1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72
73 #define DEBUG_TYPE "isel"
74
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81 cl::desc("Generate low-precision inline sequences "
82 "for some float libcalls"),
83 cl::location(LimitFloatPrecision),
84 cl::init(0));
85
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88 cl::desc("Enable fast-math-flags for DAG nodes"));
89
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93 cl::desc("Minimum density for building a jump table in "
94 "a normal function"));
95
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99 cl::desc("Minimum density for building a jump table in "
100 "an optsize function"));
101
102
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120 const SDValue *Parts, unsigned NumParts,
121 MVT PartVT, EVT ValueVT, const Value *V);
122
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent. If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
getCopyFromParts(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V,Optional<ISD::NodeType> AssertOp=None)128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129 const SDValue *Parts, unsigned NumParts,
130 MVT PartVT, EVT ValueVT, const Value *V,
131 Optional<ISD::NodeType> AssertOp = None) {
132 if (ValueVT.isVector())
133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134 PartVT, ValueVT, V);
135
136 assert(NumParts > 0 && "No parts to assemble!");
137 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138 SDValue Val = Parts[0];
139
140 if (NumParts > 1) {
141 // Assemble the value from multiple parts.
142 if (ValueVT.isInteger()) {
143 unsigned PartBits = PartVT.getSizeInBits();
144 unsigned ValueBits = ValueVT.getSizeInBits();
145
146 // Assemble the power of 2 part.
147 unsigned RoundParts = NumParts & (NumParts - 1) ?
148 1 << Log2_32(NumParts) : NumParts;
149 unsigned RoundBits = PartBits * RoundParts;
150 EVT RoundVT = RoundBits == ValueBits ?
151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152 SDValue Lo, Hi;
153
154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155
156 if (RoundParts > 2) {
157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158 PartVT, HalfVT, V);
159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160 RoundParts / 2, PartVT, HalfVT, V);
161 } else {
162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164 }
165
166 if (DAG.getDataLayout().isBigEndian())
167 std::swap(Lo, Hi);
168
169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170
171 if (RoundParts < NumParts) {
172 // Assemble the trailing non-power-of-2 part.
173 unsigned OddParts = NumParts - RoundParts;
174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175 Hi = getCopyFromParts(DAG, DL,
176 Parts + RoundParts, OddParts, PartVT, OddVT, V);
177
178 // Combine the round and odd parts.
179 Lo = Val;
180 if (DAG.getDataLayout().isBigEndian())
181 std::swap(Lo, Hi);
182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184 Hi =
185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187 TLI.getPointerTy(DAG.getDataLayout())));
188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190 }
191 } else if (PartVT.isFloatingPoint()) {
192 // FP split into multiple FP parts (for ppcf128)
193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194 "Unexpected split");
195 SDValue Lo, Hi;
196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199 std::swap(Lo, Hi);
200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201 } else {
202 // FP split into integer parts (soft fp)
203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204 !PartVT.isVector() && "Unexpected split");
205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207 }
208 }
209
210 // There is now one part, held in Val. Correct it to match ValueVT.
211 // PartEVT is the type of the register class that holds the value.
212 // ValueVT is the type of the inline asm operation.
213 EVT PartEVT = Val.getValueType();
214
215 if (PartEVT == ValueVT)
216 return Val;
217
218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219 ValueVT.bitsLT(PartEVT)) {
220 // For an FP value in an integer part, we need to truncate to the right
221 // width first.
222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224 }
225
226 // Handle types that have the same size.
227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229
230 // Handle types with different sizes.
231 if (PartEVT.isInteger() && ValueVT.isInteger()) {
232 if (ValueVT.bitsLT(PartEVT)) {
233 // For a truncate, see if we have any information to
234 // indicate whether the truncated bits will always be
235 // zero or sign-extension.
236 if (AssertOp.hasValue())
237 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238 DAG.getValueType(ValueVT));
239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240 }
241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242 }
243
244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245 // FP_ROUND's are always exact here.
246 if (ValueVT.bitsLT(Val.getValueType()))
247 return DAG.getNode(
248 ISD::FP_ROUND, DL, ValueVT, Val,
249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250
251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252 }
253
254 llvm_unreachable("Unknown mismatch!");
255 }
256
diagnosePossiblyInvalidConstraint(LLVMContext & Ctx,const Value * V,const Twine & ErrMsg)257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258 const Twine &ErrMsg) {
259 const Instruction *I = dyn_cast_or_null<Instruction>(V);
260 if (!V)
261 return Ctx.emitError(ErrMsg);
262
263 const char *AsmError = ", possible invalid constraint for vector type";
264 if (const CallInst *CI = dyn_cast<CallInst>(I))
265 if (isa<InlineAsm>(CI->getCalledValue()))
266 return Ctx.emitError(I, ErrMsg + AsmError);
267
268 return Ctx.emitError(I, ErrMsg);
269 }
270
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent. If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
getCopyFromPartsVector(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,const Value * V)276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277 const SDValue *Parts, unsigned NumParts,
278 MVT PartVT, EVT ValueVT, const Value *V) {
279 assert(ValueVT.isVector() && "Not a vector value");
280 assert(NumParts > 0 && "No parts to assemble!");
281 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282 SDValue Val = Parts[0];
283
284 // Handle a multi-element vector.
285 if (NumParts > 1) {
286 EVT IntermediateVT;
287 MVT RegisterVT;
288 unsigned NumIntermediates;
289 unsigned NumRegs =
290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291 NumIntermediates, RegisterVT);
292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293 NumParts = NumRegs; // Silence a compiler warning.
294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295 assert(RegisterVT.getSizeInBits() ==
296 Parts[0].getSimpleValueType().getSizeInBits() &&
297 "Part type sizes don't match!");
298
299 // Assemble the parts into intermediate operands.
300 SmallVector<SDValue, 8> Ops(NumIntermediates);
301 if (NumIntermediates == NumParts) {
302 // If the register was not expanded, truncate or copy the value,
303 // as appropriate.
304 for (unsigned i = 0; i != NumParts; ++i)
305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306 PartVT, IntermediateVT, V);
307 } else if (NumParts > 0) {
308 // If the intermediate type was expanded, build the intermediate
309 // operands from the parts.
310 assert(NumParts % NumIntermediates == 0 &&
311 "Must expand into a divisible number of parts!");
312 unsigned Factor = NumParts / NumIntermediates;
313 for (unsigned i = 0; i != NumIntermediates; ++i)
314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315 PartVT, IntermediateVT, V);
316 }
317
318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319 // intermediate operands.
320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321 : ISD::BUILD_VECTOR,
322 DL, ValueVT, Ops);
323 }
324
325 // There is now one part, held in Val. Correct it to match ValueVT.
326 EVT PartEVT = Val.getValueType();
327
328 if (PartEVT == ValueVT)
329 return Val;
330
331 if (PartEVT.isVector()) {
332 // If the element type of the source/dest vectors are the same, but the
333 // parts vector has more elements than the value vector, then we have a
334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
335 // elements we want.
336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338 "Cannot narrow, it would be a lossy transformation");
339 return DAG.getNode(
340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342 }
343
344 // Vector/Vector bitcast.
345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347
348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349 "Cannot handle this kind of promotion");
350 // Promoted vector extract
351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352
353 }
354
355 // Trivial bitcast if the types are the same size and the destination
356 // vector type is legal.
357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358 TLI.isTypeLegal(ValueVT))
359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360
361 // Handle cases such as i8 -> <1 x i1>
362 if (ValueVT.getVectorNumElements() != 1) {
363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364 "non-trivial scalar-to-vector conversion");
365 return DAG.getUNDEF(ValueVT);
366 }
367
368 if (ValueVT.getVectorNumElements() == 1 &&
369 ValueVT.getVectorElementType() != PartEVT)
370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371
372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376 SDValue Val, SDValue *Parts, unsigned NumParts,
377 MVT PartVT, const Value *V);
378
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts. If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
getCopyToParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V,ISD::NodeType ExtendKind=ISD::ANY_EXTEND)382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383 SDValue *Parts, unsigned NumParts, MVT PartVT,
384 const Value *V,
385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386 EVT ValueVT = Val.getValueType();
387
388 // Handle the vector case separately.
389 if (ValueVT.isVector())
390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391
392 unsigned PartBits = PartVT.getSizeInBits();
393 unsigned OrigNumParts = NumParts;
394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395 "Copying to an illegal type!");
396
397 if (NumParts == 0)
398 return;
399
400 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401 EVT PartEVT = PartVT;
402 if (PartEVT == ValueVT) {
403 assert(NumParts == 1 && "No-op copy with multiple parts!");
404 Parts[0] = Val;
405 return;
406 }
407
408 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409 // If the parts cover more bits than the value has, promote the value.
410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411 assert(NumParts == 1 && "Do not know what to promote to!");
412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413 } else {
414 if (ValueVT.isFloatingPoint()) {
415 // FP values need to be bitcast, then extended if they are being put
416 // into a larger container.
417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 }
420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421 ValueVT.isInteger() &&
422 "Unknown mismatch!");
423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425 if (PartVT == MVT::x86mmx)
426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427 }
428 } else if (PartBits == ValueVT.getSizeInBits()) {
429 // Different types of the same size.
430 assert(NumParts == 1 && PartEVT != ValueVT);
431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433 // If the parts cover less bits than value has, truncate the value.
434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435 ValueVT.isInteger() &&
436 "Unknown mismatch!");
437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439 if (PartVT == MVT::x86mmx)
440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441 }
442
443 // The value may have changed - recompute ValueVT.
444 ValueVT = Val.getValueType();
445 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446 "Failed to tile the value with PartVT!");
447
448 if (NumParts == 1) {
449 if (PartEVT != ValueVT) {
450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451 "scalar-to-vector conversion failed");
452 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453 }
454
455 Parts[0] = Val;
456 return;
457 }
458
459 // Expand the value into multiple parts.
460 if (NumParts & (NumParts - 1)) {
461 // The number of parts is not a power of 2. Split off and copy the tail.
462 assert(PartVT.isInteger() && ValueVT.isInteger() &&
463 "Do not know what to expand to!");
464 unsigned RoundParts = 1 << Log2_32(NumParts);
465 unsigned RoundBits = RoundParts * PartBits;
466 unsigned OddParts = NumParts - RoundParts;
467 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468 DAG.getIntPtrConstant(RoundBits, DL));
469 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470
471 if (DAG.getDataLayout().isBigEndian())
472 // The odd parts were reversed by getCopyToParts - unreverse them.
473 std::reverse(Parts + RoundParts, Parts + NumParts);
474
475 NumParts = RoundParts;
476 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478 }
479
480 // The number of parts is a power of 2. Repeatedly bisect the value using
481 // EXTRACT_ELEMENT.
482 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483 EVT::getIntegerVT(*DAG.getContext(),
484 ValueVT.getSizeInBits()),
485 Val);
486
487 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488 for (unsigned i = 0; i < NumParts; i += StepSize) {
489 unsigned ThisBits = StepSize * PartBits / 2;
490 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491 SDValue &Part0 = Parts[i];
492 SDValue &Part1 = Parts[i+StepSize/2];
493
494 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498
499 if (ThisBits == PartBits && ThisVT != PartVT) {
500 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502 }
503 }
504 }
505
506 if (DAG.getDataLayout().isBigEndian())
507 std::reverse(Parts, Parts + OrigNumParts);
508 }
509
510
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
getCopyToPartsVector(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,const Value * V)513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514 SDValue Val, SDValue *Parts, unsigned NumParts,
515 MVT PartVT, const Value *V) {
516 EVT ValueVT = Val.getValueType();
517 assert(ValueVT.isVector() && "Not a vector");
518 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519
520 if (NumParts == 1) {
521 EVT PartEVT = PartVT;
522 if (PartEVT == ValueVT) {
523 // Nothing to do.
524 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525 // Bitconvert vector->vector case.
526 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527 } else if (PartVT.isVector() &&
528 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530 EVT ElementVT = PartVT.getVectorElementType();
531 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
532 // undef elements.
533 SmallVector<SDValue, 16> Ops;
534 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535 Ops.push_back(DAG.getNode(
536 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538
539 for (unsigned i = ValueVT.getVectorNumElements(),
540 e = PartVT.getVectorNumElements(); i != e; ++i)
541 Ops.push_back(DAG.getUNDEF(ElementVT));
542
543 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544
545 // FIXME: Use CONCAT for 2x -> 4x.
546
547 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549 } else if (PartVT.isVector() &&
550 PartEVT.getVectorElementType().bitsGE(
551 ValueVT.getVectorElementType()) &&
552 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553
554 // Promoted vector extract
555 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556 } else{
557 // Vector -> scalar conversion.
558 assert(ValueVT.getVectorNumElements() == 1 &&
559 "Only trivial vector-to-scalar conversions should get here!");
560 Val = DAG.getNode(
561 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563
564 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565 }
566
567 Parts[0] = Val;
568 return;
569 }
570
571 // Handle a multi-element vector.
572 EVT IntermediateVT;
573 MVT RegisterVT;
574 unsigned NumIntermediates;
575 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576 IntermediateVT,
577 NumIntermediates, RegisterVT);
578 unsigned NumElements = ValueVT.getVectorNumElements();
579
580 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581 NumParts = NumRegs; // Silence a compiler warning.
582 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583
584 // Split the vector into intermediate operands.
585 SmallVector<SDValue, 8> Ops(NumIntermediates);
586 for (unsigned i = 0; i != NumIntermediates; ++i) {
587 if (IntermediateVT.isVector())
588 Ops[i] =
589 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590 DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591 TLI.getVectorIdxTy(DAG.getDataLayout())));
592 else
593 Ops[i] = DAG.getNode(
594 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596 }
597
598 // Split the intermediate operands into legal parts.
599 if (NumParts == NumIntermediates) {
600 // If the register was not expanded, promote or copy the value,
601 // as appropriate.
602 for (unsigned i = 0; i != NumParts; ++i)
603 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604 } else if (NumParts > 0) {
605 // If the intermediate type was expanded, split each the value into
606 // legal parts.
607 assert(NumIntermediates != 0 && "division by zero");
608 assert(NumParts % NumIntermediates == 0 &&
609 "Must expand into a divisible number of parts!");
610 unsigned Factor = NumParts / NumIntermediates;
611 for (unsigned i = 0; i != NumIntermediates; ++i)
612 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613 }
614 }
615
RegsForValue()616 RegsForValue::RegsForValue() {}
617
RegsForValue(const SmallVector<unsigned,4> & regs,MVT regvt,EVT valuevt)618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
619 EVT valuevt)
620 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621
RegsForValue(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL,unsigned Reg,Type * Ty)622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623 const DataLayout &DL, unsigned Reg, Type *Ty) {
624 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625
626 for (EVT ValueVT : ValueVTs) {
627 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629 for (unsigned i = 0; i != NumRegs; ++i)
630 Regs.push_back(Reg + i);
631 RegVTs.push_back(RegisterVT);
632 Reg += NumRegs;
633 }
634 }
635
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value. This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
getCopyFromRegs(SelectionDAG & DAG,FunctionLoweringInfo & FuncInfo,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V) const640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641 FunctionLoweringInfo &FuncInfo,
642 const SDLoc &dl, SDValue &Chain,
643 SDValue *Flag, const Value *V) const {
644 // A Value with type {} or [0 x %t] needs no registers.
645 if (ValueVTs.empty())
646 return SDValue();
647
648 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649
650 // Assemble the legal parts into the final values.
651 SmallVector<SDValue, 4> Values(ValueVTs.size());
652 SmallVector<SDValue, 8> Parts;
653 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654 // Copy the legal parts from the registers.
655 EVT ValueVT = ValueVTs[Value];
656 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657 MVT RegisterVT = RegVTs[Value];
658
659 Parts.resize(NumRegs);
660 for (unsigned i = 0; i != NumRegs; ++i) {
661 SDValue P;
662 if (!Flag) {
663 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664 } else {
665 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666 *Flag = P.getValue(2);
667 }
668
669 Chain = P.getValue(1);
670 Parts[i] = P;
671
672 // If the source register was virtual and if we know something about it,
673 // add an assert node.
674 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675 !RegisterVT.isInteger() || RegisterVT.isVector())
676 continue;
677
678 const FunctionLoweringInfo::LiveOutInfo *LOI =
679 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680 if (!LOI)
681 continue;
682
683 unsigned RegSize = RegisterVT.getSizeInBits();
684 unsigned NumSignBits = LOI->NumSignBits;
685 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686
687 if (NumZeroBits == RegSize) {
688 // The current value is a zero.
689 // Explicitly express that as it would be easier for
690 // optimizations to kick in.
691 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692 continue;
693 }
694
695 // FIXME: We capture more information than the dag can represent. For
696 // now, just use the tightest assertzext/assertsext possible.
697 bool isSExt = true;
698 EVT FromVT(MVT::Other);
699 if (NumSignBits == RegSize) {
700 isSExt = true; // ASSERT SEXT 1
701 FromVT = MVT::i1;
702 } else if (NumZeroBits >= RegSize - 1) {
703 isSExt = false; // ASSERT ZEXT 1
704 FromVT = MVT::i1;
705 } else if (NumSignBits > RegSize - 8) {
706 isSExt = true; // ASSERT SEXT 8
707 FromVT = MVT::i8;
708 } else if (NumZeroBits >= RegSize - 8) {
709 isSExt = false; // ASSERT ZEXT 8
710 FromVT = MVT::i8;
711 } else if (NumSignBits > RegSize - 16) {
712 isSExt = true; // ASSERT SEXT 16
713 FromVT = MVT::i16;
714 } else if (NumZeroBits >= RegSize - 16) {
715 isSExt = false; // ASSERT ZEXT 16
716 FromVT = MVT::i16;
717 } else if (NumSignBits > RegSize - 32) {
718 isSExt = true; // ASSERT SEXT 32
719 FromVT = MVT::i32;
720 } else if (NumZeroBits >= RegSize - 32) {
721 isSExt = false; // ASSERT ZEXT 32
722 FromVT = MVT::i32;
723 } else {
724 continue;
725 }
726 // Add an assertion node.
727 assert(FromVT != MVT::Other);
728 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729 RegisterVT, P, DAG.getValueType(FromVT));
730 }
731
732 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733 NumRegs, RegisterVT, ValueVT, V);
734 Part += NumRegs;
735 Parts.clear();
736 }
737
738 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object. This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
getCopyToRegs(SDValue Val,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,SDValue * Flag,const Value * V,ISD::NodeType PreferredExtendType) const745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747 const Value *V,
748 ISD::NodeType PreferredExtendType) const {
749 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750 ISD::NodeType ExtendKind = PreferredExtendType;
751
752 // Get the list of the values's legal parts.
753 unsigned NumRegs = Regs.size();
754 SmallVector<SDValue, 8> Parts(NumRegs);
755 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756 EVT ValueVT = ValueVTs[Value];
757 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758 MVT RegisterVT = RegVTs[Value];
759
760 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761 ExtendKind = ISD::ZERO_EXTEND;
762
763 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764 &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765 Part += NumParts;
766 }
767
768 // Copy the parts into the registers.
769 SmallVector<SDValue, 8> Chains(NumRegs);
770 for (unsigned i = 0; i != NumRegs; ++i) {
771 SDValue Part;
772 if (!Flag) {
773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774 } else {
775 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776 *Flag = Part.getValue(1);
777 }
778
779 Chains[i] = Part.getValue(0);
780 }
781
782 if (NumRegs == 1 || Flag)
783 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784 // flagged to it. That is the CopyToReg nodes and the user are considered
785 // a single scheduling unit. If we create a TokenFactor and return it as
786 // chain, then the TokenFactor is both a predecessor (operand) of the
787 // user as well as a successor (the TF operands are flagged to the user).
788 // c1, f1 = CopyToReg
789 // c2, f2 = CopyToReg
790 // c3 = TokenFactor c1, c2
791 // ...
792 // = op c3, ..., f2
793 Chain = Chains[NumRegs-1];
794 else
795 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list. This adds the code marker and includes the number of
800 /// values added into it.
AddInlineAsmOperands(unsigned Code,bool HasMatching,unsigned MatchingIdx,const SDLoc & dl,SelectionDAG & DAG,std::vector<SDValue> & Ops) const801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802 unsigned MatchingIdx, const SDLoc &dl,
803 SelectionDAG &DAG,
804 std::vector<SDValue> &Ops) const {
805 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806
807 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808 if (HasMatching)
809 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810 else if (!Regs.empty() &&
811 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812 // Put the register class of the virtual registers in the flag word. That
813 // way, later passes can recompute register class constraints for inline
814 // assembly as well as normal instructions.
815 // Don't do this for tied operands that can use the regclass information
816 // from the def.
817 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820 }
821
822 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823 Ops.push_back(Res);
824
825 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828 MVT RegisterVT = RegVTs[Value];
829 for (unsigned i = 0; i != NumRegs; ++i) {
830 assert(Reg < Regs.size() && "Mismatch in # registers expected");
831 unsigned TheReg = Regs[Reg++];
832 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833
834 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835 // If we clobbered the stack pointer, MFI should know about it.
836 assert(DAG.getMachineFunction().getFrameInfo()->
837 hasOpaqueSPAdjustment());
838 }
839 }
840 }
841 }
842
init(GCFunctionInfo * gfi,AliasAnalysis & aa,const TargetLibraryInfo * li)843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
844 const TargetLibraryInfo *li) {
845 AA = &aa;
846 GFI = gfi;
847 LibInfo = li;
848 DL = &DAG.getDataLayout();
849 Context = DAG.getContext();
850 LPadToCallSiteMap.clear();
851 }
852
853 /// clear - Clear out the current SelectionDAG and the associated
854 /// state and prepare this SelectionDAGBuilder object to be used
855 /// for a new block. This doesn't clear out information about
856 /// additional blocks that are needed to complete switch lowering
857 /// or PHI node updating; that information is cleared out as it is
858 /// consumed.
clear()859 void SelectionDAGBuilder::clear() {
860 NodeMap.clear();
861 UnusedArgNodeMap.clear();
862 PendingLoads.clear();
863 PendingExports.clear();
864 CurInst = nullptr;
865 HasTailCall = false;
866 SDNodeOrder = LowestSDNodeOrder;
867 StatepointLowering.clear();
868 }
869
870 /// clearDanglingDebugInfo - Clear the dangling debug information
871 /// map. This function is separated from the clear so that debug
872 /// information that is dangling in a basic block can be properly
873 /// resolved in a different basic block. This allows the
874 /// SelectionDAG to resolve dangling debug information attached
875 /// to PHI nodes.
clearDanglingDebugInfo()876 void SelectionDAGBuilder::clearDanglingDebugInfo() {
877 DanglingDebugInfoMap.clear();
878 }
879
880 /// getRoot - Return the current virtual root of the Selection DAG,
881 /// flushing any PendingLoad items. This must be done before emitting
882 /// a store or any other node that may need to be ordered after any
883 /// prior load instructions.
884 ///
getRoot()885 SDValue SelectionDAGBuilder::getRoot() {
886 if (PendingLoads.empty())
887 return DAG.getRoot();
888
889 if (PendingLoads.size() == 1) {
890 SDValue Root = PendingLoads[0];
891 DAG.setRoot(Root);
892 PendingLoads.clear();
893 return Root;
894 }
895
896 // Otherwise, we have to make a token factor node.
897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
898 PendingLoads);
899 PendingLoads.clear();
900 DAG.setRoot(Root);
901 return Root;
902 }
903
904 /// getControlRoot - Similar to getRoot, but instead of flushing all the
905 /// PendingLoad items, flush all the PendingExports items. It is necessary
906 /// to do this before emitting a terminator instruction.
907 ///
getControlRoot()908 SDValue SelectionDAGBuilder::getControlRoot() {
909 SDValue Root = DAG.getRoot();
910
911 if (PendingExports.empty())
912 return Root;
913
914 // Turn all of the CopyToReg chains into one factored node.
915 if (Root.getOpcode() != ISD::EntryToken) {
916 unsigned i = 0, e = PendingExports.size();
917 for (; i != e; ++i) {
918 assert(PendingExports[i].getNode()->getNumOperands() > 1);
919 if (PendingExports[i].getNode()->getOperand(0) == Root)
920 break; // Don't add the root if we already indirectly depend on it.
921 }
922
923 if (i == e)
924 PendingExports.push_back(Root);
925 }
926
927 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
928 PendingExports);
929 PendingExports.clear();
930 DAG.setRoot(Root);
931 return Root;
932 }
933
934 /// Copy swift error to the final virtual register at end of a basic block, as
935 /// specified by SwiftErrorWorklist, if necessary.
copySwiftErrorsToFinalVRegs(SelectionDAGBuilder & SDB)936 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
937 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
938 if (!TLI.supportSwiftError())
939 return;
940
941 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
942 return;
943
944 // Go through entries in SwiftErrorWorklist, and create copy as necessary.
945 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
946 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
947 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
948 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
949 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
950 unsigned WorkReg = WorklistEntry[I];
951
952 // Find the swifterror virtual register for the value in SwiftErrorMap.
953 unsigned MapReg = MapEntry[I];
954 assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
955 "Entries in SwiftErrorMap should be virtual registers");
956
957 if (WorkReg == MapReg)
958 continue;
959
960 // Create copy from SwiftErrorMap to SwiftWorklist.
961 auto &DL = SDB.DAG.getDataLayout();
962 SDValue CopyNode = SDB.DAG.getCopyToReg(
963 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
964 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
965 MapEntry[I] = WorkReg;
966 SDB.DAG.setRoot(CopyNode);
967 }
968 }
969
visit(const Instruction & I)970 void SelectionDAGBuilder::visit(const Instruction &I) {
971 // Set up outgoing PHI node register values before emitting the terminator.
972 if (isa<TerminatorInst>(&I)) {
973 copySwiftErrorsToFinalVRegs(*this);
974 HandlePHINodesInSuccessorBlocks(I.getParent());
975 }
976
977 ++SDNodeOrder;
978
979 CurInst = &I;
980
981 visit(I.getOpcode(), I);
982
983 if (!isa<TerminatorInst>(&I) && !HasTailCall &&
984 !isStatepoint(&I)) // statepoints handle their exports internally
985 CopyToExportRegsIfNeeded(&I);
986
987 CurInst = nullptr;
988 }
989
visitPHI(const PHINode &)990 void SelectionDAGBuilder::visitPHI(const PHINode &) {
991 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
992 }
993
visit(unsigned Opcode,const User & I)994 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
995 // Note: this doesn't use InstVisitor, because it has to work with
996 // ConstantExpr's in addition to instructions.
997 switch (Opcode) {
998 default: llvm_unreachable("Unknown instruction type encountered!");
999 // Build the switch statement using the Instruction.def file.
1000 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1001 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1002 #include "llvm/IR/Instruction.def"
1003 }
1004 }
1005
1006 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1007 // generate the debug data structures now that we've seen its definition.
resolveDanglingDebugInfo(const Value * V,SDValue Val)1008 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1009 SDValue Val) {
1010 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1011 if (DDI.getDI()) {
1012 const DbgValueInst *DI = DDI.getDI();
1013 DebugLoc dl = DDI.getdl();
1014 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1015 DILocalVariable *Variable = DI->getVariable();
1016 DIExpression *Expr = DI->getExpression();
1017 assert(Variable->isValidLocationForIntrinsic(dl) &&
1018 "Expected inlined-at fields to agree");
1019 uint64_t Offset = DI->getOffset();
1020 SDDbgValue *SDV;
1021 if (Val.getNode()) {
1022 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1023 Val)) {
1024 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1025 false, Offset, dl, DbgSDNodeOrder);
1026 DAG.AddDbgValue(SDV, Val.getNode(), false);
1027 }
1028 } else
1029 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1030 DanglingDebugInfoMap[V] = DanglingDebugInfo();
1031 }
1032 }
1033
1034 /// getCopyFromRegs - If there was virtual register allocated for the value V
1035 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
getCopyFromRegs(const Value * V,Type * Ty)1036 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1037 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1038 SDValue Result;
1039
1040 if (It != FuncInfo.ValueMap.end()) {
1041 unsigned InReg = It->second;
1042 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1043 DAG.getDataLayout(), InReg, Ty);
1044 SDValue Chain = DAG.getEntryNode();
1045 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1046 resolveDanglingDebugInfo(V, Result);
1047 }
1048
1049 return Result;
1050 }
1051
1052 /// getValue - Return an SDValue for the given Value.
getValue(const Value * V)1053 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1054 // If we already have an SDValue for this value, use it. It's important
1055 // to do this first, so that we don't create a CopyFromReg if we already
1056 // have a regular SDValue.
1057 SDValue &N = NodeMap[V];
1058 if (N.getNode()) return N;
1059
1060 // If there's a virtual register allocated and initialized for this
1061 // value, use it.
1062 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1063 return copyFromReg;
1064
1065 // Otherwise create a new SDValue and remember it.
1066 SDValue Val = getValueImpl(V);
1067 NodeMap[V] = Val;
1068 resolveDanglingDebugInfo(V, Val);
1069 return Val;
1070 }
1071
1072 // Return true if SDValue exists for the given Value
findValue(const Value * V) const1073 bool SelectionDAGBuilder::findValue(const Value *V) const {
1074 return (NodeMap.find(V) != NodeMap.end()) ||
1075 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1076 }
1077
1078 /// getNonRegisterValue - Return an SDValue for the given Value, but
1079 /// don't look in FuncInfo.ValueMap for a virtual register.
getNonRegisterValue(const Value * V)1080 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1081 // If we already have an SDValue for this value, use it.
1082 SDValue &N = NodeMap[V];
1083 if (N.getNode()) {
1084 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1085 // Remove the debug location from the node as the node is about to be used
1086 // in a location which may differ from the original debug location. This
1087 // is relevant to Constant and ConstantFP nodes because they can appear
1088 // as constant expressions inside PHI nodes.
1089 N->setDebugLoc(DebugLoc());
1090 }
1091 return N;
1092 }
1093
1094 // Otherwise create a new SDValue and remember it.
1095 SDValue Val = getValueImpl(V);
1096 NodeMap[V] = Val;
1097 resolveDanglingDebugInfo(V, Val);
1098 return Val;
1099 }
1100
1101 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1102 /// Create an SDValue for the given value.
getValueImpl(const Value * V)1103 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1104 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1105
1106 if (const Constant *C = dyn_cast<Constant>(V)) {
1107 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1108
1109 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1110 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1111
1112 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1113 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1114
1115 if (isa<ConstantPointerNull>(C)) {
1116 unsigned AS = V->getType()->getPointerAddressSpace();
1117 return DAG.getConstant(0, getCurSDLoc(),
1118 TLI.getPointerTy(DAG.getDataLayout(), AS));
1119 }
1120
1121 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1122 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1123
1124 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1125 return DAG.getUNDEF(VT);
1126
1127 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1128 visit(CE->getOpcode(), *CE);
1129 SDValue N1 = NodeMap[V];
1130 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1131 return N1;
1132 }
1133
1134 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1135 SmallVector<SDValue, 4> Constants;
1136 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1137 OI != OE; ++OI) {
1138 SDNode *Val = getValue(*OI).getNode();
1139 // If the operand is an empty aggregate, there are no values.
1140 if (!Val) continue;
1141 // Add each leaf value from the operand to the Constants list
1142 // to form a flattened list of all the values.
1143 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1144 Constants.push_back(SDValue(Val, i));
1145 }
1146
1147 return DAG.getMergeValues(Constants, getCurSDLoc());
1148 }
1149
1150 if (const ConstantDataSequential *CDS =
1151 dyn_cast<ConstantDataSequential>(C)) {
1152 SmallVector<SDValue, 4> Ops;
1153 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1154 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1155 // Add each leaf value from the operand to the Constants list
1156 // to form a flattened list of all the values.
1157 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1158 Ops.push_back(SDValue(Val, i));
1159 }
1160
1161 if (isa<ArrayType>(CDS->getType()))
1162 return DAG.getMergeValues(Ops, getCurSDLoc());
1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1164 VT, Ops);
1165 }
1166
1167 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1168 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1169 "Unknown struct or array constant!");
1170
1171 SmallVector<EVT, 4> ValueVTs;
1172 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1173 unsigned NumElts = ValueVTs.size();
1174 if (NumElts == 0)
1175 return SDValue(); // empty struct
1176 SmallVector<SDValue, 4> Constants(NumElts);
1177 for (unsigned i = 0; i != NumElts; ++i) {
1178 EVT EltVT = ValueVTs[i];
1179 if (isa<UndefValue>(C))
1180 Constants[i] = DAG.getUNDEF(EltVT);
1181 else if (EltVT.isFloatingPoint())
1182 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1183 else
1184 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1185 }
1186
1187 return DAG.getMergeValues(Constants, getCurSDLoc());
1188 }
1189
1190 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1191 return DAG.getBlockAddress(BA, VT);
1192
1193 VectorType *VecTy = cast<VectorType>(V->getType());
1194 unsigned NumElements = VecTy->getNumElements();
1195
1196 // Now that we know the number and type of the elements, get that number of
1197 // elements into the Ops array based on what kind of constant it is.
1198 SmallVector<SDValue, 16> Ops;
1199 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1200 for (unsigned i = 0; i != NumElements; ++i)
1201 Ops.push_back(getValue(CV->getOperand(i)));
1202 } else {
1203 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1204 EVT EltVT =
1205 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1206
1207 SDValue Op;
1208 if (EltVT.isFloatingPoint())
1209 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1210 else
1211 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1212 Ops.assign(NumElements, Op);
1213 }
1214
1215 // Create a BUILD_VECTOR node.
1216 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1217 }
1218
1219 // If this is a static alloca, generate it as the frameindex instead of
1220 // computation.
1221 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1222 DenseMap<const AllocaInst*, int>::iterator SI =
1223 FuncInfo.StaticAllocaMap.find(AI);
1224 if (SI != FuncInfo.StaticAllocaMap.end())
1225 return DAG.getFrameIndex(SI->second,
1226 TLI.getPointerTy(DAG.getDataLayout()));
1227 }
1228
1229 // If this is an instruction which fast-isel has deferred, select it now.
1230 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1231 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1232 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1233 Inst->getType());
1234 SDValue Chain = DAG.getEntryNode();
1235 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1236 }
1237
1238 llvm_unreachable("Can't get register for value!");
1239 }
1240
visitCatchPad(const CatchPadInst & I)1241 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1242 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1243 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1244 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1245 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1246 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1247 if (IsMSVCCXX || IsCoreCLR)
1248 CatchPadMBB->setIsEHFuncletEntry();
1249
1250 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1251 }
1252
visitCatchRet(const CatchReturnInst & I)1253 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1254 // Update machine-CFG edge.
1255 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1256 FuncInfo.MBB->addSuccessor(TargetMBB);
1257
1258 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1259 bool IsSEH = isAsynchronousEHPersonality(Pers);
1260 if (IsSEH) {
1261 // If this is not a fall-through branch or optimizations are switched off,
1262 // emit the branch.
1263 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1264 TM.getOptLevel() == CodeGenOpt::None)
1265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1266 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1267 return;
1268 }
1269
1270 // Figure out the funclet membership for the catchret's successor.
1271 // This will be used by the FuncletLayout pass to determine how to order the
1272 // BB's.
1273 // A 'catchret' returns to the outer scope's color.
1274 Value *ParentPad = I.getCatchSwitchParentPad();
1275 const BasicBlock *SuccessorColor;
1276 if (isa<ConstantTokenNone>(ParentPad))
1277 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1278 else
1279 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1280 assert(SuccessorColor && "No parent funclet for catchret!");
1281 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1282 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1283
1284 // Create the terminator node.
1285 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1286 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1287 DAG.getBasicBlock(SuccessorColorMBB));
1288 DAG.setRoot(Ret);
1289 }
1290
visitCleanupPad(const CleanupPadInst & CPI)1291 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1292 // Don't emit any special code for the cleanuppad instruction. It just marks
1293 // the start of a funclet.
1294 FuncInfo.MBB->setIsEHFuncletEntry();
1295 FuncInfo.MBB->setIsCleanupFuncletEntry();
1296 }
1297
1298 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1299 /// many places it could ultimately go. In the IR, we have a single unwind
1300 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1301 /// This function skips over imaginary basic blocks that hold catchswitch
1302 /// instructions, and finds all the "real" machine
1303 /// basic block destinations. As those destinations may not be successors of
1304 /// EHPadBB, here we also calculate the edge probability to those destinations.
1305 /// The passed-in Prob is the edge probability to EHPadBB.
findUnwindDestinations(FunctionLoweringInfo & FuncInfo,const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)1306 static void findUnwindDestinations(
1307 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1308 BranchProbability Prob,
1309 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1310 &UnwindDests) {
1311 EHPersonality Personality =
1312 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1313 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1314 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1315
1316 while (EHPadBB) {
1317 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1318 BasicBlock *NewEHPadBB = nullptr;
1319 if (isa<LandingPadInst>(Pad)) {
1320 // Stop on landingpads. They are not funclets.
1321 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1322 break;
1323 } else if (isa<CleanupPadInst>(Pad)) {
1324 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1325 // personalities.
1326 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1327 UnwindDests.back().first->setIsEHFuncletEntry();
1328 break;
1329 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1330 // Add the catchpad handlers to the possible destinations.
1331 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1332 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1333 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1334 if (IsMSVCCXX || IsCoreCLR)
1335 UnwindDests.back().first->setIsEHFuncletEntry();
1336 }
1337 NewEHPadBB = CatchSwitch->getUnwindDest();
1338 } else {
1339 continue;
1340 }
1341
1342 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1343 if (BPI && NewEHPadBB)
1344 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1345 EHPadBB = NewEHPadBB;
1346 }
1347 }
1348
visitCleanupRet(const CleanupReturnInst & I)1349 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1350 // Update successor info.
1351 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1352 auto UnwindDest = I.getUnwindDest();
1353 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1354 BranchProbability UnwindDestProb =
1355 (BPI && UnwindDest)
1356 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1357 : BranchProbability::getZero();
1358 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1359 for (auto &UnwindDest : UnwindDests) {
1360 UnwindDest.first->setIsEHPad();
1361 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1362 }
1363 FuncInfo.MBB->normalizeSuccProbs();
1364
1365 // Create the terminator node.
1366 SDValue Ret =
1367 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1368 DAG.setRoot(Ret);
1369 }
1370
visitCatchSwitch(const CatchSwitchInst & CSI)1371 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1372 report_fatal_error("visitCatchSwitch not yet implemented!");
1373 }
1374
visitRet(const ReturnInst & I)1375 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1376 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1377 auto &DL = DAG.getDataLayout();
1378 SDValue Chain = getControlRoot();
1379 SmallVector<ISD::OutputArg, 8> Outs;
1380 SmallVector<SDValue, 8> OutVals;
1381
1382 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1383 // lower
1384 //
1385 // %val = call <ty> @llvm.experimental.deoptimize()
1386 // ret <ty> %val
1387 //
1388 // differently.
1389 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1390 LowerDeoptimizingReturn();
1391 return;
1392 }
1393
1394 if (!FuncInfo.CanLowerReturn) {
1395 unsigned DemoteReg = FuncInfo.DemoteRegister;
1396 const Function *F = I.getParent()->getParent();
1397
1398 // Emit a store of the return value through the virtual register.
1399 // Leave Outs empty so that LowerReturn won't try to load return
1400 // registers the usual way.
1401 SmallVector<EVT, 1> PtrValueVTs;
1402 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1403 PtrValueVTs);
1404
1405 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1406 DemoteReg, PtrValueVTs[0]);
1407 SDValue RetOp = getValue(I.getOperand(0));
1408
1409 SmallVector<EVT, 4> ValueVTs;
1410 SmallVector<uint64_t, 4> Offsets;
1411 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1412 unsigned NumValues = ValueVTs.size();
1413
1414 // An aggregate return value cannot wrap around the address space, so
1415 // offsets to its parts don't wrap either.
1416 SDNodeFlags Flags;
1417 Flags.setNoUnsignedWrap(true);
1418
1419 SmallVector<SDValue, 4> Chains(NumValues);
1420 for (unsigned i = 0; i != NumValues; ++i) {
1421 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1422 RetPtr.getValueType(), RetPtr,
1423 DAG.getIntPtrConstant(Offsets[i],
1424 getCurSDLoc()),
1425 &Flags);
1426 Chains[i] =
1427 DAG.getStore(Chain, getCurSDLoc(),
1428 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1429 // FIXME: better loc info would be nice.
1430 Add, MachinePointerInfo(), false, false, 0);
1431 }
1432
1433 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1434 MVT::Other, Chains);
1435 } else if (I.getNumOperands() != 0) {
1436 SmallVector<EVT, 4> ValueVTs;
1437 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1438 unsigned NumValues = ValueVTs.size();
1439 if (NumValues) {
1440 SDValue RetOp = getValue(I.getOperand(0));
1441
1442 const Function *F = I.getParent()->getParent();
1443
1444 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1445 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1446 Attribute::SExt))
1447 ExtendKind = ISD::SIGN_EXTEND;
1448 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1449 Attribute::ZExt))
1450 ExtendKind = ISD::ZERO_EXTEND;
1451
1452 LLVMContext &Context = F->getContext();
1453 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1454 Attribute::InReg);
1455
1456 for (unsigned j = 0; j != NumValues; ++j) {
1457 EVT VT = ValueVTs[j];
1458
1459 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1460 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1461
1462 unsigned NumParts = TLI.getNumRegisters(Context, VT);
1463 MVT PartVT = TLI.getRegisterType(Context, VT);
1464 SmallVector<SDValue, 4> Parts(NumParts);
1465 getCopyToParts(DAG, getCurSDLoc(),
1466 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1467 &Parts[0], NumParts, PartVT, &I, ExtendKind);
1468
1469 // 'inreg' on function refers to return value
1470 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1471 if (RetInReg)
1472 Flags.setInReg();
1473
1474 // Propagate extension type if any
1475 if (ExtendKind == ISD::SIGN_EXTEND)
1476 Flags.setSExt();
1477 else if (ExtendKind == ISD::ZERO_EXTEND)
1478 Flags.setZExt();
1479
1480 for (unsigned i = 0; i < NumParts; ++i) {
1481 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1482 VT, /*isfixed=*/true, 0, 0));
1483 OutVals.push_back(Parts[i]);
1484 }
1485 }
1486 }
1487 }
1488
1489 // Push in swifterror virtual register as the last element of Outs. This makes
1490 // sure swifterror virtual register will be returned in the swifterror
1491 // physical register.
1492 const Function *F = I.getParent()->getParent();
1493 if (TLI.supportSwiftError() &&
1494 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1495 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1496 Flags.setSwiftError();
1497 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1498 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1499 true /*isfixed*/, 1 /*origidx*/,
1500 0 /*partOffs*/));
1501 // Create SDNode for the swifterror virtual register.
1502 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1503 EVT(TLI.getPointerTy(DL))));
1504 }
1505
1506 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1507 CallingConv::ID CallConv =
1508 DAG.getMachineFunction().getFunction()->getCallingConv();
1509 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1510 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1511
1512 // Verify that the target's LowerReturn behaved as expected.
1513 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1514 "LowerReturn didn't return a valid chain!");
1515
1516 // Update the DAG with the new chain value resulting from return lowering.
1517 DAG.setRoot(Chain);
1518 }
1519
1520 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1521 /// created for it, emit nodes to copy the value into the virtual
1522 /// registers.
CopyToExportRegsIfNeeded(const Value * V)1523 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1524 // Skip empty types
1525 if (V->getType()->isEmptyTy())
1526 return;
1527
1528 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1529 if (VMI != FuncInfo.ValueMap.end()) {
1530 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1531 CopyValueToVirtualRegister(V, VMI->second);
1532 }
1533 }
1534
1535 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1536 /// the current basic block, add it to ValueMap now so that we'll get a
1537 /// CopyTo/FromReg.
ExportFromCurrentBlock(const Value * V)1538 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1539 // No need to export constants.
1540 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1541
1542 // Already exported?
1543 if (FuncInfo.isExportedInst(V)) return;
1544
1545 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1546 CopyValueToVirtualRegister(V, Reg);
1547 }
1548
isExportableFromCurrentBlock(const Value * V,const BasicBlock * FromBB)1549 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1550 const BasicBlock *FromBB) {
1551 // The operands of the setcc have to be in this block. We don't know
1552 // how to export them from some other block.
1553 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1554 // Can export from current BB.
1555 if (VI->getParent() == FromBB)
1556 return true;
1557
1558 // Is already exported, noop.
1559 return FuncInfo.isExportedInst(V);
1560 }
1561
1562 // If this is an argument, we can export it if the BB is the entry block or
1563 // if it is already exported.
1564 if (isa<Argument>(V)) {
1565 if (FromBB == &FromBB->getParent()->getEntryBlock())
1566 return true;
1567
1568 // Otherwise, can only export this if it is already exported.
1569 return FuncInfo.isExportedInst(V);
1570 }
1571
1572 // Otherwise, constants can always be exported.
1573 return true;
1574 }
1575
1576 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1577 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const1578 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1579 const MachineBasicBlock *Dst) const {
1580 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1581 const BasicBlock *SrcBB = Src->getBasicBlock();
1582 const BasicBlock *DstBB = Dst->getBasicBlock();
1583 if (!BPI) {
1584 // If BPI is not available, set the default probability as 1 / N, where N is
1585 // the number of successors.
1586 auto SuccSize = std::max<uint32_t>(
1587 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1588 return BranchProbability(1, SuccSize);
1589 }
1590 return BPI->getEdgeProbability(SrcBB, DstBB);
1591 }
1592
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)1593 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1594 MachineBasicBlock *Dst,
1595 BranchProbability Prob) {
1596 if (!FuncInfo.BPI)
1597 Src->addSuccessorWithoutProb(Dst);
1598 else {
1599 if (Prob.isUnknown())
1600 Prob = getEdgeProbability(Src, Dst);
1601 Src->addSuccessor(Dst, Prob);
1602 }
1603 }
1604
InBlock(const Value * V,const BasicBlock * BB)1605 static bool InBlock(const Value *V, const BasicBlock *BB) {
1606 if (const Instruction *I = dyn_cast<Instruction>(V))
1607 return I->getParent() == BB;
1608 return true;
1609 }
1610
1611 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1612 /// This function emits a branch and is used at the leaves of an OR or an
1613 /// AND operator tree.
1614 ///
1615 void
EmitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb)1616 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1617 MachineBasicBlock *TBB,
1618 MachineBasicBlock *FBB,
1619 MachineBasicBlock *CurBB,
1620 MachineBasicBlock *SwitchBB,
1621 BranchProbability TProb,
1622 BranchProbability FProb) {
1623 const BasicBlock *BB = CurBB->getBasicBlock();
1624
1625 // If the leaf of the tree is a comparison, merge the condition into
1626 // the caseblock.
1627 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1628 // The operands of the cmp have to be in this block. We don't know
1629 // how to export them from some other block. If this is the first block
1630 // of the sequence, no exporting is needed.
1631 if (CurBB == SwitchBB ||
1632 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1633 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1634 ISD::CondCode Condition;
1635 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1636 Condition = getICmpCondCode(IC->getPredicate());
1637 } else {
1638 const FCmpInst *FC = cast<FCmpInst>(Cond);
1639 Condition = getFCmpCondCode(FC->getPredicate());
1640 if (TM.Options.NoNaNsFPMath)
1641 Condition = getFCmpCodeWithoutNaN(Condition);
1642 }
1643
1644 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1645 TBB, FBB, CurBB, TProb, FProb);
1646 SwitchCases.push_back(CB);
1647 return;
1648 }
1649 }
1650
1651 // Create a CaseBlock record representing this branch.
1652 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1653 nullptr, TBB, FBB, CurBB, TProb, FProb);
1654 SwitchCases.push_back(CB);
1655 }
1656
1657 /// FindMergedConditions - If Cond is an expression like
FindMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb)1658 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1659 MachineBasicBlock *TBB,
1660 MachineBasicBlock *FBB,
1661 MachineBasicBlock *CurBB,
1662 MachineBasicBlock *SwitchBB,
1663 Instruction::BinaryOps Opc,
1664 BranchProbability TProb,
1665 BranchProbability FProb) {
1666 // If this node is not part of the or/and tree, emit it as a branch.
1667 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1668 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1669 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1670 BOp->getParent() != CurBB->getBasicBlock() ||
1671 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1672 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1673 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1674 TProb, FProb);
1675 return;
1676 }
1677
1678 // Create TmpBB after CurBB.
1679 MachineFunction::iterator BBI(CurBB);
1680 MachineFunction &MF = DAG.getMachineFunction();
1681 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1682 CurBB->getParent()->insert(++BBI, TmpBB);
1683
1684 if (Opc == Instruction::Or) {
1685 // Codegen X | Y as:
1686 // BB1:
1687 // jmp_if_X TBB
1688 // jmp TmpBB
1689 // TmpBB:
1690 // jmp_if_Y TBB
1691 // jmp FBB
1692 //
1693
1694 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1695 // The requirement is that
1696 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1697 // = TrueProb for original BB.
1698 // Assuming the original probabilities are A and B, one choice is to set
1699 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1700 // A/(1+B) and 2B/(1+B). This choice assumes that
1701 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1702 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1703 // TmpBB, but the math is more complicated.
1704
1705 auto NewTrueProb = TProb / 2;
1706 auto NewFalseProb = TProb / 2 + FProb;
1707 // Emit the LHS condition.
1708 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1709 NewTrueProb, NewFalseProb);
1710
1711 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1712 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1713 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1714 // Emit the RHS condition into TmpBB.
1715 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1716 Probs[0], Probs[1]);
1717 } else {
1718 assert(Opc == Instruction::And && "Unknown merge op!");
1719 // Codegen X & Y as:
1720 // BB1:
1721 // jmp_if_X TmpBB
1722 // jmp FBB
1723 // TmpBB:
1724 // jmp_if_Y TBB
1725 // jmp FBB
1726 //
1727 // This requires creation of TmpBB after CurBB.
1728
1729 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1730 // The requirement is that
1731 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1732 // = FalseProb for original BB.
1733 // Assuming the original probabilities are A and B, one choice is to set
1734 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1735 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1736 // TrueProb for BB1 * FalseProb for TmpBB.
1737
1738 auto NewTrueProb = TProb + FProb / 2;
1739 auto NewFalseProb = FProb / 2;
1740 // Emit the LHS condition.
1741 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1742 NewTrueProb, NewFalseProb);
1743
1744 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1745 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1746 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1747 // Emit the RHS condition into TmpBB.
1748 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1749 Probs[0], Probs[1]);
1750 }
1751 }
1752
1753 /// If the set of cases should be emitted as a series of branches, return true.
1754 /// If we should emit this as a bunch of and/or'd together conditions, return
1755 /// false.
1756 bool
ShouldEmitAsBranches(const std::vector<CaseBlock> & Cases)1757 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1758 if (Cases.size() != 2) return true;
1759
1760 // If this is two comparisons of the same values or'd or and'd together, they
1761 // will get folded into a single comparison, so don't emit two blocks.
1762 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1763 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1764 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1765 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1766 return false;
1767 }
1768
1769 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1770 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1771 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1772 Cases[0].CC == Cases[1].CC &&
1773 isa<Constant>(Cases[0].CmpRHS) &&
1774 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1775 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1776 return false;
1777 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1778 return false;
1779 }
1780
1781 return true;
1782 }
1783
visitBr(const BranchInst & I)1784 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1785 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1786
1787 // Update machine-CFG edges.
1788 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1789
1790 if (I.isUnconditional()) {
1791 // Update machine-CFG edges.
1792 BrMBB->addSuccessor(Succ0MBB);
1793
1794 // If this is not a fall-through branch or optimizations are switched off,
1795 // emit the branch.
1796 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1797 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1798 MVT::Other, getControlRoot(),
1799 DAG.getBasicBlock(Succ0MBB)));
1800
1801 return;
1802 }
1803
1804 // If this condition is one of the special cases we handle, do special stuff
1805 // now.
1806 const Value *CondVal = I.getCondition();
1807 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1808
1809 // If this is a series of conditions that are or'd or and'd together, emit
1810 // this as a sequence of branches instead of setcc's with and/or operations.
1811 // As long as jumps are not expensive, this should improve performance.
1812 // For example, instead of something like:
1813 // cmp A, B
1814 // C = seteq
1815 // cmp D, E
1816 // F = setle
1817 // or C, F
1818 // jnz foo
1819 // Emit:
1820 // cmp A, B
1821 // je foo
1822 // cmp D, E
1823 // jle foo
1824 //
1825 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1826 Instruction::BinaryOps Opcode = BOp->getOpcode();
1827 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1828 !I.getMetadata(LLVMContext::MD_unpredictable) &&
1829 (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1830 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1831 Opcode,
1832 getEdgeProbability(BrMBB, Succ0MBB),
1833 getEdgeProbability(BrMBB, Succ1MBB));
1834 // If the compares in later blocks need to use values not currently
1835 // exported from this block, export them now. This block should always
1836 // be the first entry.
1837 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1838
1839 // Allow some cases to be rejected.
1840 if (ShouldEmitAsBranches(SwitchCases)) {
1841 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1842 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1843 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1844 }
1845
1846 // Emit the branch for this block.
1847 visitSwitchCase(SwitchCases[0], BrMBB);
1848 SwitchCases.erase(SwitchCases.begin());
1849 return;
1850 }
1851
1852 // Okay, we decided not to do this, remove any inserted MBB's and clear
1853 // SwitchCases.
1854 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1855 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1856
1857 SwitchCases.clear();
1858 }
1859 }
1860
1861 // Create a CaseBlock record representing this branch.
1862 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1863 nullptr, Succ0MBB, Succ1MBB, BrMBB);
1864
1865 // Use visitSwitchCase to actually insert the fast branch sequence for this
1866 // cond branch.
1867 visitSwitchCase(CB, BrMBB);
1868 }
1869
1870 /// visitSwitchCase - Emits the necessary code to represent a single node in
1871 /// the binary search tree resulting from lowering a switch instruction.
visitSwitchCase(CaseBlock & CB,MachineBasicBlock * SwitchBB)1872 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1873 MachineBasicBlock *SwitchBB) {
1874 SDValue Cond;
1875 SDValue CondLHS = getValue(CB.CmpLHS);
1876 SDLoc dl = getCurSDLoc();
1877
1878 // Build the setcc now.
1879 if (!CB.CmpMHS) {
1880 // Fold "(X == true)" to X and "(X == false)" to !X to
1881 // handle common cases produced by branch lowering.
1882 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1883 CB.CC == ISD::SETEQ)
1884 Cond = CondLHS;
1885 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1886 CB.CC == ISD::SETEQ) {
1887 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1888 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1889 } else
1890 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1891 } else {
1892 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1893
1894 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1895 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1896
1897 SDValue CmpOp = getValue(CB.CmpMHS);
1898 EVT VT = CmpOp.getValueType();
1899
1900 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1901 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1902 ISD::SETLE);
1903 } else {
1904 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1905 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1906 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1907 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1908 }
1909 }
1910
1911 // Update successor info
1912 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1913 // TrueBB and FalseBB are always different unless the incoming IR is
1914 // degenerate. This only happens when running llc on weird IR.
1915 if (CB.TrueBB != CB.FalseBB)
1916 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1917 SwitchBB->normalizeSuccProbs();
1918
1919 // If the lhs block is the next block, invert the condition so that we can
1920 // fall through to the lhs instead of the rhs block.
1921 if (CB.TrueBB == NextBlock(SwitchBB)) {
1922 std::swap(CB.TrueBB, CB.FalseBB);
1923 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1924 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1925 }
1926
1927 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1928 MVT::Other, getControlRoot(), Cond,
1929 DAG.getBasicBlock(CB.TrueBB));
1930
1931 // Insert the false branch. Do this even if it's a fall through branch,
1932 // this makes it easier to do DAG optimizations which require inverting
1933 // the branch condition.
1934 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1935 DAG.getBasicBlock(CB.FalseBB));
1936
1937 DAG.setRoot(BrCond);
1938 }
1939
1940 /// visitJumpTable - Emit JumpTable node in the current MBB
visitJumpTable(JumpTable & JT)1941 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1942 // Emit the code for the jump table
1943 assert(JT.Reg != -1U && "Should lower JT Header first!");
1944 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1945 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1946 JT.Reg, PTy);
1947 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1948 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1949 MVT::Other, Index.getValue(1),
1950 Table, Index);
1951 DAG.setRoot(BrJumpTable);
1952 }
1953
1954 /// visitJumpTableHeader - This function emits necessary code to produce index
1955 /// in the JumpTable from switch case.
visitJumpTableHeader(JumpTable & JT,JumpTableHeader & JTH,MachineBasicBlock * SwitchBB)1956 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1957 JumpTableHeader &JTH,
1958 MachineBasicBlock *SwitchBB) {
1959 SDLoc dl = getCurSDLoc();
1960
1961 // Subtract the lowest switch case value from the value being switched on and
1962 // conditional branch to default mbb if the result is greater than the
1963 // difference between smallest and largest cases.
1964 SDValue SwitchOp = getValue(JTH.SValue);
1965 EVT VT = SwitchOp.getValueType();
1966 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1967 DAG.getConstant(JTH.First, dl, VT));
1968
1969 // The SDNode we just created, which holds the value being switched on minus
1970 // the smallest case value, needs to be copied to a virtual register so it
1971 // can be used as an index into the jump table in a subsequent basic block.
1972 // This value may be smaller or larger than the target's pointer type, and
1973 // therefore require extension or truncating.
1974 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1975 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1976
1977 unsigned JumpTableReg =
1978 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1979 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1980 JumpTableReg, SwitchOp);
1981 JT.Reg = JumpTableReg;
1982
1983 // Emit the range check for the jump table, and branch to the default block
1984 // for the switch statement if the value being switched on exceeds the largest
1985 // case in the switch.
1986 SDValue CMP = DAG.getSetCC(
1987 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1988 Sub.getValueType()),
1989 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1990
1991 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1992 MVT::Other, CopyTo, CMP,
1993 DAG.getBasicBlock(JT.Default));
1994
1995 // Avoid emitting unnecessary branches to the next block.
1996 if (JT.MBB != NextBlock(SwitchBB))
1997 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1998 DAG.getBasicBlock(JT.MBB));
1999
2000 DAG.setRoot(BrCond);
2001 }
2002
2003 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2004 /// variable if there exists one.
getLoadStackGuard(SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain)2005 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2006 SDValue &Chain) {
2007 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2008 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2009 MachineFunction &MF = DAG.getMachineFunction();
2010 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2011 MachineSDNode *Node =
2012 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2013 if (Global) {
2014 MachinePointerInfo MPInfo(Global);
2015 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2016 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2017 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2018 DAG.getEVTAlignment(PtrTy));
2019 Node->setMemRefs(MemRefs, MemRefs + 1);
2020 }
2021 return SDValue(Node, 0);
2022 }
2023
2024 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2025 /// tail spliced into a stack protector check success bb.
2026 ///
2027 /// For a high level explanation of how this fits into the stack protector
2028 /// generation see the comment on the declaration of class
2029 /// StackProtectorDescriptor.
visitSPDescriptorParent(StackProtectorDescriptor & SPD,MachineBasicBlock * ParentBB)2030 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2031 MachineBasicBlock *ParentBB) {
2032
2033 // First create the loads to the guard/stack slot for the comparison.
2034 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2035 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2036
2037 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2038 int FI = MFI->getStackProtectorIndex();
2039
2040 SDValue Guard;
2041 SDLoc dl = getCurSDLoc();
2042 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2043 const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2044 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2045
2046 // Generate code to load the content of the guard slot.
2047 SDValue StackSlot = DAG.getLoad(
2048 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2049 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2050 false, false, Align);
2051
2052 // Retrieve guard check function, nullptr if instrumentation is inlined.
2053 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2054 // The target provides a guard check function to validate the guard value.
2055 // Generate a call to that function with the content of the guard slot as
2056 // argument.
2057 auto *Fn = cast<Function>(GuardCheck);
2058 FunctionType *FnTy = Fn->getFunctionType();
2059 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2060
2061 TargetLowering::ArgListTy Args;
2062 TargetLowering::ArgListEntry Entry;
2063 Entry.Node = StackSlot;
2064 Entry.Ty = FnTy->getParamType(0);
2065 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2066 Entry.isInReg = true;
2067 Args.push_back(Entry);
2068
2069 TargetLowering::CallLoweringInfo CLI(DAG);
2070 CLI.setDebugLoc(getCurSDLoc())
2071 .setChain(DAG.getEntryNode())
2072 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2073 getValue(GuardCheck), std::move(Args));
2074
2075 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2076 DAG.setRoot(Result.second);
2077 return;
2078 }
2079
2080 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2081 // Otherwise, emit a volatile load to retrieve the stack guard value.
2082 SDValue Chain = DAG.getEntryNode();
2083 if (TLI.useLoadStackGuardNode()) {
2084 Guard = getLoadStackGuard(DAG, dl, Chain);
2085 } else {
2086 const Value *IRGuard = TLI.getSDagStackGuard(M);
2087 SDValue GuardPtr = getValue(IRGuard);
2088
2089 Guard =
2090 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2091 true, false, false, Align);
2092 }
2093
2094 // Perform the comparison via a subtract/getsetcc.
2095 EVT VT = Guard.getValueType();
2096 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2097
2098 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2099 *DAG.getContext(),
2100 Sub.getValueType()),
2101 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2102
2103 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2104 // branch to failure MBB.
2105 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2106 MVT::Other, StackSlot.getOperand(0),
2107 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2108 // Otherwise branch to success MBB.
2109 SDValue Br = DAG.getNode(ISD::BR, dl,
2110 MVT::Other, BrCond,
2111 DAG.getBasicBlock(SPD.getSuccessMBB()));
2112
2113 DAG.setRoot(Br);
2114 }
2115
2116 /// Codegen the failure basic block for a stack protector check.
2117 ///
2118 /// A failure stack protector machine basic block consists simply of a call to
2119 /// __stack_chk_fail().
2120 ///
2121 /// For a high level explanation of how this fits into the stack protector
2122 /// generation see the comment on the declaration of class
2123 /// StackProtectorDescriptor.
2124 void
visitSPDescriptorFailure(StackProtectorDescriptor & SPD)2125 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2126 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2127 SDValue Chain =
2128 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2129 None, false, getCurSDLoc(), false, false).second;
2130 DAG.setRoot(Chain);
2131 }
2132
2133 /// visitBitTestHeader - This function emits necessary code to produce value
2134 /// suitable for "bit tests"
visitBitTestHeader(BitTestBlock & B,MachineBasicBlock * SwitchBB)2135 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2136 MachineBasicBlock *SwitchBB) {
2137 SDLoc dl = getCurSDLoc();
2138
2139 // Subtract the minimum value
2140 SDValue SwitchOp = getValue(B.SValue);
2141 EVT VT = SwitchOp.getValueType();
2142 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2143 DAG.getConstant(B.First, dl, VT));
2144
2145 // Check range
2146 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2147 SDValue RangeCmp = DAG.getSetCC(
2148 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2149 Sub.getValueType()),
2150 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2151
2152 // Determine the type of the test operands.
2153 bool UsePtrType = false;
2154 if (!TLI.isTypeLegal(VT))
2155 UsePtrType = true;
2156 else {
2157 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2158 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2159 // Switch table case range are encoded into series of masks.
2160 // Just use pointer type, it's guaranteed to fit.
2161 UsePtrType = true;
2162 break;
2163 }
2164 }
2165 if (UsePtrType) {
2166 VT = TLI.getPointerTy(DAG.getDataLayout());
2167 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2168 }
2169
2170 B.RegVT = VT.getSimpleVT();
2171 B.Reg = FuncInfo.CreateReg(B.RegVT);
2172 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2173
2174 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2175
2176 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2177 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2178 SwitchBB->normalizeSuccProbs();
2179
2180 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2181 MVT::Other, CopyTo, RangeCmp,
2182 DAG.getBasicBlock(B.Default));
2183
2184 // Avoid emitting unnecessary branches to the next block.
2185 if (MBB != NextBlock(SwitchBB))
2186 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2187 DAG.getBasicBlock(MBB));
2188
2189 DAG.setRoot(BrRange);
2190 }
2191
2192 /// visitBitTestCase - this function produces one "bit test"
visitBitTestCase(BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,unsigned Reg,BitTestCase & B,MachineBasicBlock * SwitchBB)2193 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2194 MachineBasicBlock* NextMBB,
2195 BranchProbability BranchProbToNext,
2196 unsigned Reg,
2197 BitTestCase &B,
2198 MachineBasicBlock *SwitchBB) {
2199 SDLoc dl = getCurSDLoc();
2200 MVT VT = BB.RegVT;
2201 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2202 SDValue Cmp;
2203 unsigned PopCount = countPopulation(B.Mask);
2204 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2205 if (PopCount == 1) {
2206 // Testing for a single bit; just compare the shift count with what it
2207 // would need to be to shift a 1 bit in that position.
2208 Cmp = DAG.getSetCC(
2209 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2210 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2211 ISD::SETEQ);
2212 } else if (PopCount == BB.Range) {
2213 // There is only one zero bit in the range, test for it directly.
2214 Cmp = DAG.getSetCC(
2215 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2216 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2217 ISD::SETNE);
2218 } else {
2219 // Make desired shift
2220 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2221 DAG.getConstant(1, dl, VT), ShiftOp);
2222
2223 // Emit bit tests and jumps
2224 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2225 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2226 Cmp = DAG.getSetCC(
2227 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2228 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2229 }
2230
2231 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2232 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2233 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2234 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2235 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2236 // one as they are relative probabilities (and thus work more like weights),
2237 // and hence we need to normalize them to let the sum of them become one.
2238 SwitchBB->normalizeSuccProbs();
2239
2240 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2241 MVT::Other, getControlRoot(),
2242 Cmp, DAG.getBasicBlock(B.TargetBB));
2243
2244 // Avoid emitting unnecessary branches to the next block.
2245 if (NextMBB != NextBlock(SwitchBB))
2246 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2247 DAG.getBasicBlock(NextMBB));
2248
2249 DAG.setRoot(BrAnd);
2250 }
2251
visitInvoke(const InvokeInst & I)2252 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2253 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2254
2255 // Retrieve successors. Look through artificial IR level blocks like
2256 // catchswitch for successors.
2257 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2258 const BasicBlock *EHPadBB = I.getSuccessor(1);
2259
2260 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2261 // have to do anything here to lower funclet bundles.
2262 assert(!I.hasOperandBundlesOtherThan(
2263 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2264 "Cannot lower invokes with arbitrary operand bundles yet!");
2265
2266 const Value *Callee(I.getCalledValue());
2267 const Function *Fn = dyn_cast<Function>(Callee);
2268 if (isa<InlineAsm>(Callee))
2269 visitInlineAsm(&I);
2270 else if (Fn && Fn->isIntrinsic()) {
2271 switch (Fn->getIntrinsicID()) {
2272 default:
2273 llvm_unreachable("Cannot invoke this intrinsic");
2274 case Intrinsic::donothing:
2275 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2276 break;
2277 case Intrinsic::experimental_patchpoint_void:
2278 case Intrinsic::experimental_patchpoint_i64:
2279 visitPatchpoint(&I, EHPadBB);
2280 break;
2281 case Intrinsic::experimental_gc_statepoint:
2282 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2283 break;
2284 }
2285 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2286 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2287 // Eventually we will support lowering the @llvm.experimental.deoptimize
2288 // intrinsic, and right now there are no plans to support other intrinsics
2289 // with deopt state.
2290 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2291 } else {
2292 LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2293 }
2294
2295 // If the value of the invoke is used outside of its defining block, make it
2296 // available as a virtual register.
2297 // We already took care of the exported value for the statepoint instruction
2298 // during call to the LowerStatepoint.
2299 if (!isStatepoint(I)) {
2300 CopyToExportRegsIfNeeded(&I);
2301 }
2302
2303 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2304 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2305 BranchProbability EHPadBBProb =
2306 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2307 : BranchProbability::getZero();
2308 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2309
2310 // Update successor info.
2311 addSuccessorWithProb(InvokeMBB, Return);
2312 for (auto &UnwindDest : UnwindDests) {
2313 UnwindDest.first->setIsEHPad();
2314 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2315 }
2316 InvokeMBB->normalizeSuccProbs();
2317
2318 // Drop into normal successor.
2319 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2320 MVT::Other, getControlRoot(),
2321 DAG.getBasicBlock(Return)));
2322 }
2323
visitResume(const ResumeInst & RI)2324 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2325 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2326 }
2327
visitLandingPad(const LandingPadInst & LP)2328 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2329 assert(FuncInfo.MBB->isEHPad() &&
2330 "Call to landingpad not in landing pad!");
2331
2332 MachineBasicBlock *MBB = FuncInfo.MBB;
2333 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2334 AddLandingPadInfo(LP, MMI, MBB);
2335
2336 // If there aren't registers to copy the values into (e.g., during SjLj
2337 // exceptions), then don't bother to create these DAG nodes.
2338 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2339 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2340 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2341 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2342 return;
2343
2344 // If landingpad's return type is token type, we don't create DAG nodes
2345 // for its exception pointer and selector value. The extraction of exception
2346 // pointer or selector value from token type landingpads is not currently
2347 // supported.
2348 if (LP.getType()->isTokenTy())
2349 return;
2350
2351 SmallVector<EVT, 2> ValueVTs;
2352 SDLoc dl = getCurSDLoc();
2353 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2354 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2355
2356 // Get the two live-in registers as SDValues. The physregs have already been
2357 // copied into virtual registers.
2358 SDValue Ops[2];
2359 if (FuncInfo.ExceptionPointerVirtReg) {
2360 Ops[0] = DAG.getZExtOrTrunc(
2361 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2362 FuncInfo.ExceptionPointerVirtReg,
2363 TLI.getPointerTy(DAG.getDataLayout())),
2364 dl, ValueVTs[0]);
2365 } else {
2366 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2367 }
2368 Ops[1] = DAG.getZExtOrTrunc(
2369 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2370 FuncInfo.ExceptionSelectorVirtReg,
2371 TLI.getPointerTy(DAG.getDataLayout())),
2372 dl, ValueVTs[1]);
2373
2374 // Merge into one.
2375 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2376 DAG.getVTList(ValueVTs), Ops);
2377 setValue(&LP, Res);
2378 }
2379
sortAndRangeify(CaseClusterVector & Clusters)2380 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2381 #ifndef NDEBUG
2382 for (const CaseCluster &CC : Clusters)
2383 assert(CC.Low == CC.High && "Input clusters must be single-case");
2384 #endif
2385
2386 std::sort(Clusters.begin(), Clusters.end(),
2387 [](const CaseCluster &a, const CaseCluster &b) {
2388 return a.Low->getValue().slt(b.Low->getValue());
2389 });
2390
2391 // Merge adjacent clusters with the same destination.
2392 const unsigned N = Clusters.size();
2393 unsigned DstIndex = 0;
2394 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2395 CaseCluster &CC = Clusters[SrcIndex];
2396 const ConstantInt *CaseVal = CC.Low;
2397 MachineBasicBlock *Succ = CC.MBB;
2398
2399 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2400 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2401 // If this case has the same successor and is a neighbour, merge it into
2402 // the previous cluster.
2403 Clusters[DstIndex - 1].High = CaseVal;
2404 Clusters[DstIndex - 1].Prob += CC.Prob;
2405 } else {
2406 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2407 sizeof(Clusters[SrcIndex]));
2408 }
2409 }
2410 Clusters.resize(DstIndex);
2411 }
2412
UpdateSplitBlock(MachineBasicBlock * First,MachineBasicBlock * Last)2413 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2414 MachineBasicBlock *Last) {
2415 // Update JTCases.
2416 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2417 if (JTCases[i].first.HeaderBB == First)
2418 JTCases[i].first.HeaderBB = Last;
2419
2420 // Update BitTestCases.
2421 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2422 if (BitTestCases[i].Parent == First)
2423 BitTestCases[i].Parent = Last;
2424 }
2425
visitIndirectBr(const IndirectBrInst & I)2426 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2427 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2428
2429 // Update machine-CFG edges with unique successors.
2430 SmallSet<BasicBlock*, 32> Done;
2431 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2432 BasicBlock *BB = I.getSuccessor(i);
2433 bool Inserted = Done.insert(BB).second;
2434 if (!Inserted)
2435 continue;
2436
2437 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2438 addSuccessorWithProb(IndirectBrMBB, Succ);
2439 }
2440 IndirectBrMBB->normalizeSuccProbs();
2441
2442 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2443 MVT::Other, getControlRoot(),
2444 getValue(I.getAddress())));
2445 }
2446
visitUnreachable(const UnreachableInst & I)2447 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2448 if (DAG.getTarget().Options.TrapUnreachable)
2449 DAG.setRoot(
2450 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2451 }
2452
visitFSub(const User & I)2453 void SelectionDAGBuilder::visitFSub(const User &I) {
2454 // -0.0 - X --> fneg
2455 Type *Ty = I.getType();
2456 if (isa<Constant>(I.getOperand(0)) &&
2457 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2458 SDValue Op2 = getValue(I.getOperand(1));
2459 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2460 Op2.getValueType(), Op2));
2461 return;
2462 }
2463
2464 visitBinary(I, ISD::FSUB);
2465 }
2466
2467 /// Checks if the given instruction performs a vector reduction, in which case
2468 /// we have the freedom to alter the elements in the result as long as the
2469 /// reduction of them stays unchanged.
isVectorReductionOp(const User * I)2470 static bool isVectorReductionOp(const User *I) {
2471 const Instruction *Inst = dyn_cast<Instruction>(I);
2472 if (!Inst || !Inst->getType()->isVectorTy())
2473 return false;
2474
2475 auto OpCode = Inst->getOpcode();
2476 switch (OpCode) {
2477 case Instruction::Add:
2478 case Instruction::Mul:
2479 case Instruction::And:
2480 case Instruction::Or:
2481 case Instruction::Xor:
2482 break;
2483 case Instruction::FAdd:
2484 case Instruction::FMul:
2485 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2486 if (FPOp->getFastMathFlags().unsafeAlgebra())
2487 break;
2488 // Fall through.
2489 default:
2490 return false;
2491 }
2492
2493 unsigned ElemNum = Inst->getType()->getVectorNumElements();
2494 unsigned ElemNumToReduce = ElemNum;
2495
2496 // Do DFS search on the def-use chain from the given instruction. We only
2497 // allow four kinds of operations during the search until we reach the
2498 // instruction that extracts the first element from the vector:
2499 //
2500 // 1. The reduction operation of the same opcode as the given instruction.
2501 //
2502 // 2. PHI node.
2503 //
2504 // 3. ShuffleVector instruction together with a reduction operation that
2505 // does a partial reduction.
2506 //
2507 // 4. ExtractElement that extracts the first element from the vector, and we
2508 // stop searching the def-use chain here.
2509 //
2510 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2511 // from 1-3 to the stack to continue the DFS. The given instruction is not
2512 // a reduction operation if we meet any other instructions other than those
2513 // listed above.
2514
2515 SmallVector<const User *, 16> UsersToVisit{Inst};
2516 SmallPtrSet<const User *, 16> Visited;
2517 bool ReduxExtracted = false;
2518
2519 while (!UsersToVisit.empty()) {
2520 auto User = UsersToVisit.back();
2521 UsersToVisit.pop_back();
2522 if (!Visited.insert(User).second)
2523 continue;
2524
2525 for (const auto &U : User->users()) {
2526 auto Inst = dyn_cast<Instruction>(U);
2527 if (!Inst)
2528 return false;
2529
2530 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2531 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2532 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2533 return false;
2534 UsersToVisit.push_back(U);
2535 } else if (const ShuffleVectorInst *ShufInst =
2536 dyn_cast<ShuffleVectorInst>(U)) {
2537 // Detect the following pattern: A ShuffleVector instruction together
2538 // with a reduction that do partial reduction on the first and second
2539 // ElemNumToReduce / 2 elements, and store the result in
2540 // ElemNumToReduce / 2 elements in another vector.
2541
2542 unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2543 if (ResultElements < ElemNum)
2544 return false;
2545
2546 if (ElemNumToReduce == 1)
2547 return false;
2548 if (!isa<UndefValue>(U->getOperand(1)))
2549 return false;
2550 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2551 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2552 return false;
2553 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2554 if (ShufInst->getMaskValue(i) != -1)
2555 return false;
2556
2557 // There is only one user of this ShuffleVector instruction, which
2558 // must be a reduction operation.
2559 if (!U->hasOneUse())
2560 return false;
2561
2562 auto U2 = dyn_cast<Instruction>(*U->user_begin());
2563 if (!U2 || U2->getOpcode() != OpCode)
2564 return false;
2565
2566 // Check operands of the reduction operation.
2567 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2568 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2569 UsersToVisit.push_back(U2);
2570 ElemNumToReduce /= 2;
2571 } else
2572 return false;
2573 } else if (isa<ExtractElementInst>(U)) {
2574 // At this moment we should have reduced all elements in the vector.
2575 if (ElemNumToReduce != 1)
2576 return false;
2577
2578 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2579 if (!Val || Val->getZExtValue() != 0)
2580 return false;
2581
2582 ReduxExtracted = true;
2583 } else
2584 return false;
2585 }
2586 }
2587 return ReduxExtracted;
2588 }
2589
visitBinary(const User & I,unsigned OpCode)2590 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2591 SDValue Op1 = getValue(I.getOperand(0));
2592 SDValue Op2 = getValue(I.getOperand(1));
2593
2594 bool nuw = false;
2595 bool nsw = false;
2596 bool exact = false;
2597 bool vec_redux = false;
2598 FastMathFlags FMF;
2599
2600 if (const OverflowingBinaryOperator *OFBinOp =
2601 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2602 nuw = OFBinOp->hasNoUnsignedWrap();
2603 nsw = OFBinOp->hasNoSignedWrap();
2604 }
2605 if (const PossiblyExactOperator *ExactOp =
2606 dyn_cast<const PossiblyExactOperator>(&I))
2607 exact = ExactOp->isExact();
2608 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2609 FMF = FPOp->getFastMathFlags();
2610
2611 if (isVectorReductionOp(&I)) {
2612 vec_redux = true;
2613 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2614 }
2615
2616 SDNodeFlags Flags;
2617 Flags.setExact(exact);
2618 Flags.setNoSignedWrap(nsw);
2619 Flags.setNoUnsignedWrap(nuw);
2620 Flags.setVectorReduction(vec_redux);
2621 if (EnableFMFInDAG) {
2622 Flags.setAllowReciprocal(FMF.allowReciprocal());
2623 Flags.setNoInfs(FMF.noInfs());
2624 Flags.setNoNaNs(FMF.noNaNs());
2625 Flags.setNoSignedZeros(FMF.noSignedZeros());
2626 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2627 }
2628 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2629 Op1, Op2, &Flags);
2630 setValue(&I, BinNodeValue);
2631 }
2632
visitShift(const User & I,unsigned Opcode)2633 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2634 SDValue Op1 = getValue(I.getOperand(0));
2635 SDValue Op2 = getValue(I.getOperand(1));
2636
2637 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2638 Op2.getValueType(), DAG.getDataLayout());
2639
2640 // Coerce the shift amount to the right type if we can.
2641 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2642 unsigned ShiftSize = ShiftTy.getSizeInBits();
2643 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2644 SDLoc DL = getCurSDLoc();
2645
2646 // If the operand is smaller than the shift count type, promote it.
2647 if (ShiftSize > Op2Size)
2648 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2649
2650 // If the operand is larger than the shift count type but the shift
2651 // count type has enough bits to represent any shift value, truncate
2652 // it now. This is a common case and it exposes the truncate to
2653 // optimization early.
2654 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2655 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2656 // Otherwise we'll need to temporarily settle for some other convenient
2657 // type. Type legalization will make adjustments once the shiftee is split.
2658 else
2659 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2660 }
2661
2662 bool nuw = false;
2663 bool nsw = false;
2664 bool exact = false;
2665
2666 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2667
2668 if (const OverflowingBinaryOperator *OFBinOp =
2669 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2670 nuw = OFBinOp->hasNoUnsignedWrap();
2671 nsw = OFBinOp->hasNoSignedWrap();
2672 }
2673 if (const PossiblyExactOperator *ExactOp =
2674 dyn_cast<const PossiblyExactOperator>(&I))
2675 exact = ExactOp->isExact();
2676 }
2677 SDNodeFlags Flags;
2678 Flags.setExact(exact);
2679 Flags.setNoSignedWrap(nsw);
2680 Flags.setNoUnsignedWrap(nuw);
2681 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2682 &Flags);
2683 setValue(&I, Res);
2684 }
2685
visitSDiv(const User & I)2686 void SelectionDAGBuilder::visitSDiv(const User &I) {
2687 SDValue Op1 = getValue(I.getOperand(0));
2688 SDValue Op2 = getValue(I.getOperand(1));
2689
2690 SDNodeFlags Flags;
2691 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2692 cast<PossiblyExactOperator>(&I)->isExact());
2693 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2694 Op2, &Flags));
2695 }
2696
visitICmp(const User & I)2697 void SelectionDAGBuilder::visitICmp(const User &I) {
2698 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2699 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2700 predicate = IC->getPredicate();
2701 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2702 predicate = ICmpInst::Predicate(IC->getPredicate());
2703 SDValue Op1 = getValue(I.getOperand(0));
2704 SDValue Op2 = getValue(I.getOperand(1));
2705 ISD::CondCode Opcode = getICmpCondCode(predicate);
2706
2707 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2708 I.getType());
2709 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2710 }
2711
visitFCmp(const User & I)2712 void SelectionDAGBuilder::visitFCmp(const User &I) {
2713 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2714 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2715 predicate = FC->getPredicate();
2716 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2717 predicate = FCmpInst::Predicate(FC->getPredicate());
2718 SDValue Op1 = getValue(I.getOperand(0));
2719 SDValue Op2 = getValue(I.getOperand(1));
2720 ISD::CondCode Condition = getFCmpCondCode(predicate);
2721
2722 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2723 // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2724 // further optimization, but currently FMF is only applicable to binary nodes.
2725 if (TM.Options.NoNaNsFPMath)
2726 Condition = getFCmpCodeWithoutNaN(Condition);
2727 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2728 I.getType());
2729 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2730 }
2731
2732 // Check if the condition of the select has one use or two users that are both
2733 // selects with the same condition.
hasOnlySelectUsers(const Value * Cond)2734 static bool hasOnlySelectUsers(const Value *Cond) {
2735 return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) {
2736 return isa<SelectInst>(V);
2737 });
2738 }
2739
visitSelect(const User & I)2740 void SelectionDAGBuilder::visitSelect(const User &I) {
2741 SmallVector<EVT, 4> ValueVTs;
2742 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2743 ValueVTs);
2744 unsigned NumValues = ValueVTs.size();
2745 if (NumValues == 0) return;
2746
2747 SmallVector<SDValue, 4> Values(NumValues);
2748 SDValue Cond = getValue(I.getOperand(0));
2749 SDValue LHSVal = getValue(I.getOperand(1));
2750 SDValue RHSVal = getValue(I.getOperand(2));
2751 auto BaseOps = {Cond};
2752 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2753 ISD::VSELECT : ISD::SELECT;
2754
2755 // Min/max matching is only viable if all output VTs are the same.
2756 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2757 EVT VT = ValueVTs[0];
2758 LLVMContext &Ctx = *DAG.getContext();
2759 auto &TLI = DAG.getTargetLoweringInfo();
2760
2761 // We care about the legality of the operation after it has been type
2762 // legalized.
2763 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2764 VT != TLI.getTypeToTransformTo(Ctx, VT))
2765 VT = TLI.getTypeToTransformTo(Ctx, VT);
2766
2767 // If the vselect is legal, assume we want to leave this as a vector setcc +
2768 // vselect. Otherwise, if this is going to be scalarized, we want to see if
2769 // min/max is legal on the scalar type.
2770 bool UseScalarMinMax = VT.isVector() &&
2771 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2772
2773 Value *LHS, *RHS;
2774 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2775 ISD::NodeType Opc = ISD::DELETED_NODE;
2776 switch (SPR.Flavor) {
2777 case SPF_UMAX: Opc = ISD::UMAX; break;
2778 case SPF_UMIN: Opc = ISD::UMIN; break;
2779 case SPF_SMAX: Opc = ISD::SMAX; break;
2780 case SPF_SMIN: Opc = ISD::SMIN; break;
2781 case SPF_FMINNUM:
2782 switch (SPR.NaNBehavior) {
2783 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2784 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break;
2785 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2786 case SPNB_RETURNS_ANY: {
2787 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2788 Opc = ISD::FMINNUM;
2789 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2790 Opc = ISD::FMINNAN;
2791 else if (UseScalarMinMax)
2792 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2793 ISD::FMINNUM : ISD::FMINNAN;
2794 break;
2795 }
2796 }
2797 break;
2798 case SPF_FMAXNUM:
2799 switch (SPR.NaNBehavior) {
2800 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2801 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break;
2802 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2803 case SPNB_RETURNS_ANY:
2804
2805 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2806 Opc = ISD::FMAXNUM;
2807 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2808 Opc = ISD::FMAXNAN;
2809 else if (UseScalarMinMax)
2810 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2811 ISD::FMAXNUM : ISD::FMAXNAN;
2812 break;
2813 }
2814 break;
2815 default: break;
2816 }
2817
2818 if (Opc != ISD::DELETED_NODE &&
2819 (TLI.isOperationLegalOrCustom(Opc, VT) ||
2820 (UseScalarMinMax &&
2821 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2822 // If the underlying comparison instruction is used by any other
2823 // instruction, the consumed instructions won't be destroyed, so it is
2824 // not profitable to convert to a min/max.
2825 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2826 OpCode = Opc;
2827 LHSVal = getValue(LHS);
2828 RHSVal = getValue(RHS);
2829 BaseOps = {};
2830 }
2831 }
2832
2833 for (unsigned i = 0; i != NumValues; ++i) {
2834 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2835 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2836 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2837 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2838 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2839 Ops);
2840 }
2841
2842 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2843 DAG.getVTList(ValueVTs), Values));
2844 }
2845
visitTrunc(const User & I)2846 void SelectionDAGBuilder::visitTrunc(const User &I) {
2847 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2848 SDValue N = getValue(I.getOperand(0));
2849 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2850 I.getType());
2851 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2852 }
2853
visitZExt(const User & I)2854 void SelectionDAGBuilder::visitZExt(const User &I) {
2855 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2856 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2857 SDValue N = getValue(I.getOperand(0));
2858 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2859 I.getType());
2860 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2861 }
2862
visitSExt(const User & I)2863 void SelectionDAGBuilder::visitSExt(const User &I) {
2864 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2865 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2866 SDValue N = getValue(I.getOperand(0));
2867 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2868 I.getType());
2869 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2870 }
2871
visitFPTrunc(const User & I)2872 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2873 // FPTrunc is never a no-op cast, no need to check
2874 SDValue N = getValue(I.getOperand(0));
2875 SDLoc dl = getCurSDLoc();
2876 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2877 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2878 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2879 DAG.getTargetConstant(
2880 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2881 }
2882
visitFPExt(const User & I)2883 void SelectionDAGBuilder::visitFPExt(const User &I) {
2884 // FPExt is never a no-op cast, no need to check
2885 SDValue N = getValue(I.getOperand(0));
2886 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887 I.getType());
2888 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2889 }
2890
visitFPToUI(const User & I)2891 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2892 // FPToUI is never a no-op cast, no need to check
2893 SDValue N = getValue(I.getOperand(0));
2894 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2895 I.getType());
2896 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2897 }
2898
visitFPToSI(const User & I)2899 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2900 // FPToSI is never a no-op cast, no need to check
2901 SDValue N = getValue(I.getOperand(0));
2902 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2903 I.getType());
2904 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2905 }
2906
visitUIToFP(const User & I)2907 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2908 // UIToFP is never a no-op cast, no need to check
2909 SDValue N = getValue(I.getOperand(0));
2910 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2911 I.getType());
2912 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2913 }
2914
visitSIToFP(const User & I)2915 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2916 // SIToFP is never a no-op cast, no need to check
2917 SDValue N = getValue(I.getOperand(0));
2918 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919 I.getType());
2920 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2921 }
2922
visitPtrToInt(const User & I)2923 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2924 // What to do depends on the size of the integer and the size of the pointer.
2925 // We can either truncate, zero extend, or no-op, accordingly.
2926 SDValue N = getValue(I.getOperand(0));
2927 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2928 I.getType());
2929 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2930 }
2931
visitIntToPtr(const User & I)2932 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2933 // What to do depends on the size of the integer and the size of the pointer.
2934 // We can either truncate, zero extend, or no-op, accordingly.
2935 SDValue N = getValue(I.getOperand(0));
2936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2937 I.getType());
2938 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2939 }
2940
visitBitCast(const User & I)2941 void SelectionDAGBuilder::visitBitCast(const User &I) {
2942 SDValue N = getValue(I.getOperand(0));
2943 SDLoc dl = getCurSDLoc();
2944 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945 I.getType());
2946
2947 // BitCast assures us that source and destination are the same size so this is
2948 // either a BITCAST or a no-op.
2949 if (DestVT != N.getValueType())
2950 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2951 DestVT, N)); // convert types.
2952 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2953 // might fold any kind of constant expression to an integer constant and that
2954 // is not what we are looking for. Only regcognize a bitcast of a genuine
2955 // constant integer as an opaque constant.
2956 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2957 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2958 /*isOpaque*/true));
2959 else
2960 setValue(&I, N); // noop cast.
2961 }
2962
visitAddrSpaceCast(const User & I)2963 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2964 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2965 const Value *SV = I.getOperand(0);
2966 SDValue N = getValue(SV);
2967 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2968
2969 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2970 unsigned DestAS = I.getType()->getPointerAddressSpace();
2971
2972 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2973 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2974
2975 setValue(&I, N);
2976 }
2977
visitInsertElement(const User & I)2978 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2979 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2980 SDValue InVec = getValue(I.getOperand(0));
2981 SDValue InVal = getValue(I.getOperand(1));
2982 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2983 TLI.getVectorIdxTy(DAG.getDataLayout()));
2984 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2985 TLI.getValueType(DAG.getDataLayout(), I.getType()),
2986 InVec, InVal, InIdx));
2987 }
2988
visitExtractElement(const User & I)2989 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2990 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991 SDValue InVec = getValue(I.getOperand(0));
2992 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2993 TLI.getVectorIdxTy(DAG.getDataLayout()));
2994 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2995 TLI.getValueType(DAG.getDataLayout(), I.getType()),
2996 InVec, InIdx));
2997 }
2998
visitShuffleVector(const User & I)2999 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3000 SDValue Src1 = getValue(I.getOperand(0));
3001 SDValue Src2 = getValue(I.getOperand(1));
3002
3003 SmallVector<int, 8> Mask;
3004 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3005 unsigned MaskNumElts = Mask.size();
3006
3007 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3009 EVT SrcVT = Src1.getValueType();
3010 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3011
3012 if (SrcNumElts == MaskNumElts) {
3013 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, Mask));
3014 return;
3015 }
3016
3017 // Normalize the shuffle vector since mask and vector length don't match.
3018 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3019 // Mask is longer than the source vectors and is a multiple of the source
3020 // vectors. We can use concatenate vector to make the mask and vectors
3021 // lengths match.
3022
3023 unsigned NumConcat = MaskNumElts / SrcNumElts;
3024
3025 // Check if the shuffle is some kind of concatenation of the input vectors.
3026 bool IsConcat = true;
3027 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3028 for (unsigned i = 0; i != MaskNumElts; ++i) {
3029 int Idx = Mask[i];
3030 if (Idx < 0)
3031 continue;
3032 // Ensure the indices in each SrcVT sized piece are sequential and that
3033 // the same source is used for the whole piece.
3034 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3035 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3036 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3037 IsConcat = false;
3038 break;
3039 }
3040 // Remember which source this index came from.
3041 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3042 }
3043
3044 // The shuffle is concatenating multiple vectors together. Just emit
3045 // a CONCAT_VECTORS operation.
3046 if (IsConcat) {
3047 SmallVector<SDValue, 8> ConcatOps;
3048 for (auto Src : ConcatSrcs) {
3049 if (Src < 0)
3050 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3051 else if (Src == 0)
3052 ConcatOps.push_back(Src1);
3053 else
3054 ConcatOps.push_back(Src2);
3055 }
3056 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3057 VT, ConcatOps));
3058 return;
3059 }
3060
3061 // Pad both vectors with undefs to make them the same length as the mask.
3062 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3063
3064 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3065 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3066 MOps1[0] = Src1;
3067 MOps2[0] = Src2;
3068
3069 Src1 = Src1.isUndef() ? DAG.getUNDEF(VT)
3070 : DAG.getNode(ISD::CONCAT_VECTORS,
3071 getCurSDLoc(), VT, MOps1);
3072 Src2 = Src2.isUndef() ? DAG.getUNDEF(VT)
3073 : DAG.getNode(ISD::CONCAT_VECTORS,
3074 getCurSDLoc(), VT, MOps2);
3075
3076 // Readjust mask for new input vector length.
3077 SmallVector<int, 8> MappedOps;
3078 for (unsigned i = 0; i != MaskNumElts; ++i) {
3079 int Idx = Mask[i];
3080 if (Idx >= (int)SrcNumElts)
3081 Idx -= SrcNumElts - MaskNumElts;
3082 MappedOps.push_back(Idx);
3083 }
3084
3085 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3086 MappedOps));
3087 return;
3088 }
3089
3090 if (SrcNumElts > MaskNumElts) {
3091 // Analyze the access pattern of the vector to see if we can extract
3092 // two subvectors and do the shuffle. The analysis is done by calculating
3093 // the range of elements the mask access on both vectors.
3094 int MinRange[2] = { static_cast<int>(SrcNumElts),
3095 static_cast<int>(SrcNumElts)};
3096 int MaxRange[2] = {-1, -1};
3097
3098 for (unsigned i = 0; i != MaskNumElts; ++i) {
3099 int Idx = Mask[i];
3100 unsigned Input = 0;
3101 if (Idx < 0)
3102 continue;
3103
3104 if (Idx >= (int)SrcNumElts) {
3105 Input = 1;
3106 Idx -= SrcNumElts;
3107 }
3108 if (Idx > MaxRange[Input])
3109 MaxRange[Input] = Idx;
3110 if (Idx < MinRange[Input])
3111 MinRange[Input] = Idx;
3112 }
3113
3114 // Check if the access is smaller than the vector size and can we find
3115 // a reasonable extract index.
3116 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
3117 // Extract.
3118 int StartIdx[2]; // StartIdx to extract from
3119 for (unsigned Input = 0; Input < 2; ++Input) {
3120 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3121 RangeUse[Input] = 0; // Unused
3122 StartIdx[Input] = 0;
3123 continue;
3124 }
3125
3126 // Find a good start index that is a multiple of the mask length. Then
3127 // see if the rest of the elements are in range.
3128 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3129 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3130 StartIdx[Input] + MaskNumElts <= SrcNumElts)
3131 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3132 }
3133
3134 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3135 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3136 return;
3137 }
3138 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3139 // Extract appropriate subvector and generate a vector shuffle
3140 for (unsigned Input = 0; Input < 2; ++Input) {
3141 SDValue &Src = Input == 0 ? Src1 : Src2;
3142 if (RangeUse[Input] == 0)
3143 Src = DAG.getUNDEF(VT);
3144 else {
3145 SDLoc dl = getCurSDLoc();
3146 Src = DAG.getNode(
3147 ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3148 DAG.getConstant(StartIdx[Input], dl,
3149 TLI.getVectorIdxTy(DAG.getDataLayout())));
3150 }
3151 }
3152
3153 // Calculate new mask.
3154 SmallVector<int, 8> MappedOps;
3155 for (unsigned i = 0; i != MaskNumElts; ++i) {
3156 int Idx = Mask[i];
3157 if (Idx >= 0) {
3158 if (Idx < (int)SrcNumElts)
3159 Idx -= StartIdx[0];
3160 else
3161 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3162 }
3163 MappedOps.push_back(Idx);
3164 }
3165
3166 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3167 MappedOps));
3168 return;
3169 }
3170 }
3171
3172 // We can't use either concat vectors or extract subvectors so fall back to
3173 // replacing the shuffle with extract and build vector.
3174 // to insert and build vector.
3175 EVT EltVT = VT.getVectorElementType();
3176 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3177 SDLoc dl = getCurSDLoc();
3178 SmallVector<SDValue,8> Ops;
3179 for (unsigned i = 0; i != MaskNumElts; ++i) {
3180 int Idx = Mask[i];
3181 SDValue Res;
3182
3183 if (Idx < 0) {
3184 Res = DAG.getUNDEF(EltVT);
3185 } else {
3186 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3187 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3188
3189 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3190 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3191 }
3192
3193 Ops.push_back(Res);
3194 }
3195
3196 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3197 }
3198
visitInsertValue(const InsertValueInst & I)3199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3200 const Value *Op0 = I.getOperand(0);
3201 const Value *Op1 = I.getOperand(1);
3202 Type *AggTy = I.getType();
3203 Type *ValTy = Op1->getType();
3204 bool IntoUndef = isa<UndefValue>(Op0);
3205 bool FromUndef = isa<UndefValue>(Op1);
3206
3207 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3208
3209 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3210 SmallVector<EVT, 4> AggValueVTs;
3211 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3212 SmallVector<EVT, 4> ValValueVTs;
3213 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3214
3215 unsigned NumAggValues = AggValueVTs.size();
3216 unsigned NumValValues = ValValueVTs.size();
3217 SmallVector<SDValue, 4> Values(NumAggValues);
3218
3219 // Ignore an insertvalue that produces an empty object
3220 if (!NumAggValues) {
3221 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3222 return;
3223 }
3224
3225 SDValue Agg = getValue(Op0);
3226 unsigned i = 0;
3227 // Copy the beginning value(s) from the original aggregate.
3228 for (; i != LinearIndex; ++i)
3229 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3230 SDValue(Agg.getNode(), Agg.getResNo() + i);
3231 // Copy values from the inserted value(s).
3232 if (NumValValues) {
3233 SDValue Val = getValue(Op1);
3234 for (; i != LinearIndex + NumValValues; ++i)
3235 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3236 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3237 }
3238 // Copy remaining value(s) from the original aggregate.
3239 for (; i != NumAggValues; ++i)
3240 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3241 SDValue(Agg.getNode(), Agg.getResNo() + i);
3242
3243 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3244 DAG.getVTList(AggValueVTs), Values));
3245 }
3246
visitExtractValue(const ExtractValueInst & I)3247 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3248 const Value *Op0 = I.getOperand(0);
3249 Type *AggTy = Op0->getType();
3250 Type *ValTy = I.getType();
3251 bool OutOfUndef = isa<UndefValue>(Op0);
3252
3253 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3254
3255 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3256 SmallVector<EVT, 4> ValValueVTs;
3257 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3258
3259 unsigned NumValValues = ValValueVTs.size();
3260
3261 // Ignore a extractvalue that produces an empty object
3262 if (!NumValValues) {
3263 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3264 return;
3265 }
3266
3267 SmallVector<SDValue, 4> Values(NumValValues);
3268
3269 SDValue Agg = getValue(Op0);
3270 // Copy out the selected value(s).
3271 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3272 Values[i - LinearIndex] =
3273 OutOfUndef ?
3274 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3275 SDValue(Agg.getNode(), Agg.getResNo() + i);
3276
3277 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3278 DAG.getVTList(ValValueVTs), Values));
3279 }
3280
visitGetElementPtr(const User & I)3281 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3282 Value *Op0 = I.getOperand(0);
3283 // Note that the pointer operand may be a vector of pointers. Take the scalar
3284 // element which holds a pointer.
3285 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3286 SDValue N = getValue(Op0);
3287 SDLoc dl = getCurSDLoc();
3288
3289 // Normalize Vector GEP - all scalar operands should be converted to the
3290 // splat vector.
3291 unsigned VectorWidth = I.getType()->isVectorTy() ?
3292 cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3293
3294 if (VectorWidth && !N.getValueType().isVector()) {
3295 LLVMContext &Context = *DAG.getContext();
3296 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3297 SmallVector<SDValue, 16> Ops(VectorWidth, N);
3298 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3299 }
3300 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3301 GTI != E; ++GTI) {
3302 const Value *Idx = GTI.getOperand();
3303 if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3304 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3305 if (Field) {
3306 // N = N + Offset
3307 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3308
3309 // In an inbouds GEP with an offset that is nonnegative even when
3310 // interpreted as signed, assume there is no unsigned overflow.
3311 SDNodeFlags Flags;
3312 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3313 Flags.setNoUnsignedWrap(true);
3314
3315 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3316 DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3317 }
3318 } else {
3319 MVT PtrTy =
3320 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3321 unsigned PtrSize = PtrTy.getSizeInBits();
3322 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3323
3324 // If this is a scalar constant or a splat vector of constants,
3325 // handle it quickly.
3326 const auto *CI = dyn_cast<ConstantInt>(Idx);
3327 if (!CI && isa<ConstantDataVector>(Idx) &&
3328 cast<ConstantDataVector>(Idx)->getSplatValue())
3329 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3330
3331 if (CI) {
3332 if (CI->isZero())
3333 continue;
3334 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3335 SDValue OffsVal = VectorWidth ?
3336 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3337 DAG.getConstant(Offs, dl, PtrTy);
3338
3339 // In an inbouds GEP with an offset that is nonnegative even when
3340 // interpreted as signed, assume there is no unsigned overflow.
3341 SDNodeFlags Flags;
3342 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3343 Flags.setNoUnsignedWrap(true);
3344
3345 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3346 continue;
3347 }
3348
3349 // N = N + Idx * ElementSize;
3350 SDValue IdxN = getValue(Idx);
3351
3352 if (!IdxN.getValueType().isVector() && VectorWidth) {
3353 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3354 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3355 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3356 }
3357 // If the index is smaller or larger than intptr_t, truncate or extend
3358 // it.
3359 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3360
3361 // If this is a multiply by a power of two, turn it into a shl
3362 // immediately. This is a very common case.
3363 if (ElementSize != 1) {
3364 if (ElementSize.isPowerOf2()) {
3365 unsigned Amt = ElementSize.logBase2();
3366 IdxN = DAG.getNode(ISD::SHL, dl,
3367 N.getValueType(), IdxN,
3368 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3369 } else {
3370 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3371 IdxN = DAG.getNode(ISD::MUL, dl,
3372 N.getValueType(), IdxN, Scale);
3373 }
3374 }
3375
3376 N = DAG.getNode(ISD::ADD, dl,
3377 N.getValueType(), N, IdxN);
3378 }
3379 }
3380
3381 setValue(&I, N);
3382 }
3383
visitAlloca(const AllocaInst & I)3384 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3385 // If this is a fixed sized alloca in the entry block of the function,
3386 // allocate it statically on the stack.
3387 if (FuncInfo.StaticAllocaMap.count(&I))
3388 return; // getValue will auto-populate this.
3389
3390 SDLoc dl = getCurSDLoc();
3391 Type *Ty = I.getAllocatedType();
3392 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3393 auto &DL = DAG.getDataLayout();
3394 uint64_t TySize = DL.getTypeAllocSize(Ty);
3395 unsigned Align =
3396 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3397
3398 SDValue AllocSize = getValue(I.getArraySize());
3399
3400 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3401 if (AllocSize.getValueType() != IntPtr)
3402 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3403
3404 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3405 AllocSize,
3406 DAG.getConstant(TySize, dl, IntPtr));
3407
3408 // Handle alignment. If the requested alignment is less than or equal to
3409 // the stack alignment, ignore it. If the size is greater than or equal to
3410 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3411 unsigned StackAlign =
3412 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3413 if (Align <= StackAlign)
3414 Align = 0;
3415
3416 // Round the size of the allocation up to the stack alignment size
3417 // by add SA-1 to the size. This doesn't overflow because we're computing
3418 // an address inside an alloca.
3419 SDNodeFlags Flags;
3420 Flags.setNoUnsignedWrap(true);
3421 AllocSize = DAG.getNode(ISD::ADD, dl,
3422 AllocSize.getValueType(), AllocSize,
3423 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3424
3425 // Mask out the low bits for alignment purposes.
3426 AllocSize = DAG.getNode(ISD::AND, dl,
3427 AllocSize.getValueType(), AllocSize,
3428 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3429 dl));
3430
3431 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3432 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3433 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3434 setValue(&I, DSA);
3435 DAG.setRoot(DSA.getValue(1));
3436
3437 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3438 }
3439
visitLoad(const LoadInst & I)3440 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3441 if (I.isAtomic())
3442 return visitAtomicLoad(I);
3443
3444 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3445 const Value *SV = I.getOperand(0);
3446 if (TLI.supportSwiftError()) {
3447 // Swifterror values can come from either a function parameter with
3448 // swifterror attribute or an alloca with swifterror attribute.
3449 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3450 if (Arg->hasSwiftErrorAttr())
3451 return visitLoadFromSwiftError(I);
3452 }
3453
3454 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3455 if (Alloca->isSwiftError())
3456 return visitLoadFromSwiftError(I);
3457 }
3458 }
3459
3460 SDValue Ptr = getValue(SV);
3461
3462 Type *Ty = I.getType();
3463
3464 bool isVolatile = I.isVolatile();
3465 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3466
3467 // The IR notion of invariant_load only guarantees that all *non-faulting*
3468 // invariant loads result in the same value. The MI notion of invariant load
3469 // guarantees that the load can be legally moved to any location within its
3470 // containing function. The MI notion of invariant_load is stronger than the
3471 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3472 // with a guarantee that the location being loaded from is dereferenceable
3473 // throughout the function's lifetime.
3474
3475 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3476 isDereferenceablePointer(SV, DAG.getDataLayout());
3477 unsigned Alignment = I.getAlignment();
3478
3479 AAMDNodes AAInfo;
3480 I.getAAMetadata(AAInfo);
3481 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3482
3483 SmallVector<EVT, 4> ValueVTs;
3484 SmallVector<uint64_t, 4> Offsets;
3485 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3486 unsigned NumValues = ValueVTs.size();
3487 if (NumValues == 0)
3488 return;
3489
3490 SDValue Root;
3491 bool ConstantMemory = false;
3492 if (isVolatile || NumValues > MaxParallelChains)
3493 // Serialize volatile loads with other side effects.
3494 Root = getRoot();
3495 else if (AA->pointsToConstantMemory(MemoryLocation(
3496 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3497 // Do not serialize (non-volatile) loads of constant memory with anything.
3498 Root = DAG.getEntryNode();
3499 ConstantMemory = true;
3500 } else {
3501 // Do not serialize non-volatile loads against each other.
3502 Root = DAG.getRoot();
3503 }
3504
3505 SDLoc dl = getCurSDLoc();
3506
3507 if (isVolatile)
3508 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3509
3510 // An aggregate load cannot wrap around the address space, so offsets to its
3511 // parts don't wrap either.
3512 SDNodeFlags Flags;
3513 Flags.setNoUnsignedWrap(true);
3514
3515 SmallVector<SDValue, 4> Values(NumValues);
3516 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3517 EVT PtrVT = Ptr.getValueType();
3518 unsigned ChainI = 0;
3519 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3520 // Serializing loads here may result in excessive register pressure, and
3521 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3522 // could recover a bit by hoisting nodes upward in the chain by recognizing
3523 // they are side-effect free or do not alias. The optimizer should really
3524 // avoid this case by converting large object/array copies to llvm.memcpy
3525 // (MaxParallelChains should always remain as failsafe).
3526 if (ChainI == MaxParallelChains) {
3527 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3528 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3529 makeArrayRef(Chains.data(), ChainI));
3530 Root = Chain;
3531 ChainI = 0;
3532 }
3533 SDValue A = DAG.getNode(ISD::ADD, dl,
3534 PtrVT, Ptr,
3535 DAG.getConstant(Offsets[i], dl, PtrVT),
3536 &Flags);
3537 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3538 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3539 isNonTemporal, isInvariant, Alignment, AAInfo,
3540 Ranges);
3541
3542 Values[i] = L;
3543 Chains[ChainI] = L.getValue(1);
3544 }
3545
3546 if (!ConstantMemory) {
3547 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3548 makeArrayRef(Chains.data(), ChainI));
3549 if (isVolatile)
3550 DAG.setRoot(Chain);
3551 else
3552 PendingLoads.push_back(Chain);
3553 }
3554
3555 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3556 DAG.getVTList(ValueVTs), Values));
3557 }
3558
visitStoreToSwiftError(const StoreInst & I)3559 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561 assert(TLI.supportSwiftError() &&
3562 "call visitStoreToSwiftError when backend supports swifterror");
3563
3564 SmallVector<EVT, 4> ValueVTs;
3565 SmallVector<uint64_t, 4> Offsets;
3566 const Value *SrcV = I.getOperand(0);
3567 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3568 SrcV->getType(), ValueVTs, &Offsets);
3569 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3570 "expect a single EVT for swifterror");
3571
3572 SDValue Src = getValue(SrcV);
3573 // Create a virtual register, then update the virtual register.
3574 auto &DL = DAG.getDataLayout();
3575 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3576 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3577 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3578 // Chain can be getRoot or getControlRoot.
3579 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3580 SDValue(Src.getNode(), Src.getResNo()));
3581 DAG.setRoot(CopyNode);
3582 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3583 }
3584
visitLoadFromSwiftError(const LoadInst & I)3585 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3586 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3587 "call visitLoadFromSwiftError when backend supports swifterror");
3588
3589 assert(!I.isVolatile() &&
3590 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3591 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3592 "Support volatile, non temporal, invariant for load_from_swift_error");
3593
3594 const Value *SV = I.getOperand(0);
3595 Type *Ty = I.getType();
3596 AAMDNodes AAInfo;
3597 I.getAAMetadata(AAInfo);
3598 assert(!AA->pointsToConstantMemory(MemoryLocation(
3599 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3600 "load_from_swift_error should not be constant memory");
3601
3602 SmallVector<EVT, 4> ValueVTs;
3603 SmallVector<uint64_t, 4> Offsets;
3604 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3605 ValueVTs, &Offsets);
3606 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3607 "expect a single EVT for swifterror");
3608
3609 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3610 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3611 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3612 ValueVTs[0]);
3613
3614 setValue(&I, L);
3615 }
3616
visitStore(const StoreInst & I)3617 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3618 if (I.isAtomic())
3619 return visitAtomicStore(I);
3620
3621 const Value *SrcV = I.getOperand(0);
3622 const Value *PtrV = I.getOperand(1);
3623
3624 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3625 if (TLI.supportSwiftError()) {
3626 // Swifterror values can come from either a function parameter with
3627 // swifterror attribute or an alloca with swifterror attribute.
3628 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3629 if (Arg->hasSwiftErrorAttr())
3630 return visitStoreToSwiftError(I);
3631 }
3632
3633 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3634 if (Alloca->isSwiftError())
3635 return visitStoreToSwiftError(I);
3636 }
3637 }
3638
3639 SmallVector<EVT, 4> ValueVTs;
3640 SmallVector<uint64_t, 4> Offsets;
3641 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3642 SrcV->getType(), ValueVTs, &Offsets);
3643 unsigned NumValues = ValueVTs.size();
3644 if (NumValues == 0)
3645 return;
3646
3647 // Get the lowered operands. Note that we do this after
3648 // checking if NumResults is zero, because with zero results
3649 // the operands won't have values in the map.
3650 SDValue Src = getValue(SrcV);
3651 SDValue Ptr = getValue(PtrV);
3652
3653 SDValue Root = getRoot();
3654 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3655 EVT PtrVT = Ptr.getValueType();
3656 bool isVolatile = I.isVolatile();
3657 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3658 unsigned Alignment = I.getAlignment();
3659 SDLoc dl = getCurSDLoc();
3660
3661 AAMDNodes AAInfo;
3662 I.getAAMetadata(AAInfo);
3663
3664 // An aggregate load cannot wrap around the address space, so offsets to its
3665 // parts don't wrap either.
3666 SDNodeFlags Flags;
3667 Flags.setNoUnsignedWrap(true);
3668
3669 unsigned ChainI = 0;
3670 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3671 // See visitLoad comments.
3672 if (ChainI == MaxParallelChains) {
3673 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3674 makeArrayRef(Chains.data(), ChainI));
3675 Root = Chain;
3676 ChainI = 0;
3677 }
3678 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3679 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3680 SDValue St = DAG.getStore(Root, dl,
3681 SDValue(Src.getNode(), Src.getResNo() + i),
3682 Add, MachinePointerInfo(PtrV, Offsets[i]),
3683 isVolatile, isNonTemporal, Alignment, AAInfo);
3684 Chains[ChainI] = St;
3685 }
3686
3687 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3688 makeArrayRef(Chains.data(), ChainI));
3689 DAG.setRoot(StoreNode);
3690 }
3691
visitMaskedStore(const CallInst & I)3692 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3693 SDLoc sdl = getCurSDLoc();
3694
3695 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3696 Value *PtrOperand = I.getArgOperand(1);
3697 SDValue Ptr = getValue(PtrOperand);
3698 SDValue Src0 = getValue(I.getArgOperand(0));
3699 SDValue Mask = getValue(I.getArgOperand(3));
3700 EVT VT = Src0.getValueType();
3701 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3702 if (!Alignment)
3703 Alignment = DAG.getEVTAlignment(VT);
3704
3705 AAMDNodes AAInfo;
3706 I.getAAMetadata(AAInfo);
3707
3708 MachineMemOperand *MMO =
3709 DAG.getMachineFunction().
3710 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3711 MachineMemOperand::MOStore, VT.getStoreSize(),
3712 Alignment, AAInfo);
3713 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3714 MMO, false);
3715 DAG.setRoot(StoreNode);
3716 setValue(&I, StoreNode);
3717 }
3718
3719 // Get a uniform base for the Gather/Scatter intrinsic.
3720 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3721 // We try to represent it as a base pointer + vector of indices.
3722 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3723 // The first operand of the GEP may be a single pointer or a vector of pointers
3724 // Example:
3725 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3726 // or
3727 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
3728 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3729 //
3730 // When the first GEP operand is a single pointer - it is the uniform base we
3731 // are looking for. If first operand of the GEP is a splat vector - we
3732 // extract the spalt value and use it as a uniform base.
3733 // In all other cases the function returns 'false'.
3734 //
getUniformBase(const Value * & Ptr,SDValue & Base,SDValue & Index,SelectionDAGBuilder * SDB)3735 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3736 SelectionDAGBuilder* SDB) {
3737
3738 SelectionDAG& DAG = SDB->DAG;
3739 LLVMContext &Context = *DAG.getContext();
3740
3741 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3742 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3743 if (!GEP || GEP->getNumOperands() > 2)
3744 return false;
3745
3746 const Value *GEPPtr = GEP->getPointerOperand();
3747 if (!GEPPtr->getType()->isVectorTy())
3748 Ptr = GEPPtr;
3749 else if (!(Ptr = getSplatValue(GEPPtr)))
3750 return false;
3751
3752 Value *IndexVal = GEP->getOperand(1);
3753
3754 // The operands of the GEP may be defined in another basic block.
3755 // In this case we'll not find nodes for the operands.
3756 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3757 return false;
3758
3759 Base = SDB->getValue(Ptr);
3760 Index = SDB->getValue(IndexVal);
3761
3762 // Suppress sign extension.
3763 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3764 if (SDB->findValue(Sext->getOperand(0))) {
3765 IndexVal = Sext->getOperand(0);
3766 Index = SDB->getValue(IndexVal);
3767 }
3768 }
3769 if (!Index.getValueType().isVector()) {
3770 unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3771 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3772 SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3773 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3774 }
3775 return true;
3776 }
3777
visitMaskedScatter(const CallInst & I)3778 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3779 SDLoc sdl = getCurSDLoc();
3780
3781 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3782 const Value *Ptr = I.getArgOperand(1);
3783 SDValue Src0 = getValue(I.getArgOperand(0));
3784 SDValue Mask = getValue(I.getArgOperand(3));
3785 EVT VT = Src0.getValueType();
3786 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3787 if (!Alignment)
3788 Alignment = DAG.getEVTAlignment(VT);
3789 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3790
3791 AAMDNodes AAInfo;
3792 I.getAAMetadata(AAInfo);
3793
3794 SDValue Base;
3795 SDValue Index;
3796 const Value *BasePtr = Ptr;
3797 bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3798
3799 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3800 MachineMemOperand *MMO = DAG.getMachineFunction().
3801 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3802 MachineMemOperand::MOStore, VT.getStoreSize(),
3803 Alignment, AAInfo);
3804 if (!UniformBase) {
3805 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3806 Index = getValue(Ptr);
3807 }
3808 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3809 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3810 Ops, MMO);
3811 DAG.setRoot(Scatter);
3812 setValue(&I, Scatter);
3813 }
3814
visitMaskedLoad(const CallInst & I)3815 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3816 SDLoc sdl = getCurSDLoc();
3817
3818 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3819 Value *PtrOperand = I.getArgOperand(0);
3820 SDValue Ptr = getValue(PtrOperand);
3821 SDValue Src0 = getValue(I.getArgOperand(3));
3822 SDValue Mask = getValue(I.getArgOperand(2));
3823
3824 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3825 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3826 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3827 if (!Alignment)
3828 Alignment = DAG.getEVTAlignment(VT);
3829
3830 AAMDNodes AAInfo;
3831 I.getAAMetadata(AAInfo);
3832 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3833
3834 // Do not serialize masked loads of constant memory with anything.
3835 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3836 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3837 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3838
3839 MachineMemOperand *MMO =
3840 DAG.getMachineFunction().
3841 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3842 MachineMemOperand::MOLoad, VT.getStoreSize(),
3843 Alignment, AAInfo, Ranges);
3844
3845 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3846 ISD::NON_EXTLOAD);
3847 if (AddToChain) {
3848 SDValue OutChain = Load.getValue(1);
3849 DAG.setRoot(OutChain);
3850 }
3851 setValue(&I, Load);
3852 }
3853
visitMaskedGather(const CallInst & I)3854 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3855 SDLoc sdl = getCurSDLoc();
3856
3857 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3858 const Value *Ptr = I.getArgOperand(0);
3859 SDValue Src0 = getValue(I.getArgOperand(3));
3860 SDValue Mask = getValue(I.getArgOperand(2));
3861
3862 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3863 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3864 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3865 if (!Alignment)
3866 Alignment = DAG.getEVTAlignment(VT);
3867
3868 AAMDNodes AAInfo;
3869 I.getAAMetadata(AAInfo);
3870 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3871
3872 SDValue Root = DAG.getRoot();
3873 SDValue Base;
3874 SDValue Index;
3875 const Value *BasePtr = Ptr;
3876 bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3877 bool ConstantMemory = false;
3878 if (UniformBase &&
3879 AA->pointsToConstantMemory(MemoryLocation(
3880 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3881 AAInfo))) {
3882 // Do not serialize (non-volatile) loads of constant memory with anything.
3883 Root = DAG.getEntryNode();
3884 ConstantMemory = true;
3885 }
3886
3887 MachineMemOperand *MMO =
3888 DAG.getMachineFunction().
3889 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3890 MachineMemOperand::MOLoad, VT.getStoreSize(),
3891 Alignment, AAInfo, Ranges);
3892
3893 if (!UniformBase) {
3894 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3895 Index = getValue(Ptr);
3896 }
3897 SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3898 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3899 Ops, MMO);
3900
3901 SDValue OutChain = Gather.getValue(1);
3902 if (!ConstantMemory)
3903 PendingLoads.push_back(OutChain);
3904 setValue(&I, Gather);
3905 }
3906
visitAtomicCmpXchg(const AtomicCmpXchgInst & I)3907 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3908 SDLoc dl = getCurSDLoc();
3909 AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3910 AtomicOrdering FailureOrder = I.getFailureOrdering();
3911 SynchronizationScope Scope = I.getSynchScope();
3912
3913 SDValue InChain = getRoot();
3914
3915 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3916 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3917 SDValue L = DAG.getAtomicCmpSwap(
3918 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3919 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3920 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3921 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3922
3923 SDValue OutChain = L.getValue(2);
3924
3925 setValue(&I, L);
3926 DAG.setRoot(OutChain);
3927 }
3928
visitAtomicRMW(const AtomicRMWInst & I)3929 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3930 SDLoc dl = getCurSDLoc();
3931 ISD::NodeType NT;
3932 switch (I.getOperation()) {
3933 default: llvm_unreachable("Unknown atomicrmw operation");
3934 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3935 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3936 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3937 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3938 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3939 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3940 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3941 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3942 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3943 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3944 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3945 }
3946 AtomicOrdering Order = I.getOrdering();
3947 SynchronizationScope Scope = I.getSynchScope();
3948
3949 SDValue InChain = getRoot();
3950
3951 SDValue L =
3952 DAG.getAtomic(NT, dl,
3953 getValue(I.getValOperand()).getSimpleValueType(),
3954 InChain,
3955 getValue(I.getPointerOperand()),
3956 getValue(I.getValOperand()),
3957 I.getPointerOperand(),
3958 /* Alignment=*/ 0, Order, Scope);
3959
3960 SDValue OutChain = L.getValue(1);
3961
3962 setValue(&I, L);
3963 DAG.setRoot(OutChain);
3964 }
3965
visitFence(const FenceInst & I)3966 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3967 SDLoc dl = getCurSDLoc();
3968 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3969 SDValue Ops[3];
3970 Ops[0] = getRoot();
3971 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3972 TLI.getPointerTy(DAG.getDataLayout()));
3973 Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3974 TLI.getPointerTy(DAG.getDataLayout()));
3975 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3976 }
3977
visitAtomicLoad(const LoadInst & I)3978 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3979 SDLoc dl = getCurSDLoc();
3980 AtomicOrdering Order = I.getOrdering();
3981 SynchronizationScope Scope = I.getSynchScope();
3982
3983 SDValue InChain = getRoot();
3984
3985 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3986 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3987
3988 if (I.getAlignment() < VT.getSizeInBits() / 8)
3989 report_fatal_error("Cannot generate unaligned atomic load");
3990
3991 MachineMemOperand *MMO =
3992 DAG.getMachineFunction().
3993 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3994 MachineMemOperand::MOVolatile |
3995 MachineMemOperand::MOLoad,
3996 VT.getStoreSize(),
3997 I.getAlignment() ? I.getAlignment() :
3998 DAG.getEVTAlignment(VT));
3999
4000 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4001 SDValue L =
4002 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4003 getValue(I.getPointerOperand()), MMO,
4004 Order, Scope);
4005
4006 SDValue OutChain = L.getValue(1);
4007
4008 setValue(&I, L);
4009 DAG.setRoot(OutChain);
4010 }
4011
visitAtomicStore(const StoreInst & I)4012 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4013 SDLoc dl = getCurSDLoc();
4014
4015 AtomicOrdering Order = I.getOrdering();
4016 SynchronizationScope Scope = I.getSynchScope();
4017
4018 SDValue InChain = getRoot();
4019
4020 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4021 EVT VT =
4022 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4023
4024 if (I.getAlignment() < VT.getSizeInBits() / 8)
4025 report_fatal_error("Cannot generate unaligned atomic store");
4026
4027 SDValue OutChain =
4028 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4029 InChain,
4030 getValue(I.getPointerOperand()),
4031 getValue(I.getValueOperand()),
4032 I.getPointerOperand(), I.getAlignment(),
4033 Order, Scope);
4034
4035 DAG.setRoot(OutChain);
4036 }
4037
4038 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4039 /// node.
visitTargetIntrinsic(const CallInst & I,unsigned Intrinsic)4040 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4041 unsigned Intrinsic) {
4042 bool HasChain = !I.doesNotAccessMemory();
4043 bool OnlyLoad = HasChain && I.onlyReadsMemory();
4044
4045 // Build the operand list.
4046 SmallVector<SDValue, 8> Ops;
4047 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4048 if (OnlyLoad) {
4049 // We don't need to serialize loads against other loads.
4050 Ops.push_back(DAG.getRoot());
4051 } else {
4052 Ops.push_back(getRoot());
4053 }
4054 }
4055
4056 // Info is set by getTgtMemInstrinsic
4057 TargetLowering::IntrinsicInfo Info;
4058 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4059 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4060
4061 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4062 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4063 Info.opc == ISD::INTRINSIC_W_CHAIN)
4064 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4065 TLI.getPointerTy(DAG.getDataLayout())));
4066
4067 // Add all operands of the call to the operand list.
4068 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4069 SDValue Op = getValue(I.getArgOperand(i));
4070 Ops.push_back(Op);
4071 }
4072
4073 SmallVector<EVT, 4> ValueVTs;
4074 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4075
4076 if (HasChain)
4077 ValueVTs.push_back(MVT::Other);
4078
4079 SDVTList VTs = DAG.getVTList(ValueVTs);
4080
4081 // Create the node.
4082 SDValue Result;
4083 if (IsTgtIntrinsic) {
4084 // This is target intrinsic that touches memory
4085 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4086 VTs, Ops, Info.memVT,
4087 MachinePointerInfo(Info.ptrVal, Info.offset),
4088 Info.align, Info.vol,
4089 Info.readMem, Info.writeMem, Info.size);
4090 } else if (!HasChain) {
4091 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4092 } else if (!I.getType()->isVoidTy()) {
4093 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4094 } else {
4095 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4096 }
4097
4098 if (HasChain) {
4099 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4100 if (OnlyLoad)
4101 PendingLoads.push_back(Chain);
4102 else
4103 DAG.setRoot(Chain);
4104 }
4105
4106 if (!I.getType()->isVoidTy()) {
4107 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4108 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4109 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4110 } else
4111 Result = lowerRangeToAssertZExt(DAG, I, Result);
4112
4113 setValue(&I, Result);
4114 }
4115 }
4116
4117 /// GetSignificand - Get the significand and build it into a floating-point
4118 /// number with exponent of 1:
4119 ///
4120 /// Op = (Op & 0x007fffff) | 0x3f800000;
4121 ///
4122 /// where Op is the hexadecimal representation of floating point value.
GetSignificand(SelectionDAG & DAG,SDValue Op,const SDLoc & dl)4123 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4124 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4125 DAG.getConstant(0x007fffff, dl, MVT::i32));
4126 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4127 DAG.getConstant(0x3f800000, dl, MVT::i32));
4128 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4129 }
4130
4131 /// GetExponent - Get the exponent:
4132 ///
4133 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4134 ///
4135 /// where Op is the hexadecimal representation of floating point value.
GetExponent(SelectionDAG & DAG,SDValue Op,const TargetLowering & TLI,const SDLoc & dl)4136 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4137 const TargetLowering &TLI, const SDLoc &dl) {
4138 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4139 DAG.getConstant(0x7f800000, dl, MVT::i32));
4140 SDValue t1 = DAG.getNode(
4141 ISD::SRL, dl, MVT::i32, t0,
4142 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4143 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4144 DAG.getConstant(127, dl, MVT::i32));
4145 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4146 }
4147
4148 /// getF32Constant - Get 32-bit floating point constant.
getF32Constant(SelectionDAG & DAG,unsigned Flt,const SDLoc & dl)4149 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4150 const SDLoc &dl) {
4151 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4152 MVT::f32);
4153 }
4154
getLimitedPrecisionExp2(SDValue t0,const SDLoc & dl,SelectionDAG & DAG)4155 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4156 SelectionDAG &DAG) {
4157 // TODO: What fast-math-flags should be set on the floating-point nodes?
4158
4159 // IntegerPartOfX = ((int32_t)(t0);
4160 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4161
4162 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4163 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4164 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4165
4166 // IntegerPartOfX <<= 23;
4167 IntegerPartOfX = DAG.getNode(
4168 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4169 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4170 DAG.getDataLayout())));
4171
4172 SDValue TwoToFractionalPartOfX;
4173 if (LimitFloatPrecision <= 6) {
4174 // For floating-point precision of 6:
4175 //
4176 // TwoToFractionalPartOfX =
4177 // 0.997535578f +
4178 // (0.735607626f + 0.252464424f * x) * x;
4179 //
4180 // error 0.0144103317, which is 6 bits
4181 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4182 getF32Constant(DAG, 0x3e814304, dl));
4183 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4184 getF32Constant(DAG, 0x3f3c50c8, dl));
4185 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4186 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4187 getF32Constant(DAG, 0x3f7f5e7e, dl));
4188 } else if (LimitFloatPrecision <= 12) {
4189 // For floating-point precision of 12:
4190 //
4191 // TwoToFractionalPartOfX =
4192 // 0.999892986f +
4193 // (0.696457318f +
4194 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4195 //
4196 // error 0.000107046256, which is 13 to 14 bits
4197 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4198 getF32Constant(DAG, 0x3da235e3, dl));
4199 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4200 getF32Constant(DAG, 0x3e65b8f3, dl));
4201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4202 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4203 getF32Constant(DAG, 0x3f324b07, dl));
4204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4205 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4206 getF32Constant(DAG, 0x3f7ff8fd, dl));
4207 } else { // LimitFloatPrecision <= 18
4208 // For floating-point precision of 18:
4209 //
4210 // TwoToFractionalPartOfX =
4211 // 0.999999982f +
4212 // (0.693148872f +
4213 // (0.240227044f +
4214 // (0.554906021e-1f +
4215 // (0.961591928e-2f +
4216 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4217 // error 2.47208000*10^(-7), which is better than 18 bits
4218 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4219 getF32Constant(DAG, 0x3924b03e, dl));
4220 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4221 getF32Constant(DAG, 0x3ab24b87, dl));
4222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4224 getF32Constant(DAG, 0x3c1d8c17, dl));
4225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4226 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4227 getF32Constant(DAG, 0x3d634a1d, dl));
4228 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4229 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4230 getF32Constant(DAG, 0x3e75fe14, dl));
4231 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4232 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4233 getF32Constant(DAG, 0x3f317234, dl));
4234 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4235 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4236 getF32Constant(DAG, 0x3f800000, dl));
4237 }
4238
4239 // Add the exponent into the result in integer domain.
4240 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4241 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4242 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4243 }
4244
4245 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4246 /// limited-precision mode.
expandExp(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4247 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4248 const TargetLowering &TLI) {
4249 if (Op.getValueType() == MVT::f32 &&
4250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4251
4252 // Put the exponent in the right bit position for later addition to the
4253 // final result:
4254 //
4255 // #define LOG2OFe 1.4426950f
4256 // t0 = Op * LOG2OFe
4257
4258 // TODO: What fast-math-flags should be set here?
4259 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4260 getF32Constant(DAG, 0x3fb8aa3b, dl));
4261 return getLimitedPrecisionExp2(t0, dl, DAG);
4262 }
4263
4264 // No special expansion.
4265 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4266 }
4267
4268 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4269 /// limited-precision mode.
expandLog(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4270 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4271 const TargetLowering &TLI) {
4272
4273 // TODO: What fast-math-flags should be set on the floating-point nodes?
4274
4275 if (Op.getValueType() == MVT::f32 &&
4276 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4277 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4278
4279 // Scale the exponent by log(2) [0.69314718f].
4280 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4281 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4282 getF32Constant(DAG, 0x3f317218, dl));
4283
4284 // Get the significand and build it into a floating-point number with
4285 // exponent of 1.
4286 SDValue X = GetSignificand(DAG, Op1, dl);
4287
4288 SDValue LogOfMantissa;
4289 if (LimitFloatPrecision <= 6) {
4290 // For floating-point precision of 6:
4291 //
4292 // LogofMantissa =
4293 // -1.1609546f +
4294 // (1.4034025f - 0.23903021f * x) * x;
4295 //
4296 // error 0.0034276066, which is better than 8 bits
4297 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4298 getF32Constant(DAG, 0xbe74c456, dl));
4299 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4300 getF32Constant(DAG, 0x3fb3a2b1, dl));
4301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4302 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4303 getF32Constant(DAG, 0x3f949a29, dl));
4304 } else if (LimitFloatPrecision <= 12) {
4305 // For floating-point precision of 12:
4306 //
4307 // LogOfMantissa =
4308 // -1.7417939f +
4309 // (2.8212026f +
4310 // (-1.4699568f +
4311 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4312 //
4313 // error 0.000061011436, which is 14 bits
4314 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4315 getF32Constant(DAG, 0xbd67b6d6, dl));
4316 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4317 getF32Constant(DAG, 0x3ee4f4b8, dl));
4318 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4319 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4320 getF32Constant(DAG, 0x3fbc278b, dl));
4321 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4322 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4323 getF32Constant(DAG, 0x40348e95, dl));
4324 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4325 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4326 getF32Constant(DAG, 0x3fdef31a, dl));
4327 } else { // LimitFloatPrecision <= 18
4328 // For floating-point precision of 18:
4329 //
4330 // LogOfMantissa =
4331 // -2.1072184f +
4332 // (4.2372794f +
4333 // (-3.7029485f +
4334 // (2.2781945f +
4335 // (-0.87823314f +
4336 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4337 //
4338 // error 0.0000023660568, which is better than 18 bits
4339 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4340 getF32Constant(DAG, 0xbc91e5ac, dl));
4341 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4342 getF32Constant(DAG, 0x3e4350aa, dl));
4343 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4344 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4345 getF32Constant(DAG, 0x3f60d3e3, dl));
4346 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4347 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4348 getF32Constant(DAG, 0x4011cdf0, dl));
4349 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4350 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4351 getF32Constant(DAG, 0x406cfd1c, dl));
4352 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4353 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4354 getF32Constant(DAG, 0x408797cb, dl));
4355 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4356 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4357 getF32Constant(DAG, 0x4006dcab, dl));
4358 }
4359
4360 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4361 }
4362
4363 // No special expansion.
4364 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4365 }
4366
4367 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4368 /// limited-precision mode.
expandLog2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4369 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4370 const TargetLowering &TLI) {
4371
4372 // TODO: What fast-math-flags should be set on the floating-point nodes?
4373
4374 if (Op.getValueType() == MVT::f32 &&
4375 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4376 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4377
4378 // Get the exponent.
4379 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4380
4381 // Get the significand and build it into a floating-point number with
4382 // exponent of 1.
4383 SDValue X = GetSignificand(DAG, Op1, dl);
4384
4385 // Different possible minimax approximations of significand in
4386 // floating-point for various degrees of accuracy over [1,2].
4387 SDValue Log2ofMantissa;
4388 if (LimitFloatPrecision <= 6) {
4389 // For floating-point precision of 6:
4390 //
4391 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4392 //
4393 // error 0.0049451742, which is more than 7 bits
4394 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4395 getF32Constant(DAG, 0xbeb08fe0, dl));
4396 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4397 getF32Constant(DAG, 0x40019463, dl));
4398 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4399 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4400 getF32Constant(DAG, 0x3fd6633d, dl));
4401 } else if (LimitFloatPrecision <= 12) {
4402 // For floating-point precision of 12:
4403 //
4404 // Log2ofMantissa =
4405 // -2.51285454f +
4406 // (4.07009056f +
4407 // (-2.12067489f +
4408 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4409 //
4410 // error 0.0000876136000, which is better than 13 bits
4411 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4412 getF32Constant(DAG, 0xbda7262e, dl));
4413 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4414 getF32Constant(DAG, 0x3f25280b, dl));
4415 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4416 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4417 getF32Constant(DAG, 0x4007b923, dl));
4418 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4419 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4420 getF32Constant(DAG, 0x40823e2f, dl));
4421 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4422 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4423 getF32Constant(DAG, 0x4020d29c, dl));
4424 } else { // LimitFloatPrecision <= 18
4425 // For floating-point precision of 18:
4426 //
4427 // Log2ofMantissa =
4428 // -3.0400495f +
4429 // (6.1129976f +
4430 // (-5.3420409f +
4431 // (3.2865683f +
4432 // (-1.2669343f +
4433 // (0.27515199f -
4434 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4435 //
4436 // error 0.0000018516, which is better than 18 bits
4437 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4438 getF32Constant(DAG, 0xbcd2769e, dl));
4439 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4440 getF32Constant(DAG, 0x3e8ce0b9, dl));
4441 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4442 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4443 getF32Constant(DAG, 0x3fa22ae7, dl));
4444 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4445 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4446 getF32Constant(DAG, 0x40525723, dl));
4447 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4448 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4449 getF32Constant(DAG, 0x40aaf200, dl));
4450 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4451 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4452 getF32Constant(DAG, 0x40c39dad, dl));
4453 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4454 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4455 getF32Constant(DAG, 0x4042902c, dl));
4456 }
4457
4458 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4459 }
4460
4461 // No special expansion.
4462 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4463 }
4464
4465 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4466 /// limited-precision mode.
expandLog10(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4467 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4468 const TargetLowering &TLI) {
4469
4470 // TODO: What fast-math-flags should be set on the floating-point nodes?
4471
4472 if (Op.getValueType() == MVT::f32 &&
4473 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4474 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4475
4476 // Scale the exponent by log10(2) [0.30102999f].
4477 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4478 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4479 getF32Constant(DAG, 0x3e9a209a, dl));
4480
4481 // Get the significand and build it into a floating-point number with
4482 // exponent of 1.
4483 SDValue X = GetSignificand(DAG, Op1, dl);
4484
4485 SDValue Log10ofMantissa;
4486 if (LimitFloatPrecision <= 6) {
4487 // For floating-point precision of 6:
4488 //
4489 // Log10ofMantissa =
4490 // -0.50419619f +
4491 // (0.60948995f - 0.10380950f * x) * x;
4492 //
4493 // error 0.0014886165, which is 6 bits
4494 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4495 getF32Constant(DAG, 0xbdd49a13, dl));
4496 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4497 getF32Constant(DAG, 0x3f1c0789, dl));
4498 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4499 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4500 getF32Constant(DAG, 0x3f011300, dl));
4501 } else if (LimitFloatPrecision <= 12) {
4502 // For floating-point precision of 12:
4503 //
4504 // Log10ofMantissa =
4505 // -0.64831180f +
4506 // (0.91751397f +
4507 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4508 //
4509 // error 0.00019228036, which is better than 12 bits
4510 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4511 getF32Constant(DAG, 0x3d431f31, dl));
4512 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4513 getF32Constant(DAG, 0x3ea21fb2, dl));
4514 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4515 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4516 getF32Constant(DAG, 0x3f6ae232, dl));
4517 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4518 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4519 getF32Constant(DAG, 0x3f25f7c3, dl));
4520 } else { // LimitFloatPrecision <= 18
4521 // For floating-point precision of 18:
4522 //
4523 // Log10ofMantissa =
4524 // -0.84299375f +
4525 // (1.5327582f +
4526 // (-1.0688956f +
4527 // (0.49102474f +
4528 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4529 //
4530 // error 0.0000037995730, which is better than 18 bits
4531 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4532 getF32Constant(DAG, 0x3c5d51ce, dl));
4533 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4534 getF32Constant(DAG, 0x3e00685a, dl));
4535 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4536 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4537 getF32Constant(DAG, 0x3efb6798, dl));
4538 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4539 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4540 getF32Constant(DAG, 0x3f88d192, dl));
4541 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4542 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4543 getF32Constant(DAG, 0x3fc4316c, dl));
4544 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4545 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4546 getF32Constant(DAG, 0x3f57ce70, dl));
4547 }
4548
4549 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4550 }
4551
4552 // No special expansion.
4553 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4554 }
4555
4556 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4557 /// limited-precision mode.
expandExp2(const SDLoc & dl,SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI)4558 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4559 const TargetLowering &TLI) {
4560 if (Op.getValueType() == MVT::f32 &&
4561 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4562 return getLimitedPrecisionExp2(Op, dl, DAG);
4563
4564 // No special expansion.
4565 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4566 }
4567
4568 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4569 /// limited-precision mode with x == 10.0f.
expandPow(const SDLoc & dl,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const TargetLowering & TLI)4570 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4571 SelectionDAG &DAG, const TargetLowering &TLI) {
4572 bool IsExp10 = false;
4573 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4574 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4575 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4576 APFloat Ten(10.0f);
4577 IsExp10 = LHSC->isExactlyValue(Ten);
4578 }
4579 }
4580
4581 // TODO: What fast-math-flags should be set on the FMUL node?
4582 if (IsExp10) {
4583 // Put the exponent in the right bit position for later addition to the
4584 // final result:
4585 //
4586 // #define LOG2OF10 3.3219281f
4587 // t0 = Op * LOG2OF10;
4588 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4589 getF32Constant(DAG, 0x40549a78, dl));
4590 return getLimitedPrecisionExp2(t0, dl, DAG);
4591 }
4592
4593 // No special expansion.
4594 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4595 }
4596
4597
4598 /// ExpandPowI - Expand a llvm.powi intrinsic.
ExpandPowI(const SDLoc & DL,SDValue LHS,SDValue RHS,SelectionDAG & DAG)4599 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4600 SelectionDAG &DAG) {
4601 // If RHS is a constant, we can expand this out to a multiplication tree,
4602 // otherwise we end up lowering to a call to __powidf2 (for example). When
4603 // optimizing for size, we only want to do this if the expansion would produce
4604 // a small number of multiplies, otherwise we do the full expansion.
4605 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4606 // Get the exponent as a positive value.
4607 unsigned Val = RHSC->getSExtValue();
4608 if ((int)Val < 0) Val = -Val;
4609
4610 // powi(x, 0) -> 1.0
4611 if (Val == 0)
4612 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4613
4614 const Function *F = DAG.getMachineFunction().getFunction();
4615 if (!F->optForSize() ||
4616 // If optimizing for size, don't insert too many multiplies.
4617 // This inserts up to 5 multiplies.
4618 countPopulation(Val) + Log2_32(Val) < 7) {
4619 // We use the simple binary decomposition method to generate the multiply
4620 // sequence. There are more optimal ways to do this (for example,
4621 // powi(x,15) generates one more multiply than it should), but this has
4622 // the benefit of being both really simple and much better than a libcall.
4623 SDValue Res; // Logically starts equal to 1.0
4624 SDValue CurSquare = LHS;
4625 // TODO: Intrinsics should have fast-math-flags that propagate to these
4626 // nodes.
4627 while (Val) {
4628 if (Val & 1) {
4629 if (Res.getNode())
4630 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4631 else
4632 Res = CurSquare; // 1.0*CurSquare.
4633 }
4634
4635 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4636 CurSquare, CurSquare);
4637 Val >>= 1;
4638 }
4639
4640 // If the original was negative, invert the result, producing 1/(x*x*x).
4641 if (RHSC->getSExtValue() < 0)
4642 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4643 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4644 return Res;
4645 }
4646 }
4647
4648 // Otherwise, expand to a libcall.
4649 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4650 }
4651
4652 // getUnderlyingArgReg - Find underlying register used for a truncated or
4653 // bitcasted argument.
getUnderlyingArgReg(const SDValue & N)4654 static unsigned getUnderlyingArgReg(const SDValue &N) {
4655 switch (N.getOpcode()) {
4656 case ISD::CopyFromReg:
4657 return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4658 case ISD::BITCAST:
4659 case ISD::AssertZext:
4660 case ISD::AssertSext:
4661 case ISD::TRUNCATE:
4662 return getUnderlyingArgReg(N.getOperand(0));
4663 default:
4664 return 0;
4665 }
4666 }
4667
4668 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4669 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4670 /// At the end of instruction selection, they will be inserted to the entry BB.
EmitFuncArgumentDbgValue(const Value * V,DILocalVariable * Variable,DIExpression * Expr,DILocation * DL,int64_t Offset,bool IsIndirect,const SDValue & N)4671 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4672 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4673 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4674 const Argument *Arg = dyn_cast<Argument>(V);
4675 if (!Arg)
4676 return false;
4677
4678 MachineFunction &MF = DAG.getMachineFunction();
4679 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4680
4681 // Ignore inlined function arguments here.
4682 //
4683 // FIXME: Should we be checking DL->inlinedAt() to determine this?
4684 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4685 return false;
4686
4687 Optional<MachineOperand> Op;
4688 // Some arguments' frame index is recorded during argument lowering.
4689 if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4690 Op = MachineOperand::CreateFI(FI);
4691
4692 if (!Op && N.getNode()) {
4693 unsigned Reg = getUnderlyingArgReg(N);
4694 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4695 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4696 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4697 if (PR)
4698 Reg = PR;
4699 }
4700 if (Reg)
4701 Op = MachineOperand::CreateReg(Reg, false);
4702 }
4703
4704 if (!Op) {
4705 // Check if ValueMap has reg number.
4706 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4707 if (VMI != FuncInfo.ValueMap.end())
4708 Op = MachineOperand::CreateReg(VMI->second, false);
4709 }
4710
4711 if (!Op && N.getNode())
4712 // Check if frame index is available.
4713 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4714 if (FrameIndexSDNode *FINode =
4715 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4716 Op = MachineOperand::CreateFI(FINode->getIndex());
4717
4718 if (!Op)
4719 return false;
4720
4721 assert(Variable->isValidLocationForIntrinsic(DL) &&
4722 "Expected inlined-at fields to agree");
4723 if (Op->isReg())
4724 FuncInfo.ArgDbgValues.push_back(
4725 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4726 Op->getReg(), Offset, Variable, Expr));
4727 else
4728 FuncInfo.ArgDbgValues.push_back(
4729 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4730 .addOperand(*Op)
4731 .addImm(Offset)
4732 .addMetadata(Variable)
4733 .addMetadata(Expr));
4734
4735 return true;
4736 }
4737
4738 // VisualStudio defines setjmp as _setjmp
4739 #if defined(_MSC_VER) && defined(setjmp) && \
4740 !defined(setjmp_undefined_for_msvc)
4741 # pragma push_macro("setjmp")
4742 # undef setjmp
4743 # define setjmp_undefined_for_msvc
4744 #endif
4745
4746 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4747 /// we want to emit this as a call to a named external function, return the name
4748 /// otherwise lower it and return null.
4749 const char *
visitIntrinsicCall(const CallInst & I,unsigned Intrinsic)4750 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4751 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4752 SDLoc sdl = getCurSDLoc();
4753 DebugLoc dl = getCurDebugLoc();
4754 SDValue Res;
4755
4756 switch (Intrinsic) {
4757 default:
4758 // By default, turn this into a target intrinsic node.
4759 visitTargetIntrinsic(I, Intrinsic);
4760 return nullptr;
4761 case Intrinsic::vastart: visitVAStart(I); return nullptr;
4762 case Intrinsic::vaend: visitVAEnd(I); return nullptr;
4763 case Intrinsic::vacopy: visitVACopy(I); return nullptr;
4764 case Intrinsic::returnaddress:
4765 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4766 TLI.getPointerTy(DAG.getDataLayout()),
4767 getValue(I.getArgOperand(0))));
4768 return nullptr;
4769 case Intrinsic::frameaddress:
4770 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4771 TLI.getPointerTy(DAG.getDataLayout()),
4772 getValue(I.getArgOperand(0))));
4773 return nullptr;
4774 case Intrinsic::read_register: {
4775 Value *Reg = I.getArgOperand(0);
4776 SDValue Chain = getRoot();
4777 SDValue RegName =
4778 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4779 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4780 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4781 DAG.getVTList(VT, MVT::Other), Chain, RegName);
4782 setValue(&I, Res);
4783 DAG.setRoot(Res.getValue(1));
4784 return nullptr;
4785 }
4786 case Intrinsic::write_register: {
4787 Value *Reg = I.getArgOperand(0);
4788 Value *RegValue = I.getArgOperand(1);
4789 SDValue Chain = getRoot();
4790 SDValue RegName =
4791 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4792 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4793 RegName, getValue(RegValue)));
4794 return nullptr;
4795 }
4796 case Intrinsic::setjmp:
4797 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4798 case Intrinsic::longjmp:
4799 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4800 case Intrinsic::memcpy: {
4801 SDValue Op1 = getValue(I.getArgOperand(0));
4802 SDValue Op2 = getValue(I.getArgOperand(1));
4803 SDValue Op3 = getValue(I.getArgOperand(2));
4804 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4805 if (!Align)
4806 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4807 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4808 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4809 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4810 false, isTC,
4811 MachinePointerInfo(I.getArgOperand(0)),
4812 MachinePointerInfo(I.getArgOperand(1)));
4813 updateDAGForMaybeTailCall(MC);
4814 return nullptr;
4815 }
4816 case Intrinsic::memset: {
4817 SDValue Op1 = getValue(I.getArgOperand(0));
4818 SDValue Op2 = getValue(I.getArgOperand(1));
4819 SDValue Op3 = getValue(I.getArgOperand(2));
4820 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4821 if (!Align)
4822 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4823 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4824 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4825 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4826 isTC, MachinePointerInfo(I.getArgOperand(0)));
4827 updateDAGForMaybeTailCall(MS);
4828 return nullptr;
4829 }
4830 case Intrinsic::memmove: {
4831 SDValue Op1 = getValue(I.getArgOperand(0));
4832 SDValue Op2 = getValue(I.getArgOperand(1));
4833 SDValue Op3 = getValue(I.getArgOperand(2));
4834 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4835 if (!Align)
4836 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4837 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4838 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4839 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4840 isTC, MachinePointerInfo(I.getArgOperand(0)),
4841 MachinePointerInfo(I.getArgOperand(1)));
4842 updateDAGForMaybeTailCall(MM);
4843 return nullptr;
4844 }
4845 case Intrinsic::dbg_declare: {
4846 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4847 DILocalVariable *Variable = DI.getVariable();
4848 DIExpression *Expression = DI.getExpression();
4849 const Value *Address = DI.getAddress();
4850 assert(Variable && "Missing variable");
4851 if (!Address) {
4852 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4853 return nullptr;
4854 }
4855
4856 // Check if address has undef value.
4857 if (isa<UndefValue>(Address) ||
4858 (Address->use_empty() && !isa<Argument>(Address))) {
4859 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4860 return nullptr;
4861 }
4862
4863 SDValue &N = NodeMap[Address];
4864 if (!N.getNode() && isa<Argument>(Address))
4865 // Check unused arguments map.
4866 N = UnusedArgNodeMap[Address];
4867 SDDbgValue *SDV;
4868 if (N.getNode()) {
4869 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4870 Address = BCI->getOperand(0);
4871 // Parameters are handled specially.
4872 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4873 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4874 if (isParameter && FINode) {
4875 // Byval parameter. We have a frame index at this point.
4876 SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4877 FINode->getIndex(), 0, dl, SDNodeOrder);
4878 } else if (isa<Argument>(Address)) {
4879 // Address is an argument, so try to emit its dbg value using
4880 // virtual register info from the FuncInfo.ValueMap.
4881 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4882 N);
4883 return nullptr;
4884 } else {
4885 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4886 true, 0, dl, SDNodeOrder);
4887 }
4888 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4889 } else {
4890 // If Address is an argument then try to emit its dbg value using
4891 // virtual register info from the FuncInfo.ValueMap.
4892 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4893 N)) {
4894 // If variable is pinned by a alloca in dominating bb then
4895 // use StaticAllocaMap.
4896 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4897 if (AI->getParent() != DI.getParent()) {
4898 DenseMap<const AllocaInst*, int>::iterator SI =
4899 FuncInfo.StaticAllocaMap.find(AI);
4900 if (SI != FuncInfo.StaticAllocaMap.end()) {
4901 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4902 0, dl, SDNodeOrder);
4903 DAG.AddDbgValue(SDV, nullptr, false);
4904 return nullptr;
4905 }
4906 }
4907 }
4908 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4909 }
4910 }
4911 return nullptr;
4912 }
4913 case Intrinsic::dbg_value: {
4914 const DbgValueInst &DI = cast<DbgValueInst>(I);
4915 assert(DI.getVariable() && "Missing variable");
4916
4917 DILocalVariable *Variable = DI.getVariable();
4918 DIExpression *Expression = DI.getExpression();
4919 uint64_t Offset = DI.getOffset();
4920 const Value *V = DI.getValue();
4921 if (!V)
4922 return nullptr;
4923
4924 SDDbgValue *SDV;
4925 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4926 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4927 SDNodeOrder);
4928 DAG.AddDbgValue(SDV, nullptr, false);
4929 } else {
4930 // Do not use getValue() in here; we don't want to generate code at
4931 // this point if it hasn't been done yet.
4932 SDValue N = NodeMap[V];
4933 if (!N.getNode() && isa<Argument>(V))
4934 // Check unused arguments map.
4935 N = UnusedArgNodeMap[V];
4936 if (N.getNode()) {
4937 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4938 false, N)) {
4939 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4940 false, Offset, dl, SDNodeOrder);
4941 DAG.AddDbgValue(SDV, N.getNode(), false);
4942 }
4943 } else if (!V->use_empty() ) {
4944 // Do not call getValue(V) yet, as we don't want to generate code.
4945 // Remember it for later.
4946 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4947 DanglingDebugInfoMap[V] = DDI;
4948 } else {
4949 // We may expand this to cover more cases. One case where we have no
4950 // data available is an unreferenced parameter.
4951 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4952 }
4953 }
4954
4955 // Build a debug info table entry.
4956 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4957 V = BCI->getOperand(0);
4958 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4959 // Don't handle byval struct arguments or VLAs, for example.
4960 if (!AI) {
4961 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
4962 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
4963 return nullptr;
4964 }
4965 DenseMap<const AllocaInst*, int>::iterator SI =
4966 FuncInfo.StaticAllocaMap.find(AI);
4967 if (SI == FuncInfo.StaticAllocaMap.end())
4968 return nullptr; // VLAs.
4969 return nullptr;
4970 }
4971
4972 case Intrinsic::eh_typeid_for: {
4973 // Find the type id for the given typeinfo.
4974 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4975 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4976 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4977 setValue(&I, Res);
4978 return nullptr;
4979 }
4980
4981 case Intrinsic::eh_return_i32:
4982 case Intrinsic::eh_return_i64:
4983 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4984 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4985 MVT::Other,
4986 getControlRoot(),
4987 getValue(I.getArgOperand(0)),
4988 getValue(I.getArgOperand(1))));
4989 return nullptr;
4990 case Intrinsic::eh_unwind_init:
4991 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4992 return nullptr;
4993 case Intrinsic::eh_dwarf_cfa: {
4994 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4995 TLI.getPointerTy(DAG.getDataLayout()));
4996 SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4997 CfaArg.getValueType(),
4998 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4999 CfaArg.getValueType()),
5000 CfaArg);
5001 SDValue FA = DAG.getNode(
5002 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
5003 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
5004 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
5005 FA, Offset));
5006 return nullptr;
5007 }
5008 case Intrinsic::eh_sjlj_callsite: {
5009 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5010 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5011 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5012 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5013
5014 MMI.setCurrentCallSite(CI->getZExtValue());
5015 return nullptr;
5016 }
5017 case Intrinsic::eh_sjlj_functioncontext: {
5018 // Get and store the index of the function context.
5019 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5020 AllocaInst *FnCtx =
5021 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5022 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5023 MFI->setFunctionContextIndex(FI);
5024 return nullptr;
5025 }
5026 case Intrinsic::eh_sjlj_setjmp: {
5027 SDValue Ops[2];
5028 Ops[0] = getRoot();
5029 Ops[1] = getValue(I.getArgOperand(0));
5030 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5031 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5032 setValue(&I, Op.getValue(0));
5033 DAG.setRoot(Op.getValue(1));
5034 return nullptr;
5035 }
5036 case Intrinsic::eh_sjlj_longjmp: {
5037 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5038 getRoot(), getValue(I.getArgOperand(0))));
5039 return nullptr;
5040 }
5041 case Intrinsic::eh_sjlj_setup_dispatch: {
5042 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5043 getRoot()));
5044 return nullptr;
5045 }
5046
5047 case Intrinsic::masked_gather:
5048 visitMaskedGather(I);
5049 return nullptr;
5050 case Intrinsic::masked_load:
5051 visitMaskedLoad(I);
5052 return nullptr;
5053 case Intrinsic::masked_scatter:
5054 visitMaskedScatter(I);
5055 return nullptr;
5056 case Intrinsic::masked_store:
5057 visitMaskedStore(I);
5058 return nullptr;
5059 case Intrinsic::x86_mmx_pslli_w:
5060 case Intrinsic::x86_mmx_pslli_d:
5061 case Intrinsic::x86_mmx_pslli_q:
5062 case Intrinsic::x86_mmx_psrli_w:
5063 case Intrinsic::x86_mmx_psrli_d:
5064 case Intrinsic::x86_mmx_psrli_q:
5065 case Intrinsic::x86_mmx_psrai_w:
5066 case Intrinsic::x86_mmx_psrai_d: {
5067 SDValue ShAmt = getValue(I.getArgOperand(1));
5068 if (isa<ConstantSDNode>(ShAmt)) {
5069 visitTargetIntrinsic(I, Intrinsic);
5070 return nullptr;
5071 }
5072 unsigned NewIntrinsic = 0;
5073 EVT ShAmtVT = MVT::v2i32;
5074 switch (Intrinsic) {
5075 case Intrinsic::x86_mmx_pslli_w:
5076 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5077 break;
5078 case Intrinsic::x86_mmx_pslli_d:
5079 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5080 break;
5081 case Intrinsic::x86_mmx_pslli_q:
5082 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5083 break;
5084 case Intrinsic::x86_mmx_psrli_w:
5085 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5086 break;
5087 case Intrinsic::x86_mmx_psrli_d:
5088 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5089 break;
5090 case Intrinsic::x86_mmx_psrli_q:
5091 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5092 break;
5093 case Intrinsic::x86_mmx_psrai_w:
5094 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5095 break;
5096 case Intrinsic::x86_mmx_psrai_d:
5097 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5098 break;
5099 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5100 }
5101
5102 // The vector shift intrinsics with scalars uses 32b shift amounts but
5103 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5104 // to be zero.
5105 // We must do this early because v2i32 is not a legal type.
5106 SDValue ShOps[2];
5107 ShOps[0] = ShAmt;
5108 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5109 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5110 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5111 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5112 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5113 DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5114 getValue(I.getArgOperand(0)), ShAmt);
5115 setValue(&I, Res);
5116 return nullptr;
5117 }
5118 case Intrinsic::convertff:
5119 case Intrinsic::convertfsi:
5120 case Intrinsic::convertfui:
5121 case Intrinsic::convertsif:
5122 case Intrinsic::convertuif:
5123 case Intrinsic::convertss:
5124 case Intrinsic::convertsu:
5125 case Intrinsic::convertus:
5126 case Intrinsic::convertuu: {
5127 ISD::CvtCode Code = ISD::CVT_INVALID;
5128 switch (Intrinsic) {
5129 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5130 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
5131 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5132 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5133 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5134 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5135 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
5136 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
5137 case Intrinsic::convertus: Code = ISD::CVT_US; break;
5138 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
5139 }
5140 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5141 const Value *Op1 = I.getArgOperand(0);
5142 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5143 DAG.getValueType(DestVT),
5144 DAG.getValueType(getValue(Op1).getValueType()),
5145 getValue(I.getArgOperand(1)),
5146 getValue(I.getArgOperand(2)),
5147 Code);
5148 setValue(&I, Res);
5149 return nullptr;
5150 }
5151 case Intrinsic::powi:
5152 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5153 getValue(I.getArgOperand(1)), DAG));
5154 return nullptr;
5155 case Intrinsic::log:
5156 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5157 return nullptr;
5158 case Intrinsic::log2:
5159 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5160 return nullptr;
5161 case Intrinsic::log10:
5162 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5163 return nullptr;
5164 case Intrinsic::exp:
5165 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5166 return nullptr;
5167 case Intrinsic::exp2:
5168 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5169 return nullptr;
5170 case Intrinsic::pow:
5171 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5172 getValue(I.getArgOperand(1)), DAG, TLI));
5173 return nullptr;
5174 case Intrinsic::sqrt:
5175 case Intrinsic::fabs:
5176 case Intrinsic::sin:
5177 case Intrinsic::cos:
5178 case Intrinsic::floor:
5179 case Intrinsic::ceil:
5180 case Intrinsic::trunc:
5181 case Intrinsic::rint:
5182 case Intrinsic::nearbyint:
5183 case Intrinsic::round:
5184 case Intrinsic::canonicalize: {
5185 unsigned Opcode;
5186 switch (Intrinsic) {
5187 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5188 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
5189 case Intrinsic::fabs: Opcode = ISD::FABS; break;
5190 case Intrinsic::sin: Opcode = ISD::FSIN; break;
5191 case Intrinsic::cos: Opcode = ISD::FCOS; break;
5192 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
5193 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
5194 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
5195 case Intrinsic::rint: Opcode = ISD::FRINT; break;
5196 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5197 case Intrinsic::round: Opcode = ISD::FROUND; break;
5198 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5199 }
5200
5201 setValue(&I, DAG.getNode(Opcode, sdl,
5202 getValue(I.getArgOperand(0)).getValueType(),
5203 getValue(I.getArgOperand(0))));
5204 return nullptr;
5205 }
5206 case Intrinsic::minnum: {
5207 auto VT = getValue(I.getArgOperand(0)).getValueType();
5208 unsigned Opc =
5209 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5210 ? ISD::FMINNAN
5211 : ISD::FMINNUM;
5212 setValue(&I, DAG.getNode(Opc, sdl, VT,
5213 getValue(I.getArgOperand(0)),
5214 getValue(I.getArgOperand(1))));
5215 return nullptr;
5216 }
5217 case Intrinsic::maxnum: {
5218 auto VT = getValue(I.getArgOperand(0)).getValueType();
5219 unsigned Opc =
5220 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5221 ? ISD::FMAXNAN
5222 : ISD::FMAXNUM;
5223 setValue(&I, DAG.getNode(Opc, sdl, VT,
5224 getValue(I.getArgOperand(0)),
5225 getValue(I.getArgOperand(1))));
5226 return nullptr;
5227 }
5228 case Intrinsic::copysign:
5229 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5230 getValue(I.getArgOperand(0)).getValueType(),
5231 getValue(I.getArgOperand(0)),
5232 getValue(I.getArgOperand(1))));
5233 return nullptr;
5234 case Intrinsic::fma:
5235 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5236 getValue(I.getArgOperand(0)).getValueType(),
5237 getValue(I.getArgOperand(0)),
5238 getValue(I.getArgOperand(1)),
5239 getValue(I.getArgOperand(2))));
5240 return nullptr;
5241 case Intrinsic::fmuladd: {
5242 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5243 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5244 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5245 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5246 getValue(I.getArgOperand(0)).getValueType(),
5247 getValue(I.getArgOperand(0)),
5248 getValue(I.getArgOperand(1)),
5249 getValue(I.getArgOperand(2))));
5250 } else {
5251 // TODO: Intrinsic calls should have fast-math-flags.
5252 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5253 getValue(I.getArgOperand(0)).getValueType(),
5254 getValue(I.getArgOperand(0)),
5255 getValue(I.getArgOperand(1)));
5256 SDValue Add = DAG.getNode(ISD::FADD, sdl,
5257 getValue(I.getArgOperand(0)).getValueType(),
5258 Mul,
5259 getValue(I.getArgOperand(2)));
5260 setValue(&I, Add);
5261 }
5262 return nullptr;
5263 }
5264 case Intrinsic::convert_to_fp16:
5265 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5266 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5267 getValue(I.getArgOperand(0)),
5268 DAG.getTargetConstant(0, sdl,
5269 MVT::i32))));
5270 return nullptr;
5271 case Intrinsic::convert_from_fp16:
5272 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5273 TLI.getValueType(DAG.getDataLayout(), I.getType()),
5274 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5275 getValue(I.getArgOperand(0)))));
5276 return nullptr;
5277 case Intrinsic::pcmarker: {
5278 SDValue Tmp = getValue(I.getArgOperand(0));
5279 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5280 return nullptr;
5281 }
5282 case Intrinsic::readcyclecounter: {
5283 SDValue Op = getRoot();
5284 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5285 DAG.getVTList(MVT::i64, MVT::Other), Op);
5286 setValue(&I, Res);
5287 DAG.setRoot(Res.getValue(1));
5288 return nullptr;
5289 }
5290 case Intrinsic::bitreverse:
5291 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5292 getValue(I.getArgOperand(0)).getValueType(),
5293 getValue(I.getArgOperand(0))));
5294 return nullptr;
5295 case Intrinsic::bswap:
5296 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5297 getValue(I.getArgOperand(0)).getValueType(),
5298 getValue(I.getArgOperand(0))));
5299 return nullptr;
5300 case Intrinsic::cttz: {
5301 SDValue Arg = getValue(I.getArgOperand(0));
5302 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5303 EVT Ty = Arg.getValueType();
5304 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5305 sdl, Ty, Arg));
5306 return nullptr;
5307 }
5308 case Intrinsic::ctlz: {
5309 SDValue Arg = getValue(I.getArgOperand(0));
5310 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5311 EVT Ty = Arg.getValueType();
5312 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5313 sdl, Ty, Arg));
5314 return nullptr;
5315 }
5316 case Intrinsic::ctpop: {
5317 SDValue Arg = getValue(I.getArgOperand(0));
5318 EVT Ty = Arg.getValueType();
5319 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5320 return nullptr;
5321 }
5322 case Intrinsic::stacksave: {
5323 SDValue Op = getRoot();
5324 Res = DAG.getNode(
5325 ISD::STACKSAVE, sdl,
5326 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5327 setValue(&I, Res);
5328 DAG.setRoot(Res.getValue(1));
5329 return nullptr;
5330 }
5331 case Intrinsic::stackrestore: {
5332 Res = getValue(I.getArgOperand(0));
5333 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5334 return nullptr;
5335 }
5336 case Intrinsic::get_dynamic_area_offset: {
5337 SDValue Op = getRoot();
5338 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5339 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5340 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5341 // target.
5342 if (PtrTy != ResTy)
5343 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5344 " intrinsic!");
5345 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5346 Op);
5347 DAG.setRoot(Op);
5348 setValue(&I, Res);
5349 return nullptr;
5350 }
5351 case Intrinsic::stackguard: {
5352 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5353 MachineFunction &MF = DAG.getMachineFunction();
5354 const Module &M = *MF.getFunction()->getParent();
5355 SDValue Chain = getRoot();
5356 if (TLI.useLoadStackGuardNode()) {
5357 Res = getLoadStackGuard(DAG, sdl, Chain);
5358 } else {
5359 const Value *Global = TLI.getSDagStackGuard(M);
5360 unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5361 Res =
5362 DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5363 MachinePointerInfo(Global, 0), true, false, false, Align);
5364 }
5365 DAG.setRoot(Chain);
5366 setValue(&I, Res);
5367 return nullptr;
5368 }
5369 case Intrinsic::stackprotector: {
5370 // Emit code into the DAG to store the stack guard onto the stack.
5371 MachineFunction &MF = DAG.getMachineFunction();
5372 MachineFrameInfo *MFI = MF.getFrameInfo();
5373 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5374 SDValue Src, Chain = getRoot();
5375
5376 if (TLI.useLoadStackGuardNode())
5377 Src = getLoadStackGuard(DAG, sdl, Chain);
5378 else
5379 Src = getValue(I.getArgOperand(0)); // The guard's value.
5380
5381 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5382
5383 int FI = FuncInfo.StaticAllocaMap[Slot];
5384 MFI->setStackProtectorIndex(FI);
5385
5386 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5387
5388 // Store the stack protector onto the stack.
5389 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5390 DAG.getMachineFunction(), FI),
5391 true, false, 0);
5392 setValue(&I, Res);
5393 DAG.setRoot(Res);
5394 return nullptr;
5395 }
5396 case Intrinsic::objectsize: {
5397 // If we don't know by now, we're never going to know.
5398 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5399
5400 assert(CI && "Non-constant type in __builtin_object_size?");
5401
5402 SDValue Arg = getValue(I.getCalledValue());
5403 EVT Ty = Arg.getValueType();
5404
5405 if (CI->isZero())
5406 Res = DAG.getConstant(-1ULL, sdl, Ty);
5407 else
5408 Res = DAG.getConstant(0, sdl, Ty);
5409
5410 setValue(&I, Res);
5411 return nullptr;
5412 }
5413 case Intrinsic::annotation:
5414 case Intrinsic::ptr_annotation:
5415 // Drop the intrinsic, but forward the value
5416 setValue(&I, getValue(I.getOperand(0)));
5417 return nullptr;
5418 case Intrinsic::assume:
5419 case Intrinsic::var_annotation:
5420 // Discard annotate attributes and assumptions
5421 return nullptr;
5422
5423 case Intrinsic::init_trampoline: {
5424 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5425
5426 SDValue Ops[6];
5427 Ops[0] = getRoot();
5428 Ops[1] = getValue(I.getArgOperand(0));
5429 Ops[2] = getValue(I.getArgOperand(1));
5430 Ops[3] = getValue(I.getArgOperand(2));
5431 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5432 Ops[5] = DAG.getSrcValue(F);
5433
5434 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5435
5436 DAG.setRoot(Res);
5437 return nullptr;
5438 }
5439 case Intrinsic::adjust_trampoline: {
5440 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5441 TLI.getPointerTy(DAG.getDataLayout()),
5442 getValue(I.getArgOperand(0))));
5443 return nullptr;
5444 }
5445 case Intrinsic::gcroot: {
5446 MachineFunction &MF = DAG.getMachineFunction();
5447 const Function *F = MF.getFunction();
5448 (void)F;
5449 assert(F->hasGC() &&
5450 "only valid in functions with gc specified, enforced by Verifier");
5451 assert(GFI && "implied by previous");
5452 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5453 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5454
5455 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5456 GFI->addStackRoot(FI->getIndex(), TypeMap);
5457 return nullptr;
5458 }
5459 case Intrinsic::gcread:
5460 case Intrinsic::gcwrite:
5461 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5462 case Intrinsic::flt_rounds:
5463 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5464 return nullptr;
5465
5466 case Intrinsic::expect: {
5467 // Just replace __builtin_expect(exp, c) with EXP.
5468 setValue(&I, getValue(I.getArgOperand(0)));
5469 return nullptr;
5470 }
5471
5472 case Intrinsic::debugtrap:
5473 case Intrinsic::trap: {
5474 StringRef TrapFuncName =
5475 I.getAttributes()
5476 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5477 .getValueAsString();
5478 if (TrapFuncName.empty()) {
5479 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5480 ISD::TRAP : ISD::DEBUGTRAP;
5481 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5482 return nullptr;
5483 }
5484 TargetLowering::ArgListTy Args;
5485
5486 TargetLowering::CallLoweringInfo CLI(DAG);
5487 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5488 CallingConv::C, I.getType(),
5489 DAG.getExternalSymbol(TrapFuncName.data(),
5490 TLI.getPointerTy(DAG.getDataLayout())),
5491 std::move(Args));
5492
5493 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5494 DAG.setRoot(Result.second);
5495 return nullptr;
5496 }
5497
5498 case Intrinsic::uadd_with_overflow:
5499 case Intrinsic::sadd_with_overflow:
5500 case Intrinsic::usub_with_overflow:
5501 case Intrinsic::ssub_with_overflow:
5502 case Intrinsic::umul_with_overflow:
5503 case Intrinsic::smul_with_overflow: {
5504 ISD::NodeType Op;
5505 switch (Intrinsic) {
5506 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5507 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5508 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5509 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5510 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5511 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5512 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5513 }
5514 SDValue Op1 = getValue(I.getArgOperand(0));
5515 SDValue Op2 = getValue(I.getArgOperand(1));
5516
5517 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5518 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5519 return nullptr;
5520 }
5521 case Intrinsic::prefetch: {
5522 SDValue Ops[5];
5523 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5524 Ops[0] = getRoot();
5525 Ops[1] = getValue(I.getArgOperand(0));
5526 Ops[2] = getValue(I.getArgOperand(1));
5527 Ops[3] = getValue(I.getArgOperand(2));
5528 Ops[4] = getValue(I.getArgOperand(3));
5529 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5530 DAG.getVTList(MVT::Other), Ops,
5531 EVT::getIntegerVT(*Context, 8),
5532 MachinePointerInfo(I.getArgOperand(0)),
5533 0, /* align */
5534 false, /* volatile */
5535 rw==0, /* read */
5536 rw==1)); /* write */
5537 return nullptr;
5538 }
5539 case Intrinsic::lifetime_start:
5540 case Intrinsic::lifetime_end: {
5541 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5542 // Stack coloring is not enabled in O0, discard region information.
5543 if (TM.getOptLevel() == CodeGenOpt::None)
5544 return nullptr;
5545
5546 SmallVector<Value *, 4> Allocas;
5547 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5548
5549 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5550 E = Allocas.end(); Object != E; ++Object) {
5551 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5552
5553 // Could not find an Alloca.
5554 if (!LifetimeObject)
5555 continue;
5556
5557 // First check that the Alloca is static, otherwise it won't have a
5558 // valid frame index.
5559 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5560 if (SI == FuncInfo.StaticAllocaMap.end())
5561 return nullptr;
5562
5563 int FI = SI->second;
5564
5565 SDValue Ops[2];
5566 Ops[0] = getRoot();
5567 Ops[1] =
5568 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5569 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5570
5571 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5572 DAG.setRoot(Res);
5573 }
5574 return nullptr;
5575 }
5576 case Intrinsic::invariant_start:
5577 // Discard region information.
5578 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5579 return nullptr;
5580 case Intrinsic::invariant_end:
5581 // Discard region information.
5582 return nullptr;
5583 case Intrinsic::clear_cache:
5584 return TLI.getClearCacheBuiltinName();
5585 case Intrinsic::donothing:
5586 // ignore
5587 return nullptr;
5588 case Intrinsic::experimental_stackmap: {
5589 visitStackmap(I);
5590 return nullptr;
5591 }
5592 case Intrinsic::experimental_patchpoint_void:
5593 case Intrinsic::experimental_patchpoint_i64: {
5594 visitPatchpoint(&I);
5595 return nullptr;
5596 }
5597 case Intrinsic::experimental_gc_statepoint: {
5598 LowerStatepoint(ImmutableStatepoint(&I));
5599 return nullptr;
5600 }
5601 case Intrinsic::experimental_gc_result: {
5602 visitGCResult(cast<GCResultInst>(I));
5603 return nullptr;
5604 }
5605 case Intrinsic::experimental_gc_relocate: {
5606 visitGCRelocate(cast<GCRelocateInst>(I));
5607 return nullptr;
5608 }
5609 case Intrinsic::instrprof_increment:
5610 llvm_unreachable("instrprof failed to lower an increment");
5611 case Intrinsic::instrprof_value_profile:
5612 llvm_unreachable("instrprof failed to lower a value profiling call");
5613 case Intrinsic::localescape: {
5614 MachineFunction &MF = DAG.getMachineFunction();
5615 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5616
5617 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5618 // is the same on all targets.
5619 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5620 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5621 if (isa<ConstantPointerNull>(Arg))
5622 continue; // Skip null pointers. They represent a hole in index space.
5623 AllocaInst *Slot = cast<AllocaInst>(Arg);
5624 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5625 "can only escape static allocas");
5626 int FI = FuncInfo.StaticAllocaMap[Slot];
5627 MCSymbol *FrameAllocSym =
5628 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5629 GlobalValue::getRealLinkageName(MF.getName()), Idx);
5630 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5631 TII->get(TargetOpcode::LOCAL_ESCAPE))
5632 .addSym(FrameAllocSym)
5633 .addFrameIndex(FI);
5634 }
5635
5636 return nullptr;
5637 }
5638
5639 case Intrinsic::localrecover: {
5640 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5641 MachineFunction &MF = DAG.getMachineFunction();
5642 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5643
5644 // Get the symbol that defines the frame offset.
5645 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5646 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5647 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5648 MCSymbol *FrameAllocSym =
5649 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5650 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5651
5652 // Create a MCSymbol for the label to avoid any target lowering
5653 // that would make this PC relative.
5654 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5655 SDValue OffsetVal =
5656 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5657
5658 // Add the offset to the FP.
5659 Value *FP = I.getArgOperand(1);
5660 SDValue FPVal = getValue(FP);
5661 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5662 setValue(&I, Add);
5663
5664 return nullptr;
5665 }
5666
5667 case Intrinsic::eh_exceptionpointer:
5668 case Intrinsic::eh_exceptioncode: {
5669 // Get the exception pointer vreg, copy from it, and resize it to fit.
5670 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5671 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5672 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5673 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5674 SDValue N =
5675 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5676 if (Intrinsic == Intrinsic::eh_exceptioncode)
5677 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5678 setValue(&I, N);
5679 return nullptr;
5680 }
5681
5682 case Intrinsic::experimental_deoptimize:
5683 LowerDeoptimizeCall(&I);
5684 return nullptr;
5685 }
5686 }
5687
5688 std::pair<SDValue, SDValue>
lowerInvokable(TargetLowering::CallLoweringInfo & CLI,const BasicBlock * EHPadBB)5689 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5690 const BasicBlock *EHPadBB) {
5691 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5692 MCSymbol *BeginLabel = nullptr;
5693
5694 if (EHPadBB) {
5695 // Insert a label before the invoke call to mark the try range. This can be
5696 // used to detect deletion of the invoke via the MachineModuleInfo.
5697 BeginLabel = MMI.getContext().createTempSymbol();
5698
5699 // For SjLj, keep track of which landing pads go with which invokes
5700 // so as to maintain the ordering of pads in the LSDA.
5701 unsigned CallSiteIndex = MMI.getCurrentCallSite();
5702 if (CallSiteIndex) {
5703 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5704 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5705
5706 // Now that the call site is handled, stop tracking it.
5707 MMI.setCurrentCallSite(0);
5708 }
5709
5710 // Both PendingLoads and PendingExports must be flushed here;
5711 // this call might not return.
5712 (void)getRoot();
5713 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5714
5715 CLI.setChain(getRoot());
5716 }
5717 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5718 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5719
5720 assert((CLI.IsTailCall || Result.second.getNode()) &&
5721 "Non-null chain expected with non-tail call!");
5722 assert((Result.second.getNode() || !Result.first.getNode()) &&
5723 "Null value expected with tail call!");
5724
5725 if (!Result.second.getNode()) {
5726 // As a special case, a null chain means that a tail call has been emitted
5727 // and the DAG root is already updated.
5728 HasTailCall = true;
5729
5730 // Since there's no actual continuation from this block, nothing can be
5731 // relying on us setting vregs for them.
5732 PendingExports.clear();
5733 } else {
5734 DAG.setRoot(Result.second);
5735 }
5736
5737 if (EHPadBB) {
5738 // Insert a label at the end of the invoke call to mark the try range. This
5739 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5740 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5741 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5742
5743 // Inform MachineModuleInfo of range.
5744 if (MMI.hasEHFunclets()) {
5745 assert(CLI.CS);
5746 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5747 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5748 BeginLabel, EndLabel);
5749 } else {
5750 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5751 }
5752 }
5753
5754 return Result;
5755 }
5756
LowerCallTo(ImmutableCallSite CS,SDValue Callee,bool isTailCall,const BasicBlock * EHPadBB)5757 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5758 bool isTailCall,
5759 const BasicBlock *EHPadBB) {
5760 auto &DL = DAG.getDataLayout();
5761 FunctionType *FTy = CS.getFunctionType();
5762 Type *RetTy = CS.getType();
5763
5764 TargetLowering::ArgListTy Args;
5765 TargetLowering::ArgListEntry Entry;
5766 Args.reserve(CS.arg_size());
5767
5768 const Value *SwiftErrorVal = nullptr;
5769 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5770 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5771 i != e; ++i) {
5772 const Value *V = *i;
5773
5774 // Skip empty types
5775 if (V->getType()->isEmptyTy())
5776 continue;
5777
5778 SDValue ArgNode = getValue(V);
5779 Entry.Node = ArgNode; Entry.Ty = V->getType();
5780
5781 // Skip the first return-type Attribute to get to params.
5782 Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5783
5784 // Use swifterror virtual register as input to the call.
5785 if (Entry.isSwiftError && TLI.supportSwiftError()) {
5786 SwiftErrorVal = V;
5787 // We find the virtual register for the actual swifterror argument.
5788 // Instead of using the Value, we use the virtual register instead.
5789 Entry.Node = DAG.getRegister(
5790 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5791 EVT(TLI.getPointerTy(DL)));
5792 }
5793
5794 Args.push_back(Entry);
5795
5796 // If we have an explicit sret argument that is an Instruction, (i.e., it
5797 // might point to function-local memory), we can't meaningfully tail-call.
5798 if (Entry.isSRet && isa<Instruction>(V))
5799 isTailCall = false;
5800 }
5801
5802 // Check if target-independent constraints permit a tail call here.
5803 // Target-dependent constraints are checked within TLI->LowerCallTo.
5804 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5805 isTailCall = false;
5806
5807 TargetLowering::CallLoweringInfo CLI(DAG);
5808 CLI.setDebugLoc(getCurSDLoc())
5809 .setChain(getRoot())
5810 .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5811 .setTailCall(isTailCall)
5812 .setConvergent(CS.isConvergent());
5813 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5814
5815 if (Result.first.getNode()) {
5816 const Instruction *Inst = CS.getInstruction();
5817 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5818 setValue(Inst, Result.first);
5819 }
5820
5821 // The last element of CLI.InVals has the SDValue for swifterror return.
5822 // Here we copy it to a virtual register and update SwiftErrorMap for
5823 // book-keeping.
5824 if (SwiftErrorVal && TLI.supportSwiftError()) {
5825 // Get the last element of InVals.
5826 SDValue Src = CLI.InVals.back();
5827 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5828 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5829 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5830 // We update the virtual register for the actual swifterror argument.
5831 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5832 DAG.setRoot(CopyNode);
5833 }
5834 }
5835
5836 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5837 /// value is equal or not-equal to zero.
IsOnlyUsedInZeroEqualityComparison(const Value * V)5838 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5839 for (const User *U : V->users()) {
5840 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5841 if (IC->isEquality())
5842 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5843 if (C->isNullValue())
5844 continue;
5845 // Unknown instruction.
5846 return false;
5847 }
5848 return true;
5849 }
5850
getMemCmpLoad(const Value * PtrVal,MVT LoadVT,Type * LoadTy,SelectionDAGBuilder & Builder)5851 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5852 Type *LoadTy,
5853 SelectionDAGBuilder &Builder) {
5854
5855 // Check to see if this load can be trivially constant folded, e.g. if the
5856 // input is from a string literal.
5857 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5858 // Cast pointer to the type we really want to load.
5859 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5860 PointerType::getUnqual(LoadTy));
5861
5862 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5863 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5864 return Builder.getValue(LoadCst);
5865 }
5866
5867 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5868 // still constant memory, the input chain can be the entry node.
5869 SDValue Root;
5870 bool ConstantMemory = false;
5871
5872 // Do not serialize (non-volatile) loads of constant memory with anything.
5873 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5874 Root = Builder.DAG.getEntryNode();
5875 ConstantMemory = true;
5876 } else {
5877 // Do not serialize non-volatile loads against each other.
5878 Root = Builder.DAG.getRoot();
5879 }
5880
5881 SDValue Ptr = Builder.getValue(PtrVal);
5882 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5883 Ptr, MachinePointerInfo(PtrVal),
5884 false /*volatile*/,
5885 false /*nontemporal*/,
5886 false /*isinvariant*/, 1 /* align=1 */);
5887
5888 if (!ConstantMemory)
5889 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5890 return LoadVal;
5891 }
5892
5893 /// processIntegerCallValue - Record the value for an instruction that
5894 /// produces an integer result, converting the type where necessary.
processIntegerCallValue(const Instruction & I,SDValue Value,bool IsSigned)5895 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5896 SDValue Value,
5897 bool IsSigned) {
5898 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5899 I.getType(), true);
5900 if (IsSigned)
5901 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5902 else
5903 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5904 setValue(&I, Value);
5905 }
5906
5907 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5908 /// If so, return true and lower it, otherwise return false and it will be
5909 /// lowered like a normal call.
visitMemCmpCall(const CallInst & I)5910 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5911 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5912 if (I.getNumArgOperands() != 3)
5913 return false;
5914
5915 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5916 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5917 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5918 !I.getType()->isIntegerTy())
5919 return false;
5920
5921 const Value *Size = I.getArgOperand(2);
5922 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5923 if (CSize && CSize->getZExtValue() == 0) {
5924 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5925 I.getType(), true);
5926 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5927 return true;
5928 }
5929
5930 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5931 std::pair<SDValue, SDValue> Res =
5932 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5933 getValue(LHS), getValue(RHS), getValue(Size),
5934 MachinePointerInfo(LHS),
5935 MachinePointerInfo(RHS));
5936 if (Res.first.getNode()) {
5937 processIntegerCallValue(I, Res.first, true);
5938 PendingLoads.push_back(Res.second);
5939 return true;
5940 }
5941
5942 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5943 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5944 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5945 bool ActuallyDoIt = true;
5946 MVT LoadVT;
5947 Type *LoadTy;
5948 switch (CSize->getZExtValue()) {
5949 default:
5950 LoadVT = MVT::Other;
5951 LoadTy = nullptr;
5952 ActuallyDoIt = false;
5953 break;
5954 case 2:
5955 LoadVT = MVT::i16;
5956 LoadTy = Type::getInt16Ty(CSize->getContext());
5957 break;
5958 case 4:
5959 LoadVT = MVT::i32;
5960 LoadTy = Type::getInt32Ty(CSize->getContext());
5961 break;
5962 case 8:
5963 LoadVT = MVT::i64;
5964 LoadTy = Type::getInt64Ty(CSize->getContext());
5965 break;
5966 /*
5967 case 16:
5968 LoadVT = MVT::v4i32;
5969 LoadTy = Type::getInt32Ty(CSize->getContext());
5970 LoadTy = VectorType::get(LoadTy, 4);
5971 break;
5972 */
5973 }
5974
5975 // This turns into unaligned loads. We only do this if the target natively
5976 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5977 // we'll only produce a small number of byte loads.
5978
5979 // Require that we can find a legal MVT, and only do this if the target
5980 // supports unaligned loads of that type. Expanding into byte loads would
5981 // bloat the code.
5982 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5983 if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5984 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5985 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5986 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5987 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5988 // TODO: Check alignment of src and dest ptrs.
5989 if (!TLI.isTypeLegal(LoadVT) ||
5990 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5991 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5992 ActuallyDoIt = false;
5993 }
5994
5995 if (ActuallyDoIt) {
5996 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5997 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5998
5999 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6000 ISD::SETNE);
6001 processIntegerCallValue(I, Res, false);
6002 return true;
6003 }
6004 }
6005
6006
6007 return false;
6008 }
6009
6010 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6011 /// form. If so, return true and lower it, otherwise return false and it
6012 /// will be lowered like a normal call.
visitMemChrCall(const CallInst & I)6013 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6014 // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
6015 if (I.getNumArgOperands() != 3)
6016 return false;
6017
6018 const Value *Src = I.getArgOperand(0);
6019 const Value *Char = I.getArgOperand(1);
6020 const Value *Length = I.getArgOperand(2);
6021 if (!Src->getType()->isPointerTy() ||
6022 !Char->getType()->isIntegerTy() ||
6023 !Length->getType()->isIntegerTy() ||
6024 !I.getType()->isPointerTy())
6025 return false;
6026
6027 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6028 std::pair<SDValue, SDValue> Res =
6029 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6030 getValue(Src), getValue(Char), getValue(Length),
6031 MachinePointerInfo(Src));
6032 if (Res.first.getNode()) {
6033 setValue(&I, Res.first);
6034 PendingLoads.push_back(Res.second);
6035 return true;
6036 }
6037
6038 return false;
6039 }
6040
6041 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6042 /// optimized form. If so, return true and lower it, otherwise return false
6043 /// and it will be lowered like a normal call.
visitStrCpyCall(const CallInst & I,bool isStpcpy)6044 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6045 // Verify that the prototype makes sense. char *strcpy(char *, char *)
6046 if (I.getNumArgOperands() != 2)
6047 return false;
6048
6049 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6050 if (!Arg0->getType()->isPointerTy() ||
6051 !Arg1->getType()->isPointerTy() ||
6052 !I.getType()->isPointerTy())
6053 return false;
6054
6055 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6056 std::pair<SDValue, SDValue> Res =
6057 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6058 getValue(Arg0), getValue(Arg1),
6059 MachinePointerInfo(Arg0),
6060 MachinePointerInfo(Arg1), isStpcpy);
6061 if (Res.first.getNode()) {
6062 setValue(&I, Res.first);
6063 DAG.setRoot(Res.second);
6064 return true;
6065 }
6066
6067 return false;
6068 }
6069
6070 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6071 /// If so, return true and lower it, otherwise return false and it will be
6072 /// lowered like a normal call.
visitStrCmpCall(const CallInst & I)6073 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6074 // Verify that the prototype makes sense. int strcmp(void*,void*)
6075 if (I.getNumArgOperands() != 2)
6076 return false;
6077
6078 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6079 if (!Arg0->getType()->isPointerTy() ||
6080 !Arg1->getType()->isPointerTy() ||
6081 !I.getType()->isIntegerTy())
6082 return false;
6083
6084 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6085 std::pair<SDValue, SDValue> Res =
6086 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6087 getValue(Arg0), getValue(Arg1),
6088 MachinePointerInfo(Arg0),
6089 MachinePointerInfo(Arg1));
6090 if (Res.first.getNode()) {
6091 processIntegerCallValue(I, Res.first, true);
6092 PendingLoads.push_back(Res.second);
6093 return true;
6094 }
6095
6096 return false;
6097 }
6098
6099 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6100 /// form. If so, return true and lower it, otherwise return false and it
6101 /// will be lowered like a normal call.
visitStrLenCall(const CallInst & I)6102 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6103 // Verify that the prototype makes sense. size_t strlen(char *)
6104 if (I.getNumArgOperands() != 1)
6105 return false;
6106
6107 const Value *Arg0 = I.getArgOperand(0);
6108 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6109 return false;
6110
6111 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6112 std::pair<SDValue, SDValue> Res =
6113 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6114 getValue(Arg0), MachinePointerInfo(Arg0));
6115 if (Res.first.getNode()) {
6116 processIntegerCallValue(I, Res.first, false);
6117 PendingLoads.push_back(Res.second);
6118 return true;
6119 }
6120
6121 return false;
6122 }
6123
6124 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6125 /// form. If so, return true and lower it, otherwise return false and it
6126 /// will be lowered like a normal call.
visitStrNLenCall(const CallInst & I)6127 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6128 // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
6129 if (I.getNumArgOperands() != 2)
6130 return false;
6131
6132 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6133 if (!Arg0->getType()->isPointerTy() ||
6134 !Arg1->getType()->isIntegerTy() ||
6135 !I.getType()->isIntegerTy())
6136 return false;
6137
6138 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6139 std::pair<SDValue, SDValue> Res =
6140 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6141 getValue(Arg0), getValue(Arg1),
6142 MachinePointerInfo(Arg0));
6143 if (Res.first.getNode()) {
6144 processIntegerCallValue(I, Res.first, false);
6145 PendingLoads.push_back(Res.second);
6146 return true;
6147 }
6148
6149 return false;
6150 }
6151
6152 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6153 /// operation (as expected), translate it to an SDNode with the specified opcode
6154 /// and return true.
visitUnaryFloatCall(const CallInst & I,unsigned Opcode)6155 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6156 unsigned Opcode) {
6157 // Sanity check that it really is a unary floating-point call.
6158 if (I.getNumArgOperands() != 1 ||
6159 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6160 I.getType() != I.getArgOperand(0)->getType() ||
6161 !I.onlyReadsMemory())
6162 return false;
6163
6164 SDValue Tmp = getValue(I.getArgOperand(0));
6165 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6166 return true;
6167 }
6168
6169 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6170 /// operation (as expected), translate it to an SDNode with the specified opcode
6171 /// and return true.
visitBinaryFloatCall(const CallInst & I,unsigned Opcode)6172 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6173 unsigned Opcode) {
6174 // Sanity check that it really is a binary floating-point call.
6175 if (I.getNumArgOperands() != 2 ||
6176 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6177 I.getType() != I.getArgOperand(0)->getType() ||
6178 I.getType() != I.getArgOperand(1)->getType() ||
6179 !I.onlyReadsMemory())
6180 return false;
6181
6182 SDValue Tmp0 = getValue(I.getArgOperand(0));
6183 SDValue Tmp1 = getValue(I.getArgOperand(1));
6184 EVT VT = Tmp0.getValueType();
6185 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6186 return true;
6187 }
6188
visitCall(const CallInst & I)6189 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6190 // Handle inline assembly differently.
6191 if (isa<InlineAsm>(I.getCalledValue())) {
6192 visitInlineAsm(&I);
6193 return;
6194 }
6195
6196 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6197 ComputeUsesVAFloatArgument(I, &MMI);
6198
6199 const char *RenameFn = nullptr;
6200 if (Function *F = I.getCalledFunction()) {
6201 if (F->isDeclaration()) {
6202 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6203 if (unsigned IID = II->getIntrinsicID(F)) {
6204 RenameFn = visitIntrinsicCall(I, IID);
6205 if (!RenameFn)
6206 return;
6207 }
6208 }
6209 if (Intrinsic::ID IID = F->getIntrinsicID()) {
6210 RenameFn = visitIntrinsicCall(I, IID);
6211 if (!RenameFn)
6212 return;
6213 }
6214 }
6215
6216 // Check for well-known libc/libm calls. If the function is internal, it
6217 // can't be a library call. Don't do the check if marked as nobuiltin for
6218 // some reason.
6219 LibFunc::Func Func;
6220 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6221 LibInfo->getLibFunc(F->getName(), Func) &&
6222 LibInfo->hasOptimizedCodeGen(Func)) {
6223 switch (Func) {
6224 default: break;
6225 case LibFunc::copysign:
6226 case LibFunc::copysignf:
6227 case LibFunc::copysignl:
6228 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
6229 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6230 I.getType() == I.getArgOperand(0)->getType() &&
6231 I.getType() == I.getArgOperand(1)->getType() &&
6232 I.onlyReadsMemory()) {
6233 SDValue LHS = getValue(I.getArgOperand(0));
6234 SDValue RHS = getValue(I.getArgOperand(1));
6235 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6236 LHS.getValueType(), LHS, RHS));
6237 return;
6238 }
6239 break;
6240 case LibFunc::fabs:
6241 case LibFunc::fabsf:
6242 case LibFunc::fabsl:
6243 if (visitUnaryFloatCall(I, ISD::FABS))
6244 return;
6245 break;
6246 case LibFunc::fmin:
6247 case LibFunc::fminf:
6248 case LibFunc::fminl:
6249 if (visitBinaryFloatCall(I, ISD::FMINNUM))
6250 return;
6251 break;
6252 case LibFunc::fmax:
6253 case LibFunc::fmaxf:
6254 case LibFunc::fmaxl:
6255 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6256 return;
6257 break;
6258 case LibFunc::sin:
6259 case LibFunc::sinf:
6260 case LibFunc::sinl:
6261 if (visitUnaryFloatCall(I, ISD::FSIN))
6262 return;
6263 break;
6264 case LibFunc::cos:
6265 case LibFunc::cosf:
6266 case LibFunc::cosl:
6267 if (visitUnaryFloatCall(I, ISD::FCOS))
6268 return;
6269 break;
6270 case LibFunc::sqrt:
6271 case LibFunc::sqrtf:
6272 case LibFunc::sqrtl:
6273 case LibFunc::sqrt_finite:
6274 case LibFunc::sqrtf_finite:
6275 case LibFunc::sqrtl_finite:
6276 if (visitUnaryFloatCall(I, ISD::FSQRT))
6277 return;
6278 break;
6279 case LibFunc::floor:
6280 case LibFunc::floorf:
6281 case LibFunc::floorl:
6282 if (visitUnaryFloatCall(I, ISD::FFLOOR))
6283 return;
6284 break;
6285 case LibFunc::nearbyint:
6286 case LibFunc::nearbyintf:
6287 case LibFunc::nearbyintl:
6288 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6289 return;
6290 break;
6291 case LibFunc::ceil:
6292 case LibFunc::ceilf:
6293 case LibFunc::ceill:
6294 if (visitUnaryFloatCall(I, ISD::FCEIL))
6295 return;
6296 break;
6297 case LibFunc::rint:
6298 case LibFunc::rintf:
6299 case LibFunc::rintl:
6300 if (visitUnaryFloatCall(I, ISD::FRINT))
6301 return;
6302 break;
6303 case LibFunc::round:
6304 case LibFunc::roundf:
6305 case LibFunc::roundl:
6306 if (visitUnaryFloatCall(I, ISD::FROUND))
6307 return;
6308 break;
6309 case LibFunc::trunc:
6310 case LibFunc::truncf:
6311 case LibFunc::truncl:
6312 if (visitUnaryFloatCall(I, ISD::FTRUNC))
6313 return;
6314 break;
6315 case LibFunc::log2:
6316 case LibFunc::log2f:
6317 case LibFunc::log2l:
6318 if (visitUnaryFloatCall(I, ISD::FLOG2))
6319 return;
6320 break;
6321 case LibFunc::exp2:
6322 case LibFunc::exp2f:
6323 case LibFunc::exp2l:
6324 if (visitUnaryFloatCall(I, ISD::FEXP2))
6325 return;
6326 break;
6327 case LibFunc::memcmp:
6328 if (visitMemCmpCall(I))
6329 return;
6330 break;
6331 case LibFunc::memchr:
6332 if (visitMemChrCall(I))
6333 return;
6334 break;
6335 case LibFunc::strcpy:
6336 if (visitStrCpyCall(I, false))
6337 return;
6338 break;
6339 case LibFunc::stpcpy:
6340 if (visitStrCpyCall(I, true))
6341 return;
6342 break;
6343 case LibFunc::strcmp:
6344 if (visitStrCmpCall(I))
6345 return;
6346 break;
6347 case LibFunc::strlen:
6348 if (visitStrLenCall(I))
6349 return;
6350 break;
6351 case LibFunc::strnlen:
6352 if (visitStrNLenCall(I))
6353 return;
6354 break;
6355 }
6356 }
6357 }
6358
6359 SDValue Callee;
6360 if (!RenameFn)
6361 Callee = getValue(I.getCalledValue());
6362 else
6363 Callee = DAG.getExternalSymbol(
6364 RenameFn,
6365 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6366
6367 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6368 // have to do anything here to lower funclet bundles.
6369 assert(!I.hasOperandBundlesOtherThan(
6370 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6371 "Cannot lower calls with arbitrary operand bundles!");
6372
6373 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6374 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6375 else
6376 // Check if we can potentially perform a tail call. More detailed checking
6377 // is be done within LowerCallTo, after more information about the call is
6378 // known.
6379 LowerCallTo(&I, Callee, I.isTailCall());
6380 }
6381
6382 namespace {
6383
6384 /// AsmOperandInfo - This contains information for each constraint that we are
6385 /// lowering.
6386 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6387 public:
6388 /// CallOperand - If this is the result output operand or a clobber
6389 /// this is null, otherwise it is the incoming operand to the CallInst.
6390 /// This gets modified as the asm is processed.
6391 SDValue CallOperand;
6392
6393 /// AssignedRegs - If this is a register or register class operand, this
6394 /// contains the set of register corresponding to the operand.
6395 RegsForValue AssignedRegs;
6396
SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & info)6397 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6398 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6399 }
6400
6401 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6402 /// corresponds to. If there is no Value* for this operand, it returns
6403 /// MVT::Other.
getCallOperandValEVT(LLVMContext & Context,const TargetLowering & TLI,const DataLayout & DL) const6404 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6405 const DataLayout &DL) const {
6406 if (!CallOperandVal) return MVT::Other;
6407
6408 if (isa<BasicBlock>(CallOperandVal))
6409 return TLI.getPointerTy(DL);
6410
6411 llvm::Type *OpTy = CallOperandVal->getType();
6412
6413 // FIXME: code duplicated from TargetLowering::ParseConstraints().
6414 // If this is an indirect operand, the operand is a pointer to the
6415 // accessed type.
6416 if (isIndirect) {
6417 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6418 if (!PtrTy)
6419 report_fatal_error("Indirect operand for inline asm not a pointer!");
6420 OpTy = PtrTy->getElementType();
6421 }
6422
6423 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6424 if (StructType *STy = dyn_cast<StructType>(OpTy))
6425 if (STy->getNumElements() == 1)
6426 OpTy = STy->getElementType(0);
6427
6428 // If OpTy is not a single value, it may be a struct/union that we
6429 // can tile with integers.
6430 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6431 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6432 switch (BitSize) {
6433 default: break;
6434 case 1:
6435 case 8:
6436 case 16:
6437 case 32:
6438 case 64:
6439 case 128:
6440 OpTy = IntegerType::get(Context, BitSize);
6441 break;
6442 }
6443 }
6444
6445 return TLI.getValueType(DL, OpTy, true);
6446 }
6447 };
6448
6449 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6450
6451 } // end anonymous namespace
6452
6453 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6454 /// specified operand. We prefer to assign virtual registers, to allow the
6455 /// register allocator to handle the assignment process. However, if the asm
6456 /// uses features that we can't model on machineinstrs, we have SDISel do the
6457 /// allocation. This produces generally horrible, but correct, code.
6458 ///
6459 /// OpInfo describes the operand.
6460 ///
GetRegistersForValue(SelectionDAG & DAG,const TargetLowering & TLI,const SDLoc & DL,SDISelAsmOperandInfo & OpInfo)6461 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6462 const SDLoc &DL,
6463 SDISelAsmOperandInfo &OpInfo) {
6464 LLVMContext &Context = *DAG.getContext();
6465
6466 MachineFunction &MF = DAG.getMachineFunction();
6467 SmallVector<unsigned, 4> Regs;
6468
6469 // If this is a constraint for a single physreg, or a constraint for a
6470 // register class, find it.
6471 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6472 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6473 OpInfo.ConstraintCode,
6474 OpInfo.ConstraintVT);
6475
6476 unsigned NumRegs = 1;
6477 if (OpInfo.ConstraintVT != MVT::Other) {
6478 // If this is a FP input in an integer register (or visa versa) insert a bit
6479 // cast of the input value. More generally, handle any case where the input
6480 // value disagrees with the register class we plan to stick this in.
6481 if (OpInfo.Type == InlineAsm::isInput &&
6482 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6483 // Try to convert to the first EVT that the reg class contains. If the
6484 // types are identical size, use a bitcast to convert (e.g. two differing
6485 // vector types).
6486 MVT RegVT = *PhysReg.second->vt_begin();
6487 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6488 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6489 RegVT, OpInfo.CallOperand);
6490 OpInfo.ConstraintVT = RegVT;
6491 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6492 // If the input is a FP value and we want it in FP registers, do a
6493 // bitcast to the corresponding integer type. This turns an f64 value
6494 // into i64, which can be passed with two i32 values on a 32-bit
6495 // machine.
6496 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6497 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6498 RegVT, OpInfo.CallOperand);
6499 OpInfo.ConstraintVT = RegVT;
6500 }
6501 }
6502
6503 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6504 }
6505
6506 MVT RegVT;
6507 EVT ValueVT = OpInfo.ConstraintVT;
6508
6509 // If this is a constraint for a specific physical register, like {r17},
6510 // assign it now.
6511 if (unsigned AssignedReg = PhysReg.first) {
6512 const TargetRegisterClass *RC = PhysReg.second;
6513 if (OpInfo.ConstraintVT == MVT::Other)
6514 ValueVT = *RC->vt_begin();
6515
6516 // Get the actual register value type. This is important, because the user
6517 // may have asked for (e.g.) the AX register in i32 type. We need to
6518 // remember that AX is actually i16 to get the right extension.
6519 RegVT = *RC->vt_begin();
6520
6521 // This is a explicit reference to a physical register.
6522 Regs.push_back(AssignedReg);
6523
6524 // If this is an expanded reference, add the rest of the regs to Regs.
6525 if (NumRegs != 1) {
6526 TargetRegisterClass::iterator I = RC->begin();
6527 for (; *I != AssignedReg; ++I)
6528 assert(I != RC->end() && "Didn't find reg!");
6529
6530 // Already added the first reg.
6531 --NumRegs; ++I;
6532 for (; NumRegs; --NumRegs, ++I) {
6533 assert(I != RC->end() && "Ran out of registers to allocate!");
6534 Regs.push_back(*I);
6535 }
6536 }
6537
6538 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6539 return;
6540 }
6541
6542 // Otherwise, if this was a reference to an LLVM register class, create vregs
6543 // for this reference.
6544 if (const TargetRegisterClass *RC = PhysReg.second) {
6545 RegVT = *RC->vt_begin();
6546 if (OpInfo.ConstraintVT == MVT::Other)
6547 ValueVT = RegVT;
6548
6549 // Create the appropriate number of virtual registers.
6550 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6551 for (; NumRegs; --NumRegs)
6552 Regs.push_back(RegInfo.createVirtualRegister(RC));
6553
6554 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6555 return;
6556 }
6557
6558 // Otherwise, we couldn't allocate enough registers for this.
6559 }
6560
6561 /// visitInlineAsm - Handle a call to an InlineAsm object.
6562 ///
visitInlineAsm(ImmutableCallSite CS)6563 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6564 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6565
6566 /// ConstraintOperands - Information about all of the constraints.
6567 SDISelAsmOperandInfoVector ConstraintOperands;
6568
6569 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6570 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6571 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6572
6573 bool hasMemory = false;
6574
6575 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
6576 unsigned ResNo = 0; // ResNo - The result number of the next output.
6577 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6578 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6579 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6580
6581 MVT OpVT = MVT::Other;
6582
6583 // Compute the value type for each operand.
6584 switch (OpInfo.Type) {
6585 case InlineAsm::isOutput:
6586 // Indirect outputs just consume an argument.
6587 if (OpInfo.isIndirect) {
6588 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6589 break;
6590 }
6591
6592 // The return value of the call is this value. As such, there is no
6593 // corresponding argument.
6594 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6595 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6596 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6597 STy->getElementType(ResNo));
6598 } else {
6599 assert(ResNo == 0 && "Asm only has one result!");
6600 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6601 }
6602 ++ResNo;
6603 break;
6604 case InlineAsm::isInput:
6605 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6606 break;
6607 case InlineAsm::isClobber:
6608 // Nothing to do.
6609 break;
6610 }
6611
6612 // If this is an input or an indirect output, process the call argument.
6613 // BasicBlocks are labels, currently appearing only in asm's.
6614 if (OpInfo.CallOperandVal) {
6615 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6616 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6617 } else {
6618 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6619 }
6620
6621 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6622 DAG.getDataLayout()).getSimpleVT();
6623 }
6624
6625 OpInfo.ConstraintVT = OpVT;
6626
6627 // Indirect operand accesses access memory.
6628 if (OpInfo.isIndirect)
6629 hasMemory = true;
6630 else {
6631 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6632 TargetLowering::ConstraintType
6633 CType = TLI.getConstraintType(OpInfo.Codes[j]);
6634 if (CType == TargetLowering::C_Memory) {
6635 hasMemory = true;
6636 break;
6637 }
6638 }
6639 }
6640 }
6641
6642 SDValue Chain, Flag;
6643
6644 // We won't need to flush pending loads if this asm doesn't touch
6645 // memory and is nonvolatile.
6646 if (hasMemory || IA->hasSideEffects())
6647 Chain = getRoot();
6648 else
6649 Chain = DAG.getRoot();
6650
6651 // Second pass over the constraints: compute which constraint option to use
6652 // and assign registers to constraints that want a specific physreg.
6653 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6654 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6655
6656 // If this is an output operand with a matching input operand, look up the
6657 // matching input. If their types mismatch, e.g. one is an integer, the
6658 // other is floating point, or their sizes are different, flag it as an
6659 // error.
6660 if (OpInfo.hasMatchingInput()) {
6661 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6662
6663 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6664 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6665 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6666 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6667 OpInfo.ConstraintVT);
6668 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6669 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6670 Input.ConstraintVT);
6671 if ((OpInfo.ConstraintVT.isInteger() !=
6672 Input.ConstraintVT.isInteger()) ||
6673 (MatchRC.second != InputRC.second)) {
6674 report_fatal_error("Unsupported asm: input constraint"
6675 " with a matching output constraint of"
6676 " incompatible type!");
6677 }
6678 Input.ConstraintVT = OpInfo.ConstraintVT;
6679 }
6680 }
6681
6682 // Compute the constraint code and ConstraintType to use.
6683 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6684
6685 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6686 OpInfo.Type == InlineAsm::isClobber)
6687 continue;
6688
6689 // If this is a memory input, and if the operand is not indirect, do what we
6690 // need to to provide an address for the memory input.
6691 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6692 !OpInfo.isIndirect) {
6693 assert((OpInfo.isMultipleAlternative ||
6694 (OpInfo.Type == InlineAsm::isInput)) &&
6695 "Can only indirectify direct input operands!");
6696
6697 // Memory operands really want the address of the value. If we don't have
6698 // an indirect input, put it in the constpool if we can, otherwise spill
6699 // it to a stack slot.
6700 // TODO: This isn't quite right. We need to handle these according to
6701 // the addressing mode that the constraint wants. Also, this may take
6702 // an additional register for the computation and we don't want that
6703 // either.
6704
6705 // If the operand is a float, integer, or vector constant, spill to a
6706 // constant pool entry to get its address.
6707 const Value *OpVal = OpInfo.CallOperandVal;
6708 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6709 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6710 OpInfo.CallOperand = DAG.getConstantPool(
6711 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6712 } else {
6713 // Otherwise, create a stack slot and emit a store to it before the
6714 // asm.
6715 Type *Ty = OpVal->getType();
6716 auto &DL = DAG.getDataLayout();
6717 uint64_t TySize = DL.getTypeAllocSize(Ty);
6718 unsigned Align = DL.getPrefTypeAlignment(Ty);
6719 MachineFunction &MF = DAG.getMachineFunction();
6720 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6721 SDValue StackSlot =
6722 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6723 Chain = DAG.getStore(
6724 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6725 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6726 false, false, 0);
6727 OpInfo.CallOperand = StackSlot;
6728 }
6729
6730 // There is no longer a Value* corresponding to this operand.
6731 OpInfo.CallOperandVal = nullptr;
6732
6733 // It is now an indirect operand.
6734 OpInfo.isIndirect = true;
6735 }
6736
6737 // If this constraint is for a specific register, allocate it before
6738 // anything else.
6739 if (OpInfo.ConstraintType == TargetLowering::C_Register)
6740 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6741 }
6742
6743 // Second pass - Loop over all of the operands, assigning virtual or physregs
6744 // to register class operands.
6745 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6746 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6747
6748 // C_Register operands have already been allocated, Other/Memory don't need
6749 // to be.
6750 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6751 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6752 }
6753
6754 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6755 std::vector<SDValue> AsmNodeOperands;
6756 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
6757 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6758 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6759
6760 // If we have a !srcloc metadata node associated with it, we want to attach
6761 // this to the ultimately generated inline asm machineinstr. To do this, we
6762 // pass in the third operand as this (potentially null) inline asm MDNode.
6763 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6764 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6765
6766 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6767 // bits as operand 3.
6768 unsigned ExtraInfo = 0;
6769 if (IA->hasSideEffects())
6770 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6771 if (IA->isAlignStack())
6772 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6773 if (CS.isConvergent())
6774 ExtraInfo |= InlineAsm::Extra_IsConvergent;
6775 // Set the asm dialect.
6776 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6777
6778 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6779 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6780 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6781
6782 // Compute the constraint code and ConstraintType to use.
6783 TLI.ComputeConstraintToUse(OpInfo, SDValue());
6784
6785 // Ideally, we would only check against memory constraints. However, the
6786 // meaning of an other constraint can be target-specific and we can't easily
6787 // reason about it. Therefore, be conservative and set MayLoad/MayStore
6788 // for other constriants as well.
6789 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6790 OpInfo.ConstraintType == TargetLowering::C_Other) {
6791 if (OpInfo.Type == InlineAsm::isInput)
6792 ExtraInfo |= InlineAsm::Extra_MayLoad;
6793 else if (OpInfo.Type == InlineAsm::isOutput)
6794 ExtraInfo |= InlineAsm::Extra_MayStore;
6795 else if (OpInfo.Type == InlineAsm::isClobber)
6796 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6797 }
6798 }
6799
6800 AsmNodeOperands.push_back(DAG.getTargetConstant(
6801 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6802
6803 // Loop over all of the inputs, copying the operand values into the
6804 // appropriate registers and processing the output regs.
6805 RegsForValue RetValRegs;
6806
6807 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6808 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6809
6810 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6811 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6812
6813 switch (OpInfo.Type) {
6814 case InlineAsm::isOutput: {
6815 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6816 OpInfo.ConstraintType != TargetLowering::C_Register) {
6817 // Memory output, or 'other' output (e.g. 'X' constraint).
6818 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6819
6820 unsigned ConstraintID =
6821 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6822 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6823 "Failed to convert memory constraint code to constraint id.");
6824
6825 // Add information to the INLINEASM node to know about this output.
6826 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6827 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6828 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6829 MVT::i32));
6830 AsmNodeOperands.push_back(OpInfo.CallOperand);
6831 break;
6832 }
6833
6834 // Otherwise, this is a register or register class output.
6835
6836 // Copy the output from the appropriate register. Find a register that
6837 // we can use.
6838 if (OpInfo.AssignedRegs.Regs.empty()) {
6839 emitInlineAsmError(
6840 CS, "couldn't allocate output register for constraint '" +
6841 Twine(OpInfo.ConstraintCode) + "'");
6842 return;
6843 }
6844
6845 // If this is an indirect operand, store through the pointer after the
6846 // asm.
6847 if (OpInfo.isIndirect) {
6848 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6849 OpInfo.CallOperandVal));
6850 } else {
6851 // This is the result value of the call.
6852 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6853 // Concatenate this output onto the outputs list.
6854 RetValRegs.append(OpInfo.AssignedRegs);
6855 }
6856
6857 // Add information to the INLINEASM node to know that this register is
6858 // set.
6859 OpInfo.AssignedRegs
6860 .AddInlineAsmOperands(OpInfo.isEarlyClobber
6861 ? InlineAsm::Kind_RegDefEarlyClobber
6862 : InlineAsm::Kind_RegDef,
6863 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6864 break;
6865 }
6866 case InlineAsm::isInput: {
6867 SDValue InOperandVal = OpInfo.CallOperand;
6868
6869 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
6870 // If this is required to match an output register we have already set,
6871 // just use its register.
6872 unsigned OperandNo = OpInfo.getMatchedOperand();
6873
6874 // Scan until we find the definition we already emitted of this operand.
6875 // When we find it, create a RegsForValue operand.
6876 unsigned CurOp = InlineAsm::Op_FirstOperand;
6877 for (; OperandNo; --OperandNo) {
6878 // Advance to the next operand.
6879 unsigned OpFlag =
6880 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6881 assert((InlineAsm::isRegDefKind(OpFlag) ||
6882 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6883 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6884 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6885 }
6886
6887 unsigned OpFlag =
6888 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6889 if (InlineAsm::isRegDefKind(OpFlag) ||
6890 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6891 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6892 if (OpInfo.isIndirect) {
6893 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6894 emitInlineAsmError(CS, "inline asm not supported yet:"
6895 " don't know how to handle tied "
6896 "indirect register inputs");
6897 return;
6898 }
6899
6900 RegsForValue MatchedRegs;
6901 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6902 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6903 MatchedRegs.RegVTs.push_back(RegVT);
6904 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6905 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6906 i != e; ++i) {
6907 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6908 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6909 else {
6910 emitInlineAsmError(
6911 CS, "inline asm error: This value"
6912 " type register class is not natively supported!");
6913 return;
6914 }
6915 }
6916 SDLoc dl = getCurSDLoc();
6917 // Use the produced MatchedRegs object to
6918 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6919 Chain, &Flag, CS.getInstruction());
6920 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6921 true, OpInfo.getMatchedOperand(), dl,
6922 DAG, AsmNodeOperands);
6923 break;
6924 }
6925
6926 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6927 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6928 "Unexpected number of operands");
6929 // Add information to the INLINEASM node to know about this input.
6930 // See InlineAsm.h isUseOperandTiedToDef.
6931 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6932 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6933 OpInfo.getMatchedOperand());
6934 AsmNodeOperands.push_back(DAG.getTargetConstant(
6935 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6936 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6937 break;
6938 }
6939
6940 // Treat indirect 'X' constraint as memory.
6941 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6942 OpInfo.isIndirect)
6943 OpInfo.ConstraintType = TargetLowering::C_Memory;
6944
6945 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6946 std::vector<SDValue> Ops;
6947 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6948 Ops, DAG);
6949 if (Ops.empty()) {
6950 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
6951 Twine(OpInfo.ConstraintCode) + "'");
6952 return;
6953 }
6954
6955 // Add information to the INLINEASM node to know about this input.
6956 unsigned ResOpType =
6957 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6958 AsmNodeOperands.push_back(DAG.getTargetConstant(
6959 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6960 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6961 break;
6962 }
6963
6964 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6965 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6966 assert(InOperandVal.getValueType() ==
6967 TLI.getPointerTy(DAG.getDataLayout()) &&
6968 "Memory operands expect pointer values");
6969
6970 unsigned ConstraintID =
6971 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6972 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6973 "Failed to convert memory constraint code to constraint id.");
6974
6975 // Add information to the INLINEASM node to know about this input.
6976 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6977 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6978 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6979 getCurSDLoc(),
6980 MVT::i32));
6981 AsmNodeOperands.push_back(InOperandVal);
6982 break;
6983 }
6984
6985 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6986 OpInfo.ConstraintType == TargetLowering::C_Register) &&
6987 "Unknown constraint type!");
6988
6989 // TODO: Support this.
6990 if (OpInfo.isIndirect) {
6991 emitInlineAsmError(
6992 CS, "Don't know how to handle indirect register inputs yet "
6993 "for constraint '" +
6994 Twine(OpInfo.ConstraintCode) + "'");
6995 return;
6996 }
6997
6998 // Copy the input into the appropriate registers.
6999 if (OpInfo.AssignedRegs.Regs.empty()) {
7000 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7001 Twine(OpInfo.ConstraintCode) + "'");
7002 return;
7003 }
7004
7005 SDLoc dl = getCurSDLoc();
7006
7007 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7008 Chain, &Flag, CS.getInstruction());
7009
7010 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7011 dl, DAG, AsmNodeOperands);
7012 break;
7013 }
7014 case InlineAsm::isClobber: {
7015 // Add the clobbered value to the operand list, so that the register
7016 // allocator is aware that the physreg got clobbered.
7017 if (!OpInfo.AssignedRegs.Regs.empty())
7018 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7019 false, 0, getCurSDLoc(), DAG,
7020 AsmNodeOperands);
7021 break;
7022 }
7023 }
7024 }
7025
7026 // Finish up input operands. Set the input chain and add the flag last.
7027 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7028 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7029
7030 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7031 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7032 Flag = Chain.getValue(1);
7033
7034 // If this asm returns a register value, copy the result from that register
7035 // and set it as the value of the call.
7036 if (!RetValRegs.Regs.empty()) {
7037 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7038 Chain, &Flag, CS.getInstruction());
7039
7040 // FIXME: Why don't we do this for inline asms with MRVs?
7041 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7042 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7043
7044 // If any of the results of the inline asm is a vector, it may have the
7045 // wrong width/num elts. This can happen for register classes that can
7046 // contain multiple different value types. The preg or vreg allocated may
7047 // not have the same VT as was expected. Convert it to the right type
7048 // with bit_convert.
7049 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7050 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7051 ResultType, Val);
7052
7053 } else if (ResultType != Val.getValueType() &&
7054 ResultType.isInteger() && Val.getValueType().isInteger()) {
7055 // If a result value was tied to an input value, the computed result may
7056 // have a wider width than the expected result. Extract the relevant
7057 // portion.
7058 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7059 }
7060
7061 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7062 }
7063
7064 setValue(CS.getInstruction(), Val);
7065 // Don't need to use this as a chain in this case.
7066 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7067 return;
7068 }
7069
7070 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7071
7072 // Process indirect outputs, first output all of the flagged copies out of
7073 // physregs.
7074 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7075 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7076 const Value *Ptr = IndirectStoresToEmit[i].second;
7077 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7078 Chain, &Flag, IA);
7079 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7080 }
7081
7082 // Emit the non-flagged stores from the physregs.
7083 SmallVector<SDValue, 8> OutChains;
7084 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7085 SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7086 StoresToEmit[i].first,
7087 getValue(StoresToEmit[i].second),
7088 MachinePointerInfo(StoresToEmit[i].second),
7089 false, false, 0);
7090 OutChains.push_back(Val);
7091 }
7092
7093 if (!OutChains.empty())
7094 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7095
7096 DAG.setRoot(Chain);
7097 }
7098
emitInlineAsmError(ImmutableCallSite CS,const Twine & Message)7099 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7100 const Twine &Message) {
7101 LLVMContext &Ctx = *DAG.getContext();
7102 Ctx.emitError(CS.getInstruction(), Message);
7103
7104 // Make sure we leave the DAG in a valid state
7105 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7106 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7107 setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7108 }
7109
visitVAStart(const CallInst & I)7110 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7111 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7112 MVT::Other, getRoot(),
7113 getValue(I.getArgOperand(0)),
7114 DAG.getSrcValue(I.getArgOperand(0))));
7115 }
7116
visitVAArg(const VAArgInst & I)7117 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7118 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7119 const DataLayout &DL = DAG.getDataLayout();
7120 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7121 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7122 DAG.getSrcValue(I.getOperand(0)),
7123 DL.getABITypeAlignment(I.getType()));
7124 setValue(&I, V);
7125 DAG.setRoot(V.getValue(1));
7126 }
7127
visitVAEnd(const CallInst & I)7128 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7129 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7130 MVT::Other, getRoot(),
7131 getValue(I.getArgOperand(0)),
7132 DAG.getSrcValue(I.getArgOperand(0))));
7133 }
7134
visitVACopy(const CallInst & I)7135 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7136 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7137 MVT::Other, getRoot(),
7138 getValue(I.getArgOperand(0)),
7139 getValue(I.getArgOperand(1)),
7140 DAG.getSrcValue(I.getArgOperand(0)),
7141 DAG.getSrcValue(I.getArgOperand(1))));
7142 }
7143
lowerRangeToAssertZExt(SelectionDAG & DAG,const Instruction & I,SDValue Op)7144 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7145 const Instruction &I,
7146 SDValue Op) {
7147 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7148 if (!Range)
7149 return Op;
7150
7151 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7152 if (!Lo->isNullValue())
7153 return Op;
7154
7155 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7156 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7157
7158 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7159
7160 SDLoc SL = getCurSDLoc();
7161
7162 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7163 Op, DAG.getValueType(SmallVT));
7164 unsigned NumVals = Op.getNode()->getNumValues();
7165 if (NumVals == 1)
7166 return ZExt;
7167
7168 SmallVector<SDValue, 4> Ops;
7169
7170 Ops.push_back(ZExt);
7171 for (unsigned I = 1; I != NumVals; ++I)
7172 Ops.push_back(Op.getValue(I));
7173
7174 return DAG.getMergeValues(Ops, SL);
7175 }
7176
7177 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7178 /// the call being lowered.
7179 ///
7180 /// This is a helper for lowering intrinsics that follow a target calling
7181 /// convention or require stack pointer adjustment. Only a subset of the
7182 /// intrinsic's operands need to participate in the calling convention.
populateCallLoweringInfo(TargetLowering::CallLoweringInfo & CLI,ImmutableCallSite CS,unsigned ArgIdx,unsigned NumArgs,SDValue Callee,Type * ReturnTy,bool IsPatchPoint)7183 void SelectionDAGBuilder::populateCallLoweringInfo(
7184 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7185 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7186 bool IsPatchPoint) {
7187 TargetLowering::ArgListTy Args;
7188 Args.reserve(NumArgs);
7189
7190 // Populate the argument list.
7191 // Attributes for args start at offset 1, after the return attribute.
7192 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7193 ArgI != ArgE; ++ArgI) {
7194 const Value *V = CS->getOperand(ArgI);
7195
7196 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7197
7198 TargetLowering::ArgListEntry Entry;
7199 Entry.Node = getValue(V);
7200 Entry.Ty = V->getType();
7201 Entry.setAttributes(&CS, AttrI);
7202 Args.push_back(Entry);
7203 }
7204
7205 CLI.setDebugLoc(getCurSDLoc())
7206 .setChain(getRoot())
7207 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7208 .setDiscardResult(CS->use_empty())
7209 .setIsPatchPoint(IsPatchPoint);
7210 }
7211
7212 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7213 /// or patchpoint target node's operand list.
7214 ///
7215 /// Constants are converted to TargetConstants purely as an optimization to
7216 /// avoid constant materialization and register allocation.
7217 ///
7218 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7219 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7220 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7221 /// address materialization and register allocation, but may also be required
7222 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7223 /// alloca in the entry block, then the runtime may assume that the alloca's
7224 /// StackMap location can be read immediately after compilation and that the
7225 /// location is valid at any point during execution (this is similar to the
7226 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7227 /// only available in a register, then the runtime would need to trap when
7228 /// execution reaches the StackMap in order to read the alloca's location.
addStackMapLiveVars(ImmutableCallSite CS,unsigned StartIdx,const SDLoc & DL,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)7229 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7230 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7231 SelectionDAGBuilder &Builder) {
7232 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7233 SDValue OpVal = Builder.getValue(CS.getArgument(i));
7234 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7235 Ops.push_back(
7236 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7237 Ops.push_back(
7238 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7239 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7240 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7241 Ops.push_back(Builder.DAG.getTargetFrameIndex(
7242 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7243 } else
7244 Ops.push_back(OpVal);
7245 }
7246 }
7247
7248 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
visitStackmap(const CallInst & CI)7249 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7250 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7251 // [live variables...])
7252
7253 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7254
7255 SDValue Chain, InFlag, Callee, NullPtr;
7256 SmallVector<SDValue, 32> Ops;
7257
7258 SDLoc DL = getCurSDLoc();
7259 Callee = getValue(CI.getCalledValue());
7260 NullPtr = DAG.getIntPtrConstant(0, DL, true);
7261
7262 // The stackmap intrinsic only records the live variables (the arguemnts
7263 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7264 // intrinsic, this won't be lowered to a function call. This means we don't
7265 // have to worry about calling conventions and target specific lowering code.
7266 // Instead we perform the call lowering right here.
7267 //
7268 // chain, flag = CALLSEQ_START(chain, 0)
7269 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7270 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7271 //
7272 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7273 InFlag = Chain.getValue(1);
7274
7275 // Add the <id> and <numBytes> constants.
7276 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7277 Ops.push_back(DAG.getTargetConstant(
7278 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7279 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7280 Ops.push_back(DAG.getTargetConstant(
7281 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7282 MVT::i32));
7283
7284 // Push live variables for the stack map.
7285 addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7286
7287 // We are not pushing any register mask info here on the operands list,
7288 // because the stackmap doesn't clobber anything.
7289
7290 // Push the chain and the glue flag.
7291 Ops.push_back(Chain);
7292 Ops.push_back(InFlag);
7293
7294 // Create the STACKMAP node.
7295 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7296 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7297 Chain = SDValue(SM, 0);
7298 InFlag = Chain.getValue(1);
7299
7300 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7301
7302 // Stackmaps don't generate values, so nothing goes into the NodeMap.
7303
7304 // Set the root to the target-lowered call chain.
7305 DAG.setRoot(Chain);
7306
7307 // Inform the Frame Information that we have a stackmap in this function.
7308 FuncInfo.MF->getFrameInfo()->setHasStackMap();
7309 }
7310
7311 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
visitPatchpoint(ImmutableCallSite CS,const BasicBlock * EHPadBB)7312 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7313 const BasicBlock *EHPadBB) {
7314 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7315 // i32 <numBytes>,
7316 // i8* <target>,
7317 // i32 <numArgs>,
7318 // [Args...],
7319 // [live variables...])
7320
7321 CallingConv::ID CC = CS.getCallingConv();
7322 bool IsAnyRegCC = CC == CallingConv::AnyReg;
7323 bool HasDef = !CS->getType()->isVoidTy();
7324 SDLoc dl = getCurSDLoc();
7325 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7326
7327 // Handle immediate and symbolic callees.
7328 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7329 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7330 /*isTarget=*/true);
7331 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7332 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7333 SDLoc(SymbolicCallee),
7334 SymbolicCallee->getValueType(0));
7335
7336 // Get the real number of arguments participating in the call <numArgs>
7337 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7338 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7339
7340 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7341 // Intrinsics include all meta-operands up to but not including CC.
7342 unsigned NumMetaOpers = PatchPointOpers::CCPos;
7343 assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7344 "Not enough arguments provided to the patchpoint intrinsic");
7345
7346 // For AnyRegCC the arguments are lowered later on manually.
7347 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7348 Type *ReturnTy =
7349 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7350
7351 TargetLowering::CallLoweringInfo CLI(DAG);
7352 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7353 true);
7354 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7355
7356 SDNode *CallEnd = Result.second.getNode();
7357 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7358 CallEnd = CallEnd->getOperand(0).getNode();
7359
7360 /// Get a call instruction from the call sequence chain.
7361 /// Tail calls are not allowed.
7362 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7363 "Expected a callseq node.");
7364 SDNode *Call = CallEnd->getOperand(0).getNode();
7365 bool HasGlue = Call->getGluedNode();
7366
7367 // Replace the target specific call node with the patchable intrinsic.
7368 SmallVector<SDValue, 8> Ops;
7369
7370 // Add the <id> and <numBytes> constants.
7371 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7372 Ops.push_back(DAG.getTargetConstant(
7373 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7374 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7375 Ops.push_back(DAG.getTargetConstant(
7376 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7377 MVT::i32));
7378
7379 // Add the callee.
7380 Ops.push_back(Callee);
7381
7382 // Adjust <numArgs> to account for any arguments that have been passed on the
7383 // stack instead.
7384 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7385 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7386 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7387 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7388
7389 // Add the calling convention
7390 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7391
7392 // Add the arguments we omitted previously. The register allocator should
7393 // place these in any free register.
7394 if (IsAnyRegCC)
7395 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7396 Ops.push_back(getValue(CS.getArgument(i)));
7397
7398 // Push the arguments from the call instruction up to the register mask.
7399 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7400 Ops.append(Call->op_begin() + 2, e);
7401
7402 // Push live variables for the stack map.
7403 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7404
7405 // Push the register mask info.
7406 if (HasGlue)
7407 Ops.push_back(*(Call->op_end()-2));
7408 else
7409 Ops.push_back(*(Call->op_end()-1));
7410
7411 // Push the chain (this is originally the first operand of the call, but
7412 // becomes now the last or second to last operand).
7413 Ops.push_back(*(Call->op_begin()));
7414
7415 // Push the glue flag (last operand).
7416 if (HasGlue)
7417 Ops.push_back(*(Call->op_end()-1));
7418
7419 SDVTList NodeTys;
7420 if (IsAnyRegCC && HasDef) {
7421 // Create the return types based on the intrinsic definition
7422 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7423 SmallVector<EVT, 3> ValueVTs;
7424 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7425 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7426
7427 // There is always a chain and a glue type at the end
7428 ValueVTs.push_back(MVT::Other);
7429 ValueVTs.push_back(MVT::Glue);
7430 NodeTys = DAG.getVTList(ValueVTs);
7431 } else
7432 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7433
7434 // Replace the target specific call node with a PATCHPOINT node.
7435 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7436 dl, NodeTys, Ops);
7437
7438 // Update the NodeMap.
7439 if (HasDef) {
7440 if (IsAnyRegCC)
7441 setValue(CS.getInstruction(), SDValue(MN, 0));
7442 else
7443 setValue(CS.getInstruction(), Result.first);
7444 }
7445
7446 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7447 // call sequence. Furthermore the location of the chain and glue can change
7448 // when the AnyReg calling convention is used and the intrinsic returns a
7449 // value.
7450 if (IsAnyRegCC && HasDef) {
7451 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7452 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7453 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7454 } else
7455 DAG.ReplaceAllUsesWith(Call, MN);
7456 DAG.DeleteNode(Call);
7457
7458 // Inform the Frame Information that we have a patchpoint in this function.
7459 FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7460 }
7461
7462 /// Returns an AttributeSet representing the attributes applied to the return
7463 /// value of the given call.
getReturnAttrs(TargetLowering::CallLoweringInfo & CLI)7464 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7465 SmallVector<Attribute::AttrKind, 2> Attrs;
7466 if (CLI.RetSExt)
7467 Attrs.push_back(Attribute::SExt);
7468 if (CLI.RetZExt)
7469 Attrs.push_back(Attribute::ZExt);
7470 if (CLI.IsInReg)
7471 Attrs.push_back(Attribute::InReg);
7472
7473 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7474 Attrs);
7475 }
7476
7477 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7478 /// implementation, which just calls LowerCall.
7479 /// FIXME: When all targets are
7480 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7481 std::pair<SDValue, SDValue>
LowerCallTo(TargetLowering::CallLoweringInfo & CLI) const7482 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7483 // Handle the incoming return values from the call.
7484 CLI.Ins.clear();
7485 Type *OrigRetTy = CLI.RetTy;
7486 SmallVector<EVT, 4> RetTys;
7487 SmallVector<uint64_t, 4> Offsets;
7488 auto &DL = CLI.DAG.getDataLayout();
7489 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7490
7491 SmallVector<ISD::OutputArg, 4> Outs;
7492 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7493
7494 bool CanLowerReturn =
7495 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7496 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7497
7498 SDValue DemoteStackSlot;
7499 int DemoteStackIdx = -100;
7500 if (!CanLowerReturn) {
7501 // FIXME: equivalent assert?
7502 // assert(!CS.hasInAllocaArgument() &&
7503 // "sret demotion is incompatible with inalloca");
7504 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7505 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7506 MachineFunction &MF = CLI.DAG.getMachineFunction();
7507 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7508 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7509
7510 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7511 ArgListEntry Entry;
7512 Entry.Node = DemoteStackSlot;
7513 Entry.Ty = StackSlotPtrType;
7514 Entry.isSExt = false;
7515 Entry.isZExt = false;
7516 Entry.isInReg = false;
7517 Entry.isSRet = true;
7518 Entry.isNest = false;
7519 Entry.isByVal = false;
7520 Entry.isReturned = false;
7521 Entry.isSwiftSelf = false;
7522 Entry.isSwiftError = false;
7523 Entry.Alignment = Align;
7524 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7525 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7526
7527 // sret demotion isn't compatible with tail-calls, since the sret argument
7528 // points into the callers stack frame.
7529 CLI.IsTailCall = false;
7530 } else {
7531 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7532 EVT VT = RetTys[I];
7533 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7534 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7535 for (unsigned i = 0; i != NumRegs; ++i) {
7536 ISD::InputArg MyFlags;
7537 MyFlags.VT = RegisterVT;
7538 MyFlags.ArgVT = VT;
7539 MyFlags.Used = CLI.IsReturnValueUsed;
7540 if (CLI.RetSExt)
7541 MyFlags.Flags.setSExt();
7542 if (CLI.RetZExt)
7543 MyFlags.Flags.setZExt();
7544 if (CLI.IsInReg)
7545 MyFlags.Flags.setInReg();
7546 CLI.Ins.push_back(MyFlags);
7547 }
7548 }
7549 }
7550
7551 // We push in swifterror return as the last element of CLI.Ins.
7552 ArgListTy &Args = CLI.getArgs();
7553 if (supportSwiftError()) {
7554 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7555 if (Args[i].isSwiftError) {
7556 ISD::InputArg MyFlags;
7557 MyFlags.VT = getPointerTy(DL);
7558 MyFlags.ArgVT = EVT(getPointerTy(DL));
7559 MyFlags.Flags.setSwiftError();
7560 CLI.Ins.push_back(MyFlags);
7561 }
7562 }
7563 }
7564
7565 // Handle all of the outgoing arguments.
7566 CLI.Outs.clear();
7567 CLI.OutVals.clear();
7568 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7569 SmallVector<EVT, 4> ValueVTs;
7570 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7571 Type *FinalType = Args[i].Ty;
7572 if (Args[i].isByVal)
7573 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7574 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7575 FinalType, CLI.CallConv, CLI.IsVarArg);
7576 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7577 ++Value) {
7578 EVT VT = ValueVTs[Value];
7579 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7580 SDValue Op = SDValue(Args[i].Node.getNode(),
7581 Args[i].Node.getResNo() + Value);
7582 ISD::ArgFlagsTy Flags;
7583 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7584
7585 if (Args[i].isZExt)
7586 Flags.setZExt();
7587 if (Args[i].isSExt)
7588 Flags.setSExt();
7589 if (Args[i].isInReg)
7590 Flags.setInReg();
7591 if (Args[i].isSRet)
7592 Flags.setSRet();
7593 if (Args[i].isSwiftSelf)
7594 Flags.setSwiftSelf();
7595 if (Args[i].isSwiftError)
7596 Flags.setSwiftError();
7597 if (Args[i].isByVal)
7598 Flags.setByVal();
7599 if (Args[i].isInAlloca) {
7600 Flags.setInAlloca();
7601 // Set the byval flag for CCAssignFn callbacks that don't know about
7602 // inalloca. This way we can know how many bytes we should've allocated
7603 // and how many bytes a callee cleanup function will pop. If we port
7604 // inalloca to more targets, we'll have to add custom inalloca handling
7605 // in the various CC lowering callbacks.
7606 Flags.setByVal();
7607 }
7608 if (Args[i].isByVal || Args[i].isInAlloca) {
7609 PointerType *Ty = cast<PointerType>(Args[i].Ty);
7610 Type *ElementTy = Ty->getElementType();
7611 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7612 // For ByVal, alignment should come from FE. BE will guess if this
7613 // info is not there but there are cases it cannot get right.
7614 unsigned FrameAlign;
7615 if (Args[i].Alignment)
7616 FrameAlign = Args[i].Alignment;
7617 else
7618 FrameAlign = getByValTypeAlignment(ElementTy, DL);
7619 Flags.setByValAlign(FrameAlign);
7620 }
7621 if (Args[i].isNest)
7622 Flags.setNest();
7623 if (NeedsRegBlock)
7624 Flags.setInConsecutiveRegs();
7625 Flags.setOrigAlign(OriginalAlignment);
7626
7627 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7628 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7629 SmallVector<SDValue, 4> Parts(NumParts);
7630 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7631
7632 if (Args[i].isSExt)
7633 ExtendKind = ISD::SIGN_EXTEND;
7634 else if (Args[i].isZExt)
7635 ExtendKind = ISD::ZERO_EXTEND;
7636
7637 // Conservatively only handle 'returned' on non-vectors for now
7638 if (Args[i].isReturned && !Op.getValueType().isVector()) {
7639 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7640 "unexpected use of 'returned'");
7641 // Before passing 'returned' to the target lowering code, ensure that
7642 // either the register MVT and the actual EVT are the same size or that
7643 // the return value and argument are extended in the same way; in these
7644 // cases it's safe to pass the argument register value unchanged as the
7645 // return register value (although it's at the target's option whether
7646 // to do so)
7647 // TODO: allow code generation to take advantage of partially preserved
7648 // registers rather than clobbering the entire register when the
7649 // parameter extension method is not compatible with the return
7650 // extension method
7651 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7652 (ExtendKind != ISD::ANY_EXTEND &&
7653 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7654 Flags.setReturned();
7655 }
7656
7657 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7658 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7659
7660 for (unsigned j = 0; j != NumParts; ++j) {
7661 // if it isn't first piece, alignment must be 1
7662 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7663 i < CLI.NumFixedArgs,
7664 i, j*Parts[j].getValueType().getStoreSize());
7665 if (NumParts > 1 && j == 0)
7666 MyFlags.Flags.setSplit();
7667 else if (j != 0) {
7668 MyFlags.Flags.setOrigAlign(1);
7669 if (j == NumParts - 1)
7670 MyFlags.Flags.setSplitEnd();
7671 }
7672
7673 CLI.Outs.push_back(MyFlags);
7674 CLI.OutVals.push_back(Parts[j]);
7675 }
7676
7677 if (NeedsRegBlock && Value == NumValues - 1)
7678 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7679 }
7680 }
7681
7682 SmallVector<SDValue, 4> InVals;
7683 CLI.Chain = LowerCall(CLI, InVals);
7684
7685 // Update CLI.InVals to use outside of this function.
7686 CLI.InVals = InVals;
7687
7688 // Verify that the target's LowerCall behaved as expected.
7689 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7690 "LowerCall didn't return a valid chain!");
7691 assert((!CLI.IsTailCall || InVals.empty()) &&
7692 "LowerCall emitted a return value for a tail call!");
7693 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7694 "LowerCall didn't emit the correct number of values!");
7695
7696 // For a tail call, the return value is merely live-out and there aren't
7697 // any nodes in the DAG representing it. Return a special value to
7698 // indicate that a tail call has been emitted and no more Instructions
7699 // should be processed in the current block.
7700 if (CLI.IsTailCall) {
7701 CLI.DAG.setRoot(CLI.Chain);
7702 return std::make_pair(SDValue(), SDValue());
7703 }
7704
7705 #ifndef NDEBUG
7706 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7707 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7708 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7709 "LowerCall emitted a value with the wrong type!");
7710 }
7711 #endif
7712
7713 SmallVector<SDValue, 4> ReturnValues;
7714 if (!CanLowerReturn) {
7715 // The instruction result is the result of loading from the
7716 // hidden sret parameter.
7717 SmallVector<EVT, 1> PVTs;
7718 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7719
7720 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7721 assert(PVTs.size() == 1 && "Pointers should fit in one register");
7722 EVT PtrVT = PVTs[0];
7723
7724 unsigned NumValues = RetTys.size();
7725 ReturnValues.resize(NumValues);
7726 SmallVector<SDValue, 4> Chains(NumValues);
7727
7728 // An aggregate return value cannot wrap around the address space, so
7729 // offsets to its parts don't wrap either.
7730 SDNodeFlags Flags;
7731 Flags.setNoUnsignedWrap(true);
7732
7733 for (unsigned i = 0; i < NumValues; ++i) {
7734 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7735 CLI.DAG.getConstant(Offsets[i], CLI.DL,
7736 PtrVT), &Flags);
7737 SDValue L = CLI.DAG.getLoad(
7738 RetTys[i], CLI.DL, CLI.Chain, Add,
7739 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7740 DemoteStackIdx, Offsets[i]),
7741 false, false, false, 1);
7742 ReturnValues[i] = L;
7743 Chains[i] = L.getValue(1);
7744 }
7745
7746 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7747 } else {
7748 // Collect the legal value parts into potentially illegal values
7749 // that correspond to the original function's return values.
7750 Optional<ISD::NodeType> AssertOp;
7751 if (CLI.RetSExt)
7752 AssertOp = ISD::AssertSext;
7753 else if (CLI.RetZExt)
7754 AssertOp = ISD::AssertZext;
7755 unsigned CurReg = 0;
7756 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7757 EVT VT = RetTys[I];
7758 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7759 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7760
7761 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7762 NumRegs, RegisterVT, VT, nullptr,
7763 AssertOp));
7764 CurReg += NumRegs;
7765 }
7766
7767 // For a function returning void, there is no return value. We can't create
7768 // such a node, so we just return a null return value in that case. In
7769 // that case, nothing will actually look at the value.
7770 if (ReturnValues.empty())
7771 return std::make_pair(SDValue(), CLI.Chain);
7772 }
7773
7774 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7775 CLI.DAG.getVTList(RetTys), ReturnValues);
7776 return std::make_pair(Res, CLI.Chain);
7777 }
7778
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const7779 void TargetLowering::LowerOperationWrapper(SDNode *N,
7780 SmallVectorImpl<SDValue> &Results,
7781 SelectionDAG &DAG) const {
7782 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7783 Results.push_back(Res);
7784 }
7785
LowerOperation(SDValue Op,SelectionDAG & DAG) const7786 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7787 llvm_unreachable("LowerOperation not implemented for this target!");
7788 }
7789
7790 void
CopyValueToVirtualRegister(const Value * V,unsigned Reg)7791 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7792 SDValue Op = getNonRegisterValue(V);
7793 assert((Op.getOpcode() != ISD::CopyFromReg ||
7794 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7795 "Copy from a reg to the same reg!");
7796 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7797
7798 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7799 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7800 V->getType());
7801 SDValue Chain = DAG.getEntryNode();
7802
7803 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7804 FuncInfo.PreferredExtendType.end())
7805 ? ISD::ANY_EXTEND
7806 : FuncInfo.PreferredExtendType[V];
7807 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7808 PendingExports.push_back(Chain);
7809 }
7810
7811 #include "llvm/CodeGen/SelectionDAGISel.h"
7812
7813 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7814 /// entry block, return true. This includes arguments used by switches, since
7815 /// the switch may expand into multiple basic blocks.
isOnlyUsedInEntryBlock(const Argument * A,bool FastISel)7816 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7817 // With FastISel active, we may be splitting blocks, so force creation
7818 // of virtual registers for all non-dead arguments.
7819 if (FastISel)
7820 return A->use_empty();
7821
7822 const BasicBlock &Entry = A->getParent()->front();
7823 for (const User *U : A->users())
7824 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7825 return false; // Use not in entry block.
7826
7827 return true;
7828 }
7829
LowerArguments(const Function & F)7830 void SelectionDAGISel::LowerArguments(const Function &F) {
7831 SelectionDAG &DAG = SDB->DAG;
7832 SDLoc dl = SDB->getCurSDLoc();
7833 const DataLayout &DL = DAG.getDataLayout();
7834 SmallVector<ISD::InputArg, 16> Ins;
7835
7836 if (!FuncInfo->CanLowerReturn) {
7837 // Put in an sret pointer parameter before all the other parameters.
7838 SmallVector<EVT, 1> ValueVTs;
7839 ComputeValueVTs(*TLI, DAG.getDataLayout(),
7840 PointerType::getUnqual(F.getReturnType()), ValueVTs);
7841
7842 // NOTE: Assuming that a pointer will never break down to more than one VT
7843 // or one register.
7844 ISD::ArgFlagsTy Flags;
7845 Flags.setSRet();
7846 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7847 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7848 ISD::InputArg::NoArgIndex, 0);
7849 Ins.push_back(RetArg);
7850 }
7851
7852 // Set up the incoming argument description vector.
7853 unsigned Idx = 1;
7854 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7855 I != E; ++I, ++Idx) {
7856 SmallVector<EVT, 4> ValueVTs;
7857 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7858 bool isArgValueUsed = !I->use_empty();
7859 unsigned PartBase = 0;
7860 Type *FinalType = I->getType();
7861 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7862 FinalType = cast<PointerType>(FinalType)->getElementType();
7863 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7864 FinalType, F.getCallingConv(), F.isVarArg());
7865 for (unsigned Value = 0, NumValues = ValueVTs.size();
7866 Value != NumValues; ++Value) {
7867 EVT VT = ValueVTs[Value];
7868 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7869 ISD::ArgFlagsTy Flags;
7870 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7871
7872 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7873 Flags.setZExt();
7874 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7875 Flags.setSExt();
7876 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7877 Flags.setInReg();
7878 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7879 Flags.setSRet();
7880 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7881 Flags.setSwiftSelf();
7882 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7883 Flags.setSwiftError();
7884 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7885 Flags.setByVal();
7886 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7887 Flags.setInAlloca();
7888 // Set the byval flag for CCAssignFn callbacks that don't know about
7889 // inalloca. This way we can know how many bytes we should've allocated
7890 // and how many bytes a callee cleanup function will pop. If we port
7891 // inalloca to more targets, we'll have to add custom inalloca handling
7892 // in the various CC lowering callbacks.
7893 Flags.setByVal();
7894 }
7895 if (F.getCallingConv() == CallingConv::X86_INTR) {
7896 // IA Interrupt passes frame (1st parameter) by value in the stack.
7897 if (Idx == 1)
7898 Flags.setByVal();
7899 }
7900 if (Flags.isByVal() || Flags.isInAlloca()) {
7901 PointerType *Ty = cast<PointerType>(I->getType());
7902 Type *ElementTy = Ty->getElementType();
7903 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7904 // For ByVal, alignment should be passed from FE. BE will guess if
7905 // this info is not there but there are cases it cannot get right.
7906 unsigned FrameAlign;
7907 if (F.getParamAlignment(Idx))
7908 FrameAlign = F.getParamAlignment(Idx);
7909 else
7910 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7911 Flags.setByValAlign(FrameAlign);
7912 }
7913 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7914 Flags.setNest();
7915 if (NeedsRegBlock)
7916 Flags.setInConsecutiveRegs();
7917 Flags.setOrigAlign(OriginalAlignment);
7918
7919 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7920 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7921 for (unsigned i = 0; i != NumRegs; ++i) {
7922 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7923 Idx-1, PartBase+i*RegisterVT.getStoreSize());
7924 if (NumRegs > 1 && i == 0)
7925 MyFlags.Flags.setSplit();
7926 // if it isn't first piece, alignment must be 1
7927 else if (i > 0) {
7928 MyFlags.Flags.setOrigAlign(1);
7929 if (i == NumRegs - 1)
7930 MyFlags.Flags.setSplitEnd();
7931 }
7932 Ins.push_back(MyFlags);
7933 }
7934 if (NeedsRegBlock && Value == NumValues - 1)
7935 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7936 PartBase += VT.getStoreSize();
7937 }
7938 }
7939
7940 // Call the target to set up the argument values.
7941 SmallVector<SDValue, 8> InVals;
7942 SDValue NewRoot = TLI->LowerFormalArguments(
7943 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7944
7945 // Verify that the target's LowerFormalArguments behaved as expected.
7946 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7947 "LowerFormalArguments didn't return a valid chain!");
7948 assert(InVals.size() == Ins.size() &&
7949 "LowerFormalArguments didn't emit the correct number of values!");
7950 DEBUG({
7951 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7952 assert(InVals[i].getNode() &&
7953 "LowerFormalArguments emitted a null value!");
7954 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7955 "LowerFormalArguments emitted a value with the wrong type!");
7956 }
7957 });
7958
7959 // Update the DAG with the new chain value resulting from argument lowering.
7960 DAG.setRoot(NewRoot);
7961
7962 // Set up the argument values.
7963 unsigned i = 0;
7964 Idx = 1;
7965 if (!FuncInfo->CanLowerReturn) {
7966 // Create a virtual register for the sret pointer, and put in a copy
7967 // from the sret argument into it.
7968 SmallVector<EVT, 1> ValueVTs;
7969 ComputeValueVTs(*TLI, DAG.getDataLayout(),
7970 PointerType::getUnqual(F.getReturnType()), ValueVTs);
7971 MVT VT = ValueVTs[0].getSimpleVT();
7972 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7973 Optional<ISD::NodeType> AssertOp = None;
7974 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7975 RegVT, VT, nullptr, AssertOp);
7976
7977 MachineFunction& MF = SDB->DAG.getMachineFunction();
7978 MachineRegisterInfo& RegInfo = MF.getRegInfo();
7979 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7980 FuncInfo->DemoteRegister = SRetReg;
7981 NewRoot =
7982 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7983 DAG.setRoot(NewRoot);
7984
7985 // i indexes lowered arguments. Bump it past the hidden sret argument.
7986 // Idx indexes LLVM arguments. Don't touch it.
7987 ++i;
7988 }
7989
7990 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7991 ++I, ++Idx) {
7992 SmallVector<SDValue, 4> ArgValues;
7993 SmallVector<EVT, 4> ValueVTs;
7994 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7995 unsigned NumValues = ValueVTs.size();
7996
7997 // If this argument is unused then remember its value. It is used to generate
7998 // debugging information.
7999 if (I->use_empty() && NumValues) {
8000 SDB->setUnusedArgValue(&*I, InVals[i]);
8001
8002 // Also remember any frame index for use in FastISel.
8003 if (FrameIndexSDNode *FI =
8004 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8005 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8006 }
8007
8008 for (unsigned Val = 0; Val != NumValues; ++Val) {
8009 EVT VT = ValueVTs[Val];
8010 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8011 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8012
8013 if (!I->use_empty()) {
8014 Optional<ISD::NodeType> AssertOp;
8015 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8016 AssertOp = ISD::AssertSext;
8017 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8018 AssertOp = ISD::AssertZext;
8019
8020 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8021 NumParts, PartVT, VT,
8022 nullptr, AssertOp));
8023 }
8024
8025 i += NumParts;
8026 }
8027
8028 // We don't need to do anything else for unused arguments.
8029 if (ArgValues.empty())
8030 continue;
8031
8032 // Note down frame index.
8033 if (FrameIndexSDNode *FI =
8034 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8035 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8036
8037 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8038 SDB->getCurSDLoc());
8039
8040 SDB->setValue(&*I, Res);
8041 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8042 if (LoadSDNode *LNode =
8043 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8044 if (FrameIndexSDNode *FI =
8045 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8046 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8047 }
8048
8049 // Update SwiftErrorMap.
8050 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8051 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8052 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8053 if (TargetRegisterInfo::isVirtualRegister(Reg))
8054 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8055 }
8056
8057 // If this argument is live outside of the entry block, insert a copy from
8058 // wherever we got it to the vreg that other BB's will reference it as.
8059 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8060 // If we can, though, try to skip creating an unnecessary vreg.
8061 // FIXME: This isn't very clean... it would be nice to make this more
8062 // general. It's also subtly incompatible with the hacks FastISel
8063 // uses with vregs.
8064 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8065 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8066 FuncInfo->ValueMap[&*I] = Reg;
8067 continue;
8068 }
8069 }
8070 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8071 FuncInfo->InitializeRegForValue(&*I);
8072 SDB->CopyToExportRegsIfNeeded(&*I);
8073 }
8074 }
8075
8076 assert(i == InVals.size() && "Argument register count mismatch!");
8077
8078 // Finally, if the target has anything special to do, allow it to do so.
8079 EmitFunctionEntryCode();
8080 }
8081
8082 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
8083 /// ensure constants are generated when needed. Remember the virtual registers
8084 /// that need to be added to the Machine PHI nodes as input. We cannot just
8085 /// directly add them, because expansion might result in multiple MBB's for one
8086 /// BB. As such, the start of the BB might correspond to a different MBB than
8087 /// the end.
8088 ///
8089 void
HandlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)8090 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8091 const TerminatorInst *TI = LLVMBB->getTerminator();
8092
8093 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8094
8095 // Check PHI nodes in successors that expect a value to be available from this
8096 // block.
8097 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8098 const BasicBlock *SuccBB = TI->getSuccessor(succ);
8099 if (!isa<PHINode>(SuccBB->begin())) continue;
8100 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8101
8102 // If this terminator has multiple identical successors (common for
8103 // switches), only handle each succ once.
8104 if (!SuccsHandled.insert(SuccMBB).second)
8105 continue;
8106
8107 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8108
8109 // At this point we know that there is a 1-1 correspondence between LLVM PHI
8110 // nodes and Machine PHI nodes, but the incoming operands have not been
8111 // emitted yet.
8112 for (BasicBlock::const_iterator I = SuccBB->begin();
8113 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8114 // Ignore dead phi's.
8115 if (PN->use_empty()) continue;
8116
8117 // Skip empty types
8118 if (PN->getType()->isEmptyTy())
8119 continue;
8120
8121 unsigned Reg;
8122 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8123
8124 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8125 unsigned &RegOut = ConstantsOut[C];
8126 if (RegOut == 0) {
8127 RegOut = FuncInfo.CreateRegs(C->getType());
8128 CopyValueToVirtualRegister(C, RegOut);
8129 }
8130 Reg = RegOut;
8131 } else {
8132 DenseMap<const Value *, unsigned>::iterator I =
8133 FuncInfo.ValueMap.find(PHIOp);
8134 if (I != FuncInfo.ValueMap.end())
8135 Reg = I->second;
8136 else {
8137 assert(isa<AllocaInst>(PHIOp) &&
8138 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8139 "Didn't codegen value into a register!??");
8140 Reg = FuncInfo.CreateRegs(PHIOp->getType());
8141 CopyValueToVirtualRegister(PHIOp, Reg);
8142 }
8143 }
8144
8145 // Remember that this register needs to added to the machine PHI node as
8146 // the input for this MBB.
8147 SmallVector<EVT, 4> ValueVTs;
8148 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8149 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8150 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8151 EVT VT = ValueVTs[vti];
8152 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8153 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8154 FuncInfo.PHINodesToUpdate.push_back(
8155 std::make_pair(&*MBBI++, Reg + i));
8156 Reg += NumRegisters;
8157 }
8158 }
8159 }
8160
8161 ConstantsOut.clear();
8162 }
8163
8164 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8165 /// is 0.
8166 MachineBasicBlock *
8167 SelectionDAGBuilder::StackProtectorDescriptor::
AddSuccessorMBB(const BasicBlock * BB,MachineBasicBlock * ParentMBB,bool IsLikely,MachineBasicBlock * SuccMBB)8168 AddSuccessorMBB(const BasicBlock *BB,
8169 MachineBasicBlock *ParentMBB,
8170 bool IsLikely,
8171 MachineBasicBlock *SuccMBB) {
8172 // If SuccBB has not been created yet, create it.
8173 if (!SuccMBB) {
8174 MachineFunction *MF = ParentMBB->getParent();
8175 MachineFunction::iterator BBI(ParentMBB);
8176 SuccMBB = MF->CreateMachineBasicBlock(BB);
8177 MF->insert(++BBI, SuccMBB);
8178 }
8179 // Add it as a successor of ParentMBB.
8180 ParentMBB->addSuccessor(
8181 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8182 return SuccMBB;
8183 }
8184
NextBlock(MachineBasicBlock * MBB)8185 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8186 MachineFunction::iterator I(MBB);
8187 if (++I == FuncInfo.MF->end())
8188 return nullptr;
8189 return &*I;
8190 }
8191
8192 /// During lowering new call nodes can be created (such as memset, etc.).
8193 /// Those will become new roots of the current DAG, but complications arise
8194 /// when they are tail calls. In such cases, the call lowering will update
8195 /// the root, but the builder still needs to know that a tail call has been
8196 /// lowered in order to avoid generating an additional return.
updateDAGForMaybeTailCall(SDValue MaybeTC)8197 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8198 // If the node is null, we do have a tail call.
8199 if (MaybeTC.getNode() != nullptr)
8200 DAG.setRoot(MaybeTC);
8201 else
8202 HasTailCall = true;
8203 }
8204
isDense(const CaseClusterVector & Clusters,unsigned * TotalCases,unsigned First,unsigned Last,unsigned Density)8205 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8206 unsigned *TotalCases, unsigned First,
8207 unsigned Last,
8208 unsigned Density) {
8209 assert(Last >= First);
8210 assert(TotalCases[Last] >= TotalCases[First]);
8211
8212 APInt LowCase = Clusters[First].Low->getValue();
8213 APInt HighCase = Clusters[Last].High->getValue();
8214 assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8215
8216 // FIXME: A range of consecutive cases has 100% density, but only requires one
8217 // comparison to lower. We should discriminate against such consecutive ranges
8218 // in jump tables.
8219
8220 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8221 uint64_t Range = Diff + 1;
8222
8223 uint64_t NumCases =
8224 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8225
8226 assert(NumCases < UINT64_MAX / 100);
8227 assert(Range >= NumCases);
8228
8229 return NumCases * 100 >= Range * Density;
8230 }
8231
areJTsAllowed(const TargetLowering & TLI,const SwitchInst * SI)8232 static inline bool areJTsAllowed(const TargetLowering &TLI,
8233 const SwitchInst *SI) {
8234 const Function *Fn = SI->getParent()->getParent();
8235 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8236 return false;
8237
8238 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8239 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8240 }
8241
buildJumpTable(CaseClusterVector & Clusters,unsigned First,unsigned Last,const SwitchInst * SI,MachineBasicBlock * DefaultMBB,CaseCluster & JTCluster)8242 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8243 unsigned First, unsigned Last,
8244 const SwitchInst *SI,
8245 MachineBasicBlock *DefaultMBB,
8246 CaseCluster &JTCluster) {
8247 assert(First <= Last);
8248
8249 auto Prob = BranchProbability::getZero();
8250 unsigned NumCmps = 0;
8251 std::vector<MachineBasicBlock*> Table;
8252 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8253
8254 // Initialize probabilities in JTProbs.
8255 for (unsigned I = First; I <= Last; ++I)
8256 JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8257
8258 for (unsigned I = First; I <= Last; ++I) {
8259 assert(Clusters[I].Kind == CC_Range);
8260 Prob += Clusters[I].Prob;
8261 APInt Low = Clusters[I].Low->getValue();
8262 APInt High = Clusters[I].High->getValue();
8263 NumCmps += (Low == High) ? 1 : 2;
8264 if (I != First) {
8265 // Fill the gap between this and the previous cluster.
8266 APInt PreviousHigh = Clusters[I - 1].High->getValue();
8267 assert(PreviousHigh.slt(Low));
8268 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8269 for (uint64_t J = 0; J < Gap; J++)
8270 Table.push_back(DefaultMBB);
8271 }
8272 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8273 for (uint64_t J = 0; J < ClusterSize; ++J)
8274 Table.push_back(Clusters[I].MBB);
8275 JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8276 }
8277
8278 unsigned NumDests = JTProbs.size();
8279 if (isSuitableForBitTests(NumDests, NumCmps,
8280 Clusters[First].Low->getValue(),
8281 Clusters[Last].High->getValue())) {
8282 // Clusters[First..Last] should be lowered as bit tests instead.
8283 return false;
8284 }
8285
8286 // Create the MBB that will load from and jump through the table.
8287 // Note: We create it here, but it's not inserted into the function yet.
8288 MachineFunction *CurMF = FuncInfo.MF;
8289 MachineBasicBlock *JumpTableMBB =
8290 CurMF->CreateMachineBasicBlock(SI->getParent());
8291
8292 // Add successors. Note: use table order for determinism.
8293 SmallPtrSet<MachineBasicBlock *, 8> Done;
8294 for (MachineBasicBlock *Succ : Table) {
8295 if (Done.count(Succ))
8296 continue;
8297 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8298 Done.insert(Succ);
8299 }
8300 JumpTableMBB->normalizeSuccProbs();
8301
8302 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8303 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8304 ->createJumpTableIndex(Table);
8305
8306 // Set up the jump table info.
8307 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8308 JumpTableHeader JTH(Clusters[First].Low->getValue(),
8309 Clusters[Last].High->getValue(), SI->getCondition(),
8310 nullptr, false);
8311 JTCases.emplace_back(std::move(JTH), std::move(JT));
8312
8313 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8314 JTCases.size() - 1, Prob);
8315 return true;
8316 }
8317
findJumpTables(CaseClusterVector & Clusters,const SwitchInst * SI,MachineBasicBlock * DefaultMBB)8318 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8319 const SwitchInst *SI,
8320 MachineBasicBlock *DefaultMBB) {
8321 #ifndef NDEBUG
8322 // Clusters must be non-empty, sorted, and only contain Range clusters.
8323 assert(!Clusters.empty());
8324 for (CaseCluster &C : Clusters)
8325 assert(C.Kind == CC_Range);
8326 for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8327 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8328 #endif
8329
8330 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8331 if (!areJTsAllowed(TLI, SI))
8332 return;
8333
8334 const int64_t N = Clusters.size();
8335 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8336
8337 // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8338 SmallVector<unsigned, 8> TotalCases(N);
8339
8340 for (unsigned i = 0; i < N; ++i) {
8341 APInt Hi = Clusters[i].High->getValue();
8342 APInt Lo = Clusters[i].Low->getValue();
8343 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8344 if (i != 0)
8345 TotalCases[i] += TotalCases[i - 1];
8346 }
8347
8348 unsigned MinDensity = JumpTableDensity;
8349 if (DefaultMBB->getParent()->getFunction()->optForSize())
8350 MinDensity = OptsizeJumpTableDensity;
8351 if (N >= MinJumpTableSize
8352 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8353 // Cheap case: the whole range might be suitable for jump table.
8354 CaseCluster JTCluster;
8355 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8356 Clusters[0] = JTCluster;
8357 Clusters.resize(1);
8358 return;
8359 }
8360 }
8361
8362 // The algorithm below is not suitable for -O0.
8363 if (TM.getOptLevel() == CodeGenOpt::None)
8364 return;
8365
8366 // Split Clusters into minimum number of dense partitions. The algorithm uses
8367 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8368 // for the Case Statement'" (1994), but builds the MinPartitions array in
8369 // reverse order to make it easier to reconstruct the partitions in ascending
8370 // order. In the choice between two optimal partitionings, it picks the one
8371 // which yields more jump tables.
8372
8373 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8374 SmallVector<unsigned, 8> MinPartitions(N);
8375 // LastElement[i] is the last element of the partition starting at i.
8376 SmallVector<unsigned, 8> LastElement(N);
8377 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8378 SmallVector<unsigned, 8> NumTables(N);
8379
8380 // Base case: There is only one way to partition Clusters[N-1].
8381 MinPartitions[N - 1] = 1;
8382 LastElement[N - 1] = N - 1;
8383 assert(MinJumpTableSize > 1);
8384 NumTables[N - 1] = 0;
8385
8386 // Note: loop indexes are signed to avoid underflow.
8387 for (int64_t i = N - 2; i >= 0; i--) {
8388 // Find optimal partitioning of Clusters[i..N-1].
8389 // Baseline: Put Clusters[i] into a partition on its own.
8390 MinPartitions[i] = MinPartitions[i + 1] + 1;
8391 LastElement[i] = i;
8392 NumTables[i] = NumTables[i + 1];
8393
8394 // Search for a solution that results in fewer partitions.
8395 for (int64_t j = N - 1; j > i; j--) {
8396 // Try building a partition from Clusters[i..j].
8397 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8398 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8399 bool IsTable = j - i + 1 >= MinJumpTableSize;
8400 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8401
8402 // If this j leads to fewer partitions, or same number of partitions
8403 // with more lookup tables, it is a better partitioning.
8404 if (NumPartitions < MinPartitions[i] ||
8405 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8406 MinPartitions[i] = NumPartitions;
8407 LastElement[i] = j;
8408 NumTables[i] = Tables;
8409 }
8410 }
8411 }
8412 }
8413
8414 // Iterate over the partitions, replacing some with jump tables in-place.
8415 unsigned DstIndex = 0;
8416 for (unsigned First = 0, Last; First < N; First = Last + 1) {
8417 Last = LastElement[First];
8418 assert(Last >= First);
8419 assert(DstIndex <= First);
8420 unsigned NumClusters = Last - First + 1;
8421
8422 CaseCluster JTCluster;
8423 if (NumClusters >= MinJumpTableSize &&
8424 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8425 Clusters[DstIndex++] = JTCluster;
8426 } else {
8427 for (unsigned I = First; I <= Last; ++I)
8428 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8429 }
8430 }
8431 Clusters.resize(DstIndex);
8432 }
8433
rangeFitsInWord(const APInt & Low,const APInt & High)8434 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8435 // FIXME: Using the pointer type doesn't seem ideal.
8436 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8437 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8438 return Range <= BW;
8439 }
8440
isSuitableForBitTests(unsigned NumDests,unsigned NumCmps,const APInt & Low,const APInt & High)8441 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8442 unsigned NumCmps,
8443 const APInt &Low,
8444 const APInt &High) {
8445 // FIXME: I don't think NumCmps is the correct metric: a single case and a
8446 // range of cases both require only one branch to lower. Just looking at the
8447 // number of clusters and destinations should be enough to decide whether to
8448 // build bit tests.
8449
8450 // To lower a range with bit tests, the range must fit the bitwidth of a
8451 // machine word.
8452 if (!rangeFitsInWord(Low, High))
8453 return false;
8454
8455 // Decide whether it's profitable to lower this range with bit tests. Each
8456 // destination requires a bit test and branch, and there is an overall range
8457 // check branch. For a small number of clusters, separate comparisons might be
8458 // cheaper, and for many destinations, splitting the range might be better.
8459 return (NumDests == 1 && NumCmps >= 3) ||
8460 (NumDests == 2 && NumCmps >= 5) ||
8461 (NumDests == 3 && NumCmps >= 6);
8462 }
8463
buildBitTests(CaseClusterVector & Clusters,unsigned First,unsigned Last,const SwitchInst * SI,CaseCluster & BTCluster)8464 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8465 unsigned First, unsigned Last,
8466 const SwitchInst *SI,
8467 CaseCluster &BTCluster) {
8468 assert(First <= Last);
8469 if (First == Last)
8470 return false;
8471
8472 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8473 unsigned NumCmps = 0;
8474 for (int64_t I = First; I <= Last; ++I) {
8475 assert(Clusters[I].Kind == CC_Range);
8476 Dests.set(Clusters[I].MBB->getNumber());
8477 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8478 }
8479 unsigned NumDests = Dests.count();
8480
8481 APInt Low = Clusters[First].Low->getValue();
8482 APInt High = Clusters[Last].High->getValue();
8483 assert(Low.slt(High));
8484
8485 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8486 return false;
8487
8488 APInt LowBound;
8489 APInt CmpRange;
8490
8491 const int BitWidth = DAG.getTargetLoweringInfo()
8492 .getPointerTy(DAG.getDataLayout())
8493 .getSizeInBits();
8494 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8495
8496 // Check if the clusters cover a contiguous range such that no value in the
8497 // range will jump to the default statement.
8498 bool ContiguousRange = true;
8499 for (int64_t I = First + 1; I <= Last; ++I) {
8500 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8501 ContiguousRange = false;
8502 break;
8503 }
8504 }
8505
8506 if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8507 // Optimize the case where all the case values fit in a word without having
8508 // to subtract minValue. In this case, we can optimize away the subtraction.
8509 LowBound = APInt::getNullValue(Low.getBitWidth());
8510 CmpRange = High;
8511 ContiguousRange = false;
8512 } else {
8513 LowBound = Low;
8514 CmpRange = High - Low;
8515 }
8516
8517 CaseBitsVector CBV;
8518 auto TotalProb = BranchProbability::getZero();
8519 for (unsigned i = First; i <= Last; ++i) {
8520 // Find the CaseBits for this destination.
8521 unsigned j;
8522 for (j = 0; j < CBV.size(); ++j)
8523 if (CBV[j].BB == Clusters[i].MBB)
8524 break;
8525 if (j == CBV.size())
8526 CBV.push_back(
8527 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8528 CaseBits *CB = &CBV[j];
8529
8530 // Update Mask, Bits and ExtraProb.
8531 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8532 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8533 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8534 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8535 CB->Bits += Hi - Lo + 1;
8536 CB->ExtraProb += Clusters[i].Prob;
8537 TotalProb += Clusters[i].Prob;
8538 }
8539
8540 BitTestInfo BTI;
8541 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8542 // Sort by probability first, number of bits second.
8543 if (a.ExtraProb != b.ExtraProb)
8544 return a.ExtraProb > b.ExtraProb;
8545 return a.Bits > b.Bits;
8546 });
8547
8548 for (auto &CB : CBV) {
8549 MachineBasicBlock *BitTestBB =
8550 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8551 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8552 }
8553 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8554 SI->getCondition(), -1U, MVT::Other, false,
8555 ContiguousRange, nullptr, nullptr, std::move(BTI),
8556 TotalProb);
8557
8558 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8559 BitTestCases.size() - 1, TotalProb);
8560 return true;
8561 }
8562
findBitTestClusters(CaseClusterVector & Clusters,const SwitchInst * SI)8563 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8564 const SwitchInst *SI) {
8565 // Partition Clusters into as few subsets as possible, where each subset has a
8566 // range that fits in a machine word and has <= 3 unique destinations.
8567
8568 #ifndef NDEBUG
8569 // Clusters must be sorted and contain Range or JumpTable clusters.
8570 assert(!Clusters.empty());
8571 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8572 for (const CaseCluster &C : Clusters)
8573 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8574 for (unsigned i = 1; i < Clusters.size(); ++i)
8575 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8576 #endif
8577
8578 // The algorithm below is not suitable for -O0.
8579 if (TM.getOptLevel() == CodeGenOpt::None)
8580 return;
8581
8582 // If target does not have legal shift left, do not emit bit tests at all.
8583 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8584 EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8585 if (!TLI.isOperationLegal(ISD::SHL, PTy))
8586 return;
8587
8588 int BitWidth = PTy.getSizeInBits();
8589 const int64_t N = Clusters.size();
8590
8591 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8592 SmallVector<unsigned, 8> MinPartitions(N);
8593 // LastElement[i] is the last element of the partition starting at i.
8594 SmallVector<unsigned, 8> LastElement(N);
8595
8596 // FIXME: This might not be the best algorithm for finding bit test clusters.
8597
8598 // Base case: There is only one way to partition Clusters[N-1].
8599 MinPartitions[N - 1] = 1;
8600 LastElement[N - 1] = N - 1;
8601
8602 // Note: loop indexes are signed to avoid underflow.
8603 for (int64_t i = N - 2; i >= 0; --i) {
8604 // Find optimal partitioning of Clusters[i..N-1].
8605 // Baseline: Put Clusters[i] into a partition on its own.
8606 MinPartitions[i] = MinPartitions[i + 1] + 1;
8607 LastElement[i] = i;
8608
8609 // Search for a solution that results in fewer partitions.
8610 // Note: the search is limited by BitWidth, reducing time complexity.
8611 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8612 // Try building a partition from Clusters[i..j].
8613
8614 // Check the range.
8615 if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8616 Clusters[j].High->getValue()))
8617 continue;
8618
8619 // Check nbr of destinations and cluster types.
8620 // FIXME: This works, but doesn't seem very efficient.
8621 bool RangesOnly = true;
8622 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8623 for (int64_t k = i; k <= j; k++) {
8624 if (Clusters[k].Kind != CC_Range) {
8625 RangesOnly = false;
8626 break;
8627 }
8628 Dests.set(Clusters[k].MBB->getNumber());
8629 }
8630 if (!RangesOnly || Dests.count() > 3)
8631 break;
8632
8633 // Check if it's a better partition.
8634 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8635 if (NumPartitions < MinPartitions[i]) {
8636 // Found a better partition.
8637 MinPartitions[i] = NumPartitions;
8638 LastElement[i] = j;
8639 }
8640 }
8641 }
8642
8643 // Iterate over the partitions, replacing with bit-test clusters in-place.
8644 unsigned DstIndex = 0;
8645 for (unsigned First = 0, Last; First < N; First = Last + 1) {
8646 Last = LastElement[First];
8647 assert(First <= Last);
8648 assert(DstIndex <= First);
8649
8650 CaseCluster BitTestCluster;
8651 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8652 Clusters[DstIndex++] = BitTestCluster;
8653 } else {
8654 size_t NumClusters = Last - First + 1;
8655 std::memmove(&Clusters[DstIndex], &Clusters[First],
8656 sizeof(Clusters[0]) * NumClusters);
8657 DstIndex += NumClusters;
8658 }
8659 }
8660 Clusters.resize(DstIndex);
8661 }
8662
lowerWorkItem(SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB)8663 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8664 MachineBasicBlock *SwitchMBB,
8665 MachineBasicBlock *DefaultMBB) {
8666 MachineFunction *CurMF = FuncInfo.MF;
8667 MachineBasicBlock *NextMBB = nullptr;
8668 MachineFunction::iterator BBI(W.MBB);
8669 if (++BBI != FuncInfo.MF->end())
8670 NextMBB = &*BBI;
8671
8672 unsigned Size = W.LastCluster - W.FirstCluster + 1;
8673
8674 BranchProbabilityInfo *BPI = FuncInfo.BPI;
8675
8676 if (Size == 2 && W.MBB == SwitchMBB) {
8677 // If any two of the cases has the same destination, and if one value
8678 // is the same as the other, but has one bit unset that the other has set,
8679 // use bit manipulation to do two compares at once. For example:
8680 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8681 // TODO: This could be extended to merge any 2 cases in switches with 3
8682 // cases.
8683 // TODO: Handle cases where W.CaseBB != SwitchBB.
8684 CaseCluster &Small = *W.FirstCluster;
8685 CaseCluster &Big = *W.LastCluster;
8686
8687 if (Small.Low == Small.High && Big.Low == Big.High &&
8688 Small.MBB == Big.MBB) {
8689 const APInt &SmallValue = Small.Low->getValue();
8690 const APInt &BigValue = Big.Low->getValue();
8691
8692 // Check that there is only one bit different.
8693 APInt CommonBit = BigValue ^ SmallValue;
8694 if (CommonBit.isPowerOf2()) {
8695 SDValue CondLHS = getValue(Cond);
8696 EVT VT = CondLHS.getValueType();
8697 SDLoc DL = getCurSDLoc();
8698
8699 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8700 DAG.getConstant(CommonBit, DL, VT));
8701 SDValue Cond = DAG.getSetCC(
8702 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8703 ISD::SETEQ);
8704
8705 // Update successor info.
8706 // Both Small and Big will jump to Small.BB, so we sum up the
8707 // probabilities.
8708 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8709 if (BPI)
8710 addSuccessorWithProb(
8711 SwitchMBB, DefaultMBB,
8712 // The default destination is the first successor in IR.
8713 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8714 else
8715 addSuccessorWithProb(SwitchMBB, DefaultMBB);
8716
8717 // Insert the true branch.
8718 SDValue BrCond =
8719 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8720 DAG.getBasicBlock(Small.MBB));
8721 // Insert the false branch.
8722 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8723 DAG.getBasicBlock(DefaultMBB));
8724
8725 DAG.setRoot(BrCond);
8726 return;
8727 }
8728 }
8729 }
8730
8731 if (TM.getOptLevel() != CodeGenOpt::None) {
8732 // Order cases by probability so the most likely case will be checked first.
8733 std::sort(W.FirstCluster, W.LastCluster + 1,
8734 [](const CaseCluster &a, const CaseCluster &b) {
8735 return a.Prob > b.Prob;
8736 });
8737
8738 // Rearrange the case blocks so that the last one falls through if possible
8739 // without without changing the order of probabilities.
8740 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8741 --I;
8742 if (I->Prob > W.LastCluster->Prob)
8743 break;
8744 if (I->Kind == CC_Range && I->MBB == NextMBB) {
8745 std::swap(*I, *W.LastCluster);
8746 break;
8747 }
8748 }
8749 }
8750
8751 // Compute total probability.
8752 BranchProbability DefaultProb = W.DefaultProb;
8753 BranchProbability UnhandledProbs = DefaultProb;
8754 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8755 UnhandledProbs += I->Prob;
8756
8757 MachineBasicBlock *CurMBB = W.MBB;
8758 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8759 MachineBasicBlock *Fallthrough;
8760 if (I == W.LastCluster) {
8761 // For the last cluster, fall through to the default destination.
8762 Fallthrough = DefaultMBB;
8763 } else {
8764 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8765 CurMF->insert(BBI, Fallthrough);
8766 // Put Cond in a virtual register to make it available from the new blocks.
8767 ExportFromCurrentBlock(Cond);
8768 }
8769 UnhandledProbs -= I->Prob;
8770
8771 switch (I->Kind) {
8772 case CC_JumpTable: {
8773 // FIXME: Optimize away range check based on pivot comparisons.
8774 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8775 JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8776
8777 // The jump block hasn't been inserted yet; insert it here.
8778 MachineBasicBlock *JumpMBB = JT->MBB;
8779 CurMF->insert(BBI, JumpMBB);
8780
8781 auto JumpProb = I->Prob;
8782 auto FallthroughProb = UnhandledProbs;
8783
8784 // If the default statement is a target of the jump table, we evenly
8785 // distribute the default probability to successors of CurMBB. Also
8786 // update the probability on the edge from JumpMBB to Fallthrough.
8787 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8788 SE = JumpMBB->succ_end();
8789 SI != SE; ++SI) {
8790 if (*SI == DefaultMBB) {
8791 JumpProb += DefaultProb / 2;
8792 FallthroughProb -= DefaultProb / 2;
8793 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8794 JumpMBB->normalizeSuccProbs();
8795 break;
8796 }
8797 }
8798
8799 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8800 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8801 CurMBB->normalizeSuccProbs();
8802
8803 // The jump table header will be inserted in our current block, do the
8804 // range check, and fall through to our fallthrough block.
8805 JTH->HeaderBB = CurMBB;
8806 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8807
8808 // If we're in the right place, emit the jump table header right now.
8809 if (CurMBB == SwitchMBB) {
8810 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8811 JTH->Emitted = true;
8812 }
8813 break;
8814 }
8815 case CC_BitTests: {
8816 // FIXME: Optimize away range check based on pivot comparisons.
8817 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8818
8819 // The bit test blocks haven't been inserted yet; insert them here.
8820 for (BitTestCase &BTC : BTB->Cases)
8821 CurMF->insert(BBI, BTC.ThisBB);
8822
8823 // Fill in fields of the BitTestBlock.
8824 BTB->Parent = CurMBB;
8825 BTB->Default = Fallthrough;
8826
8827 BTB->DefaultProb = UnhandledProbs;
8828 // If the cases in bit test don't form a contiguous range, we evenly
8829 // distribute the probability on the edge to Fallthrough to two
8830 // successors of CurMBB.
8831 if (!BTB->ContiguousRange) {
8832 BTB->Prob += DefaultProb / 2;
8833 BTB->DefaultProb -= DefaultProb / 2;
8834 }
8835
8836 // If we're in the right place, emit the bit test header right now.
8837 if (CurMBB == SwitchMBB) {
8838 visitBitTestHeader(*BTB, SwitchMBB);
8839 BTB->Emitted = true;
8840 }
8841 break;
8842 }
8843 case CC_Range: {
8844 const Value *RHS, *LHS, *MHS;
8845 ISD::CondCode CC;
8846 if (I->Low == I->High) {
8847 // Check Cond == I->Low.
8848 CC = ISD::SETEQ;
8849 LHS = Cond;
8850 RHS=I->Low;
8851 MHS = nullptr;
8852 } else {
8853 // Check I->Low <= Cond <= I->High.
8854 CC = ISD::SETLE;
8855 LHS = I->Low;
8856 MHS = Cond;
8857 RHS = I->High;
8858 }
8859
8860 // The false probability is the sum of all unhandled cases.
8861 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8862 UnhandledProbs);
8863
8864 if (CurMBB == SwitchMBB)
8865 visitSwitchCase(CB, SwitchMBB);
8866 else
8867 SwitchCases.push_back(CB);
8868
8869 break;
8870 }
8871 }
8872 CurMBB = Fallthrough;
8873 }
8874 }
8875
caseClusterRank(const CaseCluster & CC,CaseClusterIt First,CaseClusterIt Last)8876 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8877 CaseClusterIt First,
8878 CaseClusterIt Last) {
8879 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8880 if (X.Prob != CC.Prob)
8881 return X.Prob > CC.Prob;
8882
8883 // Ties are broken by comparing the case value.
8884 return X.Low->getValue().slt(CC.Low->getValue());
8885 });
8886 }
8887
splitWorkItem(SwitchWorkList & WorkList,const SwitchWorkListItem & W,Value * Cond,MachineBasicBlock * SwitchMBB)8888 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8889 const SwitchWorkListItem &W,
8890 Value *Cond,
8891 MachineBasicBlock *SwitchMBB) {
8892 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8893 "Clusters not sorted?");
8894
8895 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8896
8897 // Balance the tree based on branch probabilities to create a near-optimal (in
8898 // terms of search time given key frequency) binary search tree. See e.g. Kurt
8899 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8900 CaseClusterIt LastLeft = W.FirstCluster;
8901 CaseClusterIt FirstRight = W.LastCluster;
8902 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8903 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8904
8905 // Move LastLeft and FirstRight towards each other from opposite directions to
8906 // find a partitioning of the clusters which balances the probability on both
8907 // sides. If LeftProb and RightProb are equal, alternate which side is
8908 // taken to ensure 0-probability nodes are distributed evenly.
8909 unsigned I = 0;
8910 while (LastLeft + 1 < FirstRight) {
8911 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8912 LeftProb += (++LastLeft)->Prob;
8913 else
8914 RightProb += (--FirstRight)->Prob;
8915 I++;
8916 }
8917
8918 for (;;) {
8919 // Our binary search tree differs from a typical BST in that ours can have up
8920 // to three values in each leaf. The pivot selection above doesn't take that
8921 // into account, which means the tree might require more nodes and be less
8922 // efficient. We compensate for this here.
8923
8924 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8925 unsigned NumRight = W.LastCluster - FirstRight + 1;
8926
8927 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8928 // If one side has less than 3 clusters, and the other has more than 3,
8929 // consider taking a cluster from the other side.
8930
8931 if (NumLeft < NumRight) {
8932 // Consider moving the first cluster on the right to the left side.
8933 CaseCluster &CC = *FirstRight;
8934 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8935 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8936 if (LeftSideRank <= RightSideRank) {
8937 // Moving the cluster to the left does not demote it.
8938 ++LastLeft;
8939 ++FirstRight;
8940 continue;
8941 }
8942 } else {
8943 assert(NumRight < NumLeft);
8944 // Consider moving the last element on the left to the right side.
8945 CaseCluster &CC = *LastLeft;
8946 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8947 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8948 if (RightSideRank <= LeftSideRank) {
8949 // Moving the cluster to the right does not demot it.
8950 --LastLeft;
8951 --FirstRight;
8952 continue;
8953 }
8954 }
8955 }
8956 break;
8957 }
8958
8959 assert(LastLeft + 1 == FirstRight);
8960 assert(LastLeft >= W.FirstCluster);
8961 assert(FirstRight <= W.LastCluster);
8962
8963 // Use the first element on the right as pivot since we will make less-than
8964 // comparisons against it.
8965 CaseClusterIt PivotCluster = FirstRight;
8966 assert(PivotCluster > W.FirstCluster);
8967 assert(PivotCluster <= W.LastCluster);
8968
8969 CaseClusterIt FirstLeft = W.FirstCluster;
8970 CaseClusterIt LastRight = W.LastCluster;
8971
8972 const ConstantInt *Pivot = PivotCluster->Low;
8973
8974 // New blocks will be inserted immediately after the current one.
8975 MachineFunction::iterator BBI(W.MBB);
8976 ++BBI;
8977
8978 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8979 // we can branch to its destination directly if it's squeezed exactly in
8980 // between the known lower bound and Pivot - 1.
8981 MachineBasicBlock *LeftMBB;
8982 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8983 FirstLeft->Low == W.GE &&
8984 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8985 LeftMBB = FirstLeft->MBB;
8986 } else {
8987 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8988 FuncInfo.MF->insert(BBI, LeftMBB);
8989 WorkList.push_back(
8990 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8991 // Put Cond in a virtual register to make it available from the new blocks.
8992 ExportFromCurrentBlock(Cond);
8993 }
8994
8995 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8996 // single cluster, RHS.Low == Pivot, and we can branch to its destination
8997 // directly if RHS.High equals the current upper bound.
8998 MachineBasicBlock *RightMBB;
8999 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9000 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9001 RightMBB = FirstRight->MBB;
9002 } else {
9003 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9004 FuncInfo.MF->insert(BBI, RightMBB);
9005 WorkList.push_back(
9006 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9007 // Put Cond in a virtual register to make it available from the new blocks.
9008 ExportFromCurrentBlock(Cond);
9009 }
9010
9011 // Create the CaseBlock record that will be used to lower the branch.
9012 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9013 LeftProb, RightProb);
9014
9015 if (W.MBB == SwitchMBB)
9016 visitSwitchCase(CB, SwitchMBB);
9017 else
9018 SwitchCases.push_back(CB);
9019 }
9020
visitSwitch(const SwitchInst & SI)9021 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9022 // Extract cases from the switch.
9023 BranchProbabilityInfo *BPI = FuncInfo.BPI;
9024 CaseClusterVector Clusters;
9025 Clusters.reserve(SI.getNumCases());
9026 for (auto I : SI.cases()) {
9027 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9028 const ConstantInt *CaseVal = I.getCaseValue();
9029 BranchProbability Prob =
9030 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9031 : BranchProbability(1, SI.getNumCases() + 1);
9032 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9033 }
9034
9035 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9036
9037 // Cluster adjacent cases with the same destination. We do this at all
9038 // optimization levels because it's cheap to do and will make codegen faster
9039 // if there are many clusters.
9040 sortAndRangeify(Clusters);
9041
9042 if (TM.getOptLevel() != CodeGenOpt::None) {
9043 // Replace an unreachable default with the most popular destination.
9044 // FIXME: Exploit unreachable default more aggressively.
9045 bool UnreachableDefault =
9046 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9047 if (UnreachableDefault && !Clusters.empty()) {
9048 DenseMap<const BasicBlock *, unsigned> Popularity;
9049 unsigned MaxPop = 0;
9050 const BasicBlock *MaxBB = nullptr;
9051 for (auto I : SI.cases()) {
9052 const BasicBlock *BB = I.getCaseSuccessor();
9053 if (++Popularity[BB] > MaxPop) {
9054 MaxPop = Popularity[BB];
9055 MaxBB = BB;
9056 }
9057 }
9058 // Set new default.
9059 assert(MaxPop > 0 && MaxBB);
9060 DefaultMBB = FuncInfo.MBBMap[MaxBB];
9061
9062 // Remove cases that were pointing to the destination that is now the
9063 // default.
9064 CaseClusterVector New;
9065 New.reserve(Clusters.size());
9066 for (CaseCluster &CC : Clusters) {
9067 if (CC.MBB != DefaultMBB)
9068 New.push_back(CC);
9069 }
9070 Clusters = std::move(New);
9071 }
9072 }
9073
9074 // If there is only the default destination, jump there directly.
9075 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9076 if (Clusters.empty()) {
9077 SwitchMBB->addSuccessor(DefaultMBB);
9078 if (DefaultMBB != NextBlock(SwitchMBB)) {
9079 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9080 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9081 }
9082 return;
9083 }
9084
9085 findJumpTables(Clusters, &SI, DefaultMBB);
9086 findBitTestClusters(Clusters, &SI);
9087
9088 DEBUG({
9089 dbgs() << "Case clusters: ";
9090 for (const CaseCluster &C : Clusters) {
9091 if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9092 if (C.Kind == CC_BitTests) dbgs() << "BT:";
9093
9094 C.Low->getValue().print(dbgs(), true);
9095 if (C.Low != C.High) {
9096 dbgs() << '-';
9097 C.High->getValue().print(dbgs(), true);
9098 }
9099 dbgs() << ' ';
9100 }
9101 dbgs() << '\n';
9102 });
9103
9104 assert(!Clusters.empty());
9105 SwitchWorkList WorkList;
9106 CaseClusterIt First = Clusters.begin();
9107 CaseClusterIt Last = Clusters.end() - 1;
9108 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9109 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9110
9111 while (!WorkList.empty()) {
9112 SwitchWorkListItem W = WorkList.back();
9113 WorkList.pop_back();
9114 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9115
9116 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9117 // For optimized builds, lower large range as a balanced binary tree.
9118 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9119 continue;
9120 }
9121
9122 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9123 }
9124 }
9125