1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "nodes.h"
17
18 #include <cfloat>
19
20 #include "art_method-inl.h"
21 #include "class_linker-inl.h"
22 #include "code_generator.h"
23 #include "common_dominator.h"
24 #include "ssa_builder.h"
25 #include "base/bit_vector-inl.h"
26 #include "base/bit_utils.h"
27 #include "base/stl_util.h"
28 #include "intrinsics.h"
29 #include "mirror/class-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31
32 namespace art {
33
34 // Enable floating-point static evaluation during constant folding
35 // only if all floating-point operations and constants evaluate in the
36 // range and precision of the type used (i.e., 32-bit float, 64-bit
37 // double).
38 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
39
InitializeInexactObjectRTI(VariableSizedHandleScope * handles)40 void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
41 ScopedObjectAccess soa(Thread::Current());
42 // Create the inexact Object reference type and store it in the HGraph.
43 ClassLinker* linker = Runtime::Current()->GetClassLinker();
44 inexact_object_rti_ = ReferenceTypeInfo::Create(
45 handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
46 /* is_exact */ false);
47 }
48
AddBlock(HBasicBlock * block)49 void HGraph::AddBlock(HBasicBlock* block) {
50 block->SetBlockId(blocks_.size());
51 blocks_.push_back(block);
52 }
53
FindBackEdges(ArenaBitVector * visited)54 void HGraph::FindBackEdges(ArenaBitVector* visited) {
55 // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
56 DCHECK_EQ(visited->GetHighestBitSet(), -1);
57
58 // Nodes that we're currently visiting, indexed by block id.
59 ArenaBitVector visiting(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
60 // Number of successors visited from a given node, indexed by block id.
61 ArenaVector<size_t> successors_visited(blocks_.size(),
62 0u,
63 arena_->Adapter(kArenaAllocGraphBuilder));
64 // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
65 ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
66 constexpr size_t kDefaultWorklistSize = 8;
67 worklist.reserve(kDefaultWorklistSize);
68 visited->SetBit(entry_block_->GetBlockId());
69 visiting.SetBit(entry_block_->GetBlockId());
70 worklist.push_back(entry_block_);
71
72 while (!worklist.empty()) {
73 HBasicBlock* current = worklist.back();
74 uint32_t current_id = current->GetBlockId();
75 if (successors_visited[current_id] == current->GetSuccessors().size()) {
76 visiting.ClearBit(current_id);
77 worklist.pop_back();
78 } else {
79 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
80 uint32_t successor_id = successor->GetBlockId();
81 if (visiting.IsBitSet(successor_id)) {
82 DCHECK(ContainsElement(worklist, successor));
83 successor->AddBackEdge(current);
84 } else if (!visited->IsBitSet(successor_id)) {
85 visited->SetBit(successor_id);
86 visiting.SetBit(successor_id);
87 worklist.push_back(successor);
88 }
89 }
90 }
91 }
92
RemoveEnvironmentUses(HInstruction * instruction)93 static void RemoveEnvironmentUses(HInstruction* instruction) {
94 for (HEnvironment* environment = instruction->GetEnvironment();
95 environment != nullptr;
96 environment = environment->GetParent()) {
97 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
98 if (environment->GetInstructionAt(i) != nullptr) {
99 environment->RemoveAsUserOfInput(i);
100 }
101 }
102 }
103 }
104
RemoveAsUser(HInstruction * instruction)105 static void RemoveAsUser(HInstruction* instruction) {
106 instruction->RemoveAsUserOfAllInputs();
107 RemoveEnvironmentUses(instruction);
108 }
109
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const110 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
111 for (size_t i = 0; i < blocks_.size(); ++i) {
112 if (!visited.IsBitSet(i)) {
113 HBasicBlock* block = blocks_[i];
114 if (block == nullptr) continue;
115 DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
116 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
117 RemoveAsUser(it.Current());
118 }
119 }
120 }
121 }
122
RemoveDeadBlocks(const ArenaBitVector & visited)123 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
124 for (size_t i = 0; i < blocks_.size(); ++i) {
125 if (!visited.IsBitSet(i)) {
126 HBasicBlock* block = blocks_[i];
127 if (block == nullptr) continue;
128 // We only need to update the successor, which might be live.
129 for (HBasicBlock* successor : block->GetSuccessors()) {
130 successor->RemovePredecessor(block);
131 }
132 // Remove the block from the list of blocks, so that further analyses
133 // never see it.
134 blocks_[i] = nullptr;
135 if (block->IsExitBlock()) {
136 SetExitBlock(nullptr);
137 }
138 // Mark the block as removed. This is used by the HGraphBuilder to discard
139 // the block as a branch target.
140 block->SetGraph(nullptr);
141 }
142 }
143 }
144
BuildDominatorTree()145 GraphAnalysisResult HGraph::BuildDominatorTree() {
146 ArenaBitVector visited(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
147
148 // (1) Find the back edges in the graph doing a DFS traversal.
149 FindBackEdges(&visited);
150
151 // (2) Remove instructions and phis from blocks not visited during
152 // the initial DFS as users from other instructions, so that
153 // users can be safely removed before uses later.
154 RemoveInstructionsAsUsersFromDeadBlocks(visited);
155
156 // (3) Remove blocks not visited during the initial DFS.
157 // Step (5) requires dead blocks to be removed from the
158 // predecessors list of live blocks.
159 RemoveDeadBlocks(visited);
160
161 // (4) Simplify the CFG now, so that we don't need to recompute
162 // dominators and the reverse post order.
163 SimplifyCFG();
164
165 // (5) Compute the dominance information and the reverse post order.
166 ComputeDominanceInformation();
167
168 // (6) Analyze loops discovered through back edge analysis, and
169 // set the loop information on each block.
170 GraphAnalysisResult result = AnalyzeLoops();
171 if (result != kAnalysisSuccess) {
172 return result;
173 }
174
175 // (7) Precompute per-block try membership before entering the SSA builder,
176 // which needs the information to build catch block phis from values of
177 // locals at throwing instructions inside try blocks.
178 ComputeTryBlockInformation();
179
180 return kAnalysisSuccess;
181 }
182
ClearDominanceInformation()183 void HGraph::ClearDominanceInformation() {
184 for (HBasicBlock* block : GetReversePostOrder()) {
185 block->ClearDominanceInformation();
186 }
187 reverse_post_order_.clear();
188 }
189
ClearLoopInformation()190 void HGraph::ClearLoopInformation() {
191 SetHasIrreducibleLoops(false);
192 for (HBasicBlock* block : GetReversePostOrder()) {
193 block->SetLoopInformation(nullptr);
194 }
195 }
196
ClearDominanceInformation()197 void HBasicBlock::ClearDominanceInformation() {
198 dominated_blocks_.clear();
199 dominator_ = nullptr;
200 }
201
GetFirstInstructionDisregardMoves() const202 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
203 HInstruction* instruction = GetFirstInstruction();
204 while (instruction->IsParallelMove()) {
205 instruction = instruction->GetNext();
206 }
207 return instruction;
208 }
209
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)210 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
211 DCHECK(ContainsElement(block->GetSuccessors(), successor));
212
213 HBasicBlock* old_dominator = successor->GetDominator();
214 HBasicBlock* new_dominator =
215 (old_dominator == nullptr) ? block
216 : CommonDominator::ForPair(old_dominator, block);
217
218 if (old_dominator == new_dominator) {
219 return false;
220 } else {
221 successor->SetDominator(new_dominator);
222 return true;
223 }
224 }
225
ComputeDominanceInformation()226 void HGraph::ComputeDominanceInformation() {
227 DCHECK(reverse_post_order_.empty());
228 reverse_post_order_.reserve(blocks_.size());
229 reverse_post_order_.push_back(entry_block_);
230
231 // Number of visits of a given node, indexed by block id.
232 ArenaVector<size_t> visits(blocks_.size(), 0u, arena_->Adapter(kArenaAllocGraphBuilder));
233 // Number of successors visited from a given node, indexed by block id.
234 ArenaVector<size_t> successors_visited(blocks_.size(),
235 0u,
236 arena_->Adapter(kArenaAllocGraphBuilder));
237 // Nodes for which we need to visit successors.
238 ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
239 constexpr size_t kDefaultWorklistSize = 8;
240 worklist.reserve(kDefaultWorklistSize);
241 worklist.push_back(entry_block_);
242
243 while (!worklist.empty()) {
244 HBasicBlock* current = worklist.back();
245 uint32_t current_id = current->GetBlockId();
246 if (successors_visited[current_id] == current->GetSuccessors().size()) {
247 worklist.pop_back();
248 } else {
249 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
250 UpdateDominatorOfSuccessor(current, successor);
251
252 // Once all the forward edges have been visited, we know the immediate
253 // dominator of the block. We can then start visiting its successors.
254 if (++visits[successor->GetBlockId()] ==
255 successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
256 reverse_post_order_.push_back(successor);
257 worklist.push_back(successor);
258 }
259 }
260 }
261
262 // Check if the graph has back edges not dominated by their respective headers.
263 // If so, we need to update the dominators of those headers and recursively of
264 // their successors. We do that with a fix-point iteration over all blocks.
265 // The algorithm is guaranteed to terminate because it loops only if the sum
266 // of all dominator chains has decreased in the current iteration.
267 bool must_run_fix_point = false;
268 for (HBasicBlock* block : blocks_) {
269 if (block != nullptr &&
270 block->IsLoopHeader() &&
271 block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
272 must_run_fix_point = true;
273 break;
274 }
275 }
276 if (must_run_fix_point) {
277 bool update_occurred = true;
278 while (update_occurred) {
279 update_occurred = false;
280 for (HBasicBlock* block : GetReversePostOrder()) {
281 for (HBasicBlock* successor : block->GetSuccessors()) {
282 update_occurred |= UpdateDominatorOfSuccessor(block, successor);
283 }
284 }
285 }
286 }
287
288 // Make sure that there are no remaining blocks whose dominator information
289 // needs to be updated.
290 if (kIsDebugBuild) {
291 for (HBasicBlock* block : GetReversePostOrder()) {
292 for (HBasicBlock* successor : block->GetSuccessors()) {
293 DCHECK(!UpdateDominatorOfSuccessor(block, successor));
294 }
295 }
296 }
297
298 // Populate `dominated_blocks_` information after computing all dominators.
299 // The potential presence of irreducible loops requires to do it after.
300 for (HBasicBlock* block : GetReversePostOrder()) {
301 if (!block->IsEntryBlock()) {
302 block->GetDominator()->AddDominatedBlock(block);
303 }
304 }
305 }
306
SplitEdge(HBasicBlock * block,HBasicBlock * successor)307 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
308 HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc());
309 AddBlock(new_block);
310 // Use `InsertBetween` to ensure the predecessor index and successor index of
311 // `block` and `successor` are preserved.
312 new_block->InsertBetween(block, successor);
313 return new_block;
314 }
315
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)316 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
317 // Insert a new node between `block` and `successor` to split the
318 // critical edge.
319 HBasicBlock* new_block = SplitEdge(block, successor);
320 new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc()));
321 if (successor->IsLoopHeader()) {
322 // If we split at a back edge boundary, make the new block the back edge.
323 HLoopInformation* info = successor->GetLoopInformation();
324 if (info->IsBackEdge(*block)) {
325 info->RemoveBackEdge(block);
326 info->AddBackEdge(new_block);
327 }
328 }
329 }
330
SimplifyLoop(HBasicBlock * header)331 void HGraph::SimplifyLoop(HBasicBlock* header) {
332 HLoopInformation* info = header->GetLoopInformation();
333
334 // Make sure the loop has only one pre header. This simplifies SSA building by having
335 // to just look at the pre header to know which locals are initialized at entry of the
336 // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
337 // this graph.
338 size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
339 if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
340 HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
341 AddBlock(pre_header);
342 pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc()));
343
344 for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
345 HBasicBlock* predecessor = header->GetPredecessors()[pred];
346 if (!info->IsBackEdge(*predecessor)) {
347 predecessor->ReplaceSuccessor(header, pre_header);
348 pred--;
349 }
350 }
351 pre_header->AddSuccessor(header);
352 }
353
354 // Make sure the first predecessor of a loop header is the incoming block.
355 if (info->IsBackEdge(*header->GetPredecessors()[0])) {
356 HBasicBlock* to_swap = header->GetPredecessors()[0];
357 for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
358 HBasicBlock* predecessor = header->GetPredecessors()[pred];
359 if (!info->IsBackEdge(*predecessor)) {
360 header->predecessors_[pred] = to_swap;
361 header->predecessors_[0] = predecessor;
362 break;
363 }
364 }
365 }
366
367 HInstruction* first_instruction = header->GetFirstInstruction();
368 if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
369 // Called from DeadBlockElimination. Update SuspendCheck pointer.
370 info->SetSuspendCheck(first_instruction->AsSuspendCheck());
371 }
372 }
373
ComputeTryBlockInformation()374 void HGraph::ComputeTryBlockInformation() {
375 // Iterate in reverse post order to propagate try membership information from
376 // predecessors to their successors.
377 for (HBasicBlock* block : GetReversePostOrder()) {
378 if (block->IsEntryBlock() || block->IsCatchBlock()) {
379 // Catch blocks after simplification have only exceptional predecessors
380 // and hence are never in tries.
381 continue;
382 }
383
384 // Infer try membership from the first predecessor. Having simplified loops,
385 // the first predecessor can never be a back edge and therefore it must have
386 // been visited already and had its try membership set.
387 HBasicBlock* first_predecessor = block->GetPredecessors()[0];
388 DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
389 const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
390 if (try_entry != nullptr &&
391 (block->GetTryCatchInformation() == nullptr ||
392 try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
393 // We are either setting try block membership for the first time or it
394 // has changed.
395 block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry));
396 }
397 }
398 }
399
SimplifyCFG()400 void HGraph::SimplifyCFG() {
401 // Simplify the CFG for future analysis, and code generation:
402 // (1): Split critical edges.
403 // (2): Simplify loops by having only one preheader.
404 // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
405 // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
406 for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
407 HBasicBlock* block = blocks_[block_id];
408 if (block == nullptr) continue;
409 if (block->GetSuccessors().size() > 1) {
410 // Only split normal-flow edges. We cannot split exceptional edges as they
411 // are synthesized (approximate real control flow), and we do not need to
412 // anyway. Moves that would be inserted there are performed by the runtime.
413 ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
414 for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
415 HBasicBlock* successor = normal_successors[j];
416 DCHECK(!successor->IsCatchBlock());
417 if (successor == exit_block_) {
418 // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
419 // do not want to split because Goto->Exit is not allowed.
420 DCHECK(block->IsSingleTryBoundary());
421 } else if (successor->GetPredecessors().size() > 1) {
422 SplitCriticalEdge(block, successor);
423 // SplitCriticalEdge could have invalidated the `normal_successors`
424 // ArrayRef. We must re-acquire it.
425 normal_successors = block->GetNormalSuccessors();
426 DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
427 DCHECK_EQ(e, normal_successors.size());
428 }
429 }
430 }
431 if (block->IsLoopHeader()) {
432 SimplifyLoop(block);
433 } else if (!block->IsEntryBlock() &&
434 block->GetFirstInstruction() != nullptr &&
435 block->GetFirstInstruction()->IsSuspendCheck()) {
436 // We are being called by the dead code elimiation pass, and what used to be
437 // a loop got dismantled. Just remove the suspend check.
438 block->RemoveInstruction(block->GetFirstInstruction());
439 }
440 }
441 }
442
AnalyzeLoops() const443 GraphAnalysisResult HGraph::AnalyzeLoops() const {
444 // We iterate post order to ensure we visit inner loops before outer loops.
445 // `PopulateRecursive` needs this guarantee to know whether a natural loop
446 // contains an irreducible loop.
447 for (HBasicBlock* block : GetPostOrder()) {
448 if (block->IsLoopHeader()) {
449 if (block->IsCatchBlock()) {
450 // TODO: Dealing with exceptional back edges could be tricky because
451 // they only approximate the real control flow. Bail out for now.
452 return kAnalysisFailThrowCatchLoop;
453 }
454 block->GetLoopInformation()->Populate();
455 }
456 }
457 return kAnalysisSuccess;
458 }
459
Dump(std::ostream & os)460 void HLoopInformation::Dump(std::ostream& os) {
461 os << "header: " << header_->GetBlockId() << std::endl;
462 os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
463 for (HBasicBlock* block : back_edges_) {
464 os << "back edge: " << block->GetBlockId() << std::endl;
465 }
466 for (HBasicBlock* block : header_->GetPredecessors()) {
467 os << "predecessor: " << block->GetBlockId() << std::endl;
468 }
469 for (uint32_t idx : blocks_.Indexes()) {
470 os << " in loop: " << idx << std::endl;
471 }
472 }
473
InsertConstant(HConstant * constant)474 void HGraph::InsertConstant(HConstant* constant) {
475 // New constants are inserted before the SuspendCheck at the bottom of the
476 // entry block. Note that this method can be called from the graph builder and
477 // the entry block therefore may not end with SuspendCheck->Goto yet.
478 HInstruction* insert_before = nullptr;
479
480 HInstruction* gota = entry_block_->GetLastInstruction();
481 if (gota != nullptr && gota->IsGoto()) {
482 HInstruction* suspend_check = gota->GetPrevious();
483 if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
484 insert_before = suspend_check;
485 } else {
486 insert_before = gota;
487 }
488 }
489
490 if (insert_before == nullptr) {
491 entry_block_->AddInstruction(constant);
492 } else {
493 entry_block_->InsertInstructionBefore(constant, insert_before);
494 }
495 }
496
GetNullConstant(uint32_t dex_pc)497 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
498 // For simplicity, don't bother reviving the cached null constant if it is
499 // not null and not in a block. Otherwise, we need to clear the instruction
500 // id and/or any invariants the graph is assuming when adding new instructions.
501 if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
502 cached_null_constant_ = new (arena_) HNullConstant(dex_pc);
503 cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
504 InsertConstant(cached_null_constant_);
505 }
506 if (kIsDebugBuild) {
507 ScopedObjectAccess soa(Thread::Current());
508 DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
509 }
510 return cached_null_constant_;
511 }
512
GetCurrentMethod()513 HCurrentMethod* HGraph::GetCurrentMethod() {
514 // For simplicity, don't bother reviving the cached current method if it is
515 // not null and not in a block. Otherwise, we need to clear the instruction
516 // id and/or any invariants the graph is assuming when adding new instructions.
517 if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
518 cached_current_method_ = new (arena_) HCurrentMethod(
519 Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt,
520 entry_block_->GetDexPc());
521 if (entry_block_->GetFirstInstruction() == nullptr) {
522 entry_block_->AddInstruction(cached_current_method_);
523 } else {
524 entry_block_->InsertInstructionBefore(
525 cached_current_method_, entry_block_->GetFirstInstruction());
526 }
527 }
528 return cached_current_method_;
529 }
530
GetMethodName() const531 const char* HGraph::GetMethodName() const {
532 const DexFile::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
533 return dex_file_.GetMethodName(method_id);
534 }
535
PrettyMethod(bool with_signature) const536 std::string HGraph::PrettyMethod(bool with_signature) const {
537 return dex_file_.PrettyMethod(method_idx_, with_signature);
538 }
539
GetConstant(Primitive::Type type,int64_t value,uint32_t dex_pc)540 HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) {
541 switch (type) {
542 case Primitive::Type::kPrimBoolean:
543 DCHECK(IsUint<1>(value));
544 FALLTHROUGH_INTENDED;
545 case Primitive::Type::kPrimByte:
546 case Primitive::Type::kPrimChar:
547 case Primitive::Type::kPrimShort:
548 case Primitive::Type::kPrimInt:
549 DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value));
550 return GetIntConstant(static_cast<int32_t>(value), dex_pc);
551
552 case Primitive::Type::kPrimLong:
553 return GetLongConstant(value, dex_pc);
554
555 default:
556 LOG(FATAL) << "Unsupported constant type";
557 UNREACHABLE();
558 }
559 }
560
CacheFloatConstant(HFloatConstant * constant)561 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
562 int32_t value = bit_cast<int32_t, float>(constant->GetValue());
563 DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
564 cached_float_constants_.Overwrite(value, constant);
565 }
566
CacheDoubleConstant(HDoubleConstant * constant)567 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
568 int64_t value = bit_cast<int64_t, double>(constant->GetValue());
569 DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
570 cached_double_constants_.Overwrite(value, constant);
571 }
572
Add(HBasicBlock * block)573 void HLoopInformation::Add(HBasicBlock* block) {
574 blocks_.SetBit(block->GetBlockId());
575 }
576
Remove(HBasicBlock * block)577 void HLoopInformation::Remove(HBasicBlock* block) {
578 blocks_.ClearBit(block->GetBlockId());
579 }
580
PopulateRecursive(HBasicBlock * block)581 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
582 if (blocks_.IsBitSet(block->GetBlockId())) {
583 return;
584 }
585
586 blocks_.SetBit(block->GetBlockId());
587 block->SetInLoop(this);
588 if (block->IsLoopHeader()) {
589 // We're visiting loops in post-order, so inner loops must have been
590 // populated already.
591 DCHECK(block->GetLoopInformation()->IsPopulated());
592 if (block->GetLoopInformation()->IsIrreducible()) {
593 contains_irreducible_loop_ = true;
594 }
595 }
596 for (HBasicBlock* predecessor : block->GetPredecessors()) {
597 PopulateRecursive(predecessor);
598 }
599 }
600
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)601 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
602 size_t block_id = block->GetBlockId();
603
604 // If `block` is in `finalized`, we know its membership in the loop has been
605 // decided and it does not need to be revisited.
606 if (finalized->IsBitSet(block_id)) {
607 return;
608 }
609
610 bool is_finalized = false;
611 if (block->IsLoopHeader()) {
612 // If we hit a loop header in an irreducible loop, we first check if the
613 // pre header of that loop belongs to the currently analyzed loop. If it does,
614 // then we visit the back edges.
615 // Note that we cannot use GetPreHeader, as the loop may have not been populated
616 // yet.
617 HBasicBlock* pre_header = block->GetPredecessors()[0];
618 PopulateIrreducibleRecursive(pre_header, finalized);
619 if (blocks_.IsBitSet(pre_header->GetBlockId())) {
620 block->SetInLoop(this);
621 blocks_.SetBit(block_id);
622 finalized->SetBit(block_id);
623 is_finalized = true;
624
625 HLoopInformation* info = block->GetLoopInformation();
626 for (HBasicBlock* back_edge : info->GetBackEdges()) {
627 PopulateIrreducibleRecursive(back_edge, finalized);
628 }
629 }
630 } else {
631 // Visit all predecessors. If one predecessor is part of the loop, this
632 // block is also part of this loop.
633 for (HBasicBlock* predecessor : block->GetPredecessors()) {
634 PopulateIrreducibleRecursive(predecessor, finalized);
635 if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
636 block->SetInLoop(this);
637 blocks_.SetBit(block_id);
638 finalized->SetBit(block_id);
639 is_finalized = true;
640 }
641 }
642 }
643
644 // All predecessors have been recursively visited. Mark finalized if not marked yet.
645 if (!is_finalized) {
646 finalized->SetBit(block_id);
647 }
648 }
649
Populate()650 void HLoopInformation::Populate() {
651 DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
652 // Populate this loop: starting with the back edge, recursively add predecessors
653 // that are not already part of that loop. Set the header as part of the loop
654 // to end the recursion.
655 // This is a recursive implementation of the algorithm described in
656 // "Advanced Compiler Design & Implementation" (Muchnick) p192.
657 HGraph* graph = header_->GetGraph();
658 blocks_.SetBit(header_->GetBlockId());
659 header_->SetInLoop(this);
660
661 bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
662
663 if (is_irreducible_loop) {
664 ArenaBitVector visited(graph->GetArena(),
665 graph->GetBlocks().size(),
666 /* expandable */ false,
667 kArenaAllocGraphBuilder);
668 // Stop marking blocks at the loop header.
669 visited.SetBit(header_->GetBlockId());
670
671 for (HBasicBlock* back_edge : GetBackEdges()) {
672 PopulateIrreducibleRecursive(back_edge, &visited);
673 }
674 } else {
675 for (HBasicBlock* back_edge : GetBackEdges()) {
676 PopulateRecursive(back_edge);
677 }
678 }
679
680 if (!is_irreducible_loop && graph->IsCompilingOsr()) {
681 // When compiling in OSR mode, all loops in the compiled method may be entered
682 // from the interpreter. We treat this OSR entry point just like an extra entry
683 // to an irreducible loop, so we need to mark the method's loops as irreducible.
684 // This does not apply to inlined loops which do not act as OSR entry points.
685 if (suspend_check_ == nullptr) {
686 // Just building the graph in OSR mode, this loop is not inlined. We never build an
687 // inner graph in OSR mode as we can do OSR transition only from the outer method.
688 is_irreducible_loop = true;
689 } else {
690 // Look at the suspend check's environment to determine if the loop was inlined.
691 DCHECK(suspend_check_->HasEnvironment());
692 if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
693 is_irreducible_loop = true;
694 }
695 }
696 }
697 if (is_irreducible_loop) {
698 irreducible_ = true;
699 contains_irreducible_loop_ = true;
700 graph->SetHasIrreducibleLoops(true);
701 }
702 graph->SetHasLoops(true);
703 }
704
GetPreHeader() const705 HBasicBlock* HLoopInformation::GetPreHeader() const {
706 HBasicBlock* block = header_->GetPredecessors()[0];
707 DCHECK(irreducible_ || (block == header_->GetDominator()));
708 return block;
709 }
710
Contains(const HBasicBlock & block) const711 bool HLoopInformation::Contains(const HBasicBlock& block) const {
712 return blocks_.IsBitSet(block.GetBlockId());
713 }
714
IsIn(const HLoopInformation & other) const715 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
716 return other.blocks_.IsBitSet(header_->GetBlockId());
717 }
718
IsDefinedOutOfTheLoop(HInstruction * instruction) const719 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
720 return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
721 }
722
GetLifetimeEnd() const723 size_t HLoopInformation::GetLifetimeEnd() const {
724 size_t last_position = 0;
725 for (HBasicBlock* back_edge : GetBackEdges()) {
726 last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
727 }
728 return last_position;
729 }
730
HasBackEdgeNotDominatedByHeader() const731 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
732 for (HBasicBlock* back_edge : GetBackEdges()) {
733 DCHECK(back_edge->GetDominator() != nullptr);
734 if (!header_->Dominates(back_edge)) {
735 return true;
736 }
737 }
738 return false;
739 }
740
DominatesAllBackEdges(HBasicBlock * block)741 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
742 for (HBasicBlock* back_edge : GetBackEdges()) {
743 if (!block->Dominates(back_edge)) {
744 return false;
745 }
746 }
747 return true;
748 }
749
750
HasExitEdge() const751 bool HLoopInformation::HasExitEdge() const {
752 // Determine if this loop has at least one exit edge.
753 HBlocksInLoopReversePostOrderIterator it_loop(*this);
754 for (; !it_loop.Done(); it_loop.Advance()) {
755 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
756 if (!Contains(*successor)) {
757 return true;
758 }
759 }
760 }
761 return false;
762 }
763
Dominates(HBasicBlock * other) const764 bool HBasicBlock::Dominates(HBasicBlock* other) const {
765 // Walk up the dominator tree from `other`, to find out if `this`
766 // is an ancestor.
767 HBasicBlock* current = other;
768 while (current != nullptr) {
769 if (current == this) {
770 return true;
771 }
772 current = current->GetDominator();
773 }
774 return false;
775 }
776
UpdateInputsUsers(HInstruction * instruction)777 static void UpdateInputsUsers(HInstruction* instruction) {
778 HInputsRef inputs = instruction->GetInputs();
779 for (size_t i = 0; i < inputs.size(); ++i) {
780 inputs[i]->AddUseAt(instruction, i);
781 }
782 // Environment should be created later.
783 DCHECK(!instruction->HasEnvironment());
784 }
785
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)786 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
787 HInstruction* replacement) {
788 DCHECK(initial->GetBlock() == this);
789 if (initial->IsControlFlow()) {
790 // We can only replace a control flow instruction with another control flow instruction.
791 DCHECK(replacement->IsControlFlow());
792 DCHECK_EQ(replacement->GetId(), -1);
793 DCHECK_EQ(replacement->GetType(), Primitive::kPrimVoid);
794 DCHECK_EQ(initial->GetBlock(), this);
795 DCHECK_EQ(initial->GetType(), Primitive::kPrimVoid);
796 DCHECK(initial->GetUses().empty());
797 DCHECK(initial->GetEnvUses().empty());
798 replacement->SetBlock(this);
799 replacement->SetId(GetGraph()->GetNextInstructionId());
800 instructions_.InsertInstructionBefore(replacement, initial);
801 UpdateInputsUsers(replacement);
802 } else {
803 InsertInstructionBefore(replacement, initial);
804 initial->ReplaceWith(replacement);
805 }
806 RemoveInstruction(initial);
807 }
808
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)809 static void Add(HInstructionList* instruction_list,
810 HBasicBlock* block,
811 HInstruction* instruction) {
812 DCHECK(instruction->GetBlock() == nullptr);
813 DCHECK_EQ(instruction->GetId(), -1);
814 instruction->SetBlock(block);
815 instruction->SetId(block->GetGraph()->GetNextInstructionId());
816 UpdateInputsUsers(instruction);
817 instruction_list->AddInstruction(instruction);
818 }
819
AddInstruction(HInstruction * instruction)820 void HBasicBlock::AddInstruction(HInstruction* instruction) {
821 Add(&instructions_, this, instruction);
822 }
823
AddPhi(HPhi * phi)824 void HBasicBlock::AddPhi(HPhi* phi) {
825 Add(&phis_, this, phi);
826 }
827
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)828 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
829 DCHECK(!cursor->IsPhi());
830 DCHECK(!instruction->IsPhi());
831 DCHECK_EQ(instruction->GetId(), -1);
832 DCHECK_NE(cursor->GetId(), -1);
833 DCHECK_EQ(cursor->GetBlock(), this);
834 DCHECK(!instruction->IsControlFlow());
835 instruction->SetBlock(this);
836 instruction->SetId(GetGraph()->GetNextInstructionId());
837 UpdateInputsUsers(instruction);
838 instructions_.InsertInstructionBefore(instruction, cursor);
839 }
840
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)841 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
842 DCHECK(!cursor->IsPhi());
843 DCHECK(!instruction->IsPhi());
844 DCHECK_EQ(instruction->GetId(), -1);
845 DCHECK_NE(cursor->GetId(), -1);
846 DCHECK_EQ(cursor->GetBlock(), this);
847 DCHECK(!instruction->IsControlFlow());
848 DCHECK(!cursor->IsControlFlow());
849 instruction->SetBlock(this);
850 instruction->SetId(GetGraph()->GetNextInstructionId());
851 UpdateInputsUsers(instruction);
852 instructions_.InsertInstructionAfter(instruction, cursor);
853 }
854
InsertPhiAfter(HPhi * phi,HPhi * cursor)855 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
856 DCHECK_EQ(phi->GetId(), -1);
857 DCHECK_NE(cursor->GetId(), -1);
858 DCHECK_EQ(cursor->GetBlock(), this);
859 phi->SetBlock(this);
860 phi->SetId(GetGraph()->GetNextInstructionId());
861 UpdateInputsUsers(phi);
862 phis_.InsertInstructionAfter(phi, cursor);
863 }
864
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)865 static void Remove(HInstructionList* instruction_list,
866 HBasicBlock* block,
867 HInstruction* instruction,
868 bool ensure_safety) {
869 DCHECK_EQ(block, instruction->GetBlock());
870 instruction->SetBlock(nullptr);
871 instruction_list->RemoveInstruction(instruction);
872 if (ensure_safety) {
873 DCHECK(instruction->GetUses().empty());
874 DCHECK(instruction->GetEnvUses().empty());
875 RemoveAsUser(instruction);
876 }
877 }
878
RemoveInstruction(HInstruction * instruction,bool ensure_safety)879 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
880 DCHECK(!instruction->IsPhi());
881 Remove(&instructions_, this, instruction, ensure_safety);
882 }
883
RemovePhi(HPhi * phi,bool ensure_safety)884 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
885 Remove(&phis_, this, phi, ensure_safety);
886 }
887
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)888 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
889 if (instruction->IsPhi()) {
890 RemovePhi(instruction->AsPhi(), ensure_safety);
891 } else {
892 RemoveInstruction(instruction, ensure_safety);
893 }
894 }
895
CopyFrom(const ArenaVector<HInstruction * > & locals)896 void HEnvironment::CopyFrom(const ArenaVector<HInstruction*>& locals) {
897 for (size_t i = 0; i < locals.size(); i++) {
898 HInstruction* instruction = locals[i];
899 SetRawEnvAt(i, instruction);
900 if (instruction != nullptr) {
901 instruction->AddEnvUseAt(this, i);
902 }
903 }
904 }
905
CopyFrom(HEnvironment * env)906 void HEnvironment::CopyFrom(HEnvironment* env) {
907 for (size_t i = 0; i < env->Size(); i++) {
908 HInstruction* instruction = env->GetInstructionAt(i);
909 SetRawEnvAt(i, instruction);
910 if (instruction != nullptr) {
911 instruction->AddEnvUseAt(this, i);
912 }
913 }
914 }
915
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)916 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
917 HBasicBlock* loop_header) {
918 DCHECK(loop_header->IsLoopHeader());
919 for (size_t i = 0; i < env->Size(); i++) {
920 HInstruction* instruction = env->GetInstructionAt(i);
921 SetRawEnvAt(i, instruction);
922 if (instruction == nullptr) {
923 continue;
924 }
925 if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
926 // At the end of the loop pre-header, the corresponding value for instruction
927 // is the first input of the phi.
928 HInstruction* initial = instruction->AsPhi()->InputAt(0);
929 SetRawEnvAt(i, initial);
930 initial->AddEnvUseAt(this, i);
931 } else {
932 instruction->AddEnvUseAt(this, i);
933 }
934 }
935 }
936
RemoveAsUserOfInput(size_t index) const937 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
938 const HUserRecord<HEnvironment*>& env_use = vregs_[index];
939 HInstruction* user = env_use.GetInstruction();
940 auto before_env_use_node = env_use.GetBeforeUseNode();
941 user->env_uses_.erase_after(before_env_use_node);
942 user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
943 }
944
GetKind() const945 HInstruction::InstructionKind HInstruction::GetKind() const {
946 return GetKindInternal();
947 }
948
GetNextDisregardingMoves() const949 HInstruction* HInstruction::GetNextDisregardingMoves() const {
950 HInstruction* next = GetNext();
951 while (next != nullptr && next->IsParallelMove()) {
952 next = next->GetNext();
953 }
954 return next;
955 }
956
GetPreviousDisregardingMoves() const957 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
958 HInstruction* previous = GetPrevious();
959 while (previous != nullptr && previous->IsParallelMove()) {
960 previous = previous->GetPrevious();
961 }
962 return previous;
963 }
964
AddInstruction(HInstruction * instruction)965 void HInstructionList::AddInstruction(HInstruction* instruction) {
966 if (first_instruction_ == nullptr) {
967 DCHECK(last_instruction_ == nullptr);
968 first_instruction_ = last_instruction_ = instruction;
969 } else {
970 DCHECK(last_instruction_ != nullptr);
971 last_instruction_->next_ = instruction;
972 instruction->previous_ = last_instruction_;
973 last_instruction_ = instruction;
974 }
975 }
976
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)977 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
978 DCHECK(Contains(cursor));
979 if (cursor == first_instruction_) {
980 cursor->previous_ = instruction;
981 instruction->next_ = cursor;
982 first_instruction_ = instruction;
983 } else {
984 instruction->previous_ = cursor->previous_;
985 instruction->next_ = cursor;
986 cursor->previous_ = instruction;
987 instruction->previous_->next_ = instruction;
988 }
989 }
990
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)991 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
992 DCHECK(Contains(cursor));
993 if (cursor == last_instruction_) {
994 cursor->next_ = instruction;
995 instruction->previous_ = cursor;
996 last_instruction_ = instruction;
997 } else {
998 instruction->next_ = cursor->next_;
999 instruction->previous_ = cursor;
1000 cursor->next_ = instruction;
1001 instruction->next_->previous_ = instruction;
1002 }
1003 }
1004
RemoveInstruction(HInstruction * instruction)1005 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1006 if (instruction->previous_ != nullptr) {
1007 instruction->previous_->next_ = instruction->next_;
1008 }
1009 if (instruction->next_ != nullptr) {
1010 instruction->next_->previous_ = instruction->previous_;
1011 }
1012 if (instruction == first_instruction_) {
1013 first_instruction_ = instruction->next_;
1014 }
1015 if (instruction == last_instruction_) {
1016 last_instruction_ = instruction->previous_;
1017 }
1018 }
1019
Contains(HInstruction * instruction) const1020 bool HInstructionList::Contains(HInstruction* instruction) const {
1021 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1022 if (it.Current() == instruction) {
1023 return true;
1024 }
1025 }
1026 return false;
1027 }
1028
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1029 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1030 const HInstruction* instruction2) const {
1031 DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1032 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1033 if (it.Current() == instruction1) {
1034 return true;
1035 }
1036 if (it.Current() == instruction2) {
1037 return false;
1038 }
1039 }
1040 LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1041 return true;
1042 }
1043
StrictlyDominates(HInstruction * other_instruction) const1044 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1045 if (other_instruction == this) {
1046 // An instruction does not strictly dominate itself.
1047 return false;
1048 }
1049 HBasicBlock* block = GetBlock();
1050 HBasicBlock* other_block = other_instruction->GetBlock();
1051 if (block != other_block) {
1052 return GetBlock()->Dominates(other_instruction->GetBlock());
1053 } else {
1054 // If both instructions are in the same block, ensure this
1055 // instruction comes before `other_instruction`.
1056 if (IsPhi()) {
1057 if (!other_instruction->IsPhi()) {
1058 // Phis appear before non phi-instructions so this instruction
1059 // dominates `other_instruction`.
1060 return true;
1061 } else {
1062 // There is no order among phis.
1063 LOG(FATAL) << "There is no dominance between phis of a same block.";
1064 return false;
1065 }
1066 } else {
1067 // `this` is not a phi.
1068 if (other_instruction->IsPhi()) {
1069 // Phis appear before non phi-instructions so this instruction
1070 // does not dominate `other_instruction`.
1071 return false;
1072 } else {
1073 // Check whether this instruction comes before
1074 // `other_instruction` in the instruction list.
1075 return block->GetInstructions().FoundBefore(this, other_instruction);
1076 }
1077 }
1078 }
1079 }
1080
RemoveEnvironment()1081 void HInstruction::RemoveEnvironment() {
1082 RemoveEnvironmentUses(this);
1083 environment_ = nullptr;
1084 }
1085
ReplaceWith(HInstruction * other)1086 void HInstruction::ReplaceWith(HInstruction* other) {
1087 DCHECK(other != nullptr);
1088 // Note: fixup_end remains valid across splice_after().
1089 auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1090 other->uses_.splice_after(other->uses_.before_begin(), uses_);
1091 other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1092
1093 // Note: env_fixup_end remains valid across splice_after().
1094 auto env_fixup_end =
1095 other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1096 other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1097 other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1098
1099 DCHECK(uses_.empty());
1100 DCHECK(env_uses_.empty());
1101 }
1102
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1103 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1104 const HUseList<HInstruction*>& uses = GetUses();
1105 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1106 HInstruction* user = it->GetUser();
1107 size_t index = it->GetIndex();
1108 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1109 ++it;
1110 if (dominator->StrictlyDominates(user)) {
1111 user->ReplaceInput(replacement, index);
1112 }
1113 }
1114 }
1115
ReplaceInput(HInstruction * replacement,size_t index)1116 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1117 HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1118 if (input_use.GetInstruction() == replacement) {
1119 // Nothing to do.
1120 return;
1121 }
1122 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1123 // Note: fixup_end remains valid across splice_after().
1124 auto fixup_end =
1125 replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1126 replacement->uses_.splice_after(replacement->uses_.before_begin(),
1127 input_use.GetInstruction()->uses_,
1128 before_use_node);
1129 replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1130 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1131 }
1132
EnvironmentSize() const1133 size_t HInstruction::EnvironmentSize() const {
1134 return HasEnvironment() ? environment_->Size() : 0;
1135 }
1136
AddInput(HInstruction * input)1137 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1138 DCHECK(input->GetBlock() != nullptr);
1139 inputs_.push_back(HUserRecord<HInstruction*>(input));
1140 input->AddUseAt(this, inputs_.size() - 1);
1141 }
1142
InsertInputAt(size_t index,HInstruction * input)1143 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1144 inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1145 input->AddUseAt(this, index);
1146 // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1147 for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1148 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1149 inputs_[i].GetUseNode()->SetIndex(i);
1150 }
1151 }
1152
RemoveInputAt(size_t index)1153 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1154 RemoveAsUserOfInput(index);
1155 inputs_.erase(inputs_.begin() + index);
1156 // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1157 for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1158 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1159 inputs_[i].GetUseNode()->SetIndex(i);
1160 }
1161 }
1162
RemoveAllInputs()1163 void HVariableInputSizeInstruction::RemoveAllInputs() {
1164 RemoveAsUserOfAllInputs();
1165 DCHECK(!HasNonEnvironmentUses());
1166
1167 inputs_.clear();
1168 DCHECK_EQ(0u, InputCount());
1169 }
1170
RemoveConstructorFences(HInstruction * instruction)1171 void HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
1172 DCHECK(instruction->GetBlock() != nullptr);
1173 // Removing constructor fences only makes sense for instructions with an object return type.
1174 DCHECK_EQ(Primitive::kPrimNot, instruction->GetType());
1175
1176 // Efficient implementation that simultaneously (in one pass):
1177 // * Scans the uses list for all constructor fences.
1178 // * Deletes that constructor fence from the uses list of `instruction`.
1179 // * Deletes `instruction` from the constructor fence's inputs.
1180 // * Deletes the constructor fence if it now has 0 inputs.
1181
1182 const HUseList<HInstruction*>& uses = instruction->GetUses();
1183 // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
1184 for (auto it = uses.begin(), end = uses.end(); it != end; ) {
1185 const HUseListNode<HInstruction*>& use_node = *it;
1186 HInstruction* const use_instruction = use_node.GetUser();
1187
1188 // Advance the iterator immediately once we fetch the use_node.
1189 // Warning: If the input is removed, the current iterator becomes invalid.
1190 ++it;
1191
1192 if (use_instruction->IsConstructorFence()) {
1193 HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
1194 size_t input_index = use_node.GetIndex();
1195
1196 // Process the candidate instruction for removal
1197 // from the graph.
1198
1199 // Constructor fence instructions are never
1200 // used by other instructions.
1201 //
1202 // If we wanted to make this more generic, it
1203 // could be a runtime if statement.
1204 DCHECK(!ctor_fence->HasUses());
1205
1206 // A constructor fence's return type is "kPrimVoid"
1207 // and therefore it can't have any environment uses.
1208 DCHECK(!ctor_fence->HasEnvironmentUses());
1209
1210 // Remove the inputs first, otherwise removing the instruction
1211 // will try to remove its uses while we are already removing uses
1212 // and this operation will fail.
1213 DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
1214
1215 // Removing the input will also remove the `use_node`.
1216 // (Do not look at `use_node` after this, it will be a dangling reference).
1217 ctor_fence->RemoveInputAt(input_index);
1218
1219 // Once all inputs are removed, the fence is considered dead and
1220 // is removed.
1221 if (ctor_fence->InputCount() == 0u) {
1222 ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
1223 }
1224 }
1225 }
1226
1227 if (kIsDebugBuild) {
1228 // Post-condition checks:
1229 // * None of the uses of `instruction` are a constructor fence.
1230 // * The `instruction` itself did not get removed from a block.
1231 for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
1232 CHECK(!use_node.GetUser()->IsConstructorFence());
1233 }
1234 CHECK(instruction->GetBlock() != nullptr);
1235 }
1236 }
1237
GetAssociatedAllocation()1238 HInstruction* HConstructorFence::GetAssociatedAllocation() {
1239 HInstruction* new_instance_inst = GetPrevious();
1240 // Check if the immediately preceding instruction is a new-instance/new-array.
1241 // Otherwise this fence is for protecting final fields.
1242 if (new_instance_inst != nullptr &&
1243 (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
1244 // TODO: Need to update this code to handle multiple inputs.
1245 DCHECK_EQ(InputCount(), 1u);
1246 return new_instance_inst;
1247 } else {
1248 return nullptr;
1249 }
1250 }
1251
1252 #define DEFINE_ACCEPT(name, super) \
1253 void H##name::Accept(HGraphVisitor* visitor) { \
1254 visitor->Visit##name(this); \
1255 }
1256
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1257 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1258
1259 #undef DEFINE_ACCEPT
1260
1261 void HGraphVisitor::VisitInsertionOrder() {
1262 const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1263 for (HBasicBlock* block : blocks) {
1264 if (block != nullptr) {
1265 VisitBasicBlock(block);
1266 }
1267 }
1268 }
1269
VisitReversePostOrder()1270 void HGraphVisitor::VisitReversePostOrder() {
1271 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1272 VisitBasicBlock(block);
1273 }
1274 }
1275
VisitBasicBlock(HBasicBlock * block)1276 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1277 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1278 it.Current()->Accept(this);
1279 }
1280 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1281 it.Current()->Accept(this);
1282 }
1283 }
1284
TryStaticEvaluation() const1285 HConstant* HTypeConversion::TryStaticEvaluation() const {
1286 HGraph* graph = GetBlock()->GetGraph();
1287 if (GetInput()->IsIntConstant()) {
1288 int32_t value = GetInput()->AsIntConstant()->GetValue();
1289 switch (GetResultType()) {
1290 case Primitive::kPrimLong:
1291 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1292 case Primitive::kPrimFloat:
1293 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1294 case Primitive::kPrimDouble:
1295 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1296 default:
1297 return nullptr;
1298 }
1299 } else if (GetInput()->IsLongConstant()) {
1300 int64_t value = GetInput()->AsLongConstant()->GetValue();
1301 switch (GetResultType()) {
1302 case Primitive::kPrimInt:
1303 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1304 case Primitive::kPrimFloat:
1305 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1306 case Primitive::kPrimDouble:
1307 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1308 default:
1309 return nullptr;
1310 }
1311 } else if (GetInput()->IsFloatConstant()) {
1312 float value = GetInput()->AsFloatConstant()->GetValue();
1313 switch (GetResultType()) {
1314 case Primitive::kPrimInt:
1315 if (std::isnan(value))
1316 return graph->GetIntConstant(0, GetDexPc());
1317 if (value >= kPrimIntMax)
1318 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1319 if (value <= kPrimIntMin)
1320 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1321 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1322 case Primitive::kPrimLong:
1323 if (std::isnan(value))
1324 return graph->GetLongConstant(0, GetDexPc());
1325 if (value >= kPrimLongMax)
1326 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1327 if (value <= kPrimLongMin)
1328 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1329 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1330 case Primitive::kPrimDouble:
1331 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1332 default:
1333 return nullptr;
1334 }
1335 } else if (GetInput()->IsDoubleConstant()) {
1336 double value = GetInput()->AsDoubleConstant()->GetValue();
1337 switch (GetResultType()) {
1338 case Primitive::kPrimInt:
1339 if (std::isnan(value))
1340 return graph->GetIntConstant(0, GetDexPc());
1341 if (value >= kPrimIntMax)
1342 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1343 if (value <= kPrimLongMin)
1344 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1345 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1346 case Primitive::kPrimLong:
1347 if (std::isnan(value))
1348 return graph->GetLongConstant(0, GetDexPc());
1349 if (value >= kPrimLongMax)
1350 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1351 if (value <= kPrimLongMin)
1352 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1353 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1354 case Primitive::kPrimFloat:
1355 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1356 default:
1357 return nullptr;
1358 }
1359 }
1360 return nullptr;
1361 }
1362
TryStaticEvaluation() const1363 HConstant* HUnaryOperation::TryStaticEvaluation() const {
1364 if (GetInput()->IsIntConstant()) {
1365 return Evaluate(GetInput()->AsIntConstant());
1366 } else if (GetInput()->IsLongConstant()) {
1367 return Evaluate(GetInput()->AsLongConstant());
1368 } else if (kEnableFloatingPointStaticEvaluation) {
1369 if (GetInput()->IsFloatConstant()) {
1370 return Evaluate(GetInput()->AsFloatConstant());
1371 } else if (GetInput()->IsDoubleConstant()) {
1372 return Evaluate(GetInput()->AsDoubleConstant());
1373 }
1374 }
1375 return nullptr;
1376 }
1377
TryStaticEvaluation() const1378 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1379 if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1380 return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1381 } else if (GetLeft()->IsLongConstant()) {
1382 if (GetRight()->IsIntConstant()) {
1383 // The binop(long, int) case is only valid for shifts and rotations.
1384 DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1385 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1386 } else if (GetRight()->IsLongConstant()) {
1387 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1388 }
1389 } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1390 // The binop(null, null) case is only valid for equal and not-equal conditions.
1391 DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1392 return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1393 } else if (kEnableFloatingPointStaticEvaluation) {
1394 if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1395 return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1396 } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1397 return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1398 }
1399 }
1400 return nullptr;
1401 }
1402
GetConstantRight() const1403 HConstant* HBinaryOperation::GetConstantRight() const {
1404 if (GetRight()->IsConstant()) {
1405 return GetRight()->AsConstant();
1406 } else if (IsCommutative() && GetLeft()->IsConstant()) {
1407 return GetLeft()->AsConstant();
1408 } else {
1409 return nullptr;
1410 }
1411 }
1412
1413 // If `GetConstantRight()` returns one of the input, this returns the other
1414 // one. Otherwise it returns null.
GetLeastConstantLeft() const1415 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1416 HInstruction* most_constant_right = GetConstantRight();
1417 if (most_constant_right == nullptr) {
1418 return nullptr;
1419 } else if (most_constant_right == GetLeft()) {
1420 return GetRight();
1421 } else {
1422 return GetLeft();
1423 }
1424 }
1425
operator <<(std::ostream & os,const ComparisonBias & rhs)1426 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1427 switch (rhs) {
1428 case ComparisonBias::kNoBias:
1429 return os << "no_bias";
1430 case ComparisonBias::kGtBias:
1431 return os << "gt_bias";
1432 case ComparisonBias::kLtBias:
1433 return os << "lt_bias";
1434 default:
1435 LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1436 UNREACHABLE();
1437 }
1438 }
1439
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1440 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1441 return this == instruction->GetPreviousDisregardingMoves();
1442 }
1443
Equals(const HInstruction * other) const1444 bool HInstruction::Equals(const HInstruction* other) const {
1445 if (!InstructionTypeEquals(other)) return false;
1446 DCHECK_EQ(GetKind(), other->GetKind());
1447 if (!InstructionDataEquals(other)) return false;
1448 if (GetType() != other->GetType()) return false;
1449 HConstInputsRef inputs = GetInputs();
1450 HConstInputsRef other_inputs = other->GetInputs();
1451 if (inputs.size() != other_inputs.size()) return false;
1452 for (size_t i = 0; i != inputs.size(); ++i) {
1453 if (inputs[i] != other_inputs[i]) return false;
1454 }
1455
1456 DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1457 return true;
1458 }
1459
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)1460 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1461 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1462 switch (rhs) {
1463 FOR_EACH_INSTRUCTION(DECLARE_CASE)
1464 default:
1465 os << "Unknown instruction kind " << static_cast<int>(rhs);
1466 break;
1467 }
1468 #undef DECLARE_CASE
1469 return os;
1470 }
1471
MoveBefore(HInstruction * cursor,bool do_checks)1472 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1473 if (do_checks) {
1474 DCHECK(!IsPhi());
1475 DCHECK(!IsControlFlow());
1476 DCHECK(CanBeMoved() ||
1477 // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1478 IsShouldDeoptimizeFlag());
1479 DCHECK(!cursor->IsPhi());
1480 }
1481
1482 next_->previous_ = previous_;
1483 if (previous_ != nullptr) {
1484 previous_->next_ = next_;
1485 }
1486 if (block_->instructions_.first_instruction_ == this) {
1487 block_->instructions_.first_instruction_ = next_;
1488 }
1489 DCHECK_NE(block_->instructions_.last_instruction_, this);
1490
1491 previous_ = cursor->previous_;
1492 if (previous_ != nullptr) {
1493 previous_->next_ = this;
1494 }
1495 next_ = cursor;
1496 cursor->previous_ = this;
1497 block_ = cursor->block_;
1498
1499 if (block_->instructions_.first_instruction_ == cursor) {
1500 block_->instructions_.first_instruction_ = this;
1501 }
1502 }
1503
MoveBeforeFirstUserAndOutOfLoops()1504 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1505 DCHECK(!CanThrow());
1506 DCHECK(!HasSideEffects());
1507 DCHECK(!HasEnvironmentUses());
1508 DCHECK(HasNonEnvironmentUses());
1509 DCHECK(!IsPhi()); // Makes no sense for Phi.
1510 DCHECK_EQ(InputCount(), 0u);
1511
1512 // Find the target block.
1513 auto uses_it = GetUses().begin();
1514 auto uses_end = GetUses().end();
1515 HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1516 ++uses_it;
1517 while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1518 ++uses_it;
1519 }
1520 if (uses_it != uses_end) {
1521 // This instruction has uses in two or more blocks. Find the common dominator.
1522 CommonDominator finder(target_block);
1523 for (; uses_it != uses_end; ++uses_it) {
1524 finder.Update(uses_it->GetUser()->GetBlock());
1525 }
1526 target_block = finder.Get();
1527 DCHECK(target_block != nullptr);
1528 }
1529 // Move to the first dominator not in a loop.
1530 while (target_block->IsInLoop()) {
1531 target_block = target_block->GetDominator();
1532 DCHECK(target_block != nullptr);
1533 }
1534
1535 // Find insertion position.
1536 HInstruction* insert_pos = nullptr;
1537 for (const HUseListNode<HInstruction*>& use : GetUses()) {
1538 if (use.GetUser()->GetBlock() == target_block &&
1539 (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1540 insert_pos = use.GetUser();
1541 }
1542 }
1543 if (insert_pos == nullptr) {
1544 // No user in `target_block`, insert before the control flow instruction.
1545 insert_pos = target_block->GetLastInstruction();
1546 DCHECK(insert_pos->IsControlFlow());
1547 // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1548 if (insert_pos->IsIf()) {
1549 HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1550 if (if_input == insert_pos->GetPrevious()) {
1551 insert_pos = if_input;
1552 }
1553 }
1554 }
1555 MoveBefore(insert_pos);
1556 }
1557
SplitBefore(HInstruction * cursor)1558 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1559 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1560 DCHECK_EQ(cursor->GetBlock(), this);
1561
1562 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1563 cursor->GetDexPc());
1564 new_block->instructions_.first_instruction_ = cursor;
1565 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1566 instructions_.last_instruction_ = cursor->previous_;
1567 if (cursor->previous_ == nullptr) {
1568 instructions_.first_instruction_ = nullptr;
1569 } else {
1570 cursor->previous_->next_ = nullptr;
1571 cursor->previous_ = nullptr;
1572 }
1573
1574 new_block->instructions_.SetBlockOfInstructions(new_block);
1575 AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc()));
1576
1577 for (HBasicBlock* successor : GetSuccessors()) {
1578 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1579 }
1580 new_block->successors_.swap(successors_);
1581 DCHECK(successors_.empty());
1582 AddSuccessor(new_block);
1583
1584 GetGraph()->AddBlock(new_block);
1585 return new_block;
1586 }
1587
CreateImmediateDominator()1588 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1589 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1590 DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1591
1592 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1593
1594 for (HBasicBlock* predecessor : GetPredecessors()) {
1595 predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1596 }
1597 new_block->predecessors_.swap(predecessors_);
1598 DCHECK(predecessors_.empty());
1599 AddPredecessor(new_block);
1600
1601 GetGraph()->AddBlock(new_block);
1602 return new_block;
1603 }
1604
SplitBeforeForInlining(HInstruction * cursor)1605 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1606 DCHECK_EQ(cursor->GetBlock(), this);
1607
1608 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1609 cursor->GetDexPc());
1610 new_block->instructions_.first_instruction_ = cursor;
1611 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1612 instructions_.last_instruction_ = cursor->previous_;
1613 if (cursor->previous_ == nullptr) {
1614 instructions_.first_instruction_ = nullptr;
1615 } else {
1616 cursor->previous_->next_ = nullptr;
1617 cursor->previous_ = nullptr;
1618 }
1619
1620 new_block->instructions_.SetBlockOfInstructions(new_block);
1621
1622 for (HBasicBlock* successor : GetSuccessors()) {
1623 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1624 }
1625 new_block->successors_.swap(successors_);
1626 DCHECK(successors_.empty());
1627
1628 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1629 dominated->dominator_ = new_block;
1630 }
1631 new_block->dominated_blocks_.swap(dominated_blocks_);
1632 DCHECK(dominated_blocks_.empty());
1633 return new_block;
1634 }
1635
SplitAfterForInlining(HInstruction * cursor)1636 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1637 DCHECK(!cursor->IsControlFlow());
1638 DCHECK_NE(instructions_.last_instruction_, cursor);
1639 DCHECK_EQ(cursor->GetBlock(), this);
1640
1641 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1642 new_block->instructions_.first_instruction_ = cursor->GetNext();
1643 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1644 cursor->next_->previous_ = nullptr;
1645 cursor->next_ = nullptr;
1646 instructions_.last_instruction_ = cursor;
1647
1648 new_block->instructions_.SetBlockOfInstructions(new_block);
1649 for (HBasicBlock* successor : GetSuccessors()) {
1650 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1651 }
1652 new_block->successors_.swap(successors_);
1653 DCHECK(successors_.empty());
1654
1655 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1656 dominated->dominator_ = new_block;
1657 }
1658 new_block->dominated_blocks_.swap(dominated_blocks_);
1659 DCHECK(dominated_blocks_.empty());
1660 return new_block;
1661 }
1662
ComputeTryEntryOfSuccessors() const1663 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1664 if (EndsWithTryBoundary()) {
1665 HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1666 if (try_boundary->IsEntry()) {
1667 DCHECK(!IsTryBlock());
1668 return try_boundary;
1669 } else {
1670 DCHECK(IsTryBlock());
1671 DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1672 return nullptr;
1673 }
1674 } else if (IsTryBlock()) {
1675 return &try_catch_information_->GetTryEntry();
1676 } else {
1677 return nullptr;
1678 }
1679 }
1680
HasThrowingInstructions() const1681 bool HBasicBlock::HasThrowingInstructions() const {
1682 for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1683 if (it.Current()->CanThrow()) {
1684 return true;
1685 }
1686 }
1687 return false;
1688 }
1689
HasOnlyOneInstruction(const HBasicBlock & block)1690 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1691 return block.GetPhis().IsEmpty()
1692 && !block.GetInstructions().IsEmpty()
1693 && block.GetFirstInstruction() == block.GetLastInstruction();
1694 }
1695
IsSingleGoto() const1696 bool HBasicBlock::IsSingleGoto() const {
1697 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1698 }
1699
IsSingleTryBoundary() const1700 bool HBasicBlock::IsSingleTryBoundary() const {
1701 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1702 }
1703
EndsWithControlFlowInstruction() const1704 bool HBasicBlock::EndsWithControlFlowInstruction() const {
1705 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1706 }
1707
EndsWithIf() const1708 bool HBasicBlock::EndsWithIf() const {
1709 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
1710 }
1711
EndsWithTryBoundary() const1712 bool HBasicBlock::EndsWithTryBoundary() const {
1713 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
1714 }
1715
HasSinglePhi() const1716 bool HBasicBlock::HasSinglePhi() const {
1717 return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
1718 }
1719
GetNormalSuccessors() const1720 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
1721 if (EndsWithTryBoundary()) {
1722 // The normal-flow successor of HTryBoundary is always stored at index zero.
1723 DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
1724 return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
1725 } else {
1726 // All successors of blocks not ending with TryBoundary are normal.
1727 return ArrayRef<HBasicBlock* const>(successors_);
1728 }
1729 }
1730
GetExceptionalSuccessors() const1731 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
1732 if (EndsWithTryBoundary()) {
1733 return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
1734 } else {
1735 // Blocks not ending with TryBoundary do not have exceptional successors.
1736 return ArrayRef<HBasicBlock* const>();
1737 }
1738 }
1739
HasSameExceptionHandlersAs(const HTryBoundary & other) const1740 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
1741 ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
1742 ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
1743
1744 size_t length = handlers1.size();
1745 if (length != handlers2.size()) {
1746 return false;
1747 }
1748
1749 // Exception handlers need to be stored in the same order.
1750 for (size_t i = 0; i < length; ++i) {
1751 if (handlers1[i] != handlers2[i]) {
1752 return false;
1753 }
1754 }
1755 return true;
1756 }
1757
CountSize() const1758 size_t HInstructionList::CountSize() const {
1759 size_t size = 0;
1760 HInstruction* current = first_instruction_;
1761 for (; current != nullptr; current = current->GetNext()) {
1762 size++;
1763 }
1764 return size;
1765 }
1766
SetBlockOfInstructions(HBasicBlock * block) const1767 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
1768 for (HInstruction* current = first_instruction_;
1769 current != nullptr;
1770 current = current->GetNext()) {
1771 current->SetBlock(block);
1772 }
1773 }
1774
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)1775 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
1776 DCHECK(Contains(cursor));
1777 if (!instruction_list.IsEmpty()) {
1778 if (cursor == last_instruction_) {
1779 last_instruction_ = instruction_list.last_instruction_;
1780 } else {
1781 cursor->next_->previous_ = instruction_list.last_instruction_;
1782 }
1783 instruction_list.last_instruction_->next_ = cursor->next_;
1784 cursor->next_ = instruction_list.first_instruction_;
1785 instruction_list.first_instruction_->previous_ = cursor;
1786 }
1787 }
1788
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)1789 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
1790 DCHECK(Contains(cursor));
1791 if (!instruction_list.IsEmpty()) {
1792 if (cursor == first_instruction_) {
1793 first_instruction_ = instruction_list.first_instruction_;
1794 } else {
1795 cursor->previous_->next_ = instruction_list.first_instruction_;
1796 }
1797 instruction_list.last_instruction_->next_ = cursor;
1798 instruction_list.first_instruction_->previous_ = cursor->previous_;
1799 cursor->previous_ = instruction_list.last_instruction_;
1800 }
1801 }
1802
Add(const HInstructionList & instruction_list)1803 void HInstructionList::Add(const HInstructionList& instruction_list) {
1804 if (IsEmpty()) {
1805 first_instruction_ = instruction_list.first_instruction_;
1806 last_instruction_ = instruction_list.last_instruction_;
1807 } else {
1808 AddAfter(last_instruction_, instruction_list);
1809 }
1810 }
1811
1812 // Should be called on instructions in a dead block in post order. This method
1813 // assumes `insn` has been removed from all users with the exception of catch
1814 // phis because of missing exceptional edges in the graph. It removes the
1815 // instruction from catch phi uses, together with inputs of other catch phis in
1816 // the catch block at the same index, as these must be dead too.
RemoveUsesOfDeadInstruction(HInstruction * insn)1817 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
1818 DCHECK(!insn->HasEnvironmentUses());
1819 while (insn->HasNonEnvironmentUses()) {
1820 const HUseListNode<HInstruction*>& use = insn->GetUses().front();
1821 size_t use_index = use.GetIndex();
1822 HBasicBlock* user_block = use.GetUser()->GetBlock();
1823 DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
1824 for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1825 phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
1826 }
1827 }
1828 }
1829
DisconnectAndDelete()1830 void HBasicBlock::DisconnectAndDelete() {
1831 // Dominators must be removed after all the blocks they dominate. This way
1832 // a loop header is removed last, a requirement for correct loop information
1833 // iteration.
1834 DCHECK(dominated_blocks_.empty());
1835
1836 // The following steps gradually remove the block from all its dependants in
1837 // post order (b/27683071).
1838
1839 // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
1840 // We need to do this before step (4) which destroys the predecessor list.
1841 HBasicBlock* loop_update_start = this;
1842 if (IsLoopHeader()) {
1843 HLoopInformation* loop_info = GetLoopInformation();
1844 // All other blocks in this loop should have been removed because the header
1845 // was their dominator.
1846 // Note that we do not remove `this` from `loop_info` as it is unreachable.
1847 DCHECK(!loop_info->IsIrreducible());
1848 DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
1849 DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
1850 loop_update_start = loop_info->GetPreHeader();
1851 }
1852
1853 // (2) Disconnect the block from its successors and update their phis.
1854 for (HBasicBlock* successor : successors_) {
1855 // Delete this block from the list of predecessors.
1856 size_t this_index = successor->GetPredecessorIndexOf(this);
1857 successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
1858
1859 // Check that `successor` has other predecessors, otherwise `this` is the
1860 // dominator of `successor` which violates the order DCHECKed at the top.
1861 DCHECK(!successor->predecessors_.empty());
1862
1863 // Remove this block's entries in the successor's phis. Skip exceptional
1864 // successors because catch phi inputs do not correspond to predecessor
1865 // blocks but throwing instructions. The inputs of the catch phis will be
1866 // updated in step (3).
1867 if (!successor->IsCatchBlock()) {
1868 if (successor->predecessors_.size() == 1u) {
1869 // The successor has just one predecessor left. Replace phis with the only
1870 // remaining input.
1871 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1872 HPhi* phi = phi_it.Current()->AsPhi();
1873 phi->ReplaceWith(phi->InputAt(1 - this_index));
1874 successor->RemovePhi(phi);
1875 }
1876 } else {
1877 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1878 phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
1879 }
1880 }
1881 }
1882 }
1883 successors_.clear();
1884
1885 // (3) Remove instructions and phis. Instructions should have no remaining uses
1886 // except in catch phis. If an instruction is used by a catch phi at `index`,
1887 // remove `index`-th input of all phis in the catch block since they are
1888 // guaranteed dead. Note that we may miss dead inputs this way but the
1889 // graph will always remain consistent.
1890 for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1891 HInstruction* insn = it.Current();
1892 RemoveUsesOfDeadInstruction(insn);
1893 RemoveInstruction(insn);
1894 }
1895 for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
1896 HPhi* insn = it.Current()->AsPhi();
1897 RemoveUsesOfDeadInstruction(insn);
1898 RemovePhi(insn);
1899 }
1900
1901 // (4) Disconnect the block from its predecessors and update their
1902 // control-flow instructions.
1903 for (HBasicBlock* predecessor : predecessors_) {
1904 // We should not see any back edges as they would have been removed by step (3).
1905 DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
1906
1907 HInstruction* last_instruction = predecessor->GetLastInstruction();
1908 if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
1909 // This block is the only normal-flow successor of the TryBoundary which
1910 // makes `predecessor` dead. Since DCE removes blocks in post order,
1911 // exception handlers of this TryBoundary were already visited and any
1912 // remaining handlers therefore must be live. We remove `predecessor` from
1913 // their list of predecessors.
1914 DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
1915 while (predecessor->GetSuccessors().size() > 1) {
1916 HBasicBlock* handler = predecessor->GetSuccessors()[1];
1917 DCHECK(handler->IsCatchBlock());
1918 predecessor->RemoveSuccessor(handler);
1919 handler->RemovePredecessor(predecessor);
1920 }
1921 }
1922
1923 predecessor->RemoveSuccessor(this);
1924 uint32_t num_pred_successors = predecessor->GetSuccessors().size();
1925 if (num_pred_successors == 1u) {
1926 // If we have one successor after removing one, then we must have
1927 // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
1928 // successor. Replace those with a HGoto.
1929 DCHECK(last_instruction->IsIf() ||
1930 last_instruction->IsPackedSwitch() ||
1931 (last_instruction->IsTryBoundary() && IsCatchBlock()));
1932 predecessor->RemoveInstruction(last_instruction);
1933 predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc()));
1934 } else if (num_pred_successors == 0u) {
1935 // The predecessor has no remaining successors and therefore must be dead.
1936 // We deliberately leave it without a control-flow instruction so that the
1937 // GraphChecker fails unless it is not removed during the pass too.
1938 predecessor->RemoveInstruction(last_instruction);
1939 } else {
1940 // There are multiple successors left. The removed block might be a successor
1941 // of a PackedSwitch which will be completely removed (perhaps replaced with
1942 // a Goto), or we are deleting a catch block from a TryBoundary. In either
1943 // case, leave `last_instruction` as is for now.
1944 DCHECK(last_instruction->IsPackedSwitch() ||
1945 (last_instruction->IsTryBoundary() && IsCatchBlock()));
1946 }
1947 }
1948 predecessors_.clear();
1949
1950 // (5) Remove the block from all loops it is included in. Skip the inner-most
1951 // loop if this is the loop header (see definition of `loop_update_start`)
1952 // because the loop header's predecessor list has been destroyed in step (4).
1953 for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
1954 HLoopInformation* loop_info = it.Current();
1955 loop_info->Remove(this);
1956 if (loop_info->IsBackEdge(*this)) {
1957 // If this was the last back edge of the loop, we deliberately leave the
1958 // loop in an inconsistent state and will fail GraphChecker unless the
1959 // entire loop is removed during the pass.
1960 loop_info->RemoveBackEdge(this);
1961 }
1962 }
1963
1964 // (6) Disconnect from the dominator.
1965 dominator_->RemoveDominatedBlock(this);
1966 SetDominator(nullptr);
1967
1968 // (7) Delete from the graph, update reverse post order.
1969 graph_->DeleteDeadEmptyBlock(this);
1970 SetGraph(nullptr);
1971 }
1972
MergeInstructionsWith(HBasicBlock * other)1973 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
1974 DCHECK(EndsWithControlFlowInstruction());
1975 RemoveInstruction(GetLastInstruction());
1976 instructions_.Add(other->GetInstructions());
1977 other->instructions_.SetBlockOfInstructions(this);
1978 other->instructions_.Clear();
1979 }
1980
MergeWith(HBasicBlock * other)1981 void HBasicBlock::MergeWith(HBasicBlock* other) {
1982 DCHECK_EQ(GetGraph(), other->GetGraph());
1983 DCHECK(ContainsElement(dominated_blocks_, other));
1984 DCHECK_EQ(GetSingleSuccessor(), other);
1985 DCHECK_EQ(other->GetSinglePredecessor(), this);
1986 DCHECK(other->GetPhis().IsEmpty());
1987
1988 // Move instructions from `other` to `this`.
1989 MergeInstructionsWith(other);
1990
1991 // Remove `other` from the loops it is included in.
1992 for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
1993 HLoopInformation* loop_info = it.Current();
1994 loop_info->Remove(other);
1995 if (loop_info->IsBackEdge(*other)) {
1996 loop_info->ReplaceBackEdge(other, this);
1997 }
1998 }
1999
2000 // Update links to the successors of `other`.
2001 successors_.clear();
2002 for (HBasicBlock* successor : other->GetSuccessors()) {
2003 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2004 }
2005 successors_.swap(other->successors_);
2006 DCHECK(other->successors_.empty());
2007
2008 // Update the dominator tree.
2009 RemoveDominatedBlock(other);
2010 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2011 dominated->SetDominator(this);
2012 }
2013 dominated_blocks_.insert(
2014 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2015 other->dominated_blocks_.clear();
2016 other->dominator_ = nullptr;
2017
2018 // Clear the list of predecessors of `other` in preparation of deleting it.
2019 other->predecessors_.clear();
2020
2021 // Delete `other` from the graph. The function updates reverse post order.
2022 graph_->DeleteDeadEmptyBlock(other);
2023 other->SetGraph(nullptr);
2024 }
2025
MergeWithInlined(HBasicBlock * other)2026 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
2027 DCHECK_NE(GetGraph(), other->GetGraph());
2028 DCHECK(GetDominatedBlocks().empty());
2029 DCHECK(GetSuccessors().empty());
2030 DCHECK(!EndsWithControlFlowInstruction());
2031 DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
2032 DCHECK(other->GetPhis().IsEmpty());
2033 DCHECK(!other->IsInLoop());
2034
2035 // Move instructions from `other` to `this`.
2036 instructions_.Add(other->GetInstructions());
2037 other->instructions_.SetBlockOfInstructions(this);
2038
2039 // Update links to the successors of `other`.
2040 successors_.clear();
2041 for (HBasicBlock* successor : other->GetSuccessors()) {
2042 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2043 }
2044 successors_.swap(other->successors_);
2045 DCHECK(other->successors_.empty());
2046
2047 // Update the dominator tree.
2048 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2049 dominated->SetDominator(this);
2050 }
2051 dominated_blocks_.insert(
2052 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2053 other->dominated_blocks_.clear();
2054 other->dominator_ = nullptr;
2055 other->graph_ = nullptr;
2056 }
2057
ReplaceWith(HBasicBlock * other)2058 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
2059 while (!GetPredecessors().empty()) {
2060 HBasicBlock* predecessor = GetPredecessors()[0];
2061 predecessor->ReplaceSuccessor(this, other);
2062 }
2063 while (!GetSuccessors().empty()) {
2064 HBasicBlock* successor = GetSuccessors()[0];
2065 successor->ReplacePredecessor(this, other);
2066 }
2067 for (HBasicBlock* dominated : GetDominatedBlocks()) {
2068 other->AddDominatedBlock(dominated);
2069 }
2070 GetDominator()->ReplaceDominatedBlock(this, other);
2071 other->SetDominator(GetDominator());
2072 dominator_ = nullptr;
2073 graph_ = nullptr;
2074 }
2075
DeleteDeadEmptyBlock(HBasicBlock * block)2076 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
2077 DCHECK_EQ(block->GetGraph(), this);
2078 DCHECK(block->GetSuccessors().empty());
2079 DCHECK(block->GetPredecessors().empty());
2080 DCHECK(block->GetDominatedBlocks().empty());
2081 DCHECK(block->GetDominator() == nullptr);
2082 DCHECK(block->GetInstructions().IsEmpty());
2083 DCHECK(block->GetPhis().IsEmpty());
2084
2085 if (block->IsExitBlock()) {
2086 SetExitBlock(nullptr);
2087 }
2088
2089 RemoveElement(reverse_post_order_, block);
2090 blocks_[block->GetBlockId()] = nullptr;
2091 block->SetGraph(nullptr);
2092 }
2093
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge)2094 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
2095 HBasicBlock* reference,
2096 bool replace_if_back_edge) {
2097 if (block->IsLoopHeader()) {
2098 // Clear the information of which blocks are contained in that loop. Since the
2099 // information is stored as a bit vector based on block ids, we have to update
2100 // it, as those block ids were specific to the callee graph and we are now adding
2101 // these blocks to the caller graph.
2102 block->GetLoopInformation()->ClearAllBlocks();
2103 }
2104
2105 // If not already in a loop, update the loop information.
2106 if (!block->IsInLoop()) {
2107 block->SetLoopInformation(reference->GetLoopInformation());
2108 }
2109
2110 // If the block is in a loop, update all its outward loops.
2111 HLoopInformation* loop_info = block->GetLoopInformation();
2112 if (loop_info != nullptr) {
2113 for (HLoopInformationOutwardIterator loop_it(*block);
2114 !loop_it.Done();
2115 loop_it.Advance()) {
2116 loop_it.Current()->Add(block);
2117 }
2118 if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2119 loop_info->ReplaceBackEdge(reference, block);
2120 }
2121 }
2122
2123 // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2124 TryCatchInformation* try_catch_info = reference->IsTryBlock()
2125 ? reference->GetTryCatchInformation()
2126 : nullptr;
2127 block->SetTryCatchInformation(try_catch_info);
2128 }
2129
InlineInto(HGraph * outer_graph,HInvoke * invoke)2130 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2131 DCHECK(HasExitBlock()) << "Unimplemented scenario";
2132 // Update the environments in this graph to have the invoke's environment
2133 // as parent.
2134 {
2135 // Skip the entry block, we do not need to update the entry's suspend check.
2136 for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2137 for (HInstructionIterator instr_it(block->GetInstructions());
2138 !instr_it.Done();
2139 instr_it.Advance()) {
2140 HInstruction* current = instr_it.Current();
2141 if (current->NeedsEnvironment()) {
2142 DCHECK(current->HasEnvironment());
2143 current->GetEnvironment()->SetAndCopyParentChain(
2144 outer_graph->GetArena(), invoke->GetEnvironment());
2145 }
2146 }
2147 }
2148 }
2149 outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2150
2151 if (HasBoundsChecks()) {
2152 outer_graph->SetHasBoundsChecks(true);
2153 }
2154 if (HasLoops()) {
2155 outer_graph->SetHasLoops(true);
2156 }
2157 if (HasIrreducibleLoops()) {
2158 outer_graph->SetHasIrreducibleLoops(true);
2159 }
2160 if (HasTryCatch()) {
2161 outer_graph->SetHasTryCatch(true);
2162 }
2163 if (HasSIMD()) {
2164 outer_graph->SetHasSIMD(true);
2165 }
2166
2167 HInstruction* return_value = nullptr;
2168 if (GetBlocks().size() == 3) {
2169 // Inliner already made sure we don't inline methods that always throw.
2170 DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2171 // Simple case of an entry block, a body block, and an exit block.
2172 // Put the body block's instruction into `invoke`'s block.
2173 HBasicBlock* body = GetBlocks()[1];
2174 DCHECK(GetBlocks()[0]->IsEntryBlock());
2175 DCHECK(GetBlocks()[2]->IsExitBlock());
2176 DCHECK(!body->IsExitBlock());
2177 DCHECK(!body->IsInLoop());
2178 HInstruction* last = body->GetLastInstruction();
2179
2180 // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2181 invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2182 body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2183
2184 // Replace the invoke with the return value of the inlined graph.
2185 if (last->IsReturn()) {
2186 return_value = last->InputAt(0);
2187 } else {
2188 DCHECK(last->IsReturnVoid());
2189 }
2190
2191 invoke->GetBlock()->RemoveInstruction(last);
2192 } else {
2193 // Need to inline multiple blocks. We split `invoke`'s block
2194 // into two blocks, merge the first block of the inlined graph into
2195 // the first half, and replace the exit block of the inlined graph
2196 // with the second half.
2197 ArenaAllocator* allocator = outer_graph->GetArena();
2198 HBasicBlock* at = invoke->GetBlock();
2199 // Note that we split before the invoke only to simplify polymorphic inlining.
2200 HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2201
2202 HBasicBlock* first = entry_block_->GetSuccessors()[0];
2203 DCHECK(!first->IsInLoop());
2204 at->MergeWithInlined(first);
2205 exit_block_->ReplaceWith(to);
2206
2207 // Update the meta information surrounding blocks:
2208 // (1) the graph they are now in,
2209 // (2) the reverse post order of that graph,
2210 // (3) their potential loop information, inner and outer,
2211 // (4) try block membership.
2212 // Note that we do not need to update catch phi inputs because they
2213 // correspond to the register file of the outer method which the inlinee
2214 // cannot modify.
2215
2216 // We don't add the entry block, the exit block, and the first block, which
2217 // has been merged with `at`.
2218 static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2219
2220 // We add the `to` block.
2221 static constexpr int kNumberOfNewBlocksInCaller = 1;
2222 size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2223 + kNumberOfNewBlocksInCaller;
2224
2225 // Find the location of `at` in the outer graph's reverse post order. The new
2226 // blocks will be added after it.
2227 size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2228 MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2229
2230 // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2231 // and (4) to the blocks that apply.
2232 for (HBasicBlock* current : GetReversePostOrder()) {
2233 if (current != exit_block_ && current != entry_block_ && current != first) {
2234 DCHECK(current->GetTryCatchInformation() == nullptr);
2235 DCHECK(current->GetGraph() == this);
2236 current->SetGraph(outer_graph);
2237 outer_graph->AddBlock(current);
2238 outer_graph->reverse_post_order_[++index_of_at] = current;
2239 UpdateLoopAndTryInformationOfNewBlock(current, at, /* replace_if_back_edge */ false);
2240 }
2241 }
2242
2243 // Do (1), (2), (3) and (4) to `to`.
2244 to->SetGraph(outer_graph);
2245 outer_graph->AddBlock(to);
2246 outer_graph->reverse_post_order_[++index_of_at] = to;
2247 // Only `to` can become a back edge, as the inlined blocks
2248 // are predecessors of `to`.
2249 UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
2250
2251 // Update all predecessors of the exit block (now the `to` block)
2252 // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2253 // to now get the outer graph exit block as successor. Note that the inliner
2254 // currently doesn't support inlining methods with try/catch.
2255 HPhi* return_value_phi = nullptr;
2256 bool rerun_dominance = false;
2257 bool rerun_loop_analysis = false;
2258 for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2259 HBasicBlock* predecessor = to->GetPredecessors()[pred];
2260 HInstruction* last = predecessor->GetLastInstruction();
2261 if (last->IsThrow()) {
2262 DCHECK(!at->IsTryBlock());
2263 predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2264 --pred;
2265 // We need to re-run dominance information, as the exit block now has
2266 // a new dominator.
2267 rerun_dominance = true;
2268 if (predecessor->GetLoopInformation() != nullptr) {
2269 // The exit block and blocks post dominated by the exit block do not belong
2270 // to any loop. Because we do not compute the post dominators, we need to re-run
2271 // loop analysis to get the loop information correct.
2272 rerun_loop_analysis = true;
2273 }
2274 } else {
2275 if (last->IsReturnVoid()) {
2276 DCHECK(return_value == nullptr);
2277 DCHECK(return_value_phi == nullptr);
2278 } else {
2279 DCHECK(last->IsReturn());
2280 if (return_value_phi != nullptr) {
2281 return_value_phi->AddInput(last->InputAt(0));
2282 } else if (return_value == nullptr) {
2283 return_value = last->InputAt(0);
2284 } else {
2285 // There will be multiple returns.
2286 return_value_phi = new (allocator) HPhi(
2287 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2288 to->AddPhi(return_value_phi);
2289 return_value_phi->AddInput(return_value);
2290 return_value_phi->AddInput(last->InputAt(0));
2291 return_value = return_value_phi;
2292 }
2293 }
2294 predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2295 predecessor->RemoveInstruction(last);
2296 }
2297 }
2298 if (rerun_loop_analysis) {
2299 DCHECK(!outer_graph->HasIrreducibleLoops())
2300 << "Recomputing loop information in graphs with irreducible loops "
2301 << "is unsupported, as it could lead to loop header changes";
2302 outer_graph->ClearLoopInformation();
2303 outer_graph->ClearDominanceInformation();
2304 outer_graph->BuildDominatorTree();
2305 } else if (rerun_dominance) {
2306 outer_graph->ClearDominanceInformation();
2307 outer_graph->ComputeDominanceInformation();
2308 }
2309 }
2310
2311 // Walk over the entry block and:
2312 // - Move constants from the entry block to the outer_graph's entry block,
2313 // - Replace HParameterValue instructions with their real value.
2314 // - Remove suspend checks, that hold an environment.
2315 // We must do this after the other blocks have been inlined, otherwise ids of
2316 // constants could overlap with the inner graph.
2317 size_t parameter_index = 0;
2318 for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2319 HInstruction* current = it.Current();
2320 HInstruction* replacement = nullptr;
2321 if (current->IsNullConstant()) {
2322 replacement = outer_graph->GetNullConstant(current->GetDexPc());
2323 } else if (current->IsIntConstant()) {
2324 replacement = outer_graph->GetIntConstant(
2325 current->AsIntConstant()->GetValue(), current->GetDexPc());
2326 } else if (current->IsLongConstant()) {
2327 replacement = outer_graph->GetLongConstant(
2328 current->AsLongConstant()->GetValue(), current->GetDexPc());
2329 } else if (current->IsFloatConstant()) {
2330 replacement = outer_graph->GetFloatConstant(
2331 current->AsFloatConstant()->GetValue(), current->GetDexPc());
2332 } else if (current->IsDoubleConstant()) {
2333 replacement = outer_graph->GetDoubleConstant(
2334 current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2335 } else if (current->IsParameterValue()) {
2336 if (kIsDebugBuild
2337 && invoke->IsInvokeStaticOrDirect()
2338 && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2339 // Ensure we do not use the last input of `invoke`, as it
2340 // contains a clinit check which is not an actual argument.
2341 size_t last_input_index = invoke->InputCount() - 1;
2342 DCHECK(parameter_index != last_input_index);
2343 }
2344 replacement = invoke->InputAt(parameter_index++);
2345 } else if (current->IsCurrentMethod()) {
2346 replacement = outer_graph->GetCurrentMethod();
2347 } else {
2348 DCHECK(current->IsGoto() || current->IsSuspendCheck());
2349 entry_block_->RemoveInstruction(current);
2350 }
2351 if (replacement != nullptr) {
2352 current->ReplaceWith(replacement);
2353 // If the current is the return value then we need to update the latter.
2354 if (current == return_value) {
2355 DCHECK_EQ(entry_block_, return_value->GetBlock());
2356 return_value = replacement;
2357 }
2358 }
2359 }
2360
2361 return return_value;
2362 }
2363
2364 /*
2365 * Loop will be transformed to:
2366 * old_pre_header
2367 * |
2368 * if_block
2369 * / \
2370 * true_block false_block
2371 * \ /
2372 * new_pre_header
2373 * |
2374 * header
2375 */
TransformLoopHeaderForBCE(HBasicBlock * header)2376 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2377 DCHECK(header->IsLoopHeader());
2378 HBasicBlock* old_pre_header = header->GetDominator();
2379
2380 // Need extra block to avoid critical edge.
2381 HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2382 HBasicBlock* true_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2383 HBasicBlock* false_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2384 HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2385 AddBlock(if_block);
2386 AddBlock(true_block);
2387 AddBlock(false_block);
2388 AddBlock(new_pre_header);
2389
2390 header->ReplacePredecessor(old_pre_header, new_pre_header);
2391 old_pre_header->successors_.clear();
2392 old_pre_header->dominated_blocks_.clear();
2393
2394 old_pre_header->AddSuccessor(if_block);
2395 if_block->AddSuccessor(true_block); // True successor
2396 if_block->AddSuccessor(false_block); // False successor
2397 true_block->AddSuccessor(new_pre_header);
2398 false_block->AddSuccessor(new_pre_header);
2399
2400 old_pre_header->dominated_blocks_.push_back(if_block);
2401 if_block->SetDominator(old_pre_header);
2402 if_block->dominated_blocks_.push_back(true_block);
2403 true_block->SetDominator(if_block);
2404 if_block->dominated_blocks_.push_back(false_block);
2405 false_block->SetDominator(if_block);
2406 if_block->dominated_blocks_.push_back(new_pre_header);
2407 new_pre_header->SetDominator(if_block);
2408 new_pre_header->dominated_blocks_.push_back(header);
2409 header->SetDominator(new_pre_header);
2410
2411 // Fix reverse post order.
2412 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2413 MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2414 reverse_post_order_[index_of_header++] = if_block;
2415 reverse_post_order_[index_of_header++] = true_block;
2416 reverse_post_order_[index_of_header++] = false_block;
2417 reverse_post_order_[index_of_header++] = new_pre_header;
2418
2419 // The pre_header can never be a back edge of a loop.
2420 DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2421 !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2422 UpdateLoopAndTryInformationOfNewBlock(
2423 if_block, old_pre_header, /* replace_if_back_edge */ false);
2424 UpdateLoopAndTryInformationOfNewBlock(
2425 true_block, old_pre_header, /* replace_if_back_edge */ false);
2426 UpdateLoopAndTryInformationOfNewBlock(
2427 false_block, old_pre_header, /* replace_if_back_edge */ false);
2428 UpdateLoopAndTryInformationOfNewBlock(
2429 new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
2430 }
2431
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)2432 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
2433 HBasicBlock* body,
2434 HBasicBlock* exit) {
2435 DCHECK(header->IsLoopHeader());
2436 HLoopInformation* loop = header->GetLoopInformation();
2437
2438 // Add new loop blocks.
2439 HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2440 HBasicBlock* new_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2441 HBasicBlock* new_body = new (arena_) HBasicBlock(this, header->GetDexPc());
2442 AddBlock(new_pre_header);
2443 AddBlock(new_header);
2444 AddBlock(new_body);
2445
2446 // Set up control flow.
2447 header->ReplaceSuccessor(exit, new_pre_header);
2448 new_pre_header->AddSuccessor(new_header);
2449 new_header->AddSuccessor(exit);
2450 new_header->AddSuccessor(new_body);
2451 new_body->AddSuccessor(new_header);
2452
2453 // Set up dominators.
2454 header->ReplaceDominatedBlock(exit, new_pre_header);
2455 new_pre_header->SetDominator(header);
2456 new_pre_header->dominated_blocks_.push_back(new_header);
2457 new_header->SetDominator(new_pre_header);
2458 new_header->dominated_blocks_.push_back(new_body);
2459 new_body->SetDominator(new_header);
2460 new_header->dominated_blocks_.push_back(exit);
2461 exit->SetDominator(new_header);
2462
2463 // Fix reverse post order.
2464 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2465 MakeRoomFor(&reverse_post_order_, 2, index_of_header);
2466 reverse_post_order_[++index_of_header] = new_pre_header;
2467 reverse_post_order_[++index_of_header] = new_header;
2468 size_t index_of_body = IndexOfElement(reverse_post_order_, body);
2469 MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
2470 reverse_post_order_[index_of_body] = new_body;
2471
2472 // Add gotos and suspend check (client must add conditional in header).
2473 new_pre_header->AddInstruction(new (arena_) HGoto());
2474 HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(header->GetDexPc());
2475 new_header->AddInstruction(suspend_check);
2476 new_body->AddInstruction(new (arena_) HGoto());
2477 suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
2478 loop->GetSuspendCheck()->GetEnvironment(), header);
2479
2480 // Update loop information.
2481 new_header->AddBackEdge(new_body);
2482 new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
2483 new_header->GetLoopInformation()->Populate();
2484 new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation()); // outward
2485 HLoopInformationOutwardIterator it(*new_header);
2486 for (it.Advance(); !it.Done(); it.Advance()) {
2487 it.Current()->Add(new_pre_header);
2488 it.Current()->Add(new_header);
2489 it.Current()->Add(new_body);
2490 }
2491 return new_pre_header;
2492 }
2493
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)2494 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2495 REQUIRES_SHARED(Locks::mutator_lock_) {
2496 if (rti.IsValid()) {
2497 DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2498 << " upper_bound_rti: " << upper_bound_rti
2499 << " rti: " << rti;
2500 DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2501 << " upper_bound_rti: " << upper_bound_rti
2502 << " rti: " << rti;
2503 }
2504 }
2505
SetReferenceTypeInfo(ReferenceTypeInfo rti)2506 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2507 if (kIsDebugBuild) {
2508 DCHECK_EQ(GetType(), Primitive::kPrimNot);
2509 ScopedObjectAccess soa(Thread::Current());
2510 DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2511 if (IsBoundType()) {
2512 // Having the test here spares us from making the method virtual just for
2513 // the sake of a DCHECK.
2514 CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2515 }
2516 }
2517 reference_type_handle_ = rti.GetTypeHandle();
2518 SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2519 }
2520
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)2521 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2522 if (kIsDebugBuild) {
2523 ScopedObjectAccess soa(Thread::Current());
2524 DCHECK(upper_bound.IsValid());
2525 DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2526 CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2527 }
2528 upper_bound_ = upper_bound;
2529 SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2530 }
2531
Create(TypeHandle type_handle,bool is_exact)2532 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2533 if (kIsDebugBuild) {
2534 ScopedObjectAccess soa(Thread::Current());
2535 DCHECK(IsValidHandle(type_handle));
2536 if (!is_exact) {
2537 DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2538 << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2539 }
2540 }
2541 return ReferenceTypeInfo(type_handle, is_exact);
2542 }
2543
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)2544 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2545 ScopedObjectAccess soa(Thread::Current());
2546 os << "["
2547 << " is_valid=" << rhs.IsValid()
2548 << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
2549 << " is_exact=" << rhs.IsExact()
2550 << " ]";
2551 return os;
2552 }
2553
HasAnyEnvironmentUseBefore(HInstruction * other)2554 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2555 // For now, assume that instructions in different blocks may use the
2556 // environment.
2557 // TODO: Use the control flow to decide if this is true.
2558 if (GetBlock() != other->GetBlock()) {
2559 return true;
2560 }
2561
2562 // We know that we are in the same block. Walk from 'this' to 'other',
2563 // checking to see if there is any instruction with an environment.
2564 HInstruction* current = this;
2565 for (; current != other && current != nullptr; current = current->GetNext()) {
2566 // This is a conservative check, as the instruction result may not be in
2567 // the referenced environment.
2568 if (current->HasEnvironment()) {
2569 return true;
2570 }
2571 }
2572
2573 // We should have been called with 'this' before 'other' in the block.
2574 // Just confirm this.
2575 DCHECK(current != nullptr);
2576 return false;
2577 }
2578
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)2579 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2580 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2581 IntrinsicSideEffects side_effects,
2582 IntrinsicExceptions exceptions) {
2583 intrinsic_ = intrinsic;
2584 IntrinsicOptimizations opt(this);
2585
2586 // Adjust method's side effects from intrinsic table.
2587 switch (side_effects) {
2588 case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2589 case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2590 case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2591 case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2592 }
2593
2594 if (needs_env_or_cache == kNoEnvironmentOrCache) {
2595 opt.SetDoesNotNeedDexCache();
2596 opt.SetDoesNotNeedEnvironment();
2597 } else {
2598 // If we need an environment, that means there will be a call, which can trigger GC.
2599 SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2600 }
2601 // Adjust method's exception status from intrinsic table.
2602 SetCanThrow(exceptions == kCanThrow);
2603 }
2604
IsStringAlloc() const2605 bool HNewInstance::IsStringAlloc() const {
2606 ScopedObjectAccess soa(Thread::Current());
2607 return GetReferenceTypeInfo().IsStringClass();
2608 }
2609
NeedsEnvironment() const2610 bool HInvoke::NeedsEnvironment() const {
2611 if (!IsIntrinsic()) {
2612 return true;
2613 }
2614 IntrinsicOptimizations opt(*this);
2615 return !opt.GetDoesNotNeedEnvironment();
2616 }
2617
GetDexFileForPcRelativeDexCache() const2618 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
2619 ArtMethod* caller = GetEnvironment()->GetMethod();
2620 ScopedObjectAccess soa(Thread::Current());
2621 // `caller` is null for a top-level graph representing a method whose declaring
2622 // class was not resolved.
2623 return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
2624 }
2625
NeedsDexCacheOfDeclaringClass() const2626 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2627 if (GetMethodLoadKind() != MethodLoadKind::kRuntimeCall) {
2628 return false;
2629 }
2630 if (!IsIntrinsic()) {
2631 return true;
2632 }
2633 IntrinsicOptimizations opt(*this);
2634 return !opt.GetDoesNotNeedDexCache();
2635 }
2636
operator <<(std::ostream & os,HInvokeStaticOrDirect::MethodLoadKind rhs)2637 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2638 switch (rhs) {
2639 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2640 return os << "StringInit";
2641 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2642 return os << "Recursive";
2643 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative:
2644 return os << "BootImageLinkTimePcRelative";
2645 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
2646 return os << "DirectAddress";
2647 case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry:
2648 return os << "BssEntry";
2649 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
2650 return os << "RuntimeCall";
2651 default:
2652 LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2653 UNREACHABLE();
2654 }
2655 }
2656
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)2657 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2658 switch (rhs) {
2659 case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2660 return os << "explicit";
2661 case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2662 return os << "implicit";
2663 case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2664 return os << "none";
2665 default:
2666 LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2667 UNREACHABLE();
2668 }
2669 }
2670
InstructionDataEquals(const HInstruction * other) const2671 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
2672 const HLoadClass* other_load_class = other->AsLoadClass();
2673 // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
2674 // names rather than type indexes. However, we shall also have to re-think the hash code.
2675 if (type_index_ != other_load_class->type_index_ ||
2676 GetPackedFields() != other_load_class->GetPackedFields()) {
2677 return false;
2678 }
2679 switch (GetLoadKind()) {
2680 case LoadKind::kBootImageAddress:
2681 case LoadKind::kJitTableAddress: {
2682 ScopedObjectAccess soa(Thread::Current());
2683 return GetClass().Get() == other_load_class->GetClass().Get();
2684 }
2685 default:
2686 DCHECK(HasTypeReference(GetLoadKind()));
2687 return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
2688 }
2689 }
2690
SetLoadKind(LoadKind load_kind)2691 void HLoadClass::SetLoadKind(LoadKind load_kind) {
2692 SetPackedField<LoadKindField>(load_kind);
2693
2694 if (load_kind != LoadKind::kRuntimeCall &&
2695 load_kind != LoadKind::kReferrersClass) {
2696 RemoveAsUserOfInput(0u);
2697 SetRawInputAt(0u, nullptr);
2698 }
2699
2700 if (!NeedsEnvironment()) {
2701 RemoveEnvironment();
2702 SetSideEffects(SideEffects::None());
2703 }
2704 }
2705
operator <<(std::ostream & os,HLoadClass::LoadKind rhs)2706 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
2707 switch (rhs) {
2708 case HLoadClass::LoadKind::kReferrersClass:
2709 return os << "ReferrersClass";
2710 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
2711 return os << "BootImageLinkTimePcRelative";
2712 case HLoadClass::LoadKind::kBootImageAddress:
2713 return os << "BootImageAddress";
2714 case HLoadClass::LoadKind::kBssEntry:
2715 return os << "BssEntry";
2716 case HLoadClass::LoadKind::kJitTableAddress:
2717 return os << "JitTableAddress";
2718 case HLoadClass::LoadKind::kRuntimeCall:
2719 return os << "RuntimeCall";
2720 default:
2721 LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
2722 UNREACHABLE();
2723 }
2724 }
2725
InstructionDataEquals(const HInstruction * other) const2726 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
2727 const HLoadString* other_load_string = other->AsLoadString();
2728 // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
2729 // rather than their indexes. However, we shall also have to re-think the hash code.
2730 if (string_index_ != other_load_string->string_index_ ||
2731 GetPackedFields() != other_load_string->GetPackedFields()) {
2732 return false;
2733 }
2734 switch (GetLoadKind()) {
2735 case LoadKind::kBootImageAddress:
2736 case LoadKind::kJitTableAddress: {
2737 ScopedObjectAccess soa(Thread::Current());
2738 return GetString().Get() == other_load_string->GetString().Get();
2739 }
2740 default:
2741 return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2742 }
2743 }
2744
SetLoadKind(LoadKind load_kind)2745 void HLoadString::SetLoadKind(LoadKind load_kind) {
2746 // Once sharpened, the load kind should not be changed again.
2747 DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
2748 SetPackedField<LoadKindField>(load_kind);
2749
2750 if (load_kind != LoadKind::kRuntimeCall) {
2751 RemoveAsUserOfInput(0u);
2752 SetRawInputAt(0u, nullptr);
2753 }
2754 if (!NeedsEnvironment()) {
2755 RemoveEnvironment();
2756 SetSideEffects(SideEffects::None());
2757 }
2758 }
2759
operator <<(std::ostream & os,HLoadString::LoadKind rhs)2760 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
2761 switch (rhs) {
2762 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
2763 return os << "BootImageLinkTimePcRelative";
2764 case HLoadString::LoadKind::kBootImageAddress:
2765 return os << "BootImageAddress";
2766 case HLoadString::LoadKind::kBssEntry:
2767 return os << "BssEntry";
2768 case HLoadString::LoadKind::kJitTableAddress:
2769 return os << "JitTableAddress";
2770 case HLoadString::LoadKind::kRuntimeCall:
2771 return os << "RuntimeCall";
2772 default:
2773 LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
2774 UNREACHABLE();
2775 }
2776 }
2777
RemoveEnvironmentUsers()2778 void HInstruction::RemoveEnvironmentUsers() {
2779 for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
2780 HEnvironment* user = use.GetUser();
2781 user->SetRawEnvAt(use.GetIndex(), nullptr);
2782 }
2783 env_uses_.clear();
2784 }
2785
2786 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)2787 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
2788 ArenaAllocator* allocator = GetArena();
2789
2790 if (cond->IsCondition() &&
2791 !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType())) {
2792 // Can't reverse floating point conditions. We have to use HBooleanNot in that case.
2793 HInstruction* lhs = cond->InputAt(0);
2794 HInstruction* rhs = cond->InputAt(1);
2795 HInstruction* replacement = nullptr;
2796 switch (cond->AsCondition()->GetOppositeCondition()) { // get *opposite*
2797 case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
2798 case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
2799 case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
2800 case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
2801 case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
2802 case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
2803 case kCondB: replacement = new (allocator) HBelow(lhs, rhs); break;
2804 case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
2805 case kCondA: replacement = new (allocator) HAbove(lhs, rhs); break;
2806 case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
2807 default:
2808 LOG(FATAL) << "Unexpected condition";
2809 UNREACHABLE();
2810 }
2811 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2812 return replacement;
2813 } else if (cond->IsIntConstant()) {
2814 HIntConstant* int_const = cond->AsIntConstant();
2815 if (int_const->IsFalse()) {
2816 return GetIntConstant(1);
2817 } else {
2818 DCHECK(int_const->IsTrue()) << int_const->GetValue();
2819 return GetIntConstant(0);
2820 }
2821 } else {
2822 HInstruction* replacement = new (allocator) HBooleanNot(cond);
2823 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2824 return replacement;
2825 }
2826 }
2827
operator <<(std::ostream & os,const MoveOperands & rhs)2828 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
2829 os << "["
2830 << " source=" << rhs.GetSource()
2831 << " destination=" << rhs.GetDestination()
2832 << " type=" << rhs.GetType()
2833 << " instruction=";
2834 if (rhs.GetInstruction() != nullptr) {
2835 os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
2836 } else {
2837 os << "null";
2838 }
2839 os << " ]";
2840 return os;
2841 }
2842
operator <<(std::ostream & os,TypeCheckKind rhs)2843 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
2844 switch (rhs) {
2845 case TypeCheckKind::kUnresolvedCheck:
2846 return os << "unresolved_check";
2847 case TypeCheckKind::kExactCheck:
2848 return os << "exact_check";
2849 case TypeCheckKind::kClassHierarchyCheck:
2850 return os << "class_hierarchy_check";
2851 case TypeCheckKind::kAbstractClassCheck:
2852 return os << "abstract_class_check";
2853 case TypeCheckKind::kInterfaceCheck:
2854 return os << "interface_check";
2855 case TypeCheckKind::kArrayObjectCheck:
2856 return os << "array_object_check";
2857 case TypeCheckKind::kArrayCheck:
2858 return os << "array_check";
2859 default:
2860 LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
2861 UNREACHABLE();
2862 }
2863 }
2864
operator <<(std::ostream & os,const MemBarrierKind & kind)2865 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
2866 switch (kind) {
2867 case MemBarrierKind::kAnyStore:
2868 return os << "AnyStore";
2869 case MemBarrierKind::kLoadAny:
2870 return os << "LoadAny";
2871 case MemBarrierKind::kStoreStore:
2872 return os << "StoreStore";
2873 case MemBarrierKind::kAnyAny:
2874 return os << "AnyAny";
2875 case MemBarrierKind::kNTStoreStore:
2876 return os << "NTStoreStore";
2877
2878 default:
2879 LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
2880 UNREACHABLE();
2881 }
2882 }
2883
2884 } // namespace art
2885