBuilder::visitBitCast(const User &I) {
2942   SDValue N = getValue(I.getOperand(0));
2943   SDLoc dl = getCurSDLoc();
2944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945                                                         I.getType());
2946 
2947   // BitCast assures us that source and destination are the same size so this is
2948   // either a BITCAST or a no-op.
2949   if (DestVT != N.getValueType())
2950     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2951                              DestVT, N)); // convert types.
2952   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2953   // might fold any kind of constant expression to an integer constant and that
2954   // is not what we are looking for. Only regcognize a bitcast of a genuine
2955   // constant integer as an opaque constant.
2956   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2957     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2958                                  /*isOpaque*/true));
2959   else
2960     setValue(&I, N);            // noop cast.
2961 }
2962 
visitAddrSpaceCast(const User & I)2963 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2965   const Value *SV = I.getOperand(0);
2966   SDValue N = getValue(SV);
2967   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2968 
2969   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2970   unsigned DestAS = I.getType()->getPointerAddressSpace();
2971 
2972   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2973     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2974 
2975   setValue(&I, N);
2976 }
2977 
visitInsertElement(const User & I)2978 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2980   SDValue InVec = getValue(I.getOperand(0));
2981   SDValue InVal = getValue(I.getOperand(1));
2982   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2983                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2984   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2985                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2986                            InVec, InVal, InIdx));
2987 }
2988 
visitExtractElement(const User & I)2989 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991   SDValue InVec = getValue(I.getOperand(0));
2992   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2993                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2994   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2995                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2996                            InVec, InIdx));
2997 }
2998 
visitShuffleVector(const User & I)2999 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3000   SDValue Src1 = getValue(I.getOperand(0));
3001   SDValue Src2 = getValue(I.getOperand(1));
3002 
3003   SmallVector<int, 8> Mask;
3004   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3005   unsigned MaskNumElts = Mask.size();
3006 
3007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3008   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3009   EVT SrcVT = Src1.getValueType();
3010   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3011 
3012   if (SrcNumElts == MaskNumElts) {
3013     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, Mask));
3014     return;
3015   }
3016 
3017   // Normalize the shuffle vector since mask and vector length don't match.
3018   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3019     // Mask is longer than the source vectors and is a multiple of the source
3020     // vectors.  We can use concatenate vector to make the mask and vectors
3021     // lengths match.
3022 
3023     unsigned NumConcat = MaskNumElts / SrcNumElts;
3024 
3025     // Check if the shuffle is some kind of concatenation of the input vectors.
3026     bool IsConcat = true;
3027     SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3028     for (unsigned i = 0; i != MaskNumElts; ++i) {
3029       int Idx = Mask[i];
3030       if (Idx < 0)
3031         continue;
3032       // Ensure the indices in each SrcVT sized piece are sequential and that
3033       // the same source is used for the whole piece.
3034       if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3035           (ConcatSrcs[i / SrcNumElts] >= 0 &&
3036            ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3037         IsConcat = false;
3038         break;
3039       }
3040       // Remember which source this index came from.
3041       ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3042     }
3043 
3044     // The shuffle is concatenating multiple vectors together. Just emit
3045     // a CONCAT_VECTORS operation.
3046     if (IsConcat) {
3047       SmallVector<SDValue, 8> ConcatOps;
3048       for (auto Src : ConcatSrcs) {
3049         if (Src < 0)
3050           ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3051         else if (Src == 0)
3052           ConcatOps.push_back(Src1);
3053         else
3054           ConcatOps.push_back(Src2);
3055       }
3056       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3057                                VT, ConcatOps));
3058       return;
3059     }
3060 
3061     // Pad both vectors with undefs to make them the same length as the mask.
3062     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3063 
3064     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3065     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3066     MOps1[0] = Src1;
3067     MOps2[0] = Src2;
3068 
3069     Src1 = Src1.isUndef() ? DAG.getUNDEF(VT)
3070                           : DAG.getNode(ISD::CONCAT_VECTORS,
3071                                         getCurSDLoc(), VT, MOps1);
3072     Src2 = Src2.isUndef() ? DAG.getUNDEF(VT)
3073                           : DAG.getNode(ISD::CONCAT_VECTORS,
3074                                         getCurSDLoc(), VT, MOps2);
3075 
3076     // Readjust mask for new input vector length.
3077     SmallVector<int, 8> MappedOps;
3078     for (unsigned i = 0; i != MaskNumElts; ++i) {
3079       int Idx = Mask[i];
3080       if (Idx >= (int)SrcNumElts)
3081         Idx -= SrcNumElts - MaskNumElts;
3082       MappedOps.push_back(Idx);
3083     }
3084 
3085     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3086                                       MappedOps));
3087     return;
3088   }
3089 
3090   if (SrcNumElts > MaskNumElts) {
3091     // Analyze the access pattern of the vector to see if we can extract
3092     // two subvectors and do the shuffle. The analysis is done by calculating
3093     // the range of elements the mask access on both vectors.
3094     int MinRange[2] = { static_cast<int>(SrcNumElts),
3095                         static_cast<int>(SrcNumElts)};
3096     int MaxRange[2] = {-1, -1};
3097 
3098     for (unsigned i = 0; i != MaskNumElts; ++i) {
3099       int Idx = Mask[i];
3100       unsigned Input = 0;
3101       if (Idx < 0)
3102         continue;
3103 
3104       if (Idx >= (int)SrcNumElts) {
3105         Input = 1;
3106         Idx -= SrcNumElts;
3107       }
3108       if (Idx > MaxRange[Input])
3109         MaxRange[Input] = Idx;
3110       if (Idx < MinRange[Input])
3111         MinRange[Input] = Idx;
3112     }
3113 
3114     // Check if the access is smaller than the vector size and can we find
3115     // a reasonable extract index.
3116     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3117                                    // Extract.
3118     int StartIdx[2];  // StartIdx to extract from
3119     for (unsigned Input = 0; Input < 2; ++Input) {
3120       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3121         RangeUse[Input] = 0; // Unused
3122         StartIdx[Input] = 0;
3123         continue;
3124       }
3125 
3126       // Find a good start index that is a multiple of the mask length. Then
3127       // see if the rest of the elements are in range.
3128       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3129       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3130           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3131         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3132     }
3133 
3134     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3135       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3136       return;
3137     }
3138     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3139       // Extract appropriate subvector and generate a vector shuffle
3140       for (unsigned Input = 0; Input < 2; ++Input) {
3141         SDValue &Src = Input == 0 ? Src1 : Src2;
3142         if (RangeUse[Input] == 0)
3143           Src = DAG.getUNDEF(VT);
3144         else {
3145           SDLoc dl = getCurSDLoc();
3146           Src = DAG.getNode(
3147               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3148               DAG.getConstant(StartIdx[Input], dl,
3149                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3150         }
3151       }
3152 
3153       // Calculate new mask.
3154       SmallVector<int, 8> MappedOps;
3155       for (unsigned i = 0; i != MaskNumElts; ++i) {
3156         int Idx = Mask[i];
3157         if (Idx >= 0) {
3158           if (Idx < (int)SrcNumElts)
3159             Idx -= StartIdx[0];
3160           else
3161             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3162         }
3163         MappedOps.push_back(Idx);
3164       }
3165 
3166       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3167                                         MappedOps));
3168       return;
3169     }
3170   }
3171 
3172   // We can't use either concat vectors or extract subvectors so fall back to
3173   // replacing the shuffle with extract and build vector.
3174   // to insert and build vector.
3175   EVT EltVT = VT.getVectorElementType();
3176   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3177   SDLoc dl = getCurSDLoc();
3178   SmallVector<SDValue,8> Ops;
3179   for (unsigned i = 0; i != MaskNumElts; ++i) {
3180     int Idx = Mask[i];
3181     SDValue Res;
3182 
3183     if (Idx < 0) {
3184       Res = DAG.getUNDEF(EltVT);
3185     } else {
3186       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3187       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3188 
3189       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3190                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3191     }
3192 
3193     Ops.push_back(Res);
3194   }
3195 
3196   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3197 }
3198 
visitInsertValue(const InsertValueInst & I)3199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3200   const Value *Op0 = I.getOperand(0);
3201   const Value *Op1 = I.getOperand(1);
3202   Type *AggTy = I.getType();
3203   Type *ValTy = Op1->getType();
3204   bool IntoUndef = isa<UndefValue>(Op0);
3205   bool FromUndef = isa<UndefValue>(Op1);
3206 
3207   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3208 
3209   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3210   SmallVector<EVT, 4> AggValueVTs;
3211   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3212   SmallVector<EVT, 4> ValValueVTs;
3213   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3214 
3215   unsigned NumAggValues = AggValueVTs.size();
3216   unsigned NumValValues = ValValueVTs.size();
3217   SmallVector<SDValue, 4> Values(NumAggValues);
3218 
3219   // Ignore an insertvalue that produces an empty object
3220   if (!NumAggValues) {
3221     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3222     return;
3223   }
3224 
3225   SDValue Agg = getValue(Op0);
3226   unsigned i = 0;
3227   // Copy the beginning value(s) from the original aggregate.
3228   for (; i != LinearIndex; ++i)
3229     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3230                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3231   // Copy values from the inserted value(s).
3232   if (NumValValues) {
3233     SDValue Val = getValue(Op1);
3234     for (; i != LinearIndex + NumValValues; ++i)
3235       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3236                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3237   }
3238   // Copy remaining value(s) from the original aggregate.
3239   for (; i != NumAggValues; ++i)
3240     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3241                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3242 
3243   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3244                            DAG.getVTList(AggValueVTs), Values));
3245 }
3246 
visitExtractValue(const ExtractValueInst & I)3247 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3248   const Value *Op0 = I.getOperand(0);
3249   Type *AggTy = Op0->getType();
3250   Type *ValTy = I.getType();
3251   bool OutOfUndef = isa<UndefValue>(Op0);
3252 
3253   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3254 
3255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3256   SmallVector<EVT, 4> ValValueVTs;
3257   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3258 
3259   unsigned NumValValues = ValValueVTs.size();
3260 
3261   // Ignore a extractvalue that produces an empty object
3262   if (!NumValValues) {
3263     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3264     return;
3265   }
3266 
3267   SmallVector<SDValue, 4> Values(NumValValues);
3268 
3269   SDValue Agg = getValue(Op0);
3270   // Copy out the selected value(s).
3271   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3272     Values[i - LinearIndex] =
3273       OutOfUndef ?
3274         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3275         SDValue(Agg.getNode(), Agg.getResNo() + i);
3276 
3277   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3278                            DAG.getVTList(ValValueVTs), Values));
3279 }
3280 
visitGetElementPtr(const User & I)3281 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3282   Value *Op0 = I.getOperand(0);
3283   // Note that the pointer operand may be a vector of pointers. Take the scalar
3284   // element which holds a pointer.
3285   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3286   SDValue N = getValue(Op0);
3287   SDLoc dl = getCurSDLoc();
3288 
3289   // Normalize Vector GEP - all scalar operands should be converted to the
3290   // splat vector.
3291   unsigned VectorWidth = I.getType()->isVectorTy() ?
3292     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3293 
3294   if (VectorWidth && !N.getValueType().isVector()) {
3295     LLVMContext &Context = *DAG.getContext();
3296     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3297     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3298     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3299   }
3300   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3301        GTI != E; ++GTI) {
3302     const Value *Idx = GTI.getOperand();
3303     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3304       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3305       if (Field) {
3306         // N = N + Offset
3307         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3308 
3309         // In an inbouds GEP with an offset that is nonnegative even when
3310         // interpreted as signed, assume there is no unsigned overflow.
3311         SDNodeFlags Flags;
3312         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3313           Flags.setNoUnsignedWrap(true);
3314 
3315         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3316                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3317       }
3318     } else {
3319       MVT PtrTy =
3320           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3321       unsigned PtrSize = PtrTy.getSizeInBits();
3322       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3323 
3324       // If this is a scalar constant or a splat vector of constants,
3325       // handle it quickly.
3326       const auto *CI = dyn_cast<ConstantInt>(Idx);
3327       if (!CI && isa<ConstantDataVector>(Idx) &&
3328           cast<ConstantDataVector>(Idx)->getSplatValue())
3329         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3330 
3331       if (CI) {
3332         if (CI->isZero())
3333           continue;
3334         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3335         SDValue OffsVal = VectorWidth ?
3336           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3337           DAG.getConstant(Offs, dl, PtrTy);
3338 
3339         // In an inbouds GEP with an offset that is nonnegative even when
3340         // interpreted as signed, assume there is no unsigned overflow.
3341         SDNodeFlags Flags;
3342         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3343           Flags.setNoUnsignedWrap(true);
3344 
3345         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3346         continue;
3347       }
3348 
3349       // N = N + Idx * ElementSize;
3350       SDValue IdxN = getValue(Idx);
3351 
3352       if (!IdxN.getValueType().isVector() && VectorWidth) {
3353         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3354         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3355         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3356       }
3357       // If the index is smaller or larger than intptr_t, truncate or extend
3358       // it.
3359       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3360 
3361       // If this is a multiply by a power of two, turn it into a shl
3362       // immediately.  This is a very common case.
3363       if (ElementSize != 1) {
3364         if (ElementSize.isPowerOf2()) {
3365           unsigned Amt = ElementSize.logBase2();
3366           IdxN = DAG.getNode(ISD::SHL, dl,
3367                              N.getValueType(), IdxN,
3368                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3369         } else {
3370           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3371           IdxN = DAG.getNode(ISD::MUL, dl,
3372                              N.getValueType(), IdxN, Scale);
3373         }
3374       }
3375 
3376       N = DAG.getNode(ISD::ADD, dl,
3377                       N.getValueType(), N, IdxN);
3378     }
3379   }
3380 
3381   setValue(&I, N);
3382 }
3383 
visitAlloca(const AllocaInst & I)3384 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3385   // If this is a fixed sized alloca in the entry block of the function,
3386   // allocate it statically on the stack.
3387   if (FuncInfo.StaticAllocaMap.count(&I))
3388     return;   // getValue will auto-populate this.
3389 
3390   SDLoc dl = getCurSDLoc();
3391   Type *Ty = I.getAllocatedType();
3392   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3393   auto &DL = DAG.getDataLayout();
3394   uint64_t TySize = DL.getTypeAllocSize(Ty);
3395   unsigned Align =
3396       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3397 
3398   SDValue AllocSize = getValue(I.getArraySize());
3399 
3400   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3401   if (AllocSize.getValueType() != IntPtr)
3402     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3403 
3404   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3405                           AllocSize,
3406                           DAG.getConstant(TySize, dl, IntPtr));
3407 
3408   // Handle alignment.  If the requested alignment is less than or equal to
3409   // the stack alignment, ignore it.  If the size is greater than or equal to
3410   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3411   unsigned StackAlign =
3412       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3413   if (Align <= StackAlign)
3414     Align = 0;
3415 
3416   // Round the size of the allocation up to the stack alignment size
3417   // by add SA-1 to the size. This doesn't overflow because we're computing
3418   // an address inside an alloca.
3419   SDNodeFlags Flags;
3420   Flags.setNoUnsignedWrap(true);
3421   AllocSize = DAG.getNode(ISD::ADD, dl,
3422                           AllocSize.getValueType(), AllocSize,
3423                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3424 
3425   // Mask out the low bits for alignment purposes.
3426   AllocSize = DAG.getNode(ISD::AND, dl,
3427                           AllocSize.getValueType(), AllocSize,
3428                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3429                                                 dl));
3430 
3431   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3432   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3433   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3434   setValue(&I, DSA);
3435   DAG.setRoot(DSA.getValue(1));
3436 
3437   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3438 }
3439 
visitLoad(const LoadInst & I)3440 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3441   if (I.isAtomic())
3442     return visitAtomicLoad(I);
3443 
3444   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3445   const Value *SV = I.getOperand(0);
3446   if (TLI.supportSwiftError()) {
3447     // Swifterror values can come from either a function parameter with
3448     // swifterror attribute or an alloca with swifterror attribute.
3449     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3450       if (Arg->hasSwiftErrorAttr())
3451         return visitLoadFromSwiftError(I);
3452     }
3453 
3454     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3455       if (Alloca->isSwiftError())
3456         return visitLoadFromSwiftError(I);
3457     }
3458   }
3459 
3460   SDValue Ptr = getValue(SV);
3461 
3462   Type *Ty = I.getType();
3463 
3464   bool isVolatile = I.isVolatile();
3465   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3466 
3467   // The IR notion of invariant_load only guarantees that all *non-faulting*
3468   // invariant loads result in the same value.  The MI notion of invariant load
3469   // guarantees that the load can be legally moved to any location within its
3470   // containing function.  The MI notion of invariant_load is stronger than the
3471   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3472   // with a guarantee that the location being loaded from is dereferenceable
3473   // throughout the function's lifetime.
3474 
3475   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3476                      isDereferenceablePointer(SV, DAG.getDataLayout());
3477   unsigned Alignment = I.getAlignment();
3478 
3479   AAMDNodes AAInfo;
3480   I.getAAMetadata(AAInfo);
3481   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3482 
3483   SmallVector<EVT, 4> ValueVTs;
3484   SmallVector<uint64_t, 4> Offsets;
3485   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3486   unsigned NumValues = ValueVTs.size();
3487   if (NumValues == 0)
3488     return;
3489 
3490   SDValue Root;
3491   bool ConstantMemory = false;
3492   if (isVolatile || NumValues > MaxParallelChains)
3493     // Serialize volatile loads with other side effects.
3494     Root = getRoot();
3495   else if (AA->pointsToConstantMemory(MemoryLocation(
3496                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3497     // Do not serialize (non-volatile) loads of constant memory with anything.
3498     Root = DAG.getEntryNode();
3499     ConstantMemory = true;
3500   } else {
3501     // Do not serialize non-volatile loads against each other.
3502     Root = DAG.getRoot();
3503   }
3504 
3505   SDLoc dl = getCurSDLoc();
3506 
3507   if (isVolatile)
3508     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3509 
3510   // An aggregate load cannot wrap around the address space, so offsets to its
3511   // parts don't wrap either.
3512   SDNodeFlags Flags;
3513   Flags.setNoUnsignedWrap(true);
3514 
3515   SmallVector<SDValue, 4> Values(NumValues);
3516   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3517   EVT PtrVT = Ptr.getValueType();
3518   unsigned ChainI = 0;
3519   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3520     // Serializing loads here may result in excessive register pressure, and
3521     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3522     // could recover a bit by hoisting nodes upward in the chain by recognizing
3523     // they are side-effect free or do not alias. The optimizer should really
3524     // avoid this case by converting large object/array copies to llvm.memcpy
3525     // (MaxParallelChains should always remain as failsafe).
3526     if (ChainI == MaxParallelChains) {
3527       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3528       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3529                                   makeArrayRef(Chains.data(), ChainI));
3530       Root = Chain;
3531       ChainI = 0;
3532     }
3533     SDValue A = DAG.getNode(ISD::ADD, dl,
3534                             PtrVT, Ptr,
3535                             DAG.getConstant(Offsets[i], dl, PtrVT),
3536                             &Flags);
3537     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3538                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3539                             isNonTemporal, isInvariant, Alignment, AAInfo,
3540                             Ranges);
3541 
3542     Values[i] = L;
3543     Chains[ChainI] = L.getValue(1);
3544   }
3545 
3546   if (!ConstantMemory) {
3547     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3548                                 makeArrayRef(Chains.data(), ChainI));
3549     if (isVolatile)
3550       DAG.setRoot(Chain);
3551     else
3552       PendingLoads.push_back(Chain);
3553   }
3554 
3555   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3556                            DAG.getVTList(ValueVTs), Values));
3557 }
3558 
visitStoreToSwiftError(const StoreInst & I)3559 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561   assert(TLI.supportSwiftError() &&
3562          "call visitStoreToSwiftError when backend supports swifterror");
3563 
3564   SmallVector<EVT, 4> ValueVTs;
3565   SmallVector<uint64_t, 4> Offsets;
3566   const Value *SrcV = I.getOperand(0);
3567   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3568                   SrcV->getType(), ValueVTs, &Offsets);
3569   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3570          "expect a single EVT for swifterror");
3571 
3572   SDValue Src = getValue(SrcV);
3573   // Create a virtual register, then update the virtual register.
3574   auto &DL = DAG.getDataLayout();
3575   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3576   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3577   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3578   // Chain can be getRoot or getControlRoot.
3579   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3580                                       SDValue(Src.getNode(), Src.getResNo()));
3581   DAG.setRoot(CopyNode);
3582   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3583 }
3584 
visitLoadFromSwiftError(const LoadInst & I)3585 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3586   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3587          "call visitLoadFromSwiftError when backend supports swifterror");
3588 
3589   assert(!I.isVolatile() &&
3590          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3591          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3592          "Support volatile, non temporal, invariant for load_from_swift_error");
3593 
3594   const Value *SV = I.getOperand(0);
3595   Type *Ty = I.getType();
3596   AAMDNodes AAInfo;
3597   I.getAAMetadata(AAInfo);
3598   assert(!AA->pointsToConstantMemory(MemoryLocation(
3599              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3600          "load_from_swift_error should not be constant memory");
3601 
3602   SmallVector<EVT, 4> ValueVTs;
3603   SmallVector<uint64_t, 4> Offsets;
3604   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3605                   ValueVTs, &Offsets);
3606   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3607          "expect a single EVT for swifterror");
3608 
3609   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3610   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3611                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3612                                  ValueVTs[0]);
3613 
3614   setValue(&I, L);
3615 }
3616 
visitStore(const StoreInst & I)3617 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3618   if (I.isAtomic())
3619     return visitAtomicStore(I);
3620 
3621   const Value *SrcV = I.getOperand(0);
3622   const Value *PtrV = I.getOperand(1);
3623 
3624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3625   if (TLI.supportSwiftError()) {
3626     // Swifterror values can come from either a function parameter with
3627     // swifterror attribute or an alloca with swifterror attribute.
3628     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3629       if (Arg->hasSwiftErrorAttr())
3630         return visitStoreToSwiftError(I);
3631     }
3632 
3633     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3634       if (Alloca->isSwiftError())
3635         return visitStoreToSwiftError(I);
3636     }
3637   }
3638 
3639   SmallVector<EVT, 4> ValueVTs;
3640   SmallVector<uint64_t, 4> Offsets;
3641   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3642                   SrcV->getType(), ValueVTs, &Offsets);
3643   unsigned NumValues = ValueVTs.size();
3644   if (NumValues == 0)
3645     return;
3646 
3647   // Get the lowered operands. Note that we do this after
3648   // checking if NumResults is zero, because with zero results
3649   // the operands won't have values in the map.
3650   SDValue Src = getValue(SrcV);
3651   SDValue Ptr = getValue(PtrV);
3652 
3653   SDValue Root = getRoot();
3654   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3655   EVT PtrVT = Ptr.getValueType();
3656   bool isVolatile = I.isVolatile();
3657   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3658   unsigned Alignment = I.getAlignment();
3659   SDLoc dl = getCurSDLoc();
3660 
3661   AAMDNodes AAInfo;
3662   I.getAAMetadata(AAInfo);
3663 
3664   // An aggregate load cannot wrap around the address space, so offsets to its
3665   // parts don't wrap either.
3666   SDNodeFlags Flags;
3667   Flags.setNoUnsignedWrap(true);
3668 
3669   unsigned ChainI = 0;
3670   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3671     // See visitLoad comments.
3672     if (ChainI == MaxParallelChains) {
3673       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3674                                   makeArrayRef(Chains.data(), ChainI));
3675       Root = Chain;
3676       ChainI = 0;
3677     }
3678     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3679                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3680     SDValue St = DAG.getStore(Root, dl,
3681                               SDValue(Src.getNode(), Src.getResNo() + i),
3682                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3683                               isVolatile, isNonTemporal, Alignment, AAInfo);
3684     Chains[ChainI] = St;
3685   }
3686 
3687   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3688                                   makeArrayRef(Chains.data(), ChainI));
3689   DAG.setRoot(StoreNode);
3690 }
3691 
visitMaskedStore(const CallInst & I)3692 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3693   SDLoc sdl = getCurSDLoc();
3694 
3695   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3696   Value  *PtrOperand = I.getArgOperand(1);
3697   SDValue Ptr = getValue(PtrOperand);
3698   SDValue Src0 = getValue(I.getArgOperand(0));
3699   SDValue Mask = getValue(I.getArgOperand(3));
3700   EVT VT = Src0.getValueType();
3701   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3702   if (!Alignment)
3703     Alignment = DAG.getEVTAlignment(VT);
3704 
3705   AAMDNodes AAInfo;
3706   I.getAAMetadata(AAInfo);
3707 
3708   MachineMemOperand *MMO =
3709     DAG.getMachineFunction().
3710     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3711                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3712                           Alignment, AAInfo);
3713   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3714                                          MMO, false);
3715   DAG.setRoot(StoreNode);
3716   setValue(&I, StoreNode);
3717 }
3718 
3719 // Get a uniform base for the Gather/Scatter intrinsic.
3720 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3721 // We try to represent it as a base pointer + vector of indices.
3722 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3723 // The first operand of the GEP may be a single pointer or a vector of pointers
3724 // Example:
3725 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3726 //  or
3727 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3728 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3729 //
3730 // When the first GEP operand is a single pointer - it is the uniform base we
3731 // are looking for. If first operand of the GEP is a splat vector - we
3732 // extract the spalt value and use it as a uniform base.
3733 // In all other cases the function returns 'false'.
3734 //
getUniformBase(const Value * & Ptr,SDValue & Base,SDValue & Index,SelectionDAGBuilder * SDB)3735 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3736                            SelectionDAGBuilder* SDB) {
3737 
3738   SelectionDAG& DAG = SDB->DAG;
3739   LLVMContext &Context = *DAG.getContext();
3740 
3741   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3742   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3743   if (!GEP || GEP->getNumOperands() > 2)
3744     return false;
3745 
3746   const Value *GEPPtr = GEP->getPointerOperand();
3747   if (!GEPPtr->getType()->isVectorTy())
3748     Ptr = GEPPtr;
3749   else if (!(Ptr = getSplatValue(GEPPtr)))
3750     return false;
3751 
3752   Value *IndexVal = GEP->getOperand(1);
3753 
3754   // The operands of the GEP may be defined in another basic block.
3755   // In this case we'll not find nodes for the operands.
3756   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3757     return false;
3758 
3759   Base = SDB->getValue(Ptr);
3760   Index = SDB->getValue(IndexVal);
3761 
3762   // Suppress sign extension.
3763   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3764     if (SDB->findValue(Sext->getOperand(0))) {
3765       IndexVal = Sext->getOperand(0);
3766       Index = SDB->getValue(IndexVal);
3767     }
3768   }
3769   if (!Index.getValueType().isVector()) {
3770     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3771     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3772     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3773     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3774   }
3775   return true;
3776 }
3777 
visitMaskedScatter(const CallInst & I)3778 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3779   SDLoc sdl = getCurSDLoc();
3780 
3781   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3782   const Value *Ptr = I.getArgOperand(1);
3783   SDValue Src0 = getValue(I.getArgOperand(0));
3784   SDValue Mask = getValue(I.getArgOperand(3));
3785   EVT VT = Src0.getValueType();
3786   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3787   if (!Alignment)
3788     Alignment = DAG.getEVTAlignment(VT);
3789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3790 
3791   AAMDNodes AAInfo;
3792   I.getAAMetadata(AAInfo);
3793 
3794   SDValue Base;
3795   SDValue Index;
3796   const Value *BasePtr = Ptr;
3797   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3798 
3799   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3800   MachineMemOperand *MMO = DAG.getMachineFunction().
3801     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3802                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3803                          Alignment, AAInfo);
3804   if (!UniformBase) {
3805     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3806     Index = getValue(Ptr);
3807   }
3808   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3809   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3810                                          Ops, MMO);
3811   DAG.setRoot(Scatter);
3812   setValue(&I, Scatter);
3813 }
3814 
visitMaskedLoad(const CallInst & I)3815 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3816   SDLoc sdl = getCurSDLoc();
3817 
3818   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3819   Value  *PtrOperand = I.getArgOperand(0);
3820   SDValue Ptr = getValue(PtrOperand);
3821   SDValue Src0 = getValue(I.getArgOperand(3));
3822   SDValue Mask = getValue(I.getArgOperand(2));
3823 
3824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3825   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3826   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3827   if (!Alignment)
3828     Alignment = DAG.getEVTAlignment(VT);
3829 
3830   AAMDNodes AAInfo;
3831   I.getAAMetadata(AAInfo);
3832   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3833 
3834   // Do not serialize masked loads of constant memory with anything.
3835   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3836       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3837   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3838 
3839   MachineMemOperand *MMO =
3840     DAG.getMachineFunction().
3841     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3842                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3843                           Alignment, AAInfo, Ranges);
3844 
3845   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3846                                    ISD::NON_EXTLOAD);
3847   if (AddToChain) {
3848     SDValue OutChain = Load.getValue(1);
3849     DAG.setRoot(OutChain);
3850   }
3851   setValue(&I, Load);
3852 }
3853 
visitMaskedGather(const CallInst & I)3854 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3855   SDLoc sdl = getCurSDLoc();
3856 
3857   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3858   const Value *Ptr = I.getArgOperand(0);
3859   SDValue Src0 = getValue(I.getArgOperand(3));
3860   SDValue Mask = getValue(I.getArgOperand(2));
3861 
3862   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3863   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3864   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3865   if (!Alignment)
3866     Alignment = DAG.getEVTAlignment(VT);
3867 
3868   AAMDNodes AAInfo;
3869   I.getAAMetadata(AAInfo);
3870   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3871 
3872   SDValue Root = DAG.getRoot();
3873   SDValue Base;
3874   SDValue Index;
3875   const Value *BasePtr = Ptr;
3876   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3877   bool ConstantMemory = false;
3878   if (UniformBase &&
3879       AA->pointsToConstantMemory(MemoryLocation(
3880           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3881           AAInfo))) {
3882     // Do not serialize (non-volatile) loads of constant memory with anything.
3883     Root = DAG.getEntryNode();
3884     ConstantMemory = true;
3885   }
3886 
3887   MachineMemOperand *MMO =
3888     DAG.getMachineFunction().
3889     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3890                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3891                          Alignment, AAInfo, Ranges);
3892 
3893   if (!UniformBase) {
3894     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3895     Index = getValue(Ptr);
3896   }
3897   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3898   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3899                                        Ops, MMO);
3900 
3901   SDValue OutChain = Gather.getValue(1);
3902   if (!ConstantMemory)
3903     PendingLoads.push_back(OutChain);
3904   setValue(&I, Gather);
3905 }
3906 
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)3907 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3908   SDLoc dl = getCurSDLoc();
3909   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3910   AtomicOrdering FailureOrder = I.getFailureOrdering();
3911   SynchronizationScope Scope = I.getSynchScope();
3912 
3913   SDValue InChain = getRoot();
3914 
3915   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3916   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3917   SDValue L = DAG.getAtomicCmpSwap(
3918       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3919       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3920       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3921       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3922 
3923   SDValue OutChain = L.getValue(2);
3924 
3925   setValue(&I, L);
3926   DAG.setRoot(OutChain);
3927 }
3928 
visitAtomicRMW(const AtomicRMWInst & I)3929 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3930   SDLoc dl = getCurSDLoc();
3931   ISD::NodeType NT;
3932   switch (I.getOperation()) {
3933   default: llvm_unreachable("Unknown atomicrmw operation");
3934   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3935   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3936   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3937   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3938   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3939   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3940   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3941   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3942   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3943   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3944   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3945   }
3946   AtomicOrdering Order = I.getOrdering();
3947   SynchronizationScope Scope = I.getSynchScope();
3948 
3949   SDValue InChain = getRoot();
3950 
3951   SDValue L =
3952     DAG.getAtomic(NT, dl,
3953                   getValue(I.getValOperand()).getSimpleValueType(),
3954                   InChain,
3955                   getValue(I.getPointerOperand()),
3956                   getValue(I.getValOperand()),
3957                   I.getPointerOperand(),
3958                   /* Alignment=*/ 0, Order, Scope);
3959 
3960   SDValue OutChain = L.getValue(1);
3961 
3962   setValue(&I, L);
3963   DAG.setRoot(OutChain);
3964 }
3965 
visitFence(const FenceInst & I)3966 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3967   SDLoc dl = getCurSDLoc();
3968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3969   SDValue Ops[3];
3970   Ops[0] = getRoot();
3971   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3972                            TLI.getPointerTy(DAG.getDataLayout()));
3973   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3974                            TLI.getPointerTy(DAG.getDataLayout()));
3975   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3976 }
3977 
visitAtomicLoad(const LoadInst & I)3978 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3979   SDLoc dl = getCurSDLoc();
3980   AtomicOrdering Order = I.getOrdering();
3981   SynchronizationScope Scope = I.getSynchScope();
3982 
3983   SDValue InChain = getRoot();
3984 
3985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3986   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3987 
3988   if (I.getAlignment() < VT.getSizeInBits() / 8)
3989     report_fatal_error("Cannot generate unaligned atomic load");
3990 
3991   MachineMemOperand *MMO =
3992       DAG.getMachineFunction().
3993       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3994                            MachineMemOperand::MOVolatile |
3995                            MachineMemOperand::MOLoad,
3996                            VT.getStoreSize(),
3997                            I.getAlignment() ? I.getAlignment() :
3998                                               DAG.getEVTAlignment(VT));
3999 
4000   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4001   SDValue L =
4002       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4003                     getValue(I.getPointerOperand()), MMO,
4004                     Order, Scope);
4005 
4006   SDValue OutChain = L.getValue(1);
4007 
4008   setValue(&I, L);
4009   DAG.setRoot(OutChain);
4010 }
4011 
visitAtomicStore(const StoreInst & I)4012 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4013   SDLoc dl = getCurSDLoc();
4014 
4015   AtomicOrdering Order = I.getOrdering();
4016   SynchronizationScope Scope = I.getSynchScope();
4017 
4018   SDValue InChain = getRoot();
4019 
4020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4021   EVT VT =
4022       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4023 
4024   if (I.getAlignment() < VT.getSizeInBits() / 8)
4025     report_fatal_error("Cannot generate unaligned atomic store");
4026 
4027   SDValue OutChain =
4028     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4029                   InChain,
4030                   getValue(I.getPointerOperand()),
4031                   getValue(I.getValueOperand()),
4032                   I.getPointerOperand(), I.getAlignment(),
4033                   Order, Scope);
4034 
4035   DAG.setRoot(OutChain);
4036 }
4037 
4038 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4039 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)4040 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4041                                                unsigned Intrinsic) {
4042   bool HasChain = !I.doesNotAccessMemory();
4043   bool OnlyLoad = HasChain && I.onlyReadsMemory();
4044 
4045   // Build the operand list.
4046   SmallVector<SDValue, 8> Ops;
4047   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4048     if (OnlyLoad) {
4049       // We don't need to serialize loads against other loads.
4050       Ops.push_back(DAG.getRoot());
4051     } else {
4052       Ops.push_back(getRoot());
4053     }
4054   }
4055 
4056   // Info is set by getTgtMemInstrinsic
4057   TargetLowering::IntrinsicInfo Info;
4058   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4059   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4060 
4061   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4062   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4063       Info.opc == ISD::INTRINSIC_W_CHAIN)
4064     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4065                                         TLI.getPointerTy(DAG.getDataLayout())));
4066 
4067   // Add all operands of the call to the operand list.
4068   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4069     SDValue Op = getValue(I.getArgOperand(i));
4070     Ops.push_back(Op);
4071   }
4072 
4073   SmallVector<EVT, 4> ValueVTs;
4074   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4075 
4076   if (HasChain)
4077     ValueVTs.push_back(MVT::Other);
4078 
4079   SDVTList VTs = DAG.getVTList(ValueVTs);
4080 
4081   // Create the node.
4082   SDValue Result;
4083   if (IsTgtIntrinsic) {
4084     // This is target intrinsic that touches memory
4085     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4086                                      VTs, Ops, Info.memVT,
4087                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4088                                      Info.align, Info.vol,
4089                                      Info.readMem, Info.writeMem, Info.size);
4090   } else if (!HasChain) {
4091     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4092   } else if (!I.getType()->isVoidTy()) {
4093     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4094   } else {
4095     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4096   }
4097 
4098   if (HasChain) {
4099     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4100     if (OnlyLoad)
4101       PendingLoads.push_back(Chain);
4102     else
4103       DAG.setRoot(Chain);
4104   }
4105 
4106   if (!I.getType()->isVoidTy()) {
4107     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4108       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4109       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4110     } else
4111       Result = lowerRangeToAssertZExt(DAG, I, Result);
4112 
4113     setValue(&I, Result);
4114   }
4115 }
4116 
4117 /// GetSignificand - Get the significand and build it into a floating-point
4118 /// number with exponent of 1:
4119 ///
4120 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4121 ///
4122 /// where Op is the hexadecimal representation of floating point value.
GetSignificand(SelectionDAG & DAG,SDValue Op,const SDLoc & dl)4123 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4124   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4125                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4126   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4127                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4128   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4129 }
4130 
4131 /// GetExponent - Get the exponent:
4132 ///
4133 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4134 ///
4135 /// where Op is the hexadecimal representation of floating point value.
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,const SDLoc & dl)4136 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4137                            const TargetLowering &TLI, const SDLoc &dl) {
4138   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4139                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4140   SDValue t1 = DAG.getNode(
4141       ISD::SRL, dl, MVT::i32, t0,
4142       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4143   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4144                            DAG.getConstant(127, dl, MVT::i32));
4145   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4146 }
4147 
4148 /// getF32Constant - Get 32-bit floating point constant.
getF32Constant(SelectionDAG & DAG,unsigned Flt,const SDLoc & dl)4149 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4150                               const SDLoc &dl) {
4151   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4152                            MVT::f32);
4153 }
4154 
getLimitedPrecisionExp2(SDValue t0,const SDLoc & dl,SelectionDAG & DAG)4155 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4156                                        SelectionDAG &DAG) {
4157   // TODO: What fast-math-flags should be set on the floating-point nodes?
4158 
4159   //   IntegerPartOfX = ((int32_t)(t0);
4160   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4161 
4162   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4163   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4164   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4165 
4166   //   IntegerPartOfX <<= 23;
4167   IntegerPartOfX = DAG.getNode(
4168       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4169       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4170                                   DAG.getDataLayout())));
4171 
4172   SDValue TwoToFractionalPartOfX;
4173   if (LimitFloatPrecision <= 6) {
4174     // For floating-point precision of 6:
4175     //
4176     //   TwoToFractionalPartOfX =
4177     //     0.997535578f +
4178     //       (0.735607626f + 0.252464424f * x) * x;
4179     //
4180     // error 0.0144103317, which is 6 bits
4181     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4182                              getF32Constant(DAG, 0x3e814304, dl));
4183     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4184                              getF32Constant(DAG, 0x3f3c50c8, dl));
4185     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4186     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4187                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4188   } else if (LimitFloatPrecision <= 12) {
4189     // For floating-point precision of 12:
4190     //
4191     //   TwoToFractionalPartOfX =
4192     //     0.999892986f +
4193     //       (0.696457318f +
4194     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4195     //
4196     // error 0.000107046256, which is 13 to 14 bits
4197     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4198                              getF32Constant(DAG, 0x3da235e3, dl));
4199     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4200                              getF32Constant(DAG, 0x3e65b8f3, dl));
4201     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4202     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4203                              getF32Constant(DAG, 0x3f324b07, dl));
4204     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4205     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4206                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4207   } else { // LimitFloatPrecision <= 18
4208     // For floating-point precision of 18:
4209     //
4210     //   TwoToFractionalPartOfX =
4211     //     0.999999982f +
4212     //       (0.693148872f +
4213     //         (0.240227044f +
4214     //           (0.554906021e-1f +
4215     //             (0.961591928e-2f +
4216     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4217     // error 2.47208000*10^(-7), which is better than 18 bits
4218     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4219                              getF32Constant(DAG, 0x3924b03e, dl));
4220     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4221                              getF32Constant(DAG, 0x3ab24b87, dl));
4222     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4223     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4224                              getF32Constant(DAG, 0x3c1d8c17, dl));
4225     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4226     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4227                              getF32Constant(DAG, 0x3d634a1d, dl));
4228     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4229     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4230                              getF32Constant(DAG, 0x3e75fe14, dl));
4231     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4232     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4233                               getF32Constant(DAG, 0x3f317234, dl));
4234     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4235     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4236                                          getF32Constant(DAG, 0x3f800000, dl));
4237   }
4238 
4239   // Add the exponent into the result in integer domain.
4240   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4241   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4242                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4243 }
4244 
4245 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4246 /// limited-precision mode.
expandExp(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4247 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4248                          const TargetLowering &TLI) {
4249   if (Op.getValueType() == MVT::f32 &&
4250       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4251 
4252     // Put the exponent in the right bit position for later addition to the
4253     // final result:
4254     //
4255     //   #define LOG2OFe 1.4426950f
4256     //   t0 = Op * LOG2OFe
4257 
4258     // TODO: What fast-math-flags should be set here?
4259     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4260                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4261     return getLimitedPrecisionExp2(t0, dl, DAG);
4262   }
4263 
4264   // No special expansion.
4265   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4266 }
4267 
4268 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4269 /// limited-precision mode.
expandLog(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4270 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4271                          const TargetLowering &TLI) {
4272 
4273   // TODO: What fast-math-flags should be set on the floating-point nodes?
4274 
4275   if (Op.getValueType() == MVT::f32 &&
4276       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4277     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4278 
4279     // Scale the exponent by log(2) [0.69314718f].
4280     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4281     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4282                                         getF32Constant(DAG, 0x3f317218, dl));
4283 
4284     // Get the significand and build it into a floating-point number with
4285     // exponent of 1.
4286     SDValue X = GetSignificand(DAG, Op1, dl);
4287 
4288     SDValue LogOfMantissa;
4289     if (LimitFloatPrecision <= 6) {
4290       // For floating-point precision of 6:
4291       //
4292       //   LogofMantissa =
4293       //     -1.1609546f +
4294       //       (1.4034025f - 0.23903021f * x) * x;
4295       //
4296       // error 0.0034276066, which is better than 8 bits
4297       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4298                                getF32Constant(DAG, 0xbe74c456, dl));
4299       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4300                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4301       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4302       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4303                                   getF32Constant(DAG, 0x3f949a29, dl));
4304     } else if (LimitFloatPrecision <= 12) {
4305       // For floating-point precision of 12:
4306       //
4307       //   LogOfMantissa =
4308       //     -1.7417939f +
4309       //       (2.8212026f +
4310       //         (-1.4699568f +
4311       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4312       //
4313       // error 0.000061011436, which is 14 bits
4314       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4315                                getF32Constant(DAG, 0xbd67b6d6, dl));
4316       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4317                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4318       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4319       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4320                                getF32Constant(DAG, 0x3fbc278b, dl));
4321       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4322       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4323                                getF32Constant(DAG, 0x40348e95, dl));
4324       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4325       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4326                                   getF32Constant(DAG, 0x3fdef31a, dl));
4327     } else { // LimitFloatPrecision <= 18
4328       // For floating-point precision of 18:
4329       //
4330       //   LogOfMantissa =
4331       //     -2.1072184f +
4332       //       (4.2372794f +
4333       //         (-3.7029485f +
4334       //           (2.2781945f +
4335       //             (-0.87823314f +
4336       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4337       //
4338       // error 0.0000023660568, which is better than 18 bits
4339       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4340                                getF32Constant(DAG, 0xbc91e5ac, dl));
4341       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4342                                getF32Constant(DAG, 0x3e4350aa, dl));
4343       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4344       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4345                                getF32Constant(DAG, 0x3f60d3e3, dl));
4346       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4347       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4348                                getF32Constant(DAG, 0x4011cdf0, dl));
4349       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4350       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4351                                getF32Constant(DAG, 0x406cfd1c, dl));
4352       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4353       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4354                                getF32Constant(DAG, 0x408797cb, dl));
4355       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4356       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4357                                   getF32Constant(DAG, 0x4006dcab, dl));
4358     }
4359 
4360     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4361   }
4362 
4363   // No special expansion.
4364   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4365 }
4366 
4367 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4368 /// limited-precision mode.
expandLog2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4369 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4370                           const TargetLowering &TLI) {
4371 
4372   // TODO: What fast-math-flags should be set on the floating-point nodes?
4373 
4374   if (Op.getValueType() == MVT::f32 &&
4375       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4376     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4377 
4378     // Get the exponent.
4379     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4380 
4381     // Get the significand and build it into a floating-point number with
4382     // exponent of 1.
4383     SDValue X = GetSignificand(DAG, Op1, dl);
4384 
4385     // Different possible minimax approximations of significand in
4386     // floating-point for various degrees of accuracy over [1,2].
4387     SDValue Log2ofMantissa;
4388     if (LimitFloatPrecision <= 6) {
4389       // For floating-point precision of 6:
4390       //
4391       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4392       //
4393       // error 0.0049451742, which is more than 7 bits
4394       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4395                                getF32Constant(DAG, 0xbeb08fe0, dl));
4396       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4397                                getF32Constant(DAG, 0x40019463, dl));
4398       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4399       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4400                                    getF32Constant(DAG, 0x3fd6633d, dl));
4401     } else if (LimitFloatPrecision <= 12) {
4402       // For floating-point precision of 12:
4403       //
4404       //   Log2ofMantissa =
4405       //     -2.51285454f +
4406       //       (4.07009056f +
4407       //         (-2.12067489f +
4408       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4409       //
4410       // error 0.0000876136000, which is better than 13 bits
4411       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4412                                getF32Constant(DAG, 0xbda7262e, dl));
4413       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4414                                getF32Constant(DAG, 0x3f25280b, dl));
4415       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4416       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4417                                getF32Constant(DAG, 0x4007b923, dl));
4418       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4419       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4420                                getF32Constant(DAG, 0x40823e2f, dl));
4421       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4422       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4423                                    getF32Constant(DAG, 0x4020d29c, dl));
4424     } else { // LimitFloatPrecision <= 18
4425       // For floating-point precision of 18:
4426       //
4427       //   Log2ofMantissa =
4428       //     -3.0400495f +
4429       //       (6.1129976f +
4430       //         (-5.3420409f +
4431       //           (3.2865683f +
4432       //             (-1.2669343f +
4433       //               (0.27515199f -
4434       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4435       //
4436       // error 0.0000018516, which is better than 18 bits
4437       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4438                                getF32Constant(DAG, 0xbcd2769e, dl));
4439       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4440                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4441       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4442       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4443                                getF32Constant(DAG, 0x3fa22ae7, dl));
4444       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4445       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4446                                getF32Constant(DAG, 0x40525723, dl));
4447       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4448       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4449                                getF32Constant(DAG, 0x40aaf200, dl));
4450       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4451       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4452                                getF32Constant(DAG, 0x40c39dad, dl));
4453       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4454       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4455                                    getF32Constant(DAG, 0x4042902c, dl));
4456     }
4457 
4458     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4459   }
4460 
4461   // No special expansion.
4462   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4463 }
4464 
4465 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4466 /// limited-precision mode.
expandLog10(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4467 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4468                            const TargetLowering &TLI) {
4469 
4470   // TODO: What fast-math-flags should be set on the floating-point nodes?
4471 
4472   if (Op.getValueType() == MVT::f32 &&
4473       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4474     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4475 
4476     // Scale the exponent by log10(2) [0.30102999f].
4477     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4478     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4479                                         getF32Constant(DAG, 0x3e9a209a, dl));
4480 
4481     // Get the significand and build it into a floating-point number with
4482     // exponent of 1.
4483     SDValue X = GetSignificand(DAG, Op1, dl);
4484 
4485     SDValue Log10ofMantissa;
4486     if (LimitFloatPrecision <= 6) {
4487       // For floating-point precision of 6:
4488       //
4489       //   Log10ofMantissa =
4490       //     -0.50419619f +
4491       //       (0.60948995f - 0.10380950f * x) * x;
4492       //
4493       // error 0.0014886165, which is 6 bits
4494       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4495                                getF32Constant(DAG, 0xbdd49a13, dl));
4496       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4497                                getF32Constant(DAG, 0x3f1c0789, dl));
4498       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4499       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4500                                     getF32Constant(DAG, 0x3f011300, dl));
4501     } else if (LimitFloatPrecision <= 12) {
4502       // For floating-point precision of 12:
4503       //
4504       //   Log10ofMantissa =
4505       //     -0.64831180f +
4506       //       (0.91751397f +
4507       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4508       //
4509       // error 0.00019228036, which is better than 12 bits
4510       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4511                                getF32Constant(DAG, 0x3d431f31, dl));
4512       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4513                                getF32Constant(DAG, 0x3ea21fb2, dl));
4514       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4515       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4516                                getF32Constant(DAG, 0x3f6ae232, dl));
4517       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4518       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4519                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4520     } else { // LimitFloatPrecision <= 18
4521       // For floating-point precision of 18:
4522       //
4523       //   Log10ofMantissa =
4524       //     -0.84299375f +
4525       //       (1.5327582f +
4526       //         (-1.0688956f +
4527       //           (0.49102474f +
4528       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4529       //
4530       // error 0.0000037995730, which is better than 18 bits
4531       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4532                                getF32Constant(DAG, 0x3c5d51ce, dl));
4533       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4534                                getF32Constant(DAG, 0x3e00685a, dl));
4535       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4536       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4537                                getF32Constant(DAG, 0x3efb6798, dl));
4538       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4539       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4540                                getF32Constant(DAG, 0x3f88d192, dl));
4541       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4542       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4543                                getF32Constant(DAG, 0x3fc4316c, dl));
4544       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4545       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4546                                     getF32Constant(DAG, 0x3f57ce70, dl));
4547     }
4548 
4549     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4550   }
4551 
4552   // No special expansion.
4553   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4554 }
4555 
4556 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4557 /// limited-precision mode.
expandExp2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4558 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4559                           const TargetLowering &TLI) {
4560   if (Op.getValueType() == MVT::f32 &&
4561       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4562     return getLimitedPrecisionExp2(Op, dl, DAG);
4563 
4564   // No special expansion.
4565   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4566 }
4567 
4568 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4569 /// limited-precision mode with x == 10.0f.
expandPow(const SDLoc & dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI)4570 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4571                          SelectionDAG &DAG, const TargetLowering &TLI) {
4572   bool IsExp10 = false;
4573   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4574       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4575     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4576       APFloat Ten(10.0f);
4577       IsExp10 = LHSC->isExactlyValue(Ten);
4578     }
4579   }
4580 
4581   // TODO: What fast-math-flags should be set on the FMUL node?
4582   if (IsExp10) {
4583     // Put the exponent in the right bit position for later addition to the
4584     // final result:
4585     //
4586     //   #define LOG2OF10 3.3219281f
4587     //   t0 = Op * LOG2OF10;
4588     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4589                              getF32Constant(DAG, 0x40549a78, dl));
4590     return getLimitedPrecisionExp2(t0, dl, DAG);
4591   }
4592 
4593   // No special expansion.
4594   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4595 }
4596 
4597 
4598 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(const SDLoc & DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4599 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4600                           SelectionDAG &DAG) {
4601   // If RHS is a constant, we can expand this out to a multiplication tree,
4602   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4603   // optimizing for size, we only want to do this if the expansion would produce
4604   // a small number of multiplies, otherwise we do the full expansion.
4605   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4606     // Get the exponent as a positive value.
4607     unsigned Val = RHSC->getSExtValue();
4608     if ((int)Val < 0) Val = -Val;
4609 
4610     // powi(x, 0) -> 1.0
4611     if (Val == 0)
4612       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4613 
4614     const Function *F = DAG.getMachineFunction().getFunction();
4615     if (!F->optForSize() ||
4616         // If optimizing for size, don't insert too many multiplies.
4617         // This inserts up to 5 multiplies.
4618         countPopulation(Val) + Log2_32(Val) < 7) {
4619       // We use the simple binary decomposition method to generate the multiply
4620       // sequence.  There are more optimal ways to do this (for example,
4621       // powi(x,15) generates one more multiply than it should), but this has
4622       // the benefit of being both really simple and much better than a libcall.
4623       SDValue Res;  // Logically starts equal to 1.0
4624       SDValue CurSquare = LHS;
4625       // TODO: Intrinsics should have fast-math-flags that propagate to these
4626       // nodes.
4627       while (Val) {
4628         if (Val & 1) {
4629           if (Res.getNode())
4630             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4631           else
4632             Res = CurSquare;  // 1.0*CurSquare.
4633         }
4634 
4635         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4636                                 CurSquare, CurSquare);
4637         Val >>= 1;
4638       }
4639 
4640       // If the original was negative, invert the result, producing 1/(x*x*x).
4641       if (RHSC->getSExtValue() < 0)
4642         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4643                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4644       return Res;
4645     }
4646   }
4647 
4648   // Otherwise, expand to a libcall.
4649   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4650 }
4651 
4652 // getUnderlyingArgReg - Find underlying register used for a truncated or
4653 // bitcasted argument.
getUnderlyingArgReg(const SDValue & N)4654 static unsigned getUnderlyingArgReg(const SDValue &N) {
4655   switch (N.getOpcode()) {
4656   case ISD::CopyFromReg:
4657     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4658   case ISD::BITCAST:
4659   case ISD::AssertZext:
4660   case ISD::AssertSext:
4661   case ISD::TRUNCATE:
4662     return getUnderlyingArgReg(N.getOperand(0));
4663   default:
4664     return 0;
4665   }
4666 }
4667 
4668 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4669 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4670 /// At the end of instruction selection, they will be inserted to the entry BB.
EmitFuncArgumentDbgValue(const Value * V,DILocalVariable * Variable,DIExpression * Expr,DILocation * DL,int64_t Offset,bool IsIndirect,const SDValue & N)4671 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4672     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4673     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4674   const Argument *Arg = dyn_cast<Argument>(V);
4675   if (!Arg)
4676     return false;
4677 
4678   MachineFunction &MF = DAG.getMachineFunction();
4679   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4680 
4681   // Ignore inlined function arguments here.
4682   //
4683   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4684   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4685     return false;
4686 
4687   Optional<MachineOperand> Op;
4688   // Some arguments' frame index is recorded during argument lowering.
4689   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4690     Op = MachineOperand::CreateFI(FI);
4691 
4692   if (!Op && N.getNode()) {
4693     unsigned Reg = getUnderlyingArgReg(N);
4694     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4695       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4696       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4697       if (PR)
4698         Reg = PR;
4699     }
4700     if (Reg)
4701       Op = MachineOperand::CreateReg(Reg, false);
4702   }
4703 
4704   if (!Op) {
4705     // Check if ValueMap has reg number.
4706     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4707     if (VMI != FuncInfo.ValueMap.end())
4708       Op = MachineOperand::CreateReg(VMI->second, false);
4709   }
4710 
4711   if (!Op && N.getNode())
4712     // Check if frame index is available.
4713     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4714       if (FrameIndexSDNode *FINode =
4715           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4716         Op = MachineOperand::CreateFI(FINode->getIndex());
4717 
4718   if (!Op)
4719     return false;
4720 
4721   assert(Variable->isValidLocationForIntrinsic(DL) &&
4722          "Expected inlined-at fields to agree");
4723   if (Op->isReg())
4724     FuncInfo.ArgDbgValues.push_back(
4725         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4726                 Op->getReg(), Offset, Variable, Expr));
4727   else
4728     FuncInfo.ArgDbgValues.push_back(
4729         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4730             .addOperand(*Op)
4731             .addImm(Offset)
4732             .addMetadata(Variable)
4733             .addMetadata(Expr));
4734 
4735   return true;
4736 }
4737 
4738 // VisualStudio defines setjmp as _setjmp
4739 #if defined(_MSC_VER) && defined(setjmp) && \
4740                          !defined(setjmp_undefined_for_msvc)
4741 #  pragma push_macro("setjmp")
4742 #  undef setjmp
4743 #  define setjmp_undefined_for_msvc
4744 #endif
4745 
4746 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4747 /// we want to emit this as a call to a named external function, return the name
4748 /// otherwise lower it and return null.
4749 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)4750 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4751   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4752   SDLoc sdl = getCurSDLoc();
4753   DebugLoc dl = getCurDebugLoc();
4754   SDValue Res;
4755 
4756   switch (Intrinsic) {
4757   default:
4758     // By default, turn this into a target intrinsic node.
4759     visitTargetIntrinsic(I, Intrinsic);
4760     return nullptr;
4761   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4762   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4763   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4764   case Intrinsic::returnaddress:
4765     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4766                              TLI.getPointerTy(DAG.getDataLayout()),
4767                              getValue(I.getArgOperand(0))));
4768     return nullptr;
4769   case Intrinsic::frameaddress:
4770     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4771                              TLI.getPointerTy(DAG.getDataLayout()),
4772                              getValue(I.getArgOperand(0))));
4773     return nullptr;
4774   case Intrinsic::read_register: {
4775     Value *Reg = I.getArgOperand(0);
4776     SDValue Chain = getRoot();
4777     SDValue RegName =
4778         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4779     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4780     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4781       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4782     setValue(&I, Res);
4783     DAG.setRoot(Res.getValue(1));
4784     return nullptr;
4785   }
4786   case Intrinsic::write_register: {
4787     Value *Reg = I.getArgOperand(0);
4788     Value *RegValue = I.getArgOperand(1);
4789     SDValue Chain = getRoot();
4790     SDValue RegName =
4791         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4792     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4793                             RegName, getValue(RegValue)));
4794     return nullptr;
4795   }
4796   case Intrinsic::setjmp:
4797     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4798   case Intrinsic::longjmp:
4799     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4800   case Intrinsic::memcpy: {
4801     SDValue Op1 = getValue(I.getArgOperand(0));
4802     SDValue Op2 = getValue(I.getArgOperand(1));
4803     SDValue Op3 = getValue(I.getArgOperand(2));
4804     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4805     if (!Align)
4806       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4807     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4808     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4809     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4810                                false, isTC,
4811                                MachinePointerInfo(I.getArgOperand(0)),
4812                                MachinePointerInfo(I.getArgOperand(1)));
4813     updateDAGForMaybeTailCall(MC);
4814     return nullptr;
4815   }
4816   case Intrinsic::memset: {
4817     SDValue Op1 = getValue(I.getArgOperand(0));
4818     SDValue Op2 = getValue(I.getArgOperand(1));
4819     SDValue Op3 = getValue(I.getArgOperand(2));
4820     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4821     if (!Align)
4822       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4823     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4824     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4825     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4826                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4827     updateDAGForMaybeTailCall(MS);
4828     return nullptr;
4829   }
4830   case Intrinsic::memmove: {
4831     SDValue Op1 = getValue(I.getArgOperand(0));
4832     SDValue Op2 = getValue(I.getArgOperand(1));
4833     SDValue Op3 = getValue(I.getArgOperand(2));
4834     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4835     if (!Align)
4836       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4837     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4838     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4839     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4840                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4841                                 MachinePointerInfo(I.getArgOperand(1)));
4842     updateDAGForMaybeTailCall(MM);
4843     return nullptr;
4844   }
4845   case Intrinsic::dbg_declare: {
4846     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4847     DILocalVariable *Variable = DI.getVariable();
4848     DIExpression *Expression = DI.getExpression();
4849     const Value *Address = DI.getAddress();
4850     assert(Variable && "Missing variable");
4851     if (!Address) {
4852       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4853       return nullptr;
4854     }
4855 
4856     // Check if address has undef value.
4857     if (isa<UndefValue>(Address) ||
4858         (Address->use_empty() && !isa<Argument>(Address))) {
4859       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4860       return nullptr;
4861     }
4862 
4863     SDValue &N = NodeMap[Address];
4864     if (!N.getNode() && isa<Argument>(Address))
4865       // Check unused arguments map.
4866       N = UnusedArgNodeMap[Address];
4867     SDDbgValue *SDV;
4868     if (N.getNode()) {
4869       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4870         Address = BCI->getOperand(0);
4871       // Parameters are handled specially.
4872       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4873       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4874       if (isParameter && FINode) {
4875         // Byval parameter. We have a frame index at this point.
4876         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4877                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4878       } else if (isa<Argument>(Address)) {
4879         // Address is an argument, so try to emit its dbg value using
4880         // virtual register info from the FuncInfo.ValueMap.
4881         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4882                                  N);
4883         return nullptr;
4884       } else {
4885         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4886                               true, 0, dl, SDNodeOrder);
4887       }
4888       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4889     } else {
4890       // If Address is an argument then try to emit its dbg value using
4891       // virtual register info from the FuncInfo.ValueMap.
4892       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4893                                     N)) {
4894         // If variable is pinned by a alloca in dominating bb then
4895         // use StaticAllocaMap.
4896         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4897           if (AI->getParent() != DI.getParent()) {
4898             DenseMap<const AllocaInst*, int>::iterator SI =
4899               FuncInfo.StaticAllocaMap.find(AI);
4900             if (SI != FuncInfo.StaticAllocaMap.end()) {
4901               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4902                                               0, dl, SDNodeOrder);
4903               DAG.AddDbgValue(SDV, nullptr, false);
4904               return nullptr;
4905             }
4906           }
4907         }
4908         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4909       }
4910     }
4911     return nullptr;
4912   }
4913   case Intrinsic::dbg_value: {
4914     const DbgValueInst &DI = cast<DbgValueInst>(I);
4915     assert(DI.getVariable() && "Missing variable");
4916 
4917     DILocalVariable *Variable = DI.getVariable();
4918     DIExpression *Expression = DI.getExpression();
4919     uint64_t Offset = DI.getOffset();
4920     const Value *V = DI.getValue();
4921     if (!V)
4922       return nullptr;
4923 
4924     SDDbgValue *SDV;
4925     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4926       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4927                                     SDNodeOrder);
4928       DAG.AddDbgValue(SDV, nullptr, false);
4929     } else {
4930       // Do not use getValue() in here; we don't want to generate code at
4931       // this point if it hasn't been done yet.
4932       SDValue N = NodeMap[V];
4933       if (!N.getNode() && isa<Argument>(V))
4934         // Check unused arguments map.
4935         N = UnusedArgNodeMap[V];
4936       if (N.getNode()) {
4937         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4938                                       false, N)) {
4939           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4940                                 false, Offset, dl, SDNodeOrder);
4941           DAG.AddDbgValue(SDV, N.getNode(), false);
4942         }
4943       } else if (!V->use_empty() ) {
4944         // Do not call getValue(V) yet, as we don't want to generate code.
4945         // Remember it for later.
4946         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4947         DanglingDebugInfoMap[V] = DDI;
4948       } else {
4949         // We may expand this to cover more cases.  One case where we have no
4950         // data available is an unreferenced parameter.
4951         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4952       }
4953     }
4954 
4955     // Build a debug info table entry.
4956     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4957       V = BCI->getOperand(0);
4958     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4959     // Don't handle byval struct arguments or VLAs, for example.
4960     if (!AI) {
4961       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4962       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4963       return nullptr;
4964     }
4965     DenseMap<const AllocaInst*, int>::iterator SI =
4966       FuncInfo.StaticAllocaMap.find(AI);
4967     if (SI == FuncInfo.StaticAllocaMap.end())
4968       return nullptr; // VLAs.
4969     return nullptr;
4970   }
4971 
4972   case Intrinsic::eh_typeid_for: {
4973     // Find the type id for the given typeinfo.
4974     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4975     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4976     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4977     setValue(&I, Res);
4978     return nullptr;
4979   }
4980 
4981   case Intrinsic::eh_return_i32:
4982   case Intrinsic::eh_return_i64:
4983     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4984     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4985                             MVT::Other,
4986                             getControlRoot(),
4987                             getValue(I.getArgOperand(0)),
4988                             getValue(I.getArgOperand(1))));
4989     return nullptr;
4990   case Intrinsic::eh_unwind_init:
4991     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4992     return nullptr;
4993   case Intrinsic::eh_dwarf_cfa: {
4994     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4995                                         TLI.getPointerTy(DAG.getDataLayout()));
4996     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4997                                  CfaArg.getValueType(),
4998                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4999                                              CfaArg.getValueType()),
5000                                  CfaArg);
5001     SDValue FA = DAG.getNode(
5002         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
5003         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
5004     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
5005                              FA, Offset));
5006     return nullptr;
5007   }
5008   case Intrinsic::eh_sjlj_callsite: {
5009     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5010     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5011     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5012     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5013 
5014     MMI.setCurrentCallSite(CI->getZExtValue());
5015     return nullptr;
5016   }
5017   case Intrinsic::eh_sjlj_functioncontext: {
5018     // Get and store the index of the function context.
5019     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5020     AllocaInst *FnCtx =
5021       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5022     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5023     MFI->setFunctionContextIndex(FI);
5024     return nullptr;
5025   }
5026   case Intrinsic::eh_sjlj_setjmp: {
5027     SDValue Ops[2];
5028     Ops[0] = getRoot();
5029     Ops[1] = getValue(I.getArgOperand(0));
5030     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5031                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5032     setValue(&I, Op.getValue(0));
5033     DAG.setRoot(Op.getValue(1));
5034     return nullptr;
5035   }
5036   case Intrinsic::eh_sjlj_longjmp: {
5037     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5038                             getRoot(), getValue(I.getArgOperand(0))));
5039     return nullptr;
5040   }
5041   case Intrinsic::eh_sjlj_setup_dispatch: {
5042     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5043                             getRoot()));
5044     return nullptr;
5045   }
5046 
5047   case Intrinsic::masked_gather:
5048     visitMaskedGather(I);
5049     return nullptr;
5050   case Intrinsic::masked_load:
5051     visitMaskedLoad(I);
5052     return nullptr;
5053   case Intrinsic::masked_scatter:
5054     visitMaskedScatter(I);
5055     return nullptr;
5056   case Intrinsic::masked_store:
5057     visitMaskedStore(I);
5058     return nullptr;
5059   case Intrinsic::x86_mmx_pslli_w:
5060   case Intrinsic::x86_mmx_pslli_d:
5061   case Intrinsic::x86_mmx_pslli_q:
5062   case Intrinsic::x86_mmx_psrli_w:
5063   case Intrinsic::x86_mmx_psrli_d:
5064   case Intrinsic::x86_mmx_psrli_q:
5065   case Intrinsic::x86_mmx_psrai_w:
5066   case Intrinsic::x86_mmx_psrai_d: {
5067     SDValue ShAmt = getValue(I.getArgOperand(1));
5068     if (isa<ConstantSDNode>(ShAmt)) {
5069       visitTargetIntrinsic(I, Intrinsic);
5070       return nullptr;
5071     }
5072     unsigned NewIntrinsic = 0;
5073     EVT ShAmtVT = MVT::v2i32;
5074     switch (Intrinsic) {
5075     case Intrinsic::x86_mmx_pslli_w:
5076       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5077       break;
5078     case Intrinsic::x86_mmx_pslli_d:
5079       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5080       break;
5081     case Intrinsic::x86_mmx_pslli_q:
5082       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5083       break;
5084     case Intrinsic::x86_mmx_psrli_w:
5085       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5086       break;
5087     case Intrinsic::x86_mmx_psrli_d:
5088       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5089       break;
5090     case Intrinsic::x86_mmx_psrli_q:
5091       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5092       break;
5093     case Intrinsic::x86_mmx_psrai_w:
5094       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5095       break;
5096     case Intrinsic::x86_mmx_psrai_d:
5097       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5098       break;
5099     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5100     }
5101 
5102     // The vector shift intrinsics with scalars uses 32b shift amounts but
5103     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5104     // to be zero.
5105     // We must do this early because v2i32 is not a legal type.
5106     SDValue ShOps[2];
5107     ShOps[0] = ShAmt;
5108     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5109     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5110     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5111     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5112     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5113                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5114                        getValue(I.getArgOperand(0)), ShAmt);
5115     setValue(&I, Res);
5116     return nullptr;
5117   }
5118   case Intrinsic::convertff:
5119   case Intrinsic::convertfsi:
5120   case Intrinsic::convertfui:
5121   case Intrinsic::convertsif:
5122   case Intrinsic::convertuif:
5123   case Intrinsic::convertss:
5124   case Intrinsic::convertsu:
5125   case Intrinsic::convertus:
5126   case Intrinsic::convertuu: {
5127     ISD::CvtCode Code = ISD::CVT_INVALID;
5128     switch (Intrinsic) {
5129     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5130     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5131     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5132     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5133     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5134     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5135     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5136     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5137     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5138     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5139     }
5140     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5141     const Value *Op1 = I.getArgOperand(0);
5142     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5143                                DAG.getValueType(DestVT),
5144                                DAG.getValueType(getValue(Op1).getValueType()),
5145                                getValue(I.getArgOperand(1)),
5146                                getValue(I.getArgOperand(2)),
5147                                Code);
5148     setValue(&I, Res);
5149     return nullptr;
5150   }
5151   case Intrinsic::powi:
5152     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5153                             getValue(I.getArgOperand(1)), DAG));
5154     return nullptr;
5155   case Intrinsic::log:
5156     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5157     return nullptr;
5158   case Intrinsic::log2:
5159     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5160     return nullptr;
5161   case Intrinsic::log10:
5162     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5163     return nullptr;
5164   case Intrinsic::exp:
5165     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5166     return nullptr;
5167   case Intrinsic::exp2:
5168     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5169     return nullptr;
5170   case Intrinsic::pow:
5171     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5172                            getValue(I.getArgOperand(1)), DAG, TLI));
5173     return nullptr;
5174   case Intrinsic::sqrt:
5175   case Intrinsic::fabs:
5176   case Intrinsic::sin:
5177   case Intrinsic::cos:
5178   case Intrinsic::floor:
5179   case Intrinsic::ceil:
5180   case Intrinsic::trunc:
5181   case Intrinsic::rint:
5182   case Intrinsic::nearbyint:
5183   case Intrinsic::round:
5184   case Intrinsic::canonicalize: {
5185     unsigned Opcode;
5186     switch (Intrinsic) {
5187     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5188     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5189     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5190     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5191     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5192     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5193     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5194     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5195     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5196     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5197     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5198     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5199     }
5200 
5201     setValue(&I, DAG.getNode(Opcode, sdl,
5202                              getValue(I.getArgOperand(0)).getValueType(),
5203                              getValue(I.getArgOperand(0))));
5204     return nullptr;
5205   }
5206   case Intrinsic::minnum: {
5207     auto VT = getValue(I.getArgOperand(0)).getValueType();
5208     unsigned Opc =
5209         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5210             ? ISD::FMINNAN
5211             : ISD::FMINNUM;
5212     setValue(&I, DAG.getNode(Opc, sdl, VT,
5213                              getValue(I.getArgOperand(0)),
5214                              getValue(I.getArgOperand(1))));
5215     return nullptr;
5216   }
5217   case Intrinsic::maxnum: {
5218     auto VT = getValue(I.getArgOperand(0)).getValueType();
5219     unsigned Opc =
5220         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5221             ? ISD::FMAXNAN
5222             : ISD::FMAXNUM;
5223     setValue(&I, DAG.getNode(Opc, sdl, VT,
5224                              getValue(I.getArgOperand(0)),
5225                              getValue(I.getArgOperand(1))));
5226     return nullptr;
5227   }
5228   case Intrinsic::copysign:
5229     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5230                              getValue(I.getArgOperand(0)).getValueType(),
5231                              getValue(I.getArgOperand(0)),
5232                              getValue(I.getArgOperand(1))));
5233     return nullptr;
5234   case Intrinsic::fma:
5235     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5236                              getValue(I.getArgOperand(0)).getValueType(),
5237                              getValue(I.getArgOperand(0)),
5238                              getValue(I.getArgOperand(1)),
5239                              getValue(I.getArgOperand(2))));
5240     return nullptr;
5241   case Intrinsic::fmuladd: {
5242     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5243     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5244         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5245       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5246                                getValue(I.getArgOperand(0)).getValueType(),
5247                                getValue(I.getArgOperand(0)),
5248                                getValue(I.getArgOperand(1)),
5249                                getValue(I.getArgOperand(2))));
5250     } else {
5251       // TODO: Intrinsic calls should have fast-math-flags.
5252       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5253                                 getValue(I.getArgOperand(0)).getValueType(),
5254                                 getValue(I.getArgOperand(0)),
5255                                 getValue(I.getArgOperand(1)));
5256       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5257                                 getValue(I.getArgOperand(0)).getValueType(),
5258                                 Mul,
5259                                 getValue(I.getArgOperand(2)));
5260       setValue(&I, Add);
5261     }
5262     return nullptr;
5263   }
5264   case Intrinsic::convert_to_fp16:
5265     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5266                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5267                                          getValue(I.getArgOperand(0)),
5268                                          DAG.getTargetConstant(0, sdl,
5269                                                                MVT::i32))));
5270     return nullptr;
5271   case Intrinsic::convert_from_fp16:
5272     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5273                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5274                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5275                                          getValue(I.getArgOperand(0)))));
5276     return nullptr;
5277   case Intrinsic::pcmarker: {
5278     SDValue Tmp = getValue(I.getArgOperand(0));
5279     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5280     return nullptr;
5281   }
5282   case Intrinsic::readcyclecounter: {
5283     SDValue Op = getRoot();
5284     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5285                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5286     setValue(&I, Res);
5287     DAG.setRoot(Res.getValue(1));
5288     return nullptr;
5289   }
5290   case Intrinsic::bitreverse:
5291     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5292                              getValue(I.getArgOperand(0)).getValueType(),
5293                              getValue(I.getArgOperand(0))));
5294     return nullptr;
5295   case Intrinsic::bswap:
5296     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5297                              getValue(I.getArgOperand(0)).getValueType(),
5298                              getValue(I.getArgOperand(0))));
5299     return nullptr;
5300   case Intrinsic::cttz: {
5301     SDValue Arg = getValue(I.getArgOperand(0));
5302     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5303     EVT Ty = Arg.getValueType();
5304     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5305                              sdl, Ty, Arg));
5306     return nullptr;
5307   }
5308   case Intrinsic::ctlz: {
5309     SDValue Arg = getValue(I.getArgOperand(0));
5310     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5311     EVT Ty = Arg.getValueType();
5312     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5313                              sdl, Ty, Arg));
5314     return nullptr;
5315   }
5316   case Intrinsic::ctpop: {
5317     SDValue Arg = getValue(I.getArgOperand(0));
5318     EVT Ty = Arg.getValueType();
5319     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5320     return nullptr;
5321   }
5322   case Intrinsic::stacksave: {
5323     SDValue Op = getRoot();
5324     Res = DAG.getNode(
5325         ISD::STACKSAVE, sdl,
5326         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5327     setValue(&I, Res);
5328     DAG.setRoot(Res.getValue(1));
5329     return nullptr;
5330   }
5331   case Intrinsic::stackrestore: {
5332     Res = getValue(I.getArgOperand(0));
5333     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5334     return nullptr;
5335   }
5336   case Intrinsic::get_dynamic_area_offset: {
5337     SDValue Op = getRoot();
5338     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5339     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5340     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5341     // target.
5342     if (PtrTy != ResTy)
5343       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5344                          " intrinsic!");
5345     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5346                       Op);
5347     DAG.setRoot(Op);
5348     setValue(&I, Res);
5349     return nullptr;
5350   }
5351   case Intrinsic::stackguard: {
5352     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5353     MachineFunction &MF = DAG.getMachineFunction();
5354     const Module &M = *MF.getFunction()->getParent();
5355     SDValue Chain = getRoot();
5356     if (TLI.useLoadStackGuardNode()) {
5357       Res = getLoadStackGuard(DAG, sdl, Chain);
5358     } else {
5359       const Value *Global = TLI.getSDagStackGuard(M);
5360       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5361       Res =
5362           DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5363                       MachinePointerInfo(Global, 0), true, false, false, Align);
5364     }
5365     DAG.setRoot(Chain);
5366     setValue(&I, Res);
5367     return nullptr;
5368   }
5369   case Intrinsic::stackprotector: {
5370     // Emit code into the DAG to store the stack guard onto the stack.
5371     MachineFunction &MF = DAG.getMachineFunction();
5372     MachineFrameInfo *MFI = MF.getFrameInfo();
5373     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5374     SDValue Src, Chain = getRoot();
5375 
5376     if (TLI.useLoadStackGuardNode())
5377       Src = getLoadStackGuard(DAG, sdl, Chain);
5378     else
5379       Src = getValue(I.getArgOperand(0));   // The guard's value.
5380 
5381     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5382 
5383     int FI = FuncInfo.StaticAllocaMap[Slot];
5384     MFI->setStackProtectorIndex(FI);
5385 
5386     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5387 
5388     // Store the stack protector onto the stack.
5389     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5390                                                  DAG.getMachineFunction(), FI),
5391                        true, false, 0);
5392     setValue(&I, Res);
5393     DAG.setRoot(Res);
5394     return nullptr;
5395   }
5396   case Intrinsic::objectsize: {
5397     // If we don't know by now, we're never going to know.
5398     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5399 
5400     assert(CI && "Non-constant type in __builtin_object_size?");
5401 
5402     SDValue Arg = getValue(I.getCalledValue());
5403     EVT Ty = Arg.getValueType();
5404 
5405     if (CI->isZero())
5406       Res = DAG.getConstant(-1ULL, sdl, Ty);
5407     else
5408       Res = DAG.getConstant(0, sdl, Ty);
5409 
5410     setValue(&I, Res);
5411     return nullptr;
5412   }
5413   case Intrinsic::annotation:
5414   case Intrinsic::ptr_annotation:
5415     // Drop the intrinsic, but forward the value
5416     setValue(&I, getValue(I.getOperand(0)));
5417     return nullptr;
5418   case Intrinsic::assume:
5419   case Intrinsic::var_annotation:
5420     // Discard annotate attributes and assumptions
5421     return nullptr;
5422 
5423   case Intrinsic::init_trampoline: {
5424     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5425 
5426     SDValue Ops[6];
5427     Ops[0] = getRoot();
5428     Ops[1] = getValue(I.getArgOperand(0));
5429     Ops[2] = getValue(I.getArgOperand(1));
5430     Ops[3] = getValue(I.getArgOperand(2));
5431     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5432     Ops[5] = DAG.getSrcValue(F);
5433 
5434     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5435 
5436     DAG.setRoot(Res);
5437     return nullptr;
5438   }
5439   case Intrinsic::adjust_trampoline: {
5440     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5441                              TLI.getPointerTy(DAG.getDataLayout()),
5442                              getValue(I.getArgOperand(0))));
5443     return nullptr;
5444   }
5445   case Intrinsic::gcroot: {
5446     MachineFunction &MF = DAG.getMachineFunction();
5447     const Function *F = MF.getFunction();
5448     (void)F;
5449     assert(F->hasGC() &&
5450            "only valid in functions with gc specified, enforced by Verifier");
5451     assert(GFI && "implied by previous");
5452     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5453     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5454 
5455     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5456     GFI->addStackRoot(FI->getIndex(), TypeMap);
5457     return nullptr;
5458   }
5459   case Intrinsic::gcread:
5460   case Intrinsic::gcwrite:
5461     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5462   case Intrinsic::flt_rounds:
5463     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5464     return nullptr;
5465 
5466   case Intrinsic::expect: {
5467     // Just replace __builtin_expect(exp, c) with EXP.
5468     setValue(&I, getValue(I.getArgOperand(0)));
5469     return nullptr;
5470   }
5471 
5472   case Intrinsic::debugtrap:
5473   case Intrinsic::trap: {
5474     StringRef TrapFuncName =
5475         I.getAttributes()
5476             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5477             .getValueAsString();
5478     if (TrapFuncName.empty()) {
5479       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5480         ISD::TRAP : ISD::DEBUGTRAP;
5481       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5482       return nullptr;
5483     }
5484     TargetLowering::ArgListTy Args;
5485 
5486     TargetLowering::CallLoweringInfo CLI(DAG);
5487     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5488         CallingConv::C, I.getType(),
5489         DAG.getExternalSymbol(TrapFuncName.data(),
5490                               TLI.getPointerTy(DAG.getDataLayout())),
5491         std::move(Args));
5492 
5493     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5494     DAG.setRoot(Result.second);
5495     return nullptr;
5496   }
5497 
5498   case Intrinsic::uadd_with_overflow:
5499   case Intrinsic::sadd_with_overflow:
5500   case Intrinsic::usub_with_overflow:
5501   case Intrinsic::ssub_with_overflow:
5502   case Intrinsic::umul_with_overflow:
5503   case Intrinsic::smul_with_overflow: {
5504     ISD::NodeType Op;
5505     switch (Intrinsic) {
5506     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5507     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5508     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5509     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5510     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5511     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5512     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5513     }
5514     SDValue Op1 = getValue(I.getArgOperand(0));
5515     SDValue Op2 = getValue(I.getArgOperand(1));
5516 
5517     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5518     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5519     return nullptr;
5520   }
5521   case Intrinsic::prefetch: {
5522     SDValue Ops[5];
5523     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5524     Ops[0] = getRoot();
5525     Ops[1] = getValue(I.getArgOperand(0));
5526     Ops[2] = getValue(I.getArgOperand(1));
5527     Ops[3] = getValue(I.getArgOperand(2));
5528     Ops[4] = getValue(I.getArgOperand(3));
5529     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5530                                         DAG.getVTList(MVT::Other), Ops,
5531                                         EVT::getIntegerVT(*Context, 8),
5532                                         MachinePointerInfo(I.getArgOperand(0)),
5533                                         0, /* align */
5534                                         false, /* volatile */
5535                                         rw==0, /* read */
5536                                         rw==1)); /* write */
5537     return nullptr;
5538   }
5539   case Intrinsic::lifetime_start:
5540   case Intrinsic::lifetime_end: {
5541     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5542     // Stack coloring is not enabled in O0, discard region information.
5543     if (TM.getOptLevel() == CodeGenOpt::None)
5544       return nullptr;
5545 
5546     SmallVector<Value *, 4> Allocas;
5547     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5548 
5549     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5550            E = Allocas.end(); Object != E; ++Object) {
5551       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5552 
5553       // Could not find an Alloca.
5554       if (!LifetimeObject)
5555         continue;
5556 
5557       // First check that the Alloca is static, otherwise it won't have a
5558       // valid frame index.
5559       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5560       if (SI == FuncInfo.StaticAllocaMap.end())
5561         return nullptr;
5562 
5563       int FI = SI->second;
5564 
5565       SDValue Ops[2];
5566       Ops[0] = getRoot();
5567       Ops[1] =
5568           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5569       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5570 
5571       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5572       DAG.setRoot(Res);
5573     }
5574     return nullptr;
5575   }
5576   case Intrinsic::invariant_start:
5577     // Discard region information.
5578     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5579     return nullptr;
5580   case Intrinsic::invariant_end:
5581     // Discard region information.
5582     return nullptr;
5583   case Intrinsic::clear_cache:
5584     return TLI.getClearCacheBuiltinName();
5585   case Intrinsic::donothing:
5586     // ignore
5587     return nullptr;
5588   case Intrinsic::experimental_stackmap: {
5589     visitStackmap(I);
5590     return nullptr;
5591   }
5592   case Intrinsic::experimental_patchpoint_void:
5593   case Intrinsic::experimental_patchpoint_i64: {
5594     visitPatchpoint(&I);
5595     return nullptr;
5596   }
5597   case Intrinsic::experimental_gc_statepoint: {
5598     LowerStatepoint(ImmutableStatepoint(&I));
5599     return nullptr;
5600   }
5601   case Intrinsic::experimental_gc_result: {
5602     visitGCResult(cast<GCResultInst>(I));
5603     return nullptr;
5604   }
5605   case Intrinsic::experimental_gc_relocate: {
5606     visitGCRelocate(cast<GCRelocateInst>(I));
5607     return nullptr;
5608   }
5609   case Intrinsic::instrprof_increment:
5610     llvm_unreachable("instrprof failed to lower an increment");
5611   case Intrinsic::instrprof_value_profile:
5612     llvm_unreachable("instrprof failed to lower a value profiling call");
5613   case Intrinsic::localescape: {
5614     MachineFunction &MF = DAG.getMachineFunction();
5615     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5616 
5617     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5618     // is the same on all targets.
5619     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5620       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5621       if (isa<ConstantPointerNull>(Arg))
5622         continue; // Skip null pointers. They represent a hole in index space.
5623       AllocaInst *Slot = cast<AllocaInst>(Arg);
5624       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5625              "can only escape static allocas");
5626       int FI = FuncInfo.StaticAllocaMap[Slot];
5627       MCSymbol *FrameAllocSym =
5628           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5629               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5630       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5631               TII->get(TargetOpcode::LOCAL_ESCAPE))
5632           .addSym(FrameAllocSym)
5633           .addFrameIndex(FI);
5634     }
5635 
5636     return nullptr;
5637   }
5638 
5639   case Intrinsic::localrecover: {
5640     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5641     MachineFunction &MF = DAG.getMachineFunction();
5642     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5643 
5644     // Get the symbol that defines the frame offset.
5645     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5646     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5647     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5648     MCSymbol *FrameAllocSym =
5649         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5650             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5651 
5652     // Create a MCSymbol for the label to avoid any target lowering
5653     // that would make this PC relative.
5654     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5655     SDValue OffsetVal =
5656         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5657 
5658     // Add the offset to the FP.
5659     Value *FP = I.getArgOperand(1);
5660     SDValue FPVal = getValue(FP);
5661     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5662     setValue(&I, Add);
5663 
5664     return nullptr;
5665   }
5666 
5667   case Intrinsic::eh_exceptionpointer:
5668   case Intrinsic::eh_exceptioncode: {
5669     // Get the exception pointer vreg, copy from it, and resize it to fit.
5670     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5671     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5672     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5673     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5674     SDValue N =
5675         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5676     if (Intrinsic == Intrinsic::eh_exceptioncode)
5677       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5678     setValue(&I, N);
5679     return nullptr;
5680   }
5681 
5682   case Intrinsic::experimental_deoptimize:
5683     LowerDeoptimizeCall(&I);
5684     return nullptr;
5685   }
5686 }
5687 
5688 std::pair<SDValue, SDValue>
lowerInvokable(TargetLowering::CallLoweringInfo & CLI,const BasicBlock * EHPadBB)5689 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5690                                     const BasicBlock *EHPadBB) {
5691   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5692   MCSymbol *BeginLabel = nullptr;
5693 
5694   if (EHPadBB) {
5695     // Insert a label before the invoke call to mark the try range.  This can be
5696     // used to detect deletion of the invoke via the MachineModuleInfo.
5697     BeginLabel = MMI.getContext().createTempSymbol();
5698 
5699     // For SjLj, keep track of which landing pads go with which invokes
5700     // so as to maintain the ordering of pads in the LSDA.
5701     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5702     if (CallSiteIndex) {
5703       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5704       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5705 
5706       // Now that the call site is handled, stop tracking it.
5707       MMI.setCurrentCallSite(0);
5708     }
5709 
5710     // Both PendingLoads and PendingExports must be flushed here;
5711     // this call might not return.
5712     (void)getRoot();
5713     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5714 
5715     CLI.setChain(getRoot());
5716   }
5717   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5718   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5719 
5720   assert((CLI.IsTailCall || Result.second.getNode()) &&
5721          "Non-null chain expected with non-tail call!");
5722   assert((Result.second.getNode() || !Result.first.getNode()) &&
5723          "Null value expected with tail call!");
5724 
5725   if (!Result.second.getNode()) {
5726     // As a special case, a null chain means that a tail call has been emitted
5727     // and the DAG root is already updated.
5728     HasTailCall = true;
5729 
5730     // Since there's no actual continuation from this block, nothing can be
5731     // relying on us setting vregs for them.
5732     PendingExports.clear();
5733   } else {
5734     DAG.setRoot(Result.second);
5735   }
5736 
5737   if (EHPadBB) {
5738     // Insert a label at the end of the invoke call to mark the try range.  This
5739     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5740     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5741     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5742 
5743     // Inform MachineModuleInfo of range.
5744     if (MMI.hasEHFunclets()) {
5745       assert(CLI.CS);
5746       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5747       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5748                                 BeginLabel, EndLabel);
5749     } else {
5750       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5751     }
5752   }
5753 
5754   return Result;
5755 }
5756 
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,const BasicBlock * EHPadBB)5757 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5758                                       bool isTailCall,
5759                                       const BasicBlock *EHPadBB) {
5760   auto &DL = DAG.getDataLayout();
5761   FunctionType *FTy = CS.getFunctionType();
5762   Type *RetTy = CS.getType();
5763 
5764   TargetLowering::ArgListTy Args;
5765   TargetLowering::ArgListEntry Entry;
5766   Args.reserve(CS.arg_size());
5767 
5768   const Value *SwiftErrorVal = nullptr;
5769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5770   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5771        i != e; ++i) {
5772     const Value *V = *i;
5773 
5774     // Skip empty types
5775     if (V->getType()->isEmptyTy())
5776       continue;
5777 
5778     SDValue ArgNode = getValue(V);
5779     Entry.Node = ArgNode; Entry.Ty = V->getType();
5780 
5781     // Skip the first return-type Attribute to get to params.
5782     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5783 
5784     // Use swifterror virtual register as input to the call.
5785     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5786       SwiftErrorVal = V;
5787       // We find the virtual register for the actual swifterror argument.
5788       // Instead of using the Value, we use the virtual register instead.
5789       Entry.Node = DAG.getRegister(
5790           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5791           EVT(TLI.getPointerTy(DL)));
5792     }
5793 
5794     Args.push_back(Entry);
5795 
5796     // If we have an explicit sret argument that is an Instruction, (i.e., it
5797     // might point to function-local memory), we can't meaningfully tail-call.
5798     if (Entry.isSRet && isa<Instruction>(V))
5799       isTailCall = false;
5800   }
5801 
5802   // Check if target-independent constraints permit a tail call here.
5803   // Target-dependent constraints are checked within TLI->LowerCallTo.
5804   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5805     isTailCall = false;
5806 
5807   TargetLowering::CallLoweringInfo CLI(DAG);
5808   CLI.setDebugLoc(getCurSDLoc())
5809       .setChain(getRoot())
5810       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5811       .setTailCall(isTailCall)
5812       .setConvergent(CS.isConvergent());
5813   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5814 
5815   if (Result.first.getNode()) {
5816     const Instruction *Inst = CS.getInstruction();
5817     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5818     setValue(Inst, Result.first);
5819   }
5820 
5821   // The last element of CLI.InVals has the SDValue for swifterror return.
5822   // Here we copy it to a virtual register and update SwiftErrorMap for
5823   // book-keeping.
5824   if (SwiftErrorVal && TLI.supportSwiftError()) {
5825     // Get the last element of InVals.
5826     SDValue Src = CLI.InVals.back();
5827     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5828     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5829     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5830     // We update the virtual register for the actual swifterror argument.
5831     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5832     DAG.setRoot(CopyNode);
5833   }
5834 }
5835 
5836 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5837 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(const Value * V)5838 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5839   for (const User *U : V->users()) {
5840     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5841       if (IC->isEquality())
5842         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5843           if (C->isNullValue())
5844             continue;
5845     // Unknown instruction.
5846     return false;
5847   }
5848   return true;
5849 }
5850 
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,Type * LoadTy,SelectionDAGBuilder & Builder)5851 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5852                              Type *LoadTy,
5853                              SelectionDAGBuilder &Builder) {
5854 
5855   // Check to see if this load can be trivially constant folded, e.g. if the
5856   // input is from a string literal.
5857   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5858     // Cast pointer to the type we really want to load.
5859     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5860                                          PointerType::getUnqual(LoadTy));
5861 
5862     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5863             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5864       return Builder.getValue(LoadCst);
5865   }
5866 
5867   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5868   // still constant memory, the input chain can be the entry node.
5869   SDValue Root;
5870   bool ConstantMemory = false;
5871 
5872   // Do not serialize (non-volatile) loads of constant memory with anything.
5873   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5874     Root = Builder.DAG.getEntryNode();
5875     ConstantMemory = true;
5876   } else {
5877     // Do not serialize non-volatile loads against each other.
5878     Root = Builder.DAG.getRoot();
5879   }
5880 
5881   SDValue Ptr = Builder.getValue(PtrVal);
5882   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5883                                         Ptr, MachinePointerInfo(PtrVal),
5884                                         false /*volatile*/,
5885                                         false /*nontemporal*/,
5886                                         false /*isinvariant*/, 1 /* align=1 */);
5887 
5888   if (!ConstantMemory)
5889     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5890   return LoadVal;
5891 }
5892 
5893 /// processIntegerCallValue - Record the value for an instruction that
5894 /// produces an integer result, converting the type where necessary.
processIntegerCallValue(const Instruction & I,SDValue Value,bool IsSigned)5895 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5896                                                   SDValue Value,
5897                                                   bool IsSigned) {
5898   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5899                                                     I.getType(), true);
5900   if (IsSigned)
5901     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5902   else
5903     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5904   setValue(&I, Value);
5905 }
5906 
5907 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5908 /// If so, return true and lower it, otherwise return false and it will be
5909 /// lowered like a normal call.
visitMemCmpCall(const CallInst & I)5910 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5911   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5912   if (I.getNumArgOperands() != 3)
5913     return false;
5914 
5915   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5916   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5917       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5918       !I.getType()->isIntegerTy())
5919     return false;
5920 
5921   const Value *Size = I.getArgOperand(2);
5922   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5923   if (CSize && CSize->getZExtValue() == 0) {
5924     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5925                                                           I.getType(), true);
5926     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5927     return true;
5928   }
5929 
5930   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5931   std::pair<SDValue, SDValue> Res =
5932     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5933                                 getValue(LHS), getValue(RHS), getValue(Size),
5934                                 MachinePointerInfo(LHS),
5935                                 MachinePointerInfo(RHS));
5936   if (Res.first.getNode()) {
5937     processIntegerCallValue(I, Res.first, true);
5938     PendingLoads.push_back(Res.second);
5939     return true;
5940   }
5941 
5942   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5943   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5944   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5945     bool ActuallyDoIt = true;
5946     MVT LoadVT;
5947     Type *LoadTy;
5948     switch (CSize->getZExtValue()) {
5949     default:
5950       LoadVT = MVT::Other;
5951       LoadTy = nullptr;
5952       ActuallyDoIt = false;
5953       break;
5954     case 2:
5955       LoadVT = MVT::i16;
5956       LoadTy = Type::getInt16Ty(CSize->getContext());
5957       break;
5958     case 4:
5959       LoadVT = MVT::i32;
5960       LoadTy = Type::getInt32Ty(CSize->getContext());
5961       break;
5962     case 8:
5963       LoadVT = MVT::i64;
5964       LoadTy = Type::getInt64Ty(CSize->getContext());
5965       break;
5966         /*
5967     case 16:
5968       LoadVT = MVT::v4i32;
5969       LoadTy = Type::getInt32Ty(CSize->getContext());
5970       LoadTy = VectorType::get(LoadTy, 4);
5971       break;
5972          */
5973     }
5974 
5975     // This turns into unaligned loads.  We only do this if the target natively
5976     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5977     // we'll only produce a small number of byte loads.
5978 
5979     // Require that we can find a legal MVT, and only do this if the target
5980     // supports unaligned loads of that type.  Expanding into byte loads would
5981     // bloat the code.
5982     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5983     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5984       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5985       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5986       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5987       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5988       // TODO: Check alignment of src and dest ptrs.
5989       if (!TLI.isTypeLegal(LoadVT) ||
5990           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5991           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5992         ActuallyDoIt = false;
5993     }
5994 
5995     if (ActuallyDoIt) {
5996       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5997       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5998 
5999       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6000                                  ISD::SETNE);
6001       processIntegerCallValue(I, Res, false);
6002       return true;
6003     }
6004   }
6005 
6006 
6007   return false;
6008 }
6009 
6010 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6011 /// form.  If so, return true and lower it, otherwise return false and it
6012 /// will be lowered like a normal call.
visitMemChrCall(const CallInst & I)6013 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6014   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6015   if (I.getNumArgOperands() != 3)
6016     return false;
6017 
6018   const Value *Src = I.getArgOperand(0);
6019   const Value *Char = I.getArgOperand(1);
6020   const Value *Length = I.getArgOperand(2);
6021   if (!Src->getType()->isPointerTy() ||
6022       !Char->getType()->isIntegerTy() ||
6023       !Length->getType()->isIntegerTy() ||
6024       !I.getType()->isPointerTy())
6025     return false;
6026 
6027   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6028   std::pair<SDValue, SDValue> Res =
6029     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6030                                 getValue(Src), getValue(Char), getValue(Length),
6031                                 MachinePointerInfo(Src));
6032   if (Res.first.getNode()) {
6033     setValue(&I, Res.first);
6034     PendingLoads.push_back(Res.second);
6035     return true;
6036   }
6037 
6038   return false;
6039 }
6040 
6041 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6042 /// optimized form.  If so, return true and lower it, otherwise return false
6043 /// and it will be lowered like a normal call.
visitStrCpyCall(const CallInst & I,bool isStpcpy)6044 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6045   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6046   if (I.getNumArgOperands() != 2)
6047     return false;
6048 
6049   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6050   if (!Arg0->getType()->isPointerTy() ||
6051       !Arg1->getType()->isPointerTy() ||
6052       !I.getType()->isPointerTy())
6053     return false;
6054 
6055   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6056   std::pair<SDValue, SDValue> Res =
6057     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6058                                 getValue(Arg0), getValue(Arg1),
6059                                 MachinePointerInfo(Arg0),
6060                                 MachinePointerInfo(Arg1), isStpcpy);
6061   if (Res.first.getNode()) {
6062     setValue(&I, Res.first);
6063     DAG.setRoot(Res.second);
6064     return true;
6065   }
6066 
6067   return false;
6068 }
6069 
6070 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6071 /// If so, return true and lower it, otherwise return false and it will be
6072 /// lowered like a normal call.
visitStrCmpCall(const CallInst & I)6073 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6074   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6075   if (I.getNumArgOperands() != 2)
6076     return false;
6077 
6078   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6079   if (!Arg0->getType()->isPointerTy() ||
6080       !Arg1->getType()->isPointerTy() ||
6081       !I.getType()->isIntegerTy())
6082     return false;
6083 
6084   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6085   std::pair<SDValue, SDValue> Res =
6086     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6087                                 getValue(Arg0), getValue(Arg1),
6088                                 MachinePointerInfo(Arg0),
6089                                 MachinePointerInfo(Arg1));
6090   if (Res.first.getNode()) {
6091     processIntegerCallValue(I, Res.first, true);
6092     PendingLoads.push_back(Res.second);
6093     return true;
6094   }
6095 
6096   return false;
6097 }
6098 
6099 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6100 /// form.  If so, return true and lower it, otherwise return false and it
6101 /// will be lowered like a normal call.
visitStrLenCall(const CallInst & I)6102 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6103   // Verify that the prototype makes sense.  size_t strlen(char *)
6104   if (I.getNumArgOperands() != 1)
6105     return false;
6106 
6107   const Value *Arg0 = I.getArgOperand(0);
6108   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6109     return false;
6110 
6111   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6112   std::pair<SDValue, SDValue> Res =
6113     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6114                                 getValue(Arg0), MachinePointerInfo(Arg0));
6115   if (Res.first.getNode()) {
6116     processIntegerCallValue(I, Res.first, false);
6117     PendingLoads.push_back(Res.second);
6118     return true;
6119   }
6120 
6121   return false;
6122 }
6123 
6124 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6125 /// form.  If so, return true and lower it, otherwise return false and it
6126 /// will be lowered like a normal call.
visitStrNLenCall(const CallInst & I)6127 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6128   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6129   if (I.getNumArgOperands() != 2)
6130     return false;
6131 
6132   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6133   if (!Arg0->getType()->isPointerTy() ||
6134       !Arg1->getType()->isIntegerTy() ||
6135       !I.getType()->isIntegerTy())
6136     return false;
6137 
6138   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6139   std::pair<SDValue, SDValue> Res =
6140     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6141                                  getValue(Arg0), getValue(Arg1),
6142                                  MachinePointerInfo(Arg0));
6143   if (Res.first.getNode()) {
6144     processIntegerCallValue(I, Res.first, false);
6145     PendingLoads.push_back(Res.second);
6146     return true;
6147   }
6148 
6149   return false;
6150 }
6151 
6152 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6153 /// operation (as expected), translate it to an SDNode with the specified opcode
6154 /// and return true.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)6155 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6156                                               unsigned Opcode) {
6157   // Sanity check that it really is a unary floating-point call.
6158   if (I.getNumArgOperands() != 1 ||
6159       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6160       I.getType() != I.getArgOperand(0)->getType() ||
6161       !I.onlyReadsMemory())
6162     return false;
6163 
6164   SDValue Tmp = getValue(I.getArgOperand(0));
6165   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6166   return true;
6167 }
6168 
6169 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6170 /// operation (as expected), translate it to an SDNode with the specified opcode
6171 /// and return true.
visitBinaryFloatCall(const CallInst & I,unsigned Opcode)6172 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6173                                                unsigned Opcode) {
6174   // Sanity check that it really is a binary floating-point call.
6175   if (I.getNumArgOperands() != 2 ||
6176       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6177       I.getType() != I.getArgOperand(0)->getType() ||
6178       I.getType() != I.getArgOperand(1)->getType() ||
6179       !I.onlyReadsMemory())
6180     return false;
6181 
6182   SDValue Tmp0 = getValue(I.getArgOperand(0));
6183   SDValue Tmp1 = getValue(I.getArgOperand(1));
6184   EVT VT = Tmp0.getValueType();
6185   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6186   return true;
6187 }
6188 
visitCall(const CallInst & I)6189 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6190   // Handle inline assembly differently.
6191   if (isa<InlineAsm>(I.getCalledValue())) {
6192     visitInlineAsm(&I);
6193     return;
6194   }
6195 
6196   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6197   ComputeUsesVAFloatArgument(I, &MMI);
6198 
6199   const char *RenameFn = nullptr;
6200   if (Function *F = I.getCalledFunction()) {
6201     if (F->isDeclaration()) {
6202       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6203         if (unsigned IID = II->getIntrinsicID(F)) {
6204           RenameFn = visitIntrinsicCall(I, IID);
6205           if (!RenameFn)
6206             return;
6207         }
6208       }
6209       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6210         RenameFn = visitIntrinsicCall(I, IID);
6211         if (!RenameFn)
6212           return;
6213       }
6214     }
6215 
6216     // Check for well-known libc/libm calls.  If the function is internal, it
6217     // can't be a library call.  Don't do the check if marked as nobuiltin for
6218     // some reason.
6219     LibFunc::Func Func;
6220     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6221         LibInfo->getLibFunc(F->getName(), Func) &&
6222         LibInfo->hasOptimizedCodeGen(Func)) {
6223       switch (Func) {
6224       default: break;
6225       case LibFunc::copysign:
6226       case LibFunc::copysignf:
6227       case LibFunc::copysignl:
6228         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6229             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6230             I.getType() == I.getArgOperand(0)->getType() &&
6231             I.getType() == I.getArgOperand(1)->getType() &&
6232             I.onlyReadsMemory()) {
6233           SDValue LHS = getValue(I.getArgOperand(0));
6234           SDValue RHS = getValue(I.getArgOperand(1));
6235           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6236                                    LHS.getValueType(), LHS, RHS));
6237           return;
6238         }
6239         break;
6240       case LibFunc::fabs:
6241       case LibFunc::fabsf:
6242       case LibFunc::fabsl:
6243         if (visitUnaryFloatCall(I, ISD::FABS))
6244           return;
6245         break;
6246       case LibFunc::fmin:
6247       case LibFunc::fminf:
6248       case LibFunc::fminl:
6249         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6250           return;
6251         break;
6252       case LibFunc::fmax:
6253       case LibFunc::fmaxf:
6254       case LibFunc::fmaxl:
6255         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6256           return;
6257         break;
6258       case LibFunc::sin:
6259       case LibFunc::sinf:
6260       case LibFunc::sinl:
6261         if (visitUnaryFloatCall(I, ISD::FSIN))
6262           return;
6263         break;
6264       case LibFunc::cos:
6265       case LibFunc::cosf:
6266       case LibFunc::cosl:
6267         if (visitUnaryFloatCall(I, ISD::FCOS))
6268           return;
6269         break;
6270       case LibFunc::sqrt:
6271       case LibFunc::sqrtf:
6272       case LibFunc::sqrtl:
6273       case LibFunc::sqrt_finite:
6274       case LibFunc::sqrtf_finite:
6275       case LibFunc::sqrtl_finite:
6276         if (visitUnaryFloatCall(I, ISD::FSQRT))
6277           return;
6278         break;
6279       case LibFunc::floor:
6280       case LibFunc::floorf:
6281       case LibFunc::floorl:
6282         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6283           return;
6284         break;
6285       case LibFunc::nearbyint:
6286       case LibFunc::nearbyintf:
6287       case LibFunc::nearbyintl:
6288         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6289           return;
6290         break;
6291       case LibFunc::ceil:
6292       case LibFunc::ceilf:
6293       case LibFunc::ceill:
6294         if (visitUnaryFloatCall(I, ISD::FCEIL))
6295           return;
6296         break;
6297       case LibFunc::rint:
6298       case LibFunc::rintf:
6299       case LibFunc::rintl:
6300         if (visitUnaryFloatCall(I, ISD::FRINT))
6301           return;
6302         break;
6303       case LibFunc::round:
6304       case LibFunc::roundf:
6305       case LibFunc::roundl:
6306         if (visitUnaryFloatCall(I, ISD::FROUND))
6307           return;
6308         break;
6309       case LibFunc::trunc:
6310       case LibFunc::truncf:
6311       case LibFunc::truncl:
6312         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6313           return;
6314         break;
6315       case LibFunc::log2:
6316       case LibFunc::log2f:
6317       case LibFunc::log2l:
6318         if (visitUnaryFloatCall(I, ISD::FLOG2))
6319           return;
6320         break;
6321       case LibFunc::exp2:
6322       case LibFunc::exp2f:
6323       case LibFunc::exp2l:
6324         if (visitUnaryFloatCall(I, ISD::FEXP2))
6325           return;
6326         break;
6327       case LibFunc::memcmp:
6328         if (visitMemCmpCall(I))
6329           return;
6330         break;
6331       case LibFunc::memchr:
6332         if (visitMemChrCall(I))
6333           return;
6334         break;
6335       case LibFunc::strcpy:
6336         if (visitStrCpyCall(I, false))
6337           return;
6338         break;
6339       case LibFunc::stpcpy:
6340         if (visitStrCpyCall(I, true))
6341           return;
6342         break;
6343       case LibFunc::strcmp:
6344         if (visitStrCmpCall(I))
6345           return;
6346         break;
6347       case LibFunc::strlen:
6348         if (visitStrLenCall(I))
6349           return;
6350         break;
6351       case LibFunc::strnlen:
6352         if (visitStrNLenCall(I))
6353           return;
6354         break;
6355       }
6356     }
6357   }
6358 
6359   SDValue Callee;
6360   if (!RenameFn)
6361     Callee = getValue(I.getCalledValue());
6362   else
6363     Callee = DAG.getExternalSymbol(
6364         RenameFn,
6365         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6366 
6367   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6368   // have to do anything here to lower funclet bundles.
6369   assert(!I.hasOperandBundlesOtherThan(
6370              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6371          "Cannot lower calls with arbitrary operand bundles!");
6372 
6373   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6374     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6375   else
6376     // Check if we can potentially perform a tail call. More detailed checking
6377     // is be done within LowerCallTo, after more information about the call is
6378     // known.
6379     LowerCallTo(&I, Callee, I.isTailCall());
6380 }
6381 
6382 namespace {
6383 
6384 /// AsmOperandInfo - This contains information for each constraint that we are
6385 /// lowering.
6386 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6387 public:
6388   /// CallOperand - If this is the result output operand or a clobber
6389   /// this is null, otherwise it is the incoming operand to the CallInst.
6390   /// This gets modified as the asm is processed.
6391   SDValue CallOperand;
6392 
6393   /// AssignedRegs - If this is a register or register class operand, this
6394   /// contains the set of register corresponding to the operand.
6395   RegsForValue AssignedRegs;
6396 
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)6397   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6398     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6399   }
6400 
6401   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6402   /// corresponds to.  If there is no Value* for this operand, it returns
6403   /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL) const6404   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6405                            const DataLayout &DL) const {
6406     if (!CallOperandVal) return MVT::Other;
6407 
6408     if (isa<BasicBlock>(CallOperandVal))
6409       return TLI.getPointerTy(DL);
6410 
6411     llvm::Type *OpTy = CallOperandVal->getType();
6412 
6413     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6414     // If this is an indirect operand, the operand is a pointer to the
6415     // accessed type.
6416     if (isIndirect) {
6417       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6418       if (!PtrTy)
6419         report_fatal_error("Indirect operand for inline asm not a pointer!");
6420       OpTy = PtrTy->getElementType();
6421     }
6422 
6423     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6424     if (StructType *STy = dyn_cast<StructType>(OpTy))
6425       if (STy->getNumElements() == 1)
6426         OpTy = STy->getElementType(0);
6427 
6428     // If OpTy is not a single value, it may be a struct/union that we
6429     // can tile with integers.
6430     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6431       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6432       switch (BitSize) {
6433       default: break;
6434       case 1:
6435       case 8:
6436       case 16:
6437       case 32:
6438       case 64:
6439       case 128:
6440         OpTy = IntegerType::get(Context, BitSize);
6441         break;
6442       }
6443     }
6444 
6445     return TLI.getValueType(DL, OpTy, true);
6446   }
6447 };
6448 
6449 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6450 
6451 } // end anonymous namespace
6452 
6453 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6454 /// specified operand.  We prefer to assign virtual registers, to allow the
6455 /// register allocator to handle the assignment process.  However, if the asm
6456 /// uses features that we can't model on machineinstrs, we have SDISel do the
6457 /// allocation.  This produces generally horrible, but correct, code.
6458 ///
6459 ///   OpInfo describes the operand.
6460 ///
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,const SDLoc & DL,SDISelAsmOperandInfo & OpInfo)6461 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6462                                  const SDLoc &DL,
6463                                  SDISelAsmOperandInfo &OpInfo) {
6464   LLVMContext &Context = *DAG.getContext();
6465 
6466   MachineFunction &MF = DAG.getMachineFunction();
6467   SmallVector<unsigned, 4> Regs;
6468 
6469   // If this is a constraint for a single physreg, or a constraint for a
6470   // register class, find it.
6471   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6472       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6473                                        OpInfo.ConstraintCode,
6474                                        OpInfo.ConstraintVT);
6475 
6476   unsigned NumRegs = 1;
6477   if (OpInfo.ConstraintVT != MVT::Other) {
6478     // If this is a FP input in an integer register (or visa versa) insert a bit
6479     // cast of the input value.  More generally, handle any case where the input
6480     // value disagrees with the register class we plan to stick this in.
6481     if (OpInfo.Type == InlineAsm::isInput &&
6482         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6483       // Try to convert to the first EVT that the reg class contains.  If the
6484       // types are identical size, use a bitcast to convert (e.g. two differing
6485       // vector types).
6486       MVT RegVT = *PhysReg.second->vt_begin();
6487       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6488         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6489                                          RegVT, OpInfo.CallOperand);
6490         OpInfo.ConstraintVT = RegVT;
6491       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6492         // If the input is a FP value and we want it in FP registers, do a
6493         // bitcast to the corresponding integer type.  This turns an f64 value
6494         // into i64, which can be passed with two i32 values on a 32-bit
6495         // machine.
6496         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6497         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6498                                          RegVT, OpInfo.CallOperand);
6499         OpInfo.ConstraintVT = RegVT;
6500       }
6501     }
6502 
6503     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6504   }
6505 
6506   MVT RegVT;
6507   EVT ValueVT = OpInfo.ConstraintVT;
6508 
6509   // If this is a constraint for a specific physical register, like {r17},
6510   // assign it now.
6511   if (unsigned AssignedReg = PhysReg.first) {
6512     const TargetRegisterClass *RC = PhysReg.second;
6513     if (OpInfo.ConstraintVT == MVT::Other)
6514       ValueVT = *RC->vt_begin();
6515 
6516     // Get the actual register value type.  This is important, because the user
6517     // may have asked for (e.g.) the AX register in i32 type.  We need to
6518     // remember that AX is actually i16 to get the right extension.
6519     RegVT = *RC->vt_begin();
6520 
6521     // This is a explicit reference to a physical register.
6522     Regs.push_back(AssignedReg);
6523 
6524     // If this is an expanded reference, add the rest of the regs to Regs.
6525     if (NumRegs != 1) {
6526       TargetRegisterClass::iterator I = RC->begin();
6527       for (; *I != AssignedReg; ++I)
6528         assert(I != RC->end() && "Didn't find reg!");
6529 
6530       // Already added the first reg.
6531       --NumRegs; ++I;
6532       for (; NumRegs; --NumRegs, ++I) {
6533         assert(I != RC->end() && "Ran out of registers to allocate!");
6534         Regs.push_back(*I);
6535       }
6536     }
6537 
6538     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6539     return;
6540   }
6541 
6542   // Otherwise, if this was a reference to an LLVM register class, create vregs
6543   // for this reference.
6544   if (const TargetRegisterClass *RC = PhysReg.second) {
6545     RegVT = *RC->vt_begin();
6546     if (OpInfo.ConstraintVT == MVT::Other)
6547       ValueVT = RegVT;
6548 
6549     // Create the appropriate number of virtual registers.
6550     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6551     for (; NumRegs; --NumRegs)
6552       Regs.push_back(RegInfo.createVirtualRegister(RC));
6553 
6554     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6555     return;
6556   }
6557 
6558   // Otherwise, we couldn't allocate enough registers for this.
6559 }
6560 
6561 /// visitInlineAsm - Handle a call to an InlineAsm object.
6562 ///
visitInlineAsm(ImmutableCallSite CS)6563 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6564   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6565 
6566   /// ConstraintOperands - Information about all of the constraints.
6567   SDISelAsmOperandInfoVector ConstraintOperands;
6568 
6569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6570   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6571       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6572 
6573   bool hasMemory = false;
6574 
6575   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6576   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6577   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6578     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6579     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6580 
6581     MVT OpVT = MVT::Other;
6582 
6583     // Compute the value type for each operand.
6584     switch (OpInfo.Type) {
6585     case InlineAsm::isOutput:
6586       // Indirect outputs just consume an argument.
6587       if (OpInfo.isIndirect) {
6588         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6589         break;
6590       }
6591 
6592       // The return value of the call is this value.  As such, there is no
6593       // corresponding argument.
6594       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6595       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6596         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6597                                       STy->getElementType(ResNo));
6598       } else {
6599         assert(ResNo == 0 && "Asm only has one result!");
6600         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6601       }
6602       ++ResNo;
6603       break;
6604     case InlineAsm::isInput:
6605       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6606       break;
6607     case InlineAsm::isClobber:
6608       // Nothing to do.
6609       break;
6610     }
6611 
6612     // If this is an input or an indirect output, process the call argument.
6613     // BasicBlocks are labels, currently appearing only in asm's.
6614     if (OpInfo.CallOperandVal) {
6615       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6616         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6617       } else {
6618         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6619       }
6620 
6621       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6622                                          DAG.getDataLayout()).getSimpleVT();
6623     }
6624 
6625     OpInfo.ConstraintVT = OpVT;
6626 
6627     // Indirect operand accesses access memory.
6628     if (OpInfo.isIndirect)
6629       hasMemory = true;
6630     else {
6631       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6632         TargetLowering::ConstraintType
6633           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6634         if (CType == TargetLowering::C_Memory) {
6635           hasMemory = true;
6636           break;
6637         }
6638       }
6639     }
6640   }
6641 
6642   SDValue Chain, Flag;
6643 
6644   // We won't need to flush pending loads if this asm doesn't touch
6645   // memory and is nonvolatile.
6646   if (hasMemory || IA->hasSideEffects())
6647     Chain = getRoot();
6648   else
6649     Chain = DAG.getRoot();
6650 
6651   // Second pass over the constraints: compute which constraint option to use
6652   // and assign registers to constraints that want a specific physreg.
6653   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6654     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6655 
6656     // If this is an output operand with a matching input operand, look up the
6657     // matching input. If their types mismatch, e.g. one is an integer, the
6658     // other is floating point, or their sizes are different, flag it as an
6659     // error.
6660     if (OpInfo.hasMatchingInput()) {
6661       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6662 
6663       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6664         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6665         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6666             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6667                                              OpInfo.ConstraintVT);
6668         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6669             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6670                                              Input.ConstraintVT);
6671         if ((OpInfo.ConstraintVT.isInteger() !=
6672              Input.ConstraintVT.isInteger()) ||
6673             (MatchRC.second != InputRC.second)) {
6674           report_fatal_error("Unsupported asm: input constraint"
6675                              " with a matching output constraint of"
6676                              " incompatible type!");
6677         }
6678         Input.ConstraintVT = OpInfo.ConstraintVT;
6679       }
6680     }
6681 
6682     // Compute the constraint code and ConstraintType to use.
6683     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6684 
6685     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6686         OpInfo.Type == InlineAsm::isClobber)
6687       continue;
6688 
6689     // If this is a memory input, and if the operand is not indirect, do what we
6690     // need to to provide an address for the memory input.
6691     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6692         !OpInfo.isIndirect) {
6693       assert((OpInfo.isMultipleAlternative ||
6694               (OpInfo.Type == InlineAsm::isInput)) &&
6695              "Can only indirectify direct input operands!");
6696 
6697       // Memory operands really want the address of the value.  If we don't have
6698       // an indirect input, put it in the constpool if we can, otherwise spill
6699       // it to a stack slot.
6700       // TODO: This isn't quite right. We need to handle these according to
6701       // the addressing mode that the constraint wants. Also, this may take
6702       // an additional register for the computation and we don't want that
6703       // either.
6704 
6705       // If the operand is a float, integer, or vector constant, spill to a
6706       // constant pool entry to get its address.
6707       const Value *OpVal = OpInfo.CallOperandVal;
6708       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6709           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6710         OpInfo.CallOperand = DAG.getConstantPool(
6711             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6712       } else {
6713         // Otherwise, create a stack slot and emit a store to it before the
6714         // asm.
6715         Type *Ty = OpVal->getType();
6716         auto &DL = DAG.getDataLayout();
6717         uint64_t TySize = DL.getTypeAllocSize(Ty);
6718         unsigned Align = DL.getPrefTypeAlignment(Ty);
6719         MachineFunction &MF = DAG.getMachineFunction();
6720         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6721         SDValue StackSlot =
6722             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6723         Chain = DAG.getStore(
6724             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6725             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6726             false, false, 0);
6727         OpInfo.CallOperand = StackSlot;
6728       }
6729 
6730       // There is no longer a Value* corresponding to this operand.
6731       OpInfo.CallOperandVal = nullptr;
6732 
6733       // It is now an indirect operand.
6734       OpInfo.isIndirect = true;
6735     }
6736 
6737     // If this constraint is for a specific register, allocate it before
6738     // anything else.
6739     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6740       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6741   }
6742 
6743   // Second pass - Loop over all of the operands, assigning virtual or physregs
6744   // to register class operands.
6745   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6746     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6747 
6748     // C_Register operands have already been allocated, Other/Memory don't need
6749     // to be.
6750     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6751       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6752   }
6753 
6754   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6755   std::vector<SDValue> AsmNodeOperands;
6756   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6757   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6758       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6759 
6760   // If we have a !srcloc metadata node associated with it, we want to attach
6761   // this to the ultimately generated inline asm machineinstr.  To do this, we
6762   // pass in the third operand as this (potentially null) inline asm MDNode.
6763   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6764   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6765 
6766   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6767   // bits as operand 3.
6768   unsigned ExtraInfo = 0;
6769   if (IA->hasSideEffects())
6770     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6771   if (IA->isAlignStack())
6772     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6773   if (CS.isConvergent())
6774     ExtraInfo |= InlineAsm::Extra_IsConvergent;
6775   // Set the asm dialect.
6776   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6777 
6778   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6779   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6780     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6781 
6782     // Compute the constraint code and ConstraintType to use.
6783     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6784 
6785     // Ideally, we would only check against memory constraints.  However, the
6786     // meaning of an other constraint can be target-specific and we can't easily
6787     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6788     // for other constriants as well.
6789     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6790         OpInfo.ConstraintType == TargetLowering::C_Other) {
6791       if (OpInfo.Type == InlineAsm::isInput)
6792         ExtraInfo |= InlineAsm::Extra_MayLoad;
6793       else if (OpInfo.Type == InlineAsm::isOutput)
6794         ExtraInfo |= InlineAsm::Extra_MayStore;
6795       else if (OpInfo.Type == InlineAsm::isClobber)
6796         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6797     }
6798   }
6799 
6800   AsmNodeOperands.push_back(DAG.getTargetConstant(
6801       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6802 
6803   // Loop over all of the inputs, copying the operand values into the
6804   // appropriate registers and processing the output regs.
6805   RegsForValue RetValRegs;
6806 
6807   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6808   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6809 
6810   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6811     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6812 
6813     switch (OpInfo.Type) {
6814     case InlineAsm::isOutput: {
6815       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6816           OpInfo.ConstraintType != TargetLowering::C_Register) {
6817         // Memory output, or 'other' output (e.g. 'X' constraint).
6818         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6819 
6820         unsigned ConstraintID =
6821             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6822         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6823                "Failed to convert memory constraint code to constraint id.");
6824 
6825         // Add information to the INLINEASM node to know about this output.
6826         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6827         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6828         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6829                                                         MVT::i32));
6830         AsmNodeOperands.push_back(OpInfo.CallOperand);
6831         break;
6832       }
6833 
6834       // Otherwise, this is a register or register class output.
6835 
6836       // Copy the output from the appropriate register.  Find a register that
6837       // we can use.
6838       if (OpInfo.AssignedRegs.Regs.empty()) {
6839         emitInlineAsmError(
6840             CS, "couldn't allocate output register for constraint '" +
6841                     Twine(OpInfo.ConstraintCode) + "'");
6842         return;
6843       }
6844 
6845       // If this is an indirect operand, store through the pointer after the
6846       // asm.
6847       if (OpInfo.isIndirect) {
6848         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6849                                                       OpInfo.CallOperandVal));
6850       } else {
6851         // This is the result value of the call.
6852         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6853         // Concatenate this output onto the outputs list.
6854         RetValRegs.append(OpInfo.AssignedRegs);
6855       }
6856 
6857       // Add information to the INLINEASM node to know that this register is
6858       // set.
6859       OpInfo.AssignedRegs
6860           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6861                                     ? InlineAsm::Kind_RegDefEarlyClobber
6862                                     : InlineAsm::Kind_RegDef,
6863                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6864       break;
6865     }
6866     case InlineAsm::isInput: {
6867       SDValue InOperandVal = OpInfo.CallOperand;
6868 
6869       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6870         // If this is required to match an output register we have already set,
6871         // just use its register.
6872         unsigned OperandNo = OpInfo.getMatchedOperand();
6873 
6874         // Scan until we find the definition we already emitted of this operand.
6875         // When we find it, create a RegsForValue operand.
6876         unsigned CurOp = InlineAsm::Op_FirstOperand;
6877         for (; OperandNo; --OperandNo) {
6878           // Advance to the next operand.
6879           unsigned OpFlag =
6880             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6881           assert((InlineAsm::isRegDefKind(OpFlag) ||
6882                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6883                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6884           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6885         }
6886 
6887         unsigned OpFlag =
6888           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6889         if (InlineAsm::isRegDefKind(OpFlag) ||
6890             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6891           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6892           if (OpInfo.isIndirect) {
6893             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6894             emitInlineAsmError(CS, "inline asm not supported yet:"
6895                                    " don't know how to handle tied "
6896                                    "indirect register inputs");
6897             return;
6898           }
6899 
6900           RegsForValue MatchedRegs;
6901           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6902           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6903           MatchedRegs.RegVTs.push_back(RegVT);
6904           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6905           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6906                i != e; ++i) {
6907             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6908               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6909             else {
6910               emitInlineAsmError(
6911                   CS, "inline asm error: This value"
6912                       " type register class is not natively supported!");
6913               return;
6914             }
6915           }
6916           SDLoc dl = getCurSDLoc();
6917           // Use the produced MatchedRegs object to
6918           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6919                                     Chain, &Flag, CS.getInstruction());
6920           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6921                                            true, OpInfo.getMatchedOperand(), dl,
6922                                            DAG, AsmNodeOperands);
6923           break;
6924         }
6925 
6926         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6927         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6928                "Unexpected number of operands");
6929         // Add information to the INLINEASM node to know about this input.
6930         // See InlineAsm.h isUseOperandTiedToDef.
6931         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6932         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6933                                                     OpInfo.getMatchedOperand());
6934         AsmNodeOperands.push_back(DAG.getTargetConstant(
6935             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6936         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6937         break;
6938       }
6939 
6940       // Treat indirect 'X' constraint as memory.
6941       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6942           OpInfo.isIndirect)
6943         OpInfo.ConstraintType = TargetLowering::C_Memory;
6944 
6945       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6946         std::vector<SDValue> Ops;
6947         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6948                                           Ops, DAG);
6949         if (Ops.empty()) {
6950           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
6951                                      Twine(OpInfo.ConstraintCode) + "'");
6952           return;
6953         }
6954 
6955         // Add information to the INLINEASM node to know about this input.
6956         unsigned ResOpType =
6957           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6958         AsmNodeOperands.push_back(DAG.getTargetConstant(
6959             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6960         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6961         break;
6962       }
6963 
6964       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6965         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6966         assert(InOperandVal.getValueType() ==
6967                    TLI.getPointerTy(DAG.getDataLayout()) &&
6968                "Memory operands expect pointer values");
6969 
6970         unsigned ConstraintID =
6971             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6972         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6973                "Failed to convert memory constraint code to constraint id.");
6974 
6975         // Add information to the INLINEASM node to know about this input.
6976         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6977         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6978         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6979                                                         getCurSDLoc(),
6980                                                         MVT::i32));
6981         AsmNodeOperands.push_back(InOperandVal);
6982         break;
6983       }
6984 
6985       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6986               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6987              "Unknown constraint type!");
6988 
6989       // TODO: Support this.
6990       if (OpInfo.isIndirect) {
6991         emitInlineAsmError(
6992             CS, "Don't know how to handle indirect register inputs yet "
6993                 "for constraint '" +
6994                     Twine(OpInfo.ConstraintCode) + "'");
6995         return;
6996       }
6997 
6998       // Copy the input into the appropriate registers.
6999       if (OpInfo.AssignedRegs.Regs.empty()) {
7000         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7001                                    Twine(OpInfo.ConstraintCode) + "'");
7002         return;
7003       }
7004 
7005       SDLoc dl = getCurSDLoc();
7006 
7007       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7008                                         Chain, &Flag, CS.getInstruction());
7009 
7010       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7011                                                dl, DAG, AsmNodeOperands);
7012       break;
7013     }
7014     case InlineAsm::isClobber: {
7015       // Add the clobbered value to the operand list, so that the register
7016       // allocator is aware that the physreg got clobbered.
7017       if (!OpInfo.AssignedRegs.Regs.empty())
7018         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7019                                                  false, 0, getCurSDLoc(), DAG,
7020                                                  AsmNodeOperands);
7021       break;
7022     }
7023     }
7024   }
7025 
7026   // Finish up input operands.  Set the input chain and add the flag last.
7027   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7028   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7029 
7030   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7031                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7032   Flag = Chain.getValue(1);
7033 
7034   // If this asm returns a register value, copy the result from that register
7035   // and set it as the value of the call.
7036   if (!RetValRegs.Regs.empty()) {
7037     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7038                                              Chain, &Flag, CS.getInstruction());
7039 
7040     // FIXME: Why don't we do this for inline asms with MRVs?
7041     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7042       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7043 
7044       // If any of the results of the inline asm is a vector, it may have the
7045       // wrong width/num elts.  This can happen for register classes that can
7046       // contain multiple different value types.  The preg or vreg allocated may
7047       // not have the same VT as was expected.  Convert it to the right type
7048       // with bit_convert.
7049       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7050         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7051                           ResultType, Val);
7052 
7053       } else if (ResultType != Val.getValueType() &&
7054                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7055         // If a result value was tied to an input value, the computed result may
7056         // have a wider width than the expected result.  Extract the relevant
7057         // portion.
7058         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7059       }
7060 
7061       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7062     }
7063 
7064     setValue(CS.getInstruction(), Val);
7065     // Don't need to use this as a chain in this case.
7066     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7067       return;
7068   }
7069 
7070   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7071 
7072   // Process indirect outputs, first output all of the flagged copies out of
7073   // physregs.
7074   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7075     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7076     const Value *Ptr = IndirectStoresToEmit[i].second;
7077     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7078                                              Chain, &Flag, IA);
7079     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7080   }
7081 
7082   // Emit the non-flagged stores from the physregs.
7083   SmallVector<SDValue, 8> OutChains;
7084   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7085     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7086                                StoresToEmit[i].first,
7087                                getValue(StoresToEmit[i].second),
7088                                MachinePointerInfo(StoresToEmit[i].second),
7089                                false, false, 0);
7090     OutChains.push_back(Val);
7091   }
7092 
7093   if (!OutChains.empty())
7094     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7095 
7096   DAG.setRoot(Chain);
7097 }
7098 
emitInlineAsmError(ImmutableCallSite CS,const Twine & Message)7099 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7100                                              const Twine &Message) {
7101   LLVMContext &Ctx = *DAG.getContext();
7102   Ctx.emitError(CS.getInstruction(), Message);
7103 
7104   // Make sure we leave the DAG in a valid state
7105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7106   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7107   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7108 }
7109 
visitVAStart(const CallInst & I)7110 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7111   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7112                           MVT::Other, getRoot(),
7113                           getValue(I.getArgOperand(0)),
7114                           DAG.getSrcValue(I.getArgOperand(0))));
7115 }
7116 
visitVAArg(const VAArgInst & I)7117 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7119   const DataLayout &DL = DAG.getDataLayout();
7120   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7121                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7122                            DAG.getSrcValue(I.getOperand(0)),
7123                            DL.getABITypeAlignment(I.getType()));
7124   setValue(&I, V);
7125   DAG.setRoot(V.getValue(1));
7126 }
7127 
visitVAEnd(const CallInst & I)7128 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7129   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7130                           MVT::Other, getRoot(),
7131                           getValue(I.getArgOperand(0)),
7132                           DAG.getSrcValue(I.getArgOperand(0))));
7133 }
7134 
visitVACopy(const CallInst & I)7135 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7136   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7137                           MVT::Other, getRoot(),
7138                           getValue(I.getArgOperand(0)),
7139                           getValue(I.getArgOperand(1)),
7140                           DAG.getSrcValue(I.getArgOperand(0)),
7141                           DAG.getSrcValue(I.getArgOperand(1))));
7142 }
7143 
lowerRangeToAssertZExt(SelectionDAG & DAG,const Instruction & I,SDValue Op)7144 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7145                                                     const Instruction &I,
7146                                                     SDValue Op) {
7147   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7148   if (!Range)
7149     return Op;
7150 
7151   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7152   if (!Lo->isNullValue())
7153     return Op;
7154 
7155   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7156   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7157 
7158   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7159 
7160   SDLoc SL = getCurSDLoc();
7161 
7162   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7163                              Op, DAG.getValueType(SmallVT));
7164   unsigned NumVals = Op.getNode()->getNumValues();
7165   if (NumVals == 1)
7166     return ZExt;
7167 
7168   SmallVector<SDValue, 4> Ops;
7169 
7170   Ops.push_back(ZExt);
7171   for (unsigned I = 1; I != NumVals; ++I)
7172     Ops.push_back(Op.getValue(I));
7173 
7174   return DAG.getMergeValues(Ops, SL);
7175 }
7176 
7177 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7178 /// the call being lowered.
7179 ///
7180 /// This is a helper for lowering intrinsics that follow a target calling
7181 /// convention or require stack pointer adjustment. Only a subset of the
7182 /// intrinsic's operands need to participate in the calling convention.
populateCallLoweringInfo(TargetLowering::CallLoweringInfo & CLI,ImmutableCallSite CS,unsigned ArgIdx,unsigned NumArgs,SDValue Callee,Type * ReturnTy,bool IsPatchPoint)7183 void SelectionDAGBuilder::populateCallLoweringInfo(
7184     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7185     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7186     bool IsPatchPoint) {
7187   TargetLowering::ArgListTy Args;
7188   Args.reserve(NumArgs);
7189 
7190   // Populate the argument list.
7191   // Attributes for args start at offset 1, after the return attribute.
7192   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7193        ArgI != ArgE; ++ArgI) {
7194     const Value *V = CS->getOperand(ArgI);
7195 
7196     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7197 
7198     TargetLowering::ArgListEntry Entry;
7199     Entry.Node = getValue(V);
7200     Entry.Ty = V->getType();
7201     Entry.setAttributes(&CS, AttrI);
7202     Args.push_back(Entry);
7203   }
7204 
7205   CLI.setDebugLoc(getCurSDLoc())
7206       .setChain(getRoot())
7207       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7208       .setDiscardResult(CS->use_empty())
7209       .setIsPatchPoint(IsPatchPoint);
7210 }
7211 
7212 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7213 /// or patchpoint target node's operand list.
7214 ///
7215 /// Constants are converted to TargetConstants purely as an optimization to
7216 /// avoid constant materialization and register allocation.
7217 ///
7218 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7219 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7220 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7221 /// address materialization and register allocation, but may also be required
7222 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7223 /// alloca in the entry block, then the runtime may assume that the alloca's
7224 /// StackMap location can be read immediately after compilation and that the
7225 /// location is valid at any point during execution (this is similar to the
7226 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7227 /// only available in a register, then the runtime would need to trap when
7228 /// execution reaches the StackMap in order to read the alloca's location.
addStackMapLiveVars(ImmutableCallSite CS,unsigned StartIdx,const SDLoc & DL,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)7229 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7230                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7231                                 SelectionDAGBuilder &Builder) {
7232   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7233     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7234     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7235       Ops.push_back(
7236         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7237       Ops.push_back(
7238         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7239     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7240       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7241       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7242           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7243     } else
7244       Ops.push_back(OpVal);
7245   }
7246 }
7247 
7248 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
visitStackmap(const CallInst & CI)7249 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7250   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7251   //                                  [live variables...])
7252 
7253   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7254 
7255   SDValue Chain, InFlag, Callee, NullPtr;
7256   SmallVector<SDValue, 32> Ops;
7257 
7258   SDLoc DL = getCurSDLoc();
7259   Callee = getValue(CI.getCalledValue());
7260   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7261 
7262   // The stackmap intrinsic only records the live variables (the arguemnts
7263   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7264   // intrinsic, this won't be lowered to a function call. This means we don't
7265   // have to worry about calling conventions and target specific lowering code.
7266   // Instead we perform the call lowering right here.
7267   //
7268   // chain, flag = CALLSEQ_START(chain, 0)
7269   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7270   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7271   //
7272   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7273   InFlag = Chain.getValue(1);
7274 
7275   // Add the <id> and <numBytes> constants.
7276   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7277   Ops.push_back(DAG.getTargetConstant(
7278                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7279   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7280   Ops.push_back(DAG.getTargetConstant(
7281                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7282                   MVT::i32));
7283 
7284   // Push live variables for the stack map.
7285   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7286 
7287   // We are not pushing any register mask info here on the operands list,
7288   // because the stackmap doesn't clobber anything.
7289 
7290   // Push the chain and the glue flag.
7291   Ops.push_back(Chain);
7292   Ops.push_back(InFlag);
7293 
7294   // Create the STACKMAP node.
7295   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7296   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7297   Chain = SDValue(SM, 0);
7298   InFlag = Chain.getValue(1);
7299 
7300   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7301 
7302   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7303 
7304   // Set the root to the target-lowered call chain.
7305   DAG.setRoot(Chain);
7306 
7307   // Inform the Frame Information that we have a stackmap in this function.
7308   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7309 }
7310 
7311 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
visitPatchpoint(ImmutableCallSite CS,const BasicBlock * EHPadBB)7312 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7313                                           const BasicBlock *EHPadBB) {
7314   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7315   //                                                 i32 <numBytes>,
7316   //                                                 i8* <target>,
7317   //                                                 i32 <numArgs>,
7318   //                                                 [Args...],
7319   //                                                 [live variables...])
7320 
7321   CallingConv::ID CC = CS.getCallingConv();
7322   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7323   bool HasDef = !CS->getType()->isVoidTy();
7324   SDLoc dl = getCurSDLoc();
7325   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7326 
7327   // Handle immediate and symbolic callees.
7328   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7329     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7330                                    /*isTarget=*/true);
7331   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7332     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7333                                          SDLoc(SymbolicCallee),
7334                                          SymbolicCallee->getValueType(0));
7335 
7336   // Get the real number of arguments participating in the call <numArgs>
7337   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7338   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7339 
7340   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7341   // Intrinsics include all meta-operands up to but not including CC.
7342   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7343   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7344          "Not enough arguments provided to the patchpoint intrinsic");
7345 
7346   // For AnyRegCC the arguments are lowered later on manually.
7347   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7348   Type *ReturnTy =
7349     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7350 
7351   TargetLowering::CallLoweringInfo CLI(DAG);
7352   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7353                            true);
7354   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7355 
7356   SDNode *CallEnd = Result.second.getNode();
7357   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7358     CallEnd = CallEnd->getOperand(0).getNode();
7359 
7360   /// Get a call instruction from the call sequence chain.
7361   /// Tail calls are not allowed.
7362   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7363          "Expected a callseq node.");
7364   SDNode *Call = CallEnd->getOperand(0).getNode();
7365   bool HasGlue = Call->getGluedNode();
7366 
7367   // Replace the target specific call node with the patchable intrinsic.
7368   SmallVector<SDValue, 8> Ops;
7369 
7370   // Add the <id> and <numBytes> constants.
7371   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7372   Ops.push_back(DAG.getTargetConstant(
7373                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7374   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7375   Ops.push_back(DAG.getTargetConstant(
7376                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7377                   MVT::i32));
7378 
7379   // Add the callee.
7380   Ops.push_back(Callee);
7381 
7382   // Adjust <numArgs> to account for any arguments that have been passed on the
7383   // stack instead.
7384   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7385   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7386   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7387   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7388 
7389   // Add the calling convention
7390   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7391 
7392   // Add the arguments we omitted previously. The register allocator should
7393   // place these in any free register.
7394   if (IsAnyRegCC)
7395     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7396       Ops.push_back(getValue(CS.getArgument(i)));
7397 
7398   // Push the arguments from the call instruction up to the register mask.
7399   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7400   Ops.append(Call->op_begin() + 2, e);
7401 
7402   // Push live variables for the stack map.
7403   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7404 
7405   // Push the register mask info.
7406   if (HasGlue)
7407     Ops.push_back(*(Call->op_end()-2));
7408   else
7409     Ops.push_back(*(Call->op_end()-1));
7410 
7411   // Push the chain (this is originally the first operand of the call, but
7412   // becomes now the last or second to last operand).
7413   Ops.push_back(*(Call->op_begin()));
7414 
7415   // Push the glue flag (last operand).
7416   if (HasGlue)
7417     Ops.push_back(*(Call->op_end()-1));
7418 
7419   SDVTList NodeTys;
7420   if (IsAnyRegCC && HasDef) {
7421     // Create the return types based on the intrinsic definition
7422     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7423     SmallVector<EVT, 3> ValueVTs;
7424     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7425     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7426 
7427     // There is always a chain and a glue type at the end
7428     ValueVTs.push_back(MVT::Other);
7429     ValueVTs.push_back(MVT::Glue);
7430     NodeTys = DAG.getVTList(ValueVTs);
7431   } else
7432     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7433 
7434   // Replace the target specific call node with a PATCHPOINT node.
7435   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7436                                          dl, NodeTys, Ops);
7437 
7438   // Update the NodeMap.
7439   if (HasDef) {
7440     if (IsAnyRegCC)
7441       setValue(CS.getInstruction(), SDValue(MN, 0));
7442     else
7443       setValue(CS.getInstruction(), Result.first);
7444   }
7445 
7446   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7447   // call sequence. Furthermore the location of the chain and glue can change
7448   // when the AnyReg calling convention is used and the intrinsic returns a
7449   // value.
7450   if (IsAnyRegCC && HasDef) {
7451     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7452     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7453     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7454   } else
7455     DAG.ReplaceAllUsesWith(Call, MN);
7456   DAG.DeleteNode(Call);
7457 
7458   // Inform the Frame Information that we have a patchpoint in this function.
7459   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7460 }
7461 
7462 /// Returns an AttributeSet representing the attributes applied to the return
7463 /// value of the given call.
getReturnAttrs(TargetLowering::CallLoweringInfo & CLI)7464 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7465   SmallVector<Attribute::AttrKind, 2> Attrs;
7466   if (CLI.RetSExt)
7467     Attrs.push_back(Attribute::SExt);
7468   if (CLI.RetZExt)
7469     Attrs.push_back(Attribute::ZExt);
7470   if (CLI.IsInReg)
7471     Attrs.push_back(Attribute::InReg);
7472 
7473   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7474                            Attrs);
7475 }
7476 
7477 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7478 /// implementation, which just calls LowerCall.
7479 /// FIXME: When all targets are
7480 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7481 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const7482 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7483   // Handle the incoming return values from the call.
7484   CLI.Ins.clear();
7485   Type *OrigRetTy = CLI.RetTy;
7486   SmallVector<EVT, 4> RetTys;
7487   SmallVector<uint64_t, 4> Offsets;
7488   auto &DL = CLI.DAG.getDataLayout();
7489   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7490 
7491   SmallVector<ISD::OutputArg, 4> Outs;
7492   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7493 
7494   bool CanLowerReturn =
7495       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7496                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7497 
7498   SDValue DemoteStackSlot;
7499   int DemoteStackIdx = -100;
7500   if (!CanLowerReturn) {
7501     // FIXME: equivalent assert?
7502     // assert(!CS.hasInAllocaArgument() &&
7503     //        "sret demotion is incompatible with inalloca");
7504     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7505     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7506     MachineFunction &MF = CLI.DAG.getMachineFunction();
7507     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7508     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7509 
7510     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7511     ArgListEntry Entry;
7512     Entry.Node = DemoteStackSlot;
7513     Entry.Ty = StackSlotPtrType;
7514     Entry.isSExt = false;
7515     Entry.isZExt = false;
7516     Entry.isInReg = false;
7517     Entry.isSRet = true;
7518     Entry.isNest = false;
7519     Entry.isByVal = false;
7520     Entry.isReturned = false;
7521     Entry.isSwiftSelf = false;
7522     Entry.isSwiftError = false;
7523     Entry.Alignment = Align;
7524     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7525     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7526 
7527     // sret demotion isn't compatible with tail-calls, since the sret argument
7528     // points into the callers stack frame.
7529     CLI.IsTailCall = false;
7530   } else {
7531     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7532       EVT VT = RetTys[I];
7533       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7534       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7535       for (unsigned i = 0; i != NumRegs; ++i) {
7536         ISD::InputArg MyFlags;
7537         MyFlags.VT = RegisterVT;
7538         MyFlags.ArgVT = VT;
7539         MyFlags.Used = CLI.IsReturnValueUsed;
7540         if (CLI.RetSExt)
7541           MyFlags.Flags.setSExt();
7542         if (CLI.RetZExt)
7543           MyFlags.Flags.setZExt();
7544         if (CLI.IsInReg)
7545           MyFlags.Flags.setInReg();
7546         CLI.Ins.push_back(MyFlags);
7547       }
7548     }
7549   }
7550 
7551   // We push in swifterror return as the last element of CLI.Ins.
7552   ArgListTy &Args = CLI.getArgs();
7553   if (supportSwiftError()) {
7554     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7555       if (Args[i].isSwiftError) {
7556         ISD::InputArg MyFlags;
7557         MyFlags.VT = getPointerTy(DL);
7558         MyFlags.ArgVT = EVT(getPointerTy(DL));
7559         MyFlags.Flags.setSwiftError();
7560         CLI.Ins.push_back(MyFlags);
7561       }
7562     }
7563   }
7564 
7565   // Handle all of the outgoing arguments.
7566   CLI.Outs.clear();
7567   CLI.OutVals.clear();
7568   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7569     SmallVector<EVT, 4> ValueVTs;
7570     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7571     Type *FinalType = Args[i].Ty;
7572     if (Args[i].isByVal)
7573       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7574     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7575         FinalType, CLI.CallConv, CLI.IsVarArg);
7576     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7577          ++Value) {
7578       EVT VT = ValueVTs[Value];
7579       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7580       SDValue Op = SDValue(Args[i].Node.getNode(),
7581                            Args[i].Node.getResNo() + Value);
7582       ISD::ArgFlagsTy Flags;
7583       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7584 
7585       if (Args[i].isZExt)
7586         Flags.setZExt();
7587       if (Args[i].isSExt)
7588         Flags.setSExt();
7589       if (Args[i].isInReg)
7590         Flags.setInReg();
7591       if (Args[i].isSRet)
7592         Flags.setSRet();
7593       if (Args[i].isSwiftSelf)
7594         Flags.setSwiftSelf();
7595       if (Args[i].isSwiftError)
7596         Flags.setSwiftError();
7597       if (Args[i].isByVal)
7598         Flags.setByVal();
7599       if (Args[i].isInAlloca) {
7600         Flags.setInAlloca();
7601         // Set the byval flag for CCAssignFn callbacks that don't know about
7602         // inalloca.  This way we can know how many bytes we should've allocated
7603         // and how many bytes a callee cleanup function will pop.  If we port
7604         // inalloca to more targets, we'll have to add custom inalloca handling
7605         // in the various CC lowering callbacks.
7606         Flags.setByVal();
7607       }
7608       if (Args[i].isByVal || Args[i].isInAlloca) {
7609         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7610         Type *ElementTy = Ty->getElementType();
7611         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7612         // For ByVal, alignment should come from FE.  BE will guess if this
7613         // info is not there but there are cases it cannot get right.
7614         unsigned FrameAlign;
7615         if (Args[i].Alignment)
7616           FrameAlign = Args[i].Alignment;
7617         else
7618           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7619         Flags.setByValAlign(FrameAlign);
7620       }
7621       if (Args[i].isNest)
7622         Flags.setNest();
7623       if (NeedsRegBlock)
7624         Flags.setInConsecutiveRegs();
7625       Flags.setOrigAlign(OriginalAlignment);
7626 
7627       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7628       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7629       SmallVector<SDValue, 4> Parts(NumParts);
7630       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7631 
7632       if (Args[i].isSExt)
7633         ExtendKind = ISD::SIGN_EXTEND;
7634       else if (Args[i].isZExt)
7635         ExtendKind = ISD::ZERO_EXTEND;
7636 
7637       // Conservatively only handle 'returned' on non-vectors for now
7638       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7639         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7640                "unexpected use of 'returned'");
7641         // Before passing 'returned' to the target lowering code, ensure that
7642         // either the register MVT and the actual EVT are the same size or that
7643         // the return value and argument are extended in the same way; in these
7644         // cases it's safe to pass the argument register value unchanged as the
7645         // return register value (although it's at the target's option whether
7646         // to do so)
7647         // TODO: allow code generation to take advantage of partially preserved
7648         // registers rather than clobbering the entire register when the
7649         // parameter extension method is not compatible with the return
7650         // extension method
7651         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7652             (ExtendKind != ISD::ANY_EXTEND &&
7653              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7654         Flags.setReturned();
7655       }
7656 
7657       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7658                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7659 
7660       for (unsigned j = 0; j != NumParts; ++j) {
7661         // if it isn't first piece, alignment must be 1
7662         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7663                                i < CLI.NumFixedArgs,
7664                                i, j*Parts[j].getValueType().getStoreSize());
7665         if (NumParts > 1 && j == 0)
7666           MyFlags.Flags.setSplit();
7667         else if (j != 0) {
7668           MyFlags.Flags.setOrigAlign(1);
7669           if (j == NumParts - 1)
7670             MyFlags.Flags.setSplitEnd();
7671         }
7672 
7673         CLI.Outs.push_back(MyFlags);
7674         CLI.OutVals.push_back(Parts[j]);
7675       }
7676 
7677       if (NeedsRegBlock && Value == NumValues - 1)
7678         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7679     }
7680   }
7681 
7682   SmallVector<SDValue, 4> InVals;
7683   CLI.Chain = LowerCall(CLI, InVals);
7684 
7685   // Update CLI.InVals to use outside of this function.
7686   CLI.InVals = InVals;
7687 
7688   // Verify that the target's LowerCall behaved as expected.
7689   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7690          "LowerCall didn't return a valid chain!");
7691   assert((!CLI.IsTailCall || InVals.empty()) &&
7692          "LowerCall emitted a return value for a tail call!");
7693   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7694          "LowerCall didn't emit the correct number of values!");
7695 
7696   // For a tail call, the return value is merely live-out and there aren't
7697   // any nodes in the DAG representing it. Return a special value to
7698   // indicate that a tail call has been emitted and no more Instructions
7699   // should be processed in the current block.
7700   if (CLI.IsTailCall) {
7701     CLI.DAG.setRoot(CLI.Chain);
7702     return std::make_pair(SDValue(), SDValue());
7703   }
7704 
7705 #ifndef NDEBUG
7706   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7707     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7708     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7709            "LowerCall emitted a value with the wrong type!");
7710   }
7711 #endif
7712 
7713   SmallVector<SDValue, 4> ReturnValues;
7714   if (!CanLowerReturn) {
7715     // The instruction result is the result of loading from the
7716     // hidden sret parameter.
7717     SmallVector<EVT, 1> PVTs;
7718     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7719 
7720     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7721     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7722     EVT PtrVT = PVTs[0];
7723 
7724     unsigned NumValues = RetTys.size();
7725     ReturnValues.resize(NumValues);
7726     SmallVector<SDValue, 4> Chains(NumValues);
7727 
7728     // An aggregate return value cannot wrap around the address space, so
7729     // offsets to its parts don't wrap either.
7730     SDNodeFlags Flags;
7731     Flags.setNoUnsignedWrap(true);
7732 
7733     for (unsigned i = 0; i < NumValues; ++i) {
7734       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7735                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7736                                                         PtrVT), &Flags);
7737       SDValue L = CLI.DAG.getLoad(
7738           RetTys[i], CLI.DL, CLI.Chain, Add,
7739           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7740                                             DemoteStackIdx, Offsets[i]),
7741           false, false, false, 1);
7742       ReturnValues[i] = L;
7743       Chains[i] = L.getValue(1);
7744     }
7745 
7746     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7747   } else {
7748     // Collect the legal value parts into potentially illegal values
7749     // that correspond to the original function's return values.
7750     Optional<ISD::NodeType> AssertOp;
7751     if (CLI.RetSExt)
7752       AssertOp = ISD::AssertSext;
7753     else if (CLI.RetZExt)
7754       AssertOp = ISD::AssertZext;
7755     unsigned CurReg = 0;
7756     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7757       EVT VT = RetTys[I];
7758       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7759       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7760 
7761       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7762                                               NumRegs, RegisterVT, VT, nullptr,
7763                                               AssertOp));
7764       CurReg += NumRegs;
7765     }
7766 
7767     // For a function returning void, there is no return value. We can't create
7768     // such a node, so we just return a null return value in that case. In
7769     // that case, nothing will actually look at the value.
7770     if (ReturnValues.empty())
7771       return std::make_pair(SDValue(), CLI.Chain);
7772   }
7773 
7774   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7775                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7776   return std::make_pair(Res, CLI.Chain);
7777 }
7778 
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const7779 void TargetLowering::LowerOperationWrapper(SDNode *N,
7780                                            SmallVectorImpl<SDValue> &Results,
7781                                            SelectionDAG &DAG) const {
7782   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7783     Results.push_back(Res);
7784 }
7785 
LowerOperation(SDValue Op,SelectionDAG & DAG) const7786 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7787   llvm_unreachable("LowerOperation not implemented for this target!");
7788 }
7789 
7790 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)7791 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7792   SDValue Op = getNonRegisterValue(V);
7793   assert((Op.getOpcode() != ISD::CopyFromReg ||
7794           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7795          "Copy from a reg to the same reg!");
7796   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7797 
7798   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7799   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7800                    V->getType());
7801   SDValue Chain = DAG.getEntryNode();
7802 
7803   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7804                               FuncInfo.PreferredExtendType.end())
7805                                  ? ISD::ANY_EXTEND
7806                                  : FuncInfo.PreferredExtendType[V];
7807   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7808   PendingExports.push_back(Chain);
7809 }
7810 
7811 #include "llvm/CodeGen/SelectionDAGISel.h"
7812 
7813 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7814 /// entry block, return true.  This includes arguments used by switches, since
7815 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)7816 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7817   // With FastISel active, we may be splitting blocks, so force creation
7818   // of virtual registers for all non-dead arguments.
7819   if (FastISel)
7820     return A->use_empty();
7821 
7822   const BasicBlock &Entry = A->getParent()->front();
7823   for (const User *U : A->users())
7824     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7825       return false;  // Use not in entry block.
7826 
7827   return true;
7828 }
7829 
LowerArguments(const Function & F)7830 void SelectionDAGISel::LowerArguments(const Function &F) {
7831   SelectionDAG &DAG = SDB->DAG;
7832   SDLoc dl = SDB->getCurSDLoc();
7833   const DataLayout &DL = DAG.getDataLayout();
7834   SmallVector<ISD::InputArg, 16> Ins;
7835 
7836   if (!FuncInfo->CanLowerReturn) {
7837     // Put in an sret pointer parameter before all the other parameters.
7838     SmallVector<EVT, 1> ValueVTs;
7839     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7840                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7841 
7842     // NOTE: Assuming that a pointer will never break down to more than one VT
7843     // or one register.
7844     ISD::ArgFlagsTy Flags;
7845     Flags.setSRet();
7846     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7847     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7848                          ISD::InputArg::NoArgIndex, 0);
7849     Ins.push_back(RetArg);
7850   }
7851 
7852   // Set up the incoming argument description vector.
7853   unsigned Idx = 1;
7854   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7855        I != E; ++I, ++Idx) {
7856     SmallVector<EVT, 4> ValueVTs;
7857     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7858     bool isArgValueUsed = !I->use_empty();
7859     unsigned PartBase = 0;
7860     Type *FinalType = I->getType();
7861     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7862       FinalType = cast<PointerType>(FinalType)->getElementType();
7863     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7864         FinalType, F.getCallingConv(), F.isVarArg());
7865     for (unsigned Value = 0, NumValues = ValueVTs.size();
7866          Value != NumValues; ++Value) {
7867       EVT VT = ValueVTs[Value];
7868       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7869       ISD::ArgFlagsTy Flags;
7870       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7871 
7872       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7873         Flags.setZExt();
7874       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7875         Flags.setSExt();
7876       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7877         Flags.setInReg();
7878       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7879         Flags.setSRet();
7880       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7881         Flags.setSwiftSelf();
7882       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7883         Flags.setSwiftError();
7884       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7885         Flags.setByVal();
7886       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7887         Flags.setInAlloca();
7888         // Set the byval flag for CCAssignFn callbacks that don't know about
7889         // inalloca.  This way we can know how many bytes we should've allocated
7890         // and how many bytes a callee cleanup function will pop.  If we port
7891         // inalloca to more targets, we'll have to add custom inalloca handling
7892         // in the various CC lowering callbacks.
7893         Flags.setByVal();
7894       }
7895       if (F.getCallingConv() == CallingConv::X86_INTR) {
7896         // IA Interrupt passes frame (1st parameter) by value in the stack.
7897         if (Idx == 1)
7898           Flags.setByVal();
7899       }
7900       if (Flags.isByVal() || Flags.isInAlloca()) {
7901         PointerType *Ty = cast<PointerType>(I->getType());
7902         Type *ElementTy = Ty->getElementType();
7903         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7904         // For ByVal, alignment should be passed from FE.  BE will guess if
7905         // this info is not there but there are cases it cannot get right.
7906         unsigned FrameAlign;
7907         if (F.getParamAlignment(Idx))
7908           FrameAlign = F.getParamAlignment(Idx);
7909         else
7910           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7911         Flags.setByValAlign(FrameAlign);
7912       }
7913       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7914         Flags.setNest();
7915       if (NeedsRegBlock)
7916         Flags.setInConsecutiveRegs();
7917       Flags.setOrigAlign(OriginalAlignment);
7918 
7919       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7920       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7921       for (unsigned i = 0; i != NumRegs; ++i) {
7922         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7923                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7924         if (NumRegs > 1 && i == 0)
7925           MyFlags.Flags.setSplit();
7926         // if it isn't first piece, alignment must be 1
7927         else if (i > 0) {
7928           MyFlags.Flags.setOrigAlign(1);
7929           if (i == NumRegs - 1)
7930             MyFlags.Flags.setSplitEnd();
7931         }
7932         Ins.push_back(MyFlags);
7933       }
7934       if (NeedsRegBlock && Value == NumValues - 1)
7935         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7936       PartBase += VT.getStoreSize();
7937     }
7938   }
7939 
7940   // Call the target to set up the argument values.
7941   SmallVector<SDValue, 8> InVals;
7942   SDValue NewRoot = TLI->LowerFormalArguments(
7943       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7944 
7945   // Verify that the target's LowerFormalArguments behaved as expected.
7946   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7947          "LowerFormalArguments didn't return a valid chain!");
7948   assert(InVals.size() == Ins.size() &&
7949          "LowerFormalArguments didn't emit the correct number of values!");
7950   DEBUG({
7951       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7952         assert(InVals[i].getNode() &&
7953                "LowerFormalArguments emitted a null value!");
7954         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7955                "LowerFormalArguments emitted a value with the wrong type!");
7956       }
7957     });
7958 
7959   // Update the DAG with the new chain value resulting from argument lowering.
7960   DAG.setRoot(NewRoot);
7961 
7962   // Set up the argument values.
7963   unsigned i = 0;
7964   Idx = 1;
7965   if (!FuncInfo->CanLowerReturn) {
7966     // Create a virtual register for the sret pointer, and put in a copy
7967     // from the sret argument into it.
7968     SmallVector<EVT, 1> ValueVTs;
7969     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7970                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7971     MVT VT = ValueVTs[0].getSimpleVT();
7972     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7973     Optional<ISD::NodeType> AssertOp = None;
7974     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7975                                         RegVT, VT, nullptr, AssertOp);
7976 
7977     MachineFunction& MF = SDB->DAG.getMachineFunction();
7978     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7979     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7980     FuncInfo->DemoteRegister = SRetReg;
7981     NewRoot =
7982         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7983     DAG.setRoot(NewRoot);
7984 
7985     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7986     // Idx indexes LLVM arguments.  Don't touch it.
7987     ++i;
7988   }
7989 
7990   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7991       ++I, ++Idx) {
7992     SmallVector<SDValue, 4> ArgValues;
7993     SmallVector<EVT, 4> ValueVTs;
7994     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7995     unsigned NumValues = ValueVTs.size();
7996 
7997     // If this argument is unused then remember its value. It is used to generate
7998     // debugging information.
7999     if (I->use_empty() && NumValues) {
8000       SDB->setUnusedArgValue(&*I, InVals[i]);
8001 
8002       // Also remember any frame index for use in FastISel.
8003       if (FrameIndexSDNode *FI =
8004           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8005         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8006     }
8007 
8008     for (unsigned Val = 0; Val != NumValues; ++Val) {
8009       EVT VT = ValueVTs[Val];
8010       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8011       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8012 
8013       if (!I->use_empty()) {
8014         Optional<ISD::NodeType> AssertOp;
8015         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8016           AssertOp = ISD::AssertSext;
8017         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8018           AssertOp = ISD::AssertZext;
8019 
8020         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8021                                              NumParts, PartVT, VT,
8022                                              nullptr, AssertOp));
8023       }
8024 
8025       i += NumParts;
8026     }
8027 
8028     // We don't need to do anything else for unused arguments.
8029     if (ArgValues.empty())
8030       continue;
8031 
8032     // Note down frame index.
8033     if (FrameIndexSDNode *FI =
8034         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8035       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8036 
8037     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8038                                      SDB->getCurSDLoc());
8039 
8040     SDB->setValue(&*I, Res);
8041     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8042       if (LoadSDNode *LNode =
8043           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8044         if (FrameIndexSDNode *FI =
8045             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8046         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8047     }
8048 
8049     // Update SwiftErrorMap.
8050     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8051         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8052       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8053       if (TargetRegisterInfo::isVirtualRegister(Reg))
8054         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8055     }
8056 
8057     // If this argument is live outside of the entry block, insert a copy from
8058     // wherever we got it to the vreg that other BB's will reference it as.
8059     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8060       // If we can, though, try to skip creating an unnecessary vreg.
8061       // FIXME: This isn't very clean... it would be nice to make this more
8062       // general.  It's also subtly incompatible with the hacks FastISel
8063       // uses with vregs.
8064       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8065       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8066         FuncInfo->ValueMap[&*I] = Reg;
8067         continue;
8068       }
8069     }
8070     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8071       FuncInfo->InitializeRegForValue(&*I);
8072       SDB->CopyToExportRegsIfNeeded(&*I);
8073     }
8074   }
8075 
8076   assert(i == InVals.size() && "Argument register count mismatch!");
8077 
8078   // Finally, if the target has anything special to do, allow it to do so.
8079   EmitFunctionEntryCode();
8080 }
8081 
8082 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8083 /// ensure constants are generated when needed.  Remember the virtual registers
8084 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8085 /// directly add them, because expansion might result in multiple MBB's for one
8086 /// BB.  As such, the start of the BB might correspond to a different MBB than
8087 /// the end.
8088 ///
8089 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)8090 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8091   const TerminatorInst *TI = LLVMBB->getTerminator();
8092 
8093   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8094 
8095   // Check PHI nodes in successors that expect a value to be available from this
8096   // block.
8097   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8098     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8099     if (!isa<PHINode>(SuccBB->begin())) continue;
8100     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8101 
8102     // If this terminator has multiple identical successors (common for
8103     // switches), only handle each succ once.
8104     if (!SuccsHandled.insert(SuccMBB).second)
8105       continue;
8106 
8107     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8108 
8109     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8110     // nodes and Machine PHI nodes, but the incoming operands have not been
8111     // emitted yet.
8112     for (BasicBlock::const_iterator I = SuccBB->begin();
8113          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8114       // Ignore dead phi's.
8115       if (PN->use_empty()) continue;
8116 
8117       // Skip empty types
8118       if (PN->getType()->isEmptyTy())
8119         continue;
8120 
8121       unsigned Reg;
8122       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8123 
8124       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8125         unsigned &RegOut = ConstantsOut[C];
8126         if (RegOut == 0) {
8127           RegOut = FuncInfo.CreateRegs(C->getType());
8128           CopyValueToVirtualRegister(C, RegOut);
8129         }
8130         Reg = RegOut;
8131       } else {
8132         DenseMap<const Value *, unsigned>::iterator I =
8133           FuncInfo.ValueMap.find(PHIOp);
8134         if (I != FuncInfo.ValueMap.end())
8135           Reg = I->second;
8136         else {
8137           assert(isa<AllocaInst>(PHIOp) &&
8138                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8139                  "Didn't codegen value into a register!??");
8140           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8141           CopyValueToVirtualRegister(PHIOp, Reg);
8142         }
8143       }
8144 
8145       // Remember that this register needs to added to the machine PHI node as
8146       // the input for this MBB.
8147       SmallVector<EVT, 4> ValueVTs;
8148       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8149       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8150       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8151         EVT VT = ValueVTs[vti];
8152         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8153         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8154           FuncInfo.PHINodesToUpdate.push_back(
8155               std::make_pair(&*MBBI++, Reg + i));
8156         Reg += NumRegisters;
8157       }
8158     }
8159   }
8160 
8161   ConstantsOut.clear();
8162 }
8163 
8164 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8165 /// is 0.
8166 MachineBasicBlock *
8167 SelectionDAGBuilder::StackProtectorDescriptor::
AddSuccessorMBB(const BasicBlock * BB,MachineBasicBlock * ParentMBB,bool IsLikely,MachineBasicBlock * SuccMBB)8168 AddSuccessorMBB(const BasicBlock *BB,
8169                 MachineBasicBlock *ParentMBB,
8170                 bool IsLikely,
8171                 MachineBasicBlock *SuccMBB) {
8172   // If SuccBB has not been created yet, create it.
8173   if (!SuccMBB) {
8174     MachineFunction *MF = ParentMBB->getParent();
8175     MachineFunction::iterator BBI(ParentMBB);
8176     SuccMBB = MF->CreateMachineBasicBlock(BB);
8177     MF->insert(++BBI, SuccMBB);
8178   }
8179   // Add it as a successor of ParentMBB.
8180   ParentMBB->addSuccessor(
8181       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8182   return SuccMBB;
8183 }
8184 
NextBlock(MachineBasicBlock * MBB)8185 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8186   MachineFunction::iterator I(MBB);
8187   if (++I == FuncInfo.MF->end())
8188     return nullptr;
8189   return &*I;
8190 }
8191 
8192 /// During lowering new call nodes can be created (such as memset, etc.).
8193 /// Those will become new roots of the current DAG, but complications arise
8194 /// when they are tail calls. In such cases, the call lowering will update
8195 /// the root, but the builder still needs to know that a tail call has been
8196 /// lowered in order to avoid generating an additional return.
updateDAGForMaybeTailCall(SDValue MaybeTC)8197 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8198   // If the node is null, we do have a tail call.
8199   if (MaybeTC.getNode() != nullptr)
8200     DAG.setRoot(MaybeTC);
8201   else
8202     HasTailCall = true;
8203 }
8204 
isDense(const CaseClusterVector & Clusters,unsigned * TotalCases,unsigned First,unsigned Last,unsigned Density)8205 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8206                                   unsigned *TotalCases, unsigned First,
8207                                   unsigned Last,
8208                                   unsigned Density) {
8209   assert(Last >= First);
8210   assert(TotalCases[Last] >= TotalCases[First]);
8211 
8212   APInt LowCase = Clusters[First].Low->getValue();
8213   APInt HighCase = Clusters[Last].High->getValue();
8214   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8215 
8216   // FIXME: A range of consecutive cases has 100% density, but only requires one
8217   // comparison to lower. We should discriminate against such consecutive ranges
8218   // in jump tables.
8219 
8220   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8221   uint64_t Range = Diff + 1;
8222 
8223   uint64_t NumCases =
8224       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8225 
8226   assert(NumCases < UINT64_MAX / 100);
8227   assert(Range >= NumCases);
8228 
8229   return NumCases * 100 >= Range * Density;
8230 }
8231 
areJTsAllowed(const TargetLowering & TLI,const SwitchInst * SI)8232 static inline bool areJTsAllowed(const TargetLowering &TLI,
8233                                  const SwitchInst *SI) {
8234   const Function *Fn = SI->getParent()->getParent();
8235   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8236     return false;
8237 
8238   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8239          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8240 }
8241 
buildJumpTable(CaseClusterVector & Clusters,unsigned First,unsigned Last,const SwitchInst * SI,MachineBasicBlock * DefaultMBB,CaseCluster & JTCluster)8242 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8243                                          unsigned First, unsigned Last,
8244                                          const SwitchInst *SI,
8245                                          MachineBasicBlock *DefaultMBB,
8246                                          CaseCluster &JTCluster) {
8247   assert(First <= Last);
8248 
8249   auto Prob = BranchProbability::getZero();
8250   unsigned NumCmps = 0;
8251   std::vector<MachineBasicBlock*> Table;
8252   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8253 
8254   // Initialize probabilities in JTProbs.
8255   for (unsigned I = First; I <= Last; ++I)
8256     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8257 
8258   for (unsigned I = First; I <= Last; ++I) {
8259     assert(Clusters[I].Kind == CC_Range);
8260     Prob += Clusters[I].Prob;
8261     APInt Low = Clusters[I].Low->getValue();
8262     APInt High = Clusters[I].High->getValue();
8263     NumCmps += (Low == High) ? 1 : 2;
8264     if (I != First) {
8265       // Fill the gap between this and the previous cluster.
8266       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8267       assert(PreviousHigh.slt(Low));
8268       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8269       for (uint64_t J = 0; J < Gap; J++)
8270         Table.push_back(DefaultMBB);
8271     }
8272     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8273     for (uint64_t J = 0; J < ClusterSize; ++J)
8274       Table.push_back(Clusters[I].MBB);
8275     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8276   }
8277 
8278   unsigned NumDests = JTProbs.size();
8279   if (isSuitableForBitTests(NumDests, NumCmps,
8280                             Clusters[First].Low->getValue(),
8281                             Clusters[Last].High->getValue())) {
8282     // Clusters[First..Last] should be lowered as bit tests instead.
8283     return false;
8284   }
8285 
8286   // Create the MBB that will load from and jump through the table.
8287   // Note: We create it here, but it's not inserted into the function yet.
8288   MachineFunction *CurMF = FuncInfo.MF;
8289   MachineBasicBlock *JumpTableMBB =
8290       CurMF->CreateMachineBasicBlock(SI->getParent());
8291 
8292   // Add successors. Note: use table order for determinism.
8293   SmallPtrSet<MachineBasicBlock *, 8> Done;
8294   for (MachineBasicBlock *Succ : Table) {
8295     if (Done.count(Succ))
8296       continue;
8297     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8298     Done.insert(Succ);
8299   }
8300   JumpTableMBB->normalizeSuccProbs();
8301 
8302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8303   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8304                      ->createJumpTableIndex(Table);
8305 
8306   // Set up the jump table info.
8307   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8308   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8309                       Clusters[Last].High->getValue(), SI->getCondition(),
8310                       nullptr, false);
8311   JTCases.emplace_back(std::move(JTH), std::move(JT));
8312 
8313   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8314                                      JTCases.size() - 1, Prob);
8315   return true;
8316 }
8317 
findJumpTables(CaseClusterVector & Clusters,const SwitchInst * SI,MachineBasicBlock * DefaultMBB)8318 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8319                                          const SwitchInst *SI,
8320                                          MachineBasicBlock *DefaultMBB) {
8321 #ifndef NDEBUG
8322   // Clusters must be non-empty, sorted, and only contain Range clusters.
8323   assert(!Clusters.empty());
8324   for (CaseCluster &C : Clusters)
8325     assert(C.Kind == CC_Range);
8326   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8327     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8328 #endif
8329 
8330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8331   if (!areJTsAllowed(TLI, SI))
8332     return;
8333 
8334   const int64_t N = Clusters.size();
8335   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8336 
8337   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8338   SmallVector<unsigned, 8> TotalCases(N);
8339 
8340   for (unsigned i = 0; i < N; ++i) {
8341     APInt Hi = Clusters[i].High->getValue();
8342     APInt Lo = Clusters[i].Low->getValue();
8343     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8344     if (i != 0)
8345       TotalCases[i] += TotalCases[i - 1];
8346   }
8347 
8348   unsigned MinDensity = JumpTableDensity;
8349   if (DefaultMBB->getParent()->getFunction()->optForSize())
8350     MinDensity = OptsizeJumpTableDensity;
8351   if (N >= MinJumpTableSize
8352       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8353     // Cheap case: the whole range might be suitable for jump table.
8354     CaseCluster JTCluster;
8355     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8356       Clusters[0] = JTCluster;
8357       Clusters.resize(1);
8358       return;
8359     }
8360   }
8361 
8362   // The algorithm below is not suitable for -O0.
8363   if (TM.getOptLevel() == CodeGenOpt::None)
8364     return;
8365 
8366   // Split Clusters into minimum number of dense partitions. The algorithm uses
8367   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8368   // for the Case Statement'" (1994), but builds the MinPartitions array in
8369   // reverse order to make it easier to reconstruct the partitions in ascending
8370   // order. In the choice between two optimal partitionings, it picks the one
8371   // which yields more jump tables.
8372 
8373   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8374   SmallVector<unsigned, 8> MinPartitions(N);
8375   // LastElement[i] is the last element of the partition starting at i.
8376   SmallVector<unsigned, 8> LastElement(N);
8377   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8378   SmallVector<unsigned, 8> NumTables(N);
8379 
8380   // Base case: There is only one way to partition Clusters[N-1].
8381   MinPartitions[N - 1] = 1;
8382   LastElement[N - 1] = N - 1;
8383   assert(MinJumpTableSize > 1);
8384   NumTables[N - 1] = 0;
8385 
8386   // Note: loop indexes are signed to avoid underflow.
8387   for (int64_t i = N - 2; i >= 0; i--) {
8388     // Find optimal partitioning of Clusters[i..N-1].
8389     // Baseline: Put Clusters[i] into a partition on its own.
8390     MinPartitions[i] = MinPartitions[i + 1] + 1;
8391     LastElement[i] = i;
8392     NumTables[i] = NumTables[i + 1];
8393 
8394     // Search for a solution that results in fewer partitions.
8395     for (int64_t j = N - 1; j > i; j--) {
8396       // Try building a partition from Clusters[i..j].
8397       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8398         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8399         bool IsTable = j - i + 1 >= MinJumpTableSize;
8400         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8401 
8402         // If this j leads to fewer partitions, or same number of partitions
8403         // with more lookup tables, it is a better partitioning.
8404         if (NumPartitions < MinPartitions[i] ||
8405             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8406           MinPartitions[i] = NumPartitions;
8407           LastElement[i] = j;
8408           NumTables[i] = Tables;
8409         }
8410       }
8411     }
8412   }
8413 
8414   // Iterate over the partitions, replacing some with jump tables in-place.
8415   unsigned DstIndex = 0;
8416   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8417     Last = LastElement[First];
8418     assert(Last >= First);
8419     assert(DstIndex <= First);
8420     unsigned NumClusters = Last - First + 1;
8421 
8422     CaseCluster JTCluster;
8423     if (NumClusters >= MinJumpTableSize &&
8424         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8425       Clusters[DstIndex++] = JTCluster;
8426     } else {
8427       for (unsigned I = First; I <= Last; ++I)
8428         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8429     }
8430   }
8431   Clusters.resize(DstIndex);
8432 }
8433 
rangeFitsInWord(const APInt & Low,const APInt & High)8434 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8435   // FIXME: Using the pointer type doesn't seem ideal.
8436   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8437   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8438   return Range <= BW;
8439 }
8440 
isSuitableForBitTests(unsigned NumDests,unsigned NumCmps,const APInt & Low,const APInt & High)8441 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8442                                                 unsigned NumCmps,
8443                                                 const APInt &Low,
8444                                                 const APInt &High) {
8445   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8446   // range of cases both require only one branch to lower. Just looking at the
8447   // number of clusters and destinations should be enough to decide whether to
8448   // build bit tests.
8449 
8450   // To lower a range with bit tests, the range must fit the bitwidth of a
8451   // machine word.
8452   if (!rangeFitsInWord(Low, High))
8453     return false;
8454 
8455   // Decide whether it's profitable to lower this range with bit tests. Each
8456   // destination requires a bit test and branch, and there is an overall range
8457   // check branch. For a small number of clusters, separate comparisons might be
8458   // cheaper, and for many destinations, splitting the range might be better.
8459   return (NumDests == 1 && NumCmps >= 3) ||
8460          (NumDests == 2 && NumCmps >= 5) ||
8461          (NumDests == 3 && NumCmps >= 6);
8462 }
8463 
buildBitTests(CaseClusterVector & Clusters,unsigned First,unsigned Last,const SwitchInst * SI,CaseCluster & BTCluster)8464 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8465                                         unsigned First, unsigned Last,
8466                                         const SwitchInst *SI,
8467                                         CaseCluster &BTCluster) {
8468   assert(First <= Last);
8469   if (First == Last)
8470     return false;
8471 
8472   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8473   unsigned NumCmps = 0;
8474   for (int64_t I = First; I <= Last; ++I) {
8475     assert(Clusters[I].Kind == CC_Range);
8476     Dests.set(Clusters[I].MBB->getNumber());
8477     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8478   }
8479   unsigned NumDests = Dests.count();
8480 
8481   APInt Low = Clusters[First].Low->getValue();
8482   APInt High = Clusters[Last].High->getValue();
8483   assert(Low.slt(High));
8484 
8485   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8486     return false;
8487 
8488   APInt LowBound;
8489   APInt CmpRange;
8490 
8491   const int BitWidth = DAG.getTargetLoweringInfo()
8492                            .getPointerTy(DAG.getDataLayout())
8493                            .getSizeInBits();
8494   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8495 
8496   // Check if the clusters cover a contiguous range such that no value in the
8497   // range will jump to the default statement.
8498   bool ContiguousRange = true;
8499   for (int64_t I = First + 1; I <= Last; ++I) {
8500     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8501       ContiguousRange = false;
8502       break;
8503     }
8504   }
8505 
8506   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8507     // Optimize the case where all the case values fit in a word without having
8508     // to subtract minValue. In this case, we can optimize away the subtraction.
8509     LowBound = APInt::getNullValue(Low.getBitWidth());
8510     CmpRange = High;
8511     ContiguousRange = false;
8512   } else {
8513     LowBound = Low;
8514     CmpRange = High - Low;
8515   }
8516 
8517   CaseBitsVector CBV;
8518   auto TotalProb = BranchProbability::getZero();
8519   for (unsigned i = First; i <= Last; ++i) {
8520     // Find the CaseBits for this destination.
8521     unsigned j;
8522     for (j = 0; j < CBV.size(); ++j)
8523       if (CBV[j].BB == Clusters[i].MBB)
8524         break;
8525     if (j == CBV.size())
8526       CBV.push_back(
8527           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8528     CaseBits *CB = &CBV[j];
8529 
8530     // Update Mask, Bits and ExtraProb.
8531     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8532     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8533     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8534     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8535     CB->Bits += Hi - Lo + 1;
8536     CB->ExtraProb += Clusters[i].Prob;
8537     TotalProb += Clusters[i].Prob;
8538   }
8539 
8540   BitTestInfo BTI;
8541   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8542     // Sort by probability first, number of bits second.
8543     if (a.ExtraProb != b.ExtraProb)
8544       return a.ExtraProb > b.ExtraProb;
8545     return a.Bits > b.Bits;
8546   });
8547 
8548   for (auto &CB : CBV) {
8549     MachineBasicBlock *BitTestBB =
8550         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8551     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8552   }
8553   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8554                             SI->getCondition(), -1U, MVT::Other, false,
8555                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8556                             TotalProb);
8557 
8558   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8559                                     BitTestCases.size() - 1, TotalProb);
8560   return true;
8561 }
8562 
findBitTestClusters(CaseClusterVector & Clusters,const SwitchInst * SI)8563 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8564                                               const SwitchInst *SI) {
8565 // Partition Clusters into as few subsets as possible, where each subset has a
8566 // range that fits in a machine word and has <= 3 unique destinations.
8567 
8568 #ifndef NDEBUG
8569   // Clusters must be sorted and contain Range or JumpTable clusters.
8570   assert(!Clusters.empty());
8571   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8572   for (const CaseCluster &C : Clusters)
8573     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8574   for (unsigned i = 1; i < Clusters.size(); ++i)
8575     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8576 #endif
8577 
8578   // The algorithm below is not suitable for -O0.
8579   if (TM.getOptLevel() == CodeGenOpt::None)
8580     return;
8581 
8582   // If target does not have legal shift left, do not emit bit tests at all.
8583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8584   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8585   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8586     return;
8587 
8588   int BitWidth = PTy.getSizeInBits();
8589   const int64_t N = Clusters.size();
8590 
8591   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8592   SmallVector<unsigned, 8> MinPartitions(N);
8593   // LastElement[i] is the last element of the partition starting at i.
8594   SmallVector<unsigned, 8> LastElement(N);
8595 
8596   // FIXME: This might not be the best algorithm for finding bit test clusters.
8597 
8598   // Base case: There is only one way to partition Clusters[N-1].
8599   MinPartitions[N - 1] = 1;
8600   LastElement[N - 1] = N - 1;
8601 
8602   // Note: loop indexes are signed to avoid underflow.
8603   for (int64_t i = N - 2; i >= 0; --i) {
8604     // Find optimal partitioning of Clusters[i..N-1].
8605     // Baseline: Put Clusters[i] into a partition on its own.
8606     MinPartitions[i] = MinPartitions[i + 1] + 1;
8607     LastElement[i] = i;
8608 
8609     // Search for a solution that results in fewer partitions.
8610     // Note: the search is limited by BitWidth, reducing time complexity.
8611     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8612       // Try building a partition from Clusters[i..j].
8613 
8614       // Check the range.
8615       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8616                            Clusters[j].High->getValue()))
8617         continue;
8618 
8619       // Check nbr of destinations and cluster types.
8620       // FIXME: This works, but doesn't seem very efficient.
8621       bool RangesOnly = true;
8622       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8623       for (int64_t k = i; k <= j; k++) {
8624         if (Clusters[k].Kind != CC_Range) {
8625           RangesOnly = false;
8626           break;
8627         }
8628         Dests.set(Clusters[k].MBB->getNumber());
8629       }
8630       if (!RangesOnly || Dests.count() > 3)
8631         break;
8632 
8633       // Check if it's a better partition.
8634       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8635       if (NumPartitions < MinPartitions[i]) {
8636         // Found a better partition.
8637         MinPartitions[i] = NumPartitions;
8638         LastElement[i] = j;
8639       }
8640     }
8641   }
8642 
8643   // Iterate over the partitions, replacing with bit-test clusters in-place.
8644   unsigned DstIndex = 0;
8645   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8646     Last = LastElement[First];
8647     assert(First <= Last);
8648     assert(DstIndex <= First);
8649 
8650     CaseCluster BitTestCluster;
8651     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8652       Clusters[DstIndex++] = BitTestCluster;
8653     } else {
8654       size_t NumClusters = Last - First + 1;
8655       std::memmove(&Clusters[DstIndex], &Clusters[First],
8656                    sizeof(Clusters[0]) * NumClusters);
8657       DstIndex += NumClusters;
8658     }
8659   }
8660   Clusters.resize(DstIndex);
8661 }
8662 
lowerWorkItem(SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB)8663 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8664                                         MachineBasicBlock *SwitchMBB,
8665                                         MachineBasicBlock *DefaultMBB) {
8666   MachineFunction *CurMF = FuncInfo.MF;
8667   MachineBasicBlock *NextMBB = nullptr;
8668   MachineFunction::iterator BBI(W.MBB);
8669   if (++BBI != FuncInfo.MF->end())
8670     NextMBB = &*BBI;
8671 
8672   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8673 
8674   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8675 
8676   if (Size == 2 && W.MBB == SwitchMBB) {
8677     // If any two of the cases has the same destination, and if one value
8678     // is the same as the other, but has one bit unset that the other has set,
8679     // use bit manipulation to do two compares at once.  For example:
8680     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8681     // TODO: This could be extended to merge any 2 cases in switches with 3
8682     // cases.
8683     // TODO: Handle cases where W.CaseBB != SwitchBB.
8684     CaseCluster &Small = *W.FirstCluster;
8685     CaseCluster &Big = *W.LastCluster;
8686 
8687     if (Small.Low == Small.High && Big.Low == Big.High &&
8688         Small.MBB == Big.MBB) {
8689       const APInt &SmallValue = Small.Low->getValue();
8690       const APInt &BigValue = Big.Low->getValue();
8691 
8692       // Check that there is only one bit different.
8693       APInt CommonBit = BigValue ^ SmallValue;
8694       if (CommonBit.isPowerOf2()) {
8695         SDValue CondLHS = getValue(Cond);
8696         EVT VT = CondLHS.getValueType();
8697         SDLoc DL = getCurSDLoc();
8698 
8699         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8700                                  DAG.getConstant(CommonBit, DL, VT));
8701         SDValue Cond = DAG.getSetCC(
8702             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8703             ISD::SETEQ);
8704 
8705         // Update successor info.
8706         // Both Small and Big will jump to Small.BB, so we sum up the
8707         // probabilities.
8708         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8709         if (BPI)
8710           addSuccessorWithProb(
8711               SwitchMBB, DefaultMBB,
8712               // The default destination is the first successor in IR.
8713               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8714         else
8715           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8716 
8717         // Insert the true branch.
8718         SDValue BrCond =
8719             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8720                         DAG.getBasicBlock(Small.MBB));
8721         // Insert the false branch.
8722         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8723                              DAG.getBasicBlock(DefaultMBB));
8724 
8725         DAG.setRoot(BrCond);
8726         return;
8727       }
8728     }
8729   }
8730 
8731   if (TM.getOptLevel() != CodeGenOpt::None) {
8732     // Order cases by probability so the most likely case will be checked first.
8733     std::sort(W.FirstCluster, W.LastCluster + 1,
8734               [](const CaseCluster &a, const CaseCluster &b) {
8735       return a.Prob > b.Prob;
8736     });
8737 
8738     // Rearrange the case blocks so that the last one falls through if possible
8739     // without without changing the order of probabilities.
8740     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8741       --I;
8742       if (I->Prob > W.LastCluster->Prob)
8743         break;
8744       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8745         std::swap(*I, *W.LastCluster);
8746         break;
8747       }
8748     }
8749   }
8750 
8751   // Compute total probability.
8752   BranchProbability DefaultProb = W.DefaultProb;
8753   BranchProbability UnhandledProbs = DefaultProb;
8754   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8755     UnhandledProbs += I->Prob;
8756 
8757   MachineBasicBlock *CurMBB = W.MBB;
8758   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8759     MachineBasicBlock *Fallthrough;
8760     if (I == W.LastCluster) {
8761       // For the last cluster, fall through to the default destination.
8762       Fallthrough = DefaultMBB;
8763     } else {
8764       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8765       CurMF->insert(BBI, Fallthrough);
8766       // Put Cond in a virtual register to make it available from the new blocks.
8767       ExportFromCurrentBlock(Cond);
8768     }
8769     UnhandledProbs -= I->Prob;
8770 
8771     switch (I->Kind) {
8772       case CC_JumpTable: {
8773         // FIXME: Optimize away range check based on pivot comparisons.
8774         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8775         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8776 
8777         // The jump block hasn't been inserted yet; insert it here.
8778         MachineBasicBlock *JumpMBB = JT->MBB;
8779         CurMF->insert(BBI, JumpMBB);
8780 
8781         auto JumpProb = I->Prob;
8782         auto FallthroughProb = UnhandledProbs;
8783 
8784         // If the default statement is a target of the jump table, we evenly
8785         // distribute the default probability to successors of CurMBB. Also
8786         // update the probability on the edge from JumpMBB to Fallthrough.
8787         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8788                                               SE = JumpMBB->succ_end();
8789              SI != SE; ++SI) {
8790           if (*SI == DefaultMBB) {
8791             JumpProb += DefaultProb / 2;
8792             FallthroughProb -= DefaultProb / 2;
8793             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8794             JumpMBB->normalizeSuccProbs();
8795             break;
8796           }
8797         }
8798 
8799         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8800         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8801         CurMBB->normalizeSuccProbs();
8802 
8803         // The jump table header will be inserted in our current block, do the
8804         // range check, and fall through to our fallthrough block.
8805         JTH->HeaderBB = CurMBB;
8806         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8807 
8808         // If we're in the right place, emit the jump table header right now.
8809         if (CurMBB == SwitchMBB) {
8810           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8811           JTH->Emitted = true;
8812         }
8813         break;
8814       }
8815       case CC_BitTests: {
8816         // FIXME: Optimize away range check based on pivot comparisons.
8817         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8818 
8819         // The bit test blocks haven't been inserted yet; insert them here.
8820         for (BitTestCase &BTC : BTB->Cases)
8821           CurMF->insert(BBI, BTC.ThisBB);
8822 
8823         // Fill in fields of the BitTestBlock.
8824         BTB->Parent = CurMBB;
8825         BTB->Default = Fallthrough;
8826 
8827         BTB->DefaultProb = UnhandledProbs;
8828         // If the cases in bit test don't form a contiguous range, we evenly
8829         // distribute the probability on the edge to Fallthrough to two
8830         // successors of CurMBB.
8831         if (!BTB->ContiguousRange) {
8832           BTB->Prob += DefaultProb / 2;
8833           BTB->DefaultProb -= DefaultProb / 2;
8834         }
8835 
8836         // If we're in the right place, emit the bit test header right now.
8837         if (CurMBB == SwitchMBB) {
8838           visitBitTestHeader(*BTB, SwitchMBB);
8839           BTB->Emitted = true;
8840         }
8841         break;
8842       }
8843       case CC_Range: {
8844         const Value *RHS, *LHS, *MHS;
8845         ISD::CondCode CC;
8846         if (I->Low == I->High) {
8847           // Check Cond == I->Low.
8848           CC = ISD::SETEQ;
8849           LHS = Cond;
8850           RHS=I->Low;
8851           MHS = nullptr;
8852         } else {
8853           // Check I->Low <= Cond <= I->High.
8854           CC = ISD::SETLE;
8855           LHS = I->Low;
8856           MHS = Cond;
8857           RHS = I->High;
8858         }
8859 
8860         // The false probability is the sum of all unhandled cases.
8861         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8862                      UnhandledProbs);
8863 
8864         if (CurMBB == SwitchMBB)
8865           visitSwitchCase(CB, SwitchMBB);
8866         else
8867           SwitchCases.push_back(CB);
8868 
8869         break;
8870       }
8871     }
8872     CurMBB = Fallthrough;
8873   }
8874 }
8875 
caseClusterRank(const CaseCluster & CC,CaseClusterIt First,CaseClusterIt Last)8876 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8877                                               CaseClusterIt First,
8878                                               CaseClusterIt Last) {
8879   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8880     if (X.Prob != CC.Prob)
8881       return X.Prob > CC.Prob;
8882 
8883     // Ties are broken by comparing the case value.
8884     return X.Low->getValue().slt(CC.Low->getValue());
8885   });
8886 }
8887 
splitWorkItem(SwitchWorkList & WorkList,const SwitchWorkListItem & W,Value * Cond,MachineBasicBlock * SwitchMBB)8888 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8889                                         const SwitchWorkListItem &W,
8890                                         Value *Cond,
8891                                         MachineBasicBlock *SwitchMBB) {
8892   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8893          "Clusters not sorted?");
8894 
8895   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8896 
8897   // Balance the tree based on branch probabilities to create a near-optimal (in
8898   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8899   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8900   CaseClusterIt LastLeft = W.FirstCluster;
8901   CaseClusterIt FirstRight = W.LastCluster;
8902   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8903   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8904 
8905   // Move LastLeft and FirstRight towards each other from opposite directions to
8906   // find a partitioning of the clusters which balances the probability on both
8907   // sides. If LeftProb and RightProb are equal, alternate which side is
8908   // taken to ensure 0-probability nodes are distributed evenly.
8909   unsigned I = 0;
8910   while (LastLeft + 1 < FirstRight) {
8911     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8912       LeftProb += (++LastLeft)->Prob;
8913     else
8914       RightProb += (--FirstRight)->Prob;
8915     I++;
8916   }
8917 
8918   for (;;) {
8919     // Our binary search tree differs from a typical BST in that ours can have up
8920     // to three values in each leaf. The pivot selection above doesn't take that
8921     // into account, which means the tree might require more nodes and be less
8922     // efficient. We compensate for this here.
8923 
8924     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8925     unsigned NumRight = W.LastCluster - FirstRight + 1;
8926 
8927     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8928       // If one side has less than 3 clusters, and the other has more than 3,
8929       // consider taking a cluster from the other side.
8930 
8931       if (NumLeft < NumRight) {
8932         // Consider moving the first cluster on the right to the left side.
8933         CaseCluster &CC = *FirstRight;
8934         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8935         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8936         if (LeftSideRank <= RightSideRank) {
8937           // Moving the cluster to the left does not demote it.
8938           ++LastLeft;
8939           ++FirstRight;
8940           continue;
8941         }
8942       } else {
8943         assert(NumRight < NumLeft);
8944         // Consider moving the last element on the left to the right side.
8945         CaseCluster &CC = *LastLeft;
8946         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8947         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8948         if (RightSideRank <= LeftSideRank) {
8949           // Moving the cluster to the right does not demot it.
8950           --LastLeft;
8951           --FirstRight;
8952           continue;
8953         }
8954       }
8955     }
8956     break;
8957   }
8958 
8959   assert(LastLeft + 1 == FirstRight);
8960   assert(LastLeft >= W.FirstCluster);
8961   assert(FirstRight <= W.LastCluster);
8962 
8963   // Use the first element on the right as pivot since we will make less-than
8964   // comparisons against it.
8965   CaseClusterIt PivotCluster = FirstRight;
8966   assert(PivotCluster > W.FirstCluster);
8967   assert(PivotCluster <= W.LastCluster);
8968 
8969   CaseClusterIt FirstLeft = W.FirstCluster;
8970   CaseClusterIt LastRight = W.LastCluster;
8971 
8972   const ConstantInt *Pivot = PivotCluster->Low;
8973 
8974   // New blocks will be inserted immediately after the current one.
8975   MachineFunction::iterator BBI(W.MBB);
8976   ++BBI;
8977 
8978   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8979   // we can branch to its destination directly if it's squeezed exactly in
8980   // between the known lower bound and Pivot - 1.
8981   MachineBasicBlock *LeftMBB;
8982   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8983       FirstLeft->Low == W.GE &&
8984       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8985     LeftMBB = FirstLeft->MBB;
8986   } else {
8987     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8988     FuncInfo.MF->insert(BBI, LeftMBB);
8989     WorkList.push_back(
8990         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8991     // Put Cond in a virtual register to make it available from the new blocks.
8992     ExportFromCurrentBlock(Cond);
8993   }
8994 
8995   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8996   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8997   // directly if RHS.High equals the current upper bound.
8998   MachineBasicBlock *RightMBB;
8999   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9000       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9001     RightMBB = FirstRight->MBB;
9002   } else {
9003     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9004     FuncInfo.MF->insert(BBI, RightMBB);
9005     WorkList.push_back(
9006         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9007     // Put Cond in a virtual register to make it available from the new blocks.
9008     ExportFromCurrentBlock(Cond);
9009   }
9010 
9011   // Create the CaseBlock record that will be used to lower the branch.
9012   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9013                LeftProb, RightProb);
9014 
9015   if (W.MBB == SwitchMBB)
9016     visitSwitchCase(CB, SwitchMBB);
9017   else
9018     SwitchCases.push_back(CB);
9019 }
9020 
visitSwitch(const SwitchInst & SI)9021 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9022   // Extract cases from the switch.
9023   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9024   CaseClusterVector Clusters;
9025   Clusters.reserve(SI.getNumCases());
9026   for (auto I : SI.cases()) {
9027     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9028     const ConstantInt *CaseVal = I.getCaseValue();
9029     BranchProbability Prob =
9030         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9031             : BranchProbability(1, SI.getNumCases() + 1);
9032     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9033   }
9034 
9035   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9036 
9037   // Cluster adjacent cases with the same destination. We do this at all
9038   // optimization levels because it's cheap to do and will make codegen faster
9039   // if there are many clusters.
9040   sortAndRangeify(Clusters);
9041 
9042   if (TM.getOptLevel() != CodeGenOpt::None) {
9043     // Replace an unreachable default with the most popular destination.
9044     // FIXME: Exploit unreachable default more aggressively.
9045     bool UnreachableDefault =
9046         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9047     if (UnreachableDefault && !Clusters.empty()) {
9048       DenseMap<const BasicBlock *, unsigned> Popularity;
9049       unsigned MaxPop = 0;
9050       const BasicBlock *MaxBB = nullptr;
9051       for (auto I : SI.cases()) {
9052         const BasicBlock *BB = I.getCaseSuccessor();
9053         if (++Popularity[BB] > MaxPop) {
9054           MaxPop = Popularity[BB];
9055           MaxBB = BB;
9056         }
9057       }
9058       // Set new default.
9059       assert(MaxPop > 0 && MaxBB);
9060       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9061 
9062       // Remove cases that were pointing to the destination that is now the
9063       // default.
9064       CaseClusterVector New;
9065       New.reserve(Clusters.size());
9066       for (CaseCluster &CC : Clusters) {
9067         if (CC.MBB != DefaultMBB)
9068           New.push_back(CC);
9069       }
9070       Clusters = std::move(New);
9071     }
9072   }
9073 
9074   // If there is only the default destination, jump there directly.
9075   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9076   if (Clusters.empty()) {
9077     SwitchMBB->addSuccessor(DefaultMBB);
9078     if (DefaultMBB != NextBlock(SwitchMBB)) {
9079       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9080                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9081     }
9082     return;
9083   }
9084 
9085   findJumpTables(Clusters, &SI, DefaultMBB);
9086   findBitTestClusters(Clusters, &SI);
9087 
9088   DEBUG({
9089     dbgs() << "Case clusters: ";
9090     for (const CaseCluster &C : Clusters) {
9091       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9092       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9093 
9094       C.Low->getValue().print(dbgs(), true);
9095       if (C.Low != C.High) {
9096         dbgs() << '-';
9097         C.High->getValue().print(dbgs(), true);
9098       }
9099       dbgs() << ' ';
9100     }
9101     dbgs() << '\n';
9102   });
9103 
9104   assert(!Clusters.empty());
9105   SwitchWorkList WorkList;
9106   CaseClusterIt First = Clusters.begin();
9107   CaseClusterIt Last = Clusters.end() - 1;
9108   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9109   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9110 
9111   while (!WorkList.empty()) {
9112     SwitchWorkListItem W = WorkList.back();
9113     WorkList.pop_back();
9114     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9115 
9116     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9117       // For optimized builds, lower large range as a balanced binary tree.
9118       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9119       continue;
9120     }
9121 
9122     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9123   }
9124 }
9125