1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 /// Return true if the value is cheaper to scalarize than it is to leave as a
26 /// vector operation. isConstant indicates whether we're extracting one known
27 /// element. If false we're extracting a variable index.
cheapToScalarize(Value * V,bool isConstant)28 static bool cheapToScalarize(Value *V, bool isConstant) {
29 if (Constant *C = dyn_cast<Constant>(V)) {
30 if (isConstant) return true;
31
32 // If all elts are the same, we can extract it and use any of the values.
33 if (Constant *Op0 = C->getAggregateElement(0U)) {
34 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
35 ++i)
36 if (C->getAggregateElement(i) != Op0)
37 return false;
38 return true;
39 }
40 }
41 Instruction *I = dyn_cast<Instruction>(V);
42 if (!I) return false;
43
44 // Insert element gets simplified to the inserted element or is deleted if
45 // this is constant idx extract element and its a constant idx insertelt.
46 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
47 isa<ConstantInt>(I->getOperand(2)))
48 return true;
49 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
50 return true;
51 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
52 if (BO->hasOneUse() &&
53 (cheapToScalarize(BO->getOperand(0), isConstant) ||
54 cheapToScalarize(BO->getOperand(1), isConstant)))
55 return true;
56 if (CmpInst *CI = dyn_cast<CmpInst>(I))
57 if (CI->hasOneUse() &&
58 (cheapToScalarize(CI->getOperand(0), isConstant) ||
59 cheapToScalarize(CI->getOperand(1), isConstant)))
60 return true;
61
62 return false;
63 }
64
65 // If we have a PHI node with a vector type that is only used to feed
66 // itself and be an operand of extractelement at a constant location,
67 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
69 SmallVector<Instruction *, 2> Extracts;
70 // The users we want the PHI to have are:
71 // 1) The EI ExtractElement (we already know this)
72 // 2) Possibly more ExtractElements with the same index.
73 // 3) Another operand, which will feed back into the PHI.
74 Instruction *PHIUser = nullptr;
75 for (auto U : PN->users()) {
76 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
77 if (EI.getIndexOperand() == EU->getIndexOperand())
78 Extracts.push_back(EU);
79 else
80 return nullptr;
81 } else if (!PHIUser) {
82 PHIUser = cast<Instruction>(U);
83 } else {
84 return nullptr;
85 }
86 }
87
88 if (!PHIUser)
89 return nullptr;
90
91 // Verify that this PHI user has one use, which is the PHI itself,
92 // and that it is a binary operation which is cheap to scalarize.
93 // otherwise return NULL.
94 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
95 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
96 return nullptr;
97
98 // Create a scalar PHI node that will replace the vector PHI node
99 // just before the current PHI node.
100 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
101 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
102 // Scalarize each PHI operand.
103 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
104 Value *PHIInVal = PN->getIncomingValue(i);
105 BasicBlock *inBB = PN->getIncomingBlock(i);
106 Value *Elt = EI.getIndexOperand();
107 // If the operand is the PHI induction variable:
108 if (PHIInVal == PHIUser) {
109 // Scalarize the binary operation. Its first operand is the
110 // scalar PHI, and the second operand is extracted from the other
111 // vector operand.
112 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
113 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
114 Value *Op = InsertNewInstWith(
115 ExtractElementInst::Create(B0->getOperand(opId), Elt,
116 B0->getOperand(opId)->getName() + ".Elt"),
117 *B0);
118 Value *newPHIUser = InsertNewInstWith(
119 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
120 scalarPHI, Op, B0), *B0);
121 scalarPHI->addIncoming(newPHIUser, inBB);
122 } else {
123 // Scalarize PHI input:
124 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
125 // Insert the new instruction into the predecessor basic block.
126 Instruction *pos = dyn_cast<Instruction>(PHIInVal);
127 BasicBlock::iterator InsertPos;
128 if (pos && !isa<PHINode>(pos)) {
129 InsertPos = ++pos->getIterator();
130 } else {
131 InsertPos = inBB->getFirstInsertionPt();
132 }
133
134 InsertNewInstWith(newEI, *InsertPos);
135
136 scalarPHI->addIncoming(newEI, inBB);
137 }
138 }
139
140 for (auto E : Extracts)
141 replaceInstUsesWith(*E, scalarPHI);
142
143 return &EI;
144 }
145
visitExtractElementInst(ExtractElementInst & EI)146 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
147 if (Value *V = SimplifyExtractElementInst(
148 EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC))
149 return replaceInstUsesWith(EI, V);
150
151 // If vector val is constant with all elements the same, replace EI with
152 // that element. We handle a known element # below.
153 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
154 if (cheapToScalarize(C, false))
155 return replaceInstUsesWith(EI, C->getAggregateElement(0U));
156
157 // If extracting a specified index from the vector, see if we can recursively
158 // find a previously computed scalar that was inserted into the vector.
159 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
160 unsigned IndexVal = IdxC->getZExtValue();
161 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
162
163 // InstSimplify handles cases where the index is invalid.
164 assert(IndexVal < VectorWidth);
165
166 // This instruction only demands the single element from the input vector.
167 // If the input vector has a single use, simplify it based on this use
168 // property.
169 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
170 APInt UndefElts(VectorWidth, 0);
171 APInt DemandedMask(VectorWidth, 0);
172 DemandedMask.setBit(IndexVal);
173 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
174 UndefElts)) {
175 EI.setOperand(0, V);
176 return &EI;
177 }
178 }
179
180 // If this extractelement is directly using a bitcast from a vector of
181 // the same number of elements, see if we can find the source element from
182 // it. In this case, we will end up needing to bitcast the scalars.
183 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
184 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
185 if (VT->getNumElements() == VectorWidth)
186 if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
187 return new BitCastInst(Elt, EI.getType());
188 }
189
190 // If there's a vector PHI feeding a scalar use through this extractelement
191 // instruction, try to scalarize the PHI.
192 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
193 Instruction *scalarPHI = scalarizePHI(EI, PN);
194 if (scalarPHI)
195 return scalarPHI;
196 }
197 }
198
199 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
200 // Push extractelement into predecessor operation if legal and
201 // profitable to do so.
202 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
203 if (I->hasOneUse() &&
204 cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
205 Value *newEI0 =
206 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
207 EI.getName()+".lhs");
208 Value *newEI1 =
209 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
210 EI.getName()+".rhs");
211 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(),
212 newEI0, newEI1, BO);
213 }
214 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
215 // Extracting the inserted element?
216 if (IE->getOperand(2) == EI.getOperand(1))
217 return replaceInstUsesWith(EI, IE->getOperand(1));
218 // If the inserted and extracted elements are constants, they must not
219 // be the same value, extract from the pre-inserted value instead.
220 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
221 Worklist.AddValue(EI.getOperand(0));
222 EI.setOperand(0, IE->getOperand(0));
223 return &EI;
224 }
225 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
226 // If this is extracting an element from a shufflevector, figure out where
227 // it came from and extract from the appropriate input element instead.
228 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
229 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
230 Value *Src;
231 unsigned LHSWidth =
232 SVI->getOperand(0)->getType()->getVectorNumElements();
233
234 if (SrcIdx < 0)
235 return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
236 if (SrcIdx < (int)LHSWidth)
237 Src = SVI->getOperand(0);
238 else {
239 SrcIdx -= LHSWidth;
240 Src = SVI->getOperand(1);
241 }
242 Type *Int32Ty = Type::getInt32Ty(EI.getContext());
243 return ExtractElementInst::Create(Src,
244 ConstantInt::get(Int32Ty,
245 SrcIdx, false));
246 }
247 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
248 // Canonicalize extractelement(cast) -> cast(extractelement).
249 // Bitcasts can change the number of vector elements, and they cost
250 // nothing.
251 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
252 Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
253 EI.getIndexOperand());
254 Worklist.AddValue(EE);
255 return CastInst::Create(CI->getOpcode(), EE, EI.getType());
256 }
257 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
258 if (SI->hasOneUse()) {
259 // TODO: For a select on vectors, it might be useful to do this if it
260 // has multiple extractelement uses. For vector select, that seems to
261 // fight the vectorizer.
262
263 // If we are extracting an element from a vector select or a select on
264 // vectors, create a select on the scalars extracted from the vector
265 // arguments.
266 Value *TrueVal = SI->getTrueValue();
267 Value *FalseVal = SI->getFalseValue();
268
269 Value *Cond = SI->getCondition();
270 if (Cond->getType()->isVectorTy()) {
271 Cond = Builder->CreateExtractElement(Cond,
272 EI.getIndexOperand(),
273 Cond->getName() + ".elt");
274 }
275
276 Value *V1Elem
277 = Builder->CreateExtractElement(TrueVal,
278 EI.getIndexOperand(),
279 TrueVal->getName() + ".elt");
280
281 Value *V2Elem
282 = Builder->CreateExtractElement(FalseVal,
283 EI.getIndexOperand(),
284 FalseVal->getName() + ".elt");
285 return SelectInst::Create(Cond,
286 V1Elem,
287 V2Elem,
288 SI->getName() + ".elt");
289 }
290 }
291 }
292 return nullptr;
293 }
294
295 /// If V is a shuffle of values that ONLY returns elements from either LHS or
296 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<Constant * > & Mask)297 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
298 SmallVectorImpl<Constant*> &Mask) {
299 assert(LHS->getType() == RHS->getType() &&
300 "Invalid CollectSingleShuffleElements");
301 unsigned NumElts = V->getType()->getVectorNumElements();
302
303 if (isa<UndefValue>(V)) {
304 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
305 return true;
306 }
307
308 if (V == LHS) {
309 for (unsigned i = 0; i != NumElts; ++i)
310 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
311 return true;
312 }
313
314 if (V == RHS) {
315 for (unsigned i = 0; i != NumElts; ++i)
316 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
317 i+NumElts));
318 return true;
319 }
320
321 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
322 // If this is an insert of an extract from some other vector, include it.
323 Value *VecOp = IEI->getOperand(0);
324 Value *ScalarOp = IEI->getOperand(1);
325 Value *IdxOp = IEI->getOperand(2);
326
327 if (!isa<ConstantInt>(IdxOp))
328 return false;
329 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
330
331 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
332 // We can handle this if the vector we are inserting into is
333 // transitively ok.
334 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
335 // If so, update the mask to reflect the inserted undef.
336 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
337 return true;
338 }
339 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
340 if (isa<ConstantInt>(EI->getOperand(1))) {
341 unsigned ExtractedIdx =
342 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
343 unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
344
345 // This must be extracting from either LHS or RHS.
346 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
347 // We can handle this if the vector we are inserting into is
348 // transitively ok.
349 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
350 // If so, update the mask to reflect the inserted value.
351 if (EI->getOperand(0) == LHS) {
352 Mask[InsertedIdx % NumElts] =
353 ConstantInt::get(Type::getInt32Ty(V->getContext()),
354 ExtractedIdx);
355 } else {
356 assert(EI->getOperand(0) == RHS);
357 Mask[InsertedIdx % NumElts] =
358 ConstantInt::get(Type::getInt32Ty(V->getContext()),
359 ExtractedIdx + NumLHSElts);
360 }
361 return true;
362 }
363 }
364 }
365 }
366 }
367
368 return false;
369 }
370
371 /// If we have insertion into a vector that is wider than the vector that we
372 /// are extracting from, try to widen the source vector to allow a single
373 /// shufflevector to replace one or more insert/extract pairs.
replaceExtractElements(InsertElementInst * InsElt,ExtractElementInst * ExtElt,InstCombiner & IC)374 static void replaceExtractElements(InsertElementInst *InsElt,
375 ExtractElementInst *ExtElt,
376 InstCombiner &IC) {
377 VectorType *InsVecType = InsElt->getType();
378 VectorType *ExtVecType = ExtElt->getVectorOperandType();
379 unsigned NumInsElts = InsVecType->getVectorNumElements();
380 unsigned NumExtElts = ExtVecType->getVectorNumElements();
381
382 // The inserted-to vector must be wider than the extracted-from vector.
383 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
384 NumExtElts >= NumInsElts)
385 return;
386
387 // Create a shuffle mask to widen the extended-from vector using undefined
388 // values. The mask selects all of the values of the original vector followed
389 // by as many undefined values as needed to create a vector of the same length
390 // as the inserted-to vector.
391 SmallVector<Constant *, 16> ExtendMask;
392 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
393 for (unsigned i = 0; i < NumExtElts; ++i)
394 ExtendMask.push_back(ConstantInt::get(IntType, i));
395 for (unsigned i = NumExtElts; i < NumInsElts; ++i)
396 ExtendMask.push_back(UndefValue::get(IntType));
397
398 Value *ExtVecOp = ExtElt->getVectorOperand();
399 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
400 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
401 ? ExtVecOpInst->getParent()
402 : ExtElt->getParent();
403
404 // TODO: This restriction matches the basic block check below when creating
405 // new extractelement instructions. If that limitation is removed, this one
406 // could also be removed. But for now, we just bail out to ensure that we
407 // will replace the extractelement instruction that is feeding our
408 // insertelement instruction. This allows the insertelement to then be
409 // replaced by a shufflevector. If the insertelement is not replaced, we can
410 // induce infinite looping because there's an optimization for extractelement
411 // that will delete our widening shuffle. This would trigger another attempt
412 // here to create that shuffle, and we spin forever.
413 if (InsertionBlock != InsElt->getParent())
414 return;
415
416 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
417 ConstantVector::get(ExtendMask));
418
419 // Insert the new shuffle after the vector operand of the extract is defined
420 // (as long as it's not a PHI) or at the start of the basic block of the
421 // extract, so any subsequent extracts in the same basic block can use it.
422 // TODO: Insert before the earliest ExtractElementInst that is replaced.
423 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
424 WideVec->insertAfter(ExtVecOpInst);
425 else
426 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
427
428 // Replace extracts from the original narrow vector with extracts from the new
429 // wide vector.
430 for (User *U : ExtVecOp->users()) {
431 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
432 if (!OldExt || OldExt->getParent() != WideVec->getParent())
433 continue;
434 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
435 NewExt->insertAfter(WideVec);
436 IC.replaceInstUsesWith(*OldExt, NewExt);
437 }
438 }
439
440 /// We are building a shuffle to create V, which is a sequence of insertelement,
441 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
442 /// not rely on the second vector source. Return a std::pair containing the
443 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
444 /// parameter as required.
445 ///
446 /// Note: we intentionally don't try to fold earlier shuffles since they have
447 /// often been chosen carefully to be efficiently implementable on the target.
448 typedef std::pair<Value *, Value *> ShuffleOps;
449
collectShuffleElements(Value * V,SmallVectorImpl<Constant * > & Mask,Value * PermittedRHS,InstCombiner & IC)450 static ShuffleOps collectShuffleElements(Value *V,
451 SmallVectorImpl<Constant *> &Mask,
452 Value *PermittedRHS,
453 InstCombiner &IC) {
454 assert(V->getType()->isVectorTy() && "Invalid shuffle!");
455 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
456
457 if (isa<UndefValue>(V)) {
458 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
459 return std::make_pair(
460 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
461 }
462
463 if (isa<ConstantAggregateZero>(V)) {
464 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
465 return std::make_pair(V, nullptr);
466 }
467
468 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
469 // If this is an insert of an extract from some other vector, include it.
470 Value *VecOp = IEI->getOperand(0);
471 Value *ScalarOp = IEI->getOperand(1);
472 Value *IdxOp = IEI->getOperand(2);
473
474 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
475 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
476 unsigned ExtractedIdx =
477 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
478 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
479
480 // Either the extracted from or inserted into vector must be RHSVec,
481 // otherwise we'd end up with a shuffle of three inputs.
482 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
483 Value *RHS = EI->getOperand(0);
484 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
485 assert(LR.second == nullptr || LR.second == RHS);
486
487 if (LR.first->getType() != RHS->getType()) {
488 // Although we are giving up for now, see if we can create extracts
489 // that match the inserts for another round of combining.
490 replaceExtractElements(IEI, EI, IC);
491
492 // We tried our best, but we can't find anything compatible with RHS
493 // further up the chain. Return a trivial shuffle.
494 for (unsigned i = 0; i < NumElts; ++i)
495 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
496 return std::make_pair(V, nullptr);
497 }
498
499 unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
500 Mask[InsertedIdx % NumElts] =
501 ConstantInt::get(Type::getInt32Ty(V->getContext()),
502 NumLHSElts+ExtractedIdx);
503 return std::make_pair(LR.first, RHS);
504 }
505
506 if (VecOp == PermittedRHS) {
507 // We've gone as far as we can: anything on the other side of the
508 // extractelement will already have been converted into a shuffle.
509 unsigned NumLHSElts =
510 EI->getOperand(0)->getType()->getVectorNumElements();
511 for (unsigned i = 0; i != NumElts; ++i)
512 Mask.push_back(ConstantInt::get(
513 Type::getInt32Ty(V->getContext()),
514 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
515 return std::make_pair(EI->getOperand(0), PermittedRHS);
516 }
517
518 // If this insertelement is a chain that comes from exactly these two
519 // vectors, return the vector and the effective shuffle.
520 if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
521 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
522 Mask))
523 return std::make_pair(EI->getOperand(0), PermittedRHS);
524 }
525 }
526 }
527
528 // Otherwise, we can't do anything fancy. Return an identity vector.
529 for (unsigned i = 0; i != NumElts; ++i)
530 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
531 return std::make_pair(V, nullptr);
532 }
533
534 /// Try to find redundant insertvalue instructions, like the following ones:
535 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
536 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
537 /// Here the second instruction inserts values at the same indices, as the
538 /// first one, making the first one redundant.
539 /// It should be transformed to:
540 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)541 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
542 bool IsRedundant = false;
543 ArrayRef<unsigned int> FirstIndices = I.getIndices();
544
545 // If there is a chain of insertvalue instructions (each of them except the
546 // last one has only one use and it's another insertvalue insn from this
547 // chain), check if any of the 'children' uses the same indices as the first
548 // instruction. In this case, the first one is redundant.
549 Value *V = &I;
550 unsigned Depth = 0;
551 while (V->hasOneUse() && Depth < 10) {
552 User *U = V->user_back();
553 auto UserInsInst = dyn_cast<InsertValueInst>(U);
554 if (!UserInsInst || U->getOperand(0) != V)
555 break;
556 if (UserInsInst->getIndices() == FirstIndices) {
557 IsRedundant = true;
558 break;
559 }
560 V = UserInsInst;
561 Depth++;
562 }
563
564 if (IsRedundant)
565 return replaceInstUsesWith(I, I.getOperand(0));
566 return nullptr;
567 }
568
visitInsertElementInst(InsertElementInst & IE)569 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
570 Value *VecOp = IE.getOperand(0);
571 Value *ScalarOp = IE.getOperand(1);
572 Value *IdxOp = IE.getOperand(2);
573
574 // Inserting an undef or into an undefined place, remove this.
575 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
576 replaceInstUsesWith(IE, VecOp);
577
578 // If the inserted element was extracted from some other vector, and if the
579 // indexes are constant, try to turn this into a shufflevector operation.
580 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
581 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
582 unsigned NumInsertVectorElts = IE.getType()->getNumElements();
583 unsigned NumExtractVectorElts =
584 EI->getOperand(0)->getType()->getVectorNumElements();
585 unsigned ExtractedIdx =
586 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
587 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
588
589 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
590 return replaceInstUsesWith(IE, VecOp);
591
592 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert.
593 return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
594
595 // If we are extracting a value from a vector, then inserting it right
596 // back into the same place, just use the input vector.
597 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
598 return replaceInstUsesWith(IE, VecOp);
599
600 // If this insertelement isn't used by some other insertelement, turn it
601 // (and any insertelements it points to), into one big shuffle.
602 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
603 SmallVector<Constant*, 16> Mask;
604 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
605
606 // The proposed shuffle may be trivial, in which case we shouldn't
607 // perform the combine.
608 if (LR.first != &IE && LR.second != &IE) {
609 // We now have a shuffle of LHS, RHS, Mask.
610 if (LR.second == nullptr)
611 LR.second = UndefValue::get(LR.first->getType());
612 return new ShuffleVectorInst(LR.first, LR.second,
613 ConstantVector::get(Mask));
614 }
615 }
616 }
617 }
618
619 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
620 APInt UndefElts(VWidth, 0);
621 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
622 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
623 if (V != &IE)
624 return replaceInstUsesWith(IE, V);
625 return &IE;
626 }
627
628 return nullptr;
629 }
630
631 /// Return true if we can evaluate the specified expression tree if the vector
632 /// elements were shuffled in a different order.
CanEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)633 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
634 unsigned Depth = 5) {
635 // We can always reorder the elements of a constant.
636 if (isa<Constant>(V))
637 return true;
638
639 // We won't reorder vector arguments. No IPO here.
640 Instruction *I = dyn_cast<Instruction>(V);
641 if (!I) return false;
642
643 // Two users may expect different orders of the elements. Don't try it.
644 if (!I->hasOneUse())
645 return false;
646
647 if (Depth == 0) return false;
648
649 switch (I->getOpcode()) {
650 case Instruction::Add:
651 case Instruction::FAdd:
652 case Instruction::Sub:
653 case Instruction::FSub:
654 case Instruction::Mul:
655 case Instruction::FMul:
656 case Instruction::UDiv:
657 case Instruction::SDiv:
658 case Instruction::FDiv:
659 case Instruction::URem:
660 case Instruction::SRem:
661 case Instruction::FRem:
662 case Instruction::Shl:
663 case Instruction::LShr:
664 case Instruction::AShr:
665 case Instruction::And:
666 case Instruction::Or:
667 case Instruction::Xor:
668 case Instruction::ICmp:
669 case Instruction::FCmp:
670 case Instruction::Trunc:
671 case Instruction::ZExt:
672 case Instruction::SExt:
673 case Instruction::FPToUI:
674 case Instruction::FPToSI:
675 case Instruction::UIToFP:
676 case Instruction::SIToFP:
677 case Instruction::FPTrunc:
678 case Instruction::FPExt:
679 case Instruction::GetElementPtr: {
680 for (Value *Operand : I->operands()) {
681 if (!CanEvaluateShuffled(Operand, Mask, Depth-1))
682 return false;
683 }
684 return true;
685 }
686 case Instruction::InsertElement: {
687 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
688 if (!CI) return false;
689 int ElementNumber = CI->getLimitedValue();
690
691 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
692 // can't put an element into multiple indices.
693 bool SeenOnce = false;
694 for (int i = 0, e = Mask.size(); i != e; ++i) {
695 if (Mask[i] == ElementNumber) {
696 if (SeenOnce)
697 return false;
698 SeenOnce = true;
699 }
700 }
701 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
702 }
703 }
704 return false;
705 }
706
707 /// Rebuild a new instruction just like 'I' but with the new operands given.
708 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)709 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
710 // We don't want to use the IRBuilder here because we want the replacement
711 // instructions to appear next to 'I', not the builder's insertion point.
712 switch (I->getOpcode()) {
713 case Instruction::Add:
714 case Instruction::FAdd:
715 case Instruction::Sub:
716 case Instruction::FSub:
717 case Instruction::Mul:
718 case Instruction::FMul:
719 case Instruction::UDiv:
720 case Instruction::SDiv:
721 case Instruction::FDiv:
722 case Instruction::URem:
723 case Instruction::SRem:
724 case Instruction::FRem:
725 case Instruction::Shl:
726 case Instruction::LShr:
727 case Instruction::AShr:
728 case Instruction::And:
729 case Instruction::Or:
730 case Instruction::Xor: {
731 BinaryOperator *BO = cast<BinaryOperator>(I);
732 assert(NewOps.size() == 2 && "binary operator with #ops != 2");
733 BinaryOperator *New =
734 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
735 NewOps[0], NewOps[1], "", BO);
736 if (isa<OverflowingBinaryOperator>(BO)) {
737 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
738 New->setHasNoSignedWrap(BO->hasNoSignedWrap());
739 }
740 if (isa<PossiblyExactOperator>(BO)) {
741 New->setIsExact(BO->isExact());
742 }
743 if (isa<FPMathOperator>(BO))
744 New->copyFastMathFlags(I);
745 return New;
746 }
747 case Instruction::ICmp:
748 assert(NewOps.size() == 2 && "icmp with #ops != 2");
749 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
750 NewOps[0], NewOps[1]);
751 case Instruction::FCmp:
752 assert(NewOps.size() == 2 && "fcmp with #ops != 2");
753 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
754 NewOps[0], NewOps[1]);
755 case Instruction::Trunc:
756 case Instruction::ZExt:
757 case Instruction::SExt:
758 case Instruction::FPToUI:
759 case Instruction::FPToSI:
760 case Instruction::UIToFP:
761 case Instruction::SIToFP:
762 case Instruction::FPTrunc:
763 case Instruction::FPExt: {
764 // It's possible that the mask has a different number of elements from
765 // the original cast. We recompute the destination type to match the mask.
766 Type *DestTy =
767 VectorType::get(I->getType()->getScalarType(),
768 NewOps[0]->getType()->getVectorNumElements());
769 assert(NewOps.size() == 1 && "cast with #ops != 1");
770 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
771 "", I);
772 }
773 case Instruction::GetElementPtr: {
774 Value *Ptr = NewOps[0];
775 ArrayRef<Value*> Idx = NewOps.slice(1);
776 GetElementPtrInst *GEP = GetElementPtrInst::Create(
777 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
778 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
779 return GEP;
780 }
781 }
782 llvm_unreachable("failed to rebuild vector instructions");
783 }
784
785 Value *
EvaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)786 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
787 // Mask.size() does not need to be equal to the number of vector elements.
788
789 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
790 if (isa<UndefValue>(V)) {
791 return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
792 Mask.size()));
793 }
794 if (isa<ConstantAggregateZero>(V)) {
795 return ConstantAggregateZero::get(
796 VectorType::get(V->getType()->getScalarType(),
797 Mask.size()));
798 }
799 if (Constant *C = dyn_cast<Constant>(V)) {
800 SmallVector<Constant *, 16> MaskValues;
801 for (int i = 0, e = Mask.size(); i != e; ++i) {
802 if (Mask[i] == -1)
803 MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
804 else
805 MaskValues.push_back(Builder->getInt32(Mask[i]));
806 }
807 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
808 ConstantVector::get(MaskValues));
809 }
810
811 Instruction *I = cast<Instruction>(V);
812 switch (I->getOpcode()) {
813 case Instruction::Add:
814 case Instruction::FAdd:
815 case Instruction::Sub:
816 case Instruction::FSub:
817 case Instruction::Mul:
818 case Instruction::FMul:
819 case Instruction::UDiv:
820 case Instruction::SDiv:
821 case Instruction::FDiv:
822 case Instruction::URem:
823 case Instruction::SRem:
824 case Instruction::FRem:
825 case Instruction::Shl:
826 case Instruction::LShr:
827 case Instruction::AShr:
828 case Instruction::And:
829 case Instruction::Or:
830 case Instruction::Xor:
831 case Instruction::ICmp:
832 case Instruction::FCmp:
833 case Instruction::Trunc:
834 case Instruction::ZExt:
835 case Instruction::SExt:
836 case Instruction::FPToUI:
837 case Instruction::FPToSI:
838 case Instruction::UIToFP:
839 case Instruction::SIToFP:
840 case Instruction::FPTrunc:
841 case Instruction::FPExt:
842 case Instruction::Select:
843 case Instruction::GetElementPtr: {
844 SmallVector<Value*, 8> NewOps;
845 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
846 for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
847 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
848 NewOps.push_back(V);
849 NeedsRebuild |= (V != I->getOperand(i));
850 }
851 if (NeedsRebuild) {
852 return buildNew(I, NewOps);
853 }
854 return I;
855 }
856 case Instruction::InsertElement: {
857 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
858
859 // The insertelement was inserting at Element. Figure out which element
860 // that becomes after shuffling. The answer is guaranteed to be unique
861 // by CanEvaluateShuffled.
862 bool Found = false;
863 int Index = 0;
864 for (int e = Mask.size(); Index != e; ++Index) {
865 if (Mask[Index] == Element) {
866 Found = true;
867 break;
868 }
869 }
870
871 // If element is not in Mask, no need to handle the operand 1 (element to
872 // be inserted). Just evaluate values in operand 0 according to Mask.
873 if (!Found)
874 return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
875
876 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
877 return InsertElementInst::Create(V, I->getOperand(1),
878 Builder->getInt32(Index), "", I);
879 }
880 }
881 llvm_unreachable("failed to reorder elements of vector instruction!");
882 }
883
recognizeIdentityMask(const SmallVectorImpl<int> & Mask,bool & isLHSID,bool & isRHSID)884 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
885 bool &isLHSID, bool &isRHSID) {
886 isLHSID = isRHSID = true;
887
888 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
889 if (Mask[i] < 0) continue; // Ignore undef values.
890 // Is this an identity shuffle of the LHS value?
891 isLHSID &= (Mask[i] == (int)i);
892
893 // Is this an identity shuffle of the RHS value?
894 isRHSID &= (Mask[i]-e == i);
895 }
896 }
897
898 // Returns true if the shuffle is extracting a contiguous range of values from
899 // LHS, for example:
900 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
901 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
902 // Shuffles to: |EE|FF|GG|HH|
903 // +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,SmallVector<int,16> & Mask)904 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
905 SmallVector<int, 16> &Mask) {
906 unsigned LHSElems =
907 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
908 unsigned MaskElems = Mask.size();
909 unsigned BegIdx = Mask.front();
910 unsigned EndIdx = Mask.back();
911 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
912 return false;
913 for (unsigned I = 0; I != MaskElems; ++I)
914 if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
915 return false;
916 return true;
917 }
918
visitShuffleVectorInst(ShuffleVectorInst & SVI)919 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
920 Value *LHS = SVI.getOperand(0);
921 Value *RHS = SVI.getOperand(1);
922 SmallVector<int, 16> Mask = SVI.getShuffleMask();
923 Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
924
925 bool MadeChange = false;
926
927 // Undefined shuffle mask -> undefined value.
928 if (isa<UndefValue>(SVI.getOperand(2)))
929 return replaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
930
931 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
932
933 APInt UndefElts(VWidth, 0);
934 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
935 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
936 if (V != &SVI)
937 return replaceInstUsesWith(SVI, V);
938 LHS = SVI.getOperand(0);
939 RHS = SVI.getOperand(1);
940 MadeChange = true;
941 }
942
943 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
944
945 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
946 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
947 if (LHS == RHS || isa<UndefValue>(LHS)) {
948 if (isa<UndefValue>(LHS) && LHS == RHS) {
949 // shuffle(undef,undef,mask) -> undef.
950 Value *Result = (VWidth == LHSWidth)
951 ? LHS : UndefValue::get(SVI.getType());
952 return replaceInstUsesWith(SVI, Result);
953 }
954
955 // Remap any references to RHS to use LHS.
956 SmallVector<Constant*, 16> Elts;
957 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
958 if (Mask[i] < 0) {
959 Elts.push_back(UndefValue::get(Int32Ty));
960 continue;
961 }
962
963 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
964 (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
965 Mask[i] = -1; // Turn into undef.
966 Elts.push_back(UndefValue::get(Int32Ty));
967 } else {
968 Mask[i] = Mask[i] % e; // Force to LHS.
969 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
970 }
971 }
972 SVI.setOperand(0, SVI.getOperand(1));
973 SVI.setOperand(1, UndefValue::get(RHS->getType()));
974 SVI.setOperand(2, ConstantVector::get(Elts));
975 LHS = SVI.getOperand(0);
976 RHS = SVI.getOperand(1);
977 MadeChange = true;
978 }
979
980 if (VWidth == LHSWidth) {
981 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
982 bool isLHSID, isRHSID;
983 recognizeIdentityMask(Mask, isLHSID, isRHSID);
984
985 // Eliminate identity shuffles.
986 if (isLHSID) return replaceInstUsesWith(SVI, LHS);
987 if (isRHSID) return replaceInstUsesWith(SVI, RHS);
988 }
989
990 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
991 Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
992 return replaceInstUsesWith(SVI, V);
993 }
994
995 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
996 // a non-vector type. We can instead bitcast the original vector followed by
997 // an extract of the desired element:
998 //
999 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1000 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1001 // %1 = bitcast <4 x i8> %sroa to i32
1002 // Becomes:
1003 // %bc = bitcast <16 x i8> %in to <4 x i32>
1004 // %ext = extractelement <4 x i32> %bc, i32 0
1005 //
1006 // If the shuffle is extracting a contiguous range of values from the input
1007 // vector then each use which is a bitcast of the extracted size can be
1008 // replaced. This will work if the vector types are compatible, and the begin
1009 // index is aligned to a value in the casted vector type. If the begin index
1010 // isn't aligned then we can shuffle the original vector (keeping the same
1011 // vector type) before extracting.
1012 //
1013 // This code will bail out if the target type is fundamentally incompatible
1014 // with vectors of the source type.
1015 //
1016 // Example of <16 x i8>, target type i32:
1017 // Index range [4,8): v-----------v Will work.
1018 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1019 // <16 x i8>: | | | | | | | | | | | | | | | | |
1020 // <4 x i32>: | | | | |
1021 // +-----------+-----------+-----------+-----------+
1022 // Index range [6,10): ^-----------^ Needs an extra shuffle.
1023 // Target type i40: ^--------------^ Won't work, bail.
1024 if (isShuffleExtractingFromLHS(SVI, Mask)) {
1025 Value *V = LHS;
1026 unsigned MaskElems = Mask.size();
1027 unsigned BegIdx = Mask.front();
1028 VectorType *SrcTy = cast<VectorType>(V->getType());
1029 unsigned VecBitWidth = SrcTy->getBitWidth();
1030 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1031 assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1032 unsigned SrcNumElems = SrcTy->getNumElements();
1033 SmallVector<BitCastInst *, 8> BCs;
1034 DenseMap<Type *, Value *> NewBCs;
1035 for (User *U : SVI.users())
1036 if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1037 if (!BC->use_empty())
1038 // Only visit bitcasts that weren't previously handled.
1039 BCs.push_back(BC);
1040 for (BitCastInst *BC : BCs) {
1041 Type *TgtTy = BC->getDestTy();
1042 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1043 if (!TgtElemBitWidth)
1044 continue;
1045 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1046 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1047 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1048 if (!VecBitWidthsEqual)
1049 continue;
1050 if (!VectorType::isValidElementType(TgtTy))
1051 continue;
1052 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1053 if (!BegIsAligned) {
1054 // Shuffle the input so [0,NumElements) contains the output, and
1055 // [NumElems,SrcNumElems) is undef.
1056 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1057 UndefValue::get(Int32Ty));
1058 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1059 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1060 V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()),
1061 ConstantVector::get(ShuffleMask),
1062 SVI.getName() + ".extract");
1063 BegIdx = 0;
1064 }
1065 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1066 assert(SrcElemsPerTgtElem);
1067 BegIdx /= SrcElemsPerTgtElem;
1068 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1069 auto *NewBC =
1070 BCAlreadyExists
1071 ? NewBCs[CastSrcTy]
1072 : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1073 if (!BCAlreadyExists)
1074 NewBCs[CastSrcTy] = NewBC;
1075 auto *Ext = Builder->CreateExtractElement(
1076 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1077 // The shufflevector isn't being replaced: the bitcast that used it
1078 // is. InstCombine will visit the newly-created instructions.
1079 replaceInstUsesWith(*BC, Ext);
1080 MadeChange = true;
1081 }
1082 }
1083
1084 // If the LHS is a shufflevector itself, see if we can combine it with this
1085 // one without producing an unusual shuffle.
1086 // Cases that might be simplified:
1087 // 1.
1088 // x1=shuffle(v1,v2,mask1)
1089 // x=shuffle(x1,undef,mask)
1090 // ==>
1091 // x=shuffle(v1,undef,newMask)
1092 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1093 // 2.
1094 // x1=shuffle(v1,undef,mask1)
1095 // x=shuffle(x1,x2,mask)
1096 // where v1.size() == mask1.size()
1097 // ==>
1098 // x=shuffle(v1,x2,newMask)
1099 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1100 // 3.
1101 // x2=shuffle(v2,undef,mask2)
1102 // x=shuffle(x1,x2,mask)
1103 // where v2.size() == mask2.size()
1104 // ==>
1105 // x=shuffle(x1,v2,newMask)
1106 // newMask[i] = (mask[i] < x1.size())
1107 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1108 // 4.
1109 // x1=shuffle(v1,undef,mask1)
1110 // x2=shuffle(v2,undef,mask2)
1111 // x=shuffle(x1,x2,mask)
1112 // where v1.size() == v2.size()
1113 // ==>
1114 // x=shuffle(v1,v2,newMask)
1115 // newMask[i] = (mask[i] < x1.size())
1116 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1117 //
1118 // Here we are really conservative:
1119 // we are absolutely afraid of producing a shuffle mask not in the input
1120 // program, because the code gen may not be smart enough to turn a merged
1121 // shuffle into two specific shuffles: it may produce worse code. As such,
1122 // we only merge two shuffles if the result is either a splat or one of the
1123 // input shuffle masks. In this case, merging the shuffles just removes
1124 // one instruction, which we know is safe. This is good for things like
1125 // turning: (splat(splat)) -> splat, or
1126 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1127 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1128 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1129 if (LHSShuffle)
1130 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1131 LHSShuffle = nullptr;
1132 if (RHSShuffle)
1133 if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1134 RHSShuffle = nullptr;
1135 if (!LHSShuffle && !RHSShuffle)
1136 return MadeChange ? &SVI : nullptr;
1137
1138 Value* LHSOp0 = nullptr;
1139 Value* LHSOp1 = nullptr;
1140 Value* RHSOp0 = nullptr;
1141 unsigned LHSOp0Width = 0;
1142 unsigned RHSOp0Width = 0;
1143 if (LHSShuffle) {
1144 LHSOp0 = LHSShuffle->getOperand(0);
1145 LHSOp1 = LHSShuffle->getOperand(1);
1146 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
1147 }
1148 if (RHSShuffle) {
1149 RHSOp0 = RHSShuffle->getOperand(0);
1150 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
1151 }
1152 Value* newLHS = LHS;
1153 Value* newRHS = RHS;
1154 if (LHSShuffle) {
1155 // case 1
1156 if (isa<UndefValue>(RHS)) {
1157 newLHS = LHSOp0;
1158 newRHS = LHSOp1;
1159 }
1160 // case 2 or 4
1161 else if (LHSOp0Width == LHSWidth) {
1162 newLHS = LHSOp0;
1163 }
1164 }
1165 // case 3 or 4
1166 if (RHSShuffle && RHSOp0Width == LHSWidth) {
1167 newRHS = RHSOp0;
1168 }
1169 // case 4
1170 if (LHSOp0 == RHSOp0) {
1171 newLHS = LHSOp0;
1172 newRHS = nullptr;
1173 }
1174
1175 if (newLHS == LHS && newRHS == RHS)
1176 return MadeChange ? &SVI : nullptr;
1177
1178 SmallVector<int, 16> LHSMask;
1179 SmallVector<int, 16> RHSMask;
1180 if (newLHS != LHS)
1181 LHSMask = LHSShuffle->getShuffleMask();
1182 if (RHSShuffle && newRHS != RHS)
1183 RHSMask = RHSShuffle->getShuffleMask();
1184
1185 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1186 SmallVector<int, 16> newMask;
1187 bool isSplat = true;
1188 int SplatElt = -1;
1189 // Create a new mask for the new ShuffleVectorInst so that the new
1190 // ShuffleVectorInst is equivalent to the original one.
1191 for (unsigned i = 0; i < VWidth; ++i) {
1192 int eltMask;
1193 if (Mask[i] < 0) {
1194 // This element is an undef value.
1195 eltMask = -1;
1196 } else if (Mask[i] < (int)LHSWidth) {
1197 // This element is from left hand side vector operand.
1198 //
1199 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1200 // new mask value for the element.
1201 if (newLHS != LHS) {
1202 eltMask = LHSMask[Mask[i]];
1203 // If the value selected is an undef value, explicitly specify it
1204 // with a -1 mask value.
1205 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1206 eltMask = -1;
1207 } else
1208 eltMask = Mask[i];
1209 } else {
1210 // This element is from right hand side vector operand
1211 //
1212 // If the value selected is an undef value, explicitly specify it
1213 // with a -1 mask value. (case 1)
1214 if (isa<UndefValue>(RHS))
1215 eltMask = -1;
1216 // If RHS is going to be replaced (case 3 or 4), calculate the
1217 // new mask value for the element.
1218 else if (newRHS != RHS) {
1219 eltMask = RHSMask[Mask[i]-LHSWidth];
1220 // If the value selected is an undef value, explicitly specify it
1221 // with a -1 mask value.
1222 if (eltMask >= (int)RHSOp0Width) {
1223 assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1224 && "should have been check above");
1225 eltMask = -1;
1226 }
1227 } else
1228 eltMask = Mask[i]-LHSWidth;
1229
1230 // If LHS's width is changed, shift the mask value accordingly.
1231 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1232 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1233 // If newRHS == newLHS, we want to remap any references from newRHS to
1234 // newLHS so that we can properly identify splats that may occur due to
1235 // obfuscation across the two vectors.
1236 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1237 eltMask += newLHSWidth;
1238 }
1239
1240 // Check if this could still be a splat.
1241 if (eltMask >= 0) {
1242 if (SplatElt >= 0 && SplatElt != eltMask)
1243 isSplat = false;
1244 SplatElt = eltMask;
1245 }
1246
1247 newMask.push_back(eltMask);
1248 }
1249
1250 // If the result mask is equal to one of the original shuffle masks,
1251 // or is a splat, do the replacement.
1252 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1253 SmallVector<Constant*, 16> Elts;
1254 for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1255 if (newMask[i] < 0) {
1256 Elts.push_back(UndefValue::get(Int32Ty));
1257 } else {
1258 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1259 }
1260 }
1261 if (!newRHS)
1262 newRHS = UndefValue::get(newLHS->getType());
1263 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1264 }
1265
1266 // If the result mask is an identity, replace uses of this instruction with
1267 // corresponding argument.
1268 bool isLHSID, isRHSID;
1269 recognizeIdentityMask(newMask, isLHSID, isRHSID);
1270 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1271 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1272
1273 return MadeChange ? &SVI : nullptr;
1274 }
1275