• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
4  */
5 /*
6  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
7  *
8  *	Support for enhanced MLS infrastructure.
9  *
10  * Updated: Frank Mayer <mayerf@tresys.com>
11  *          and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  * 	Added conditional policy language extensions
14  *
15  * Updated: Red Hat, Inc.  James Morris <jmorris@redhat.com>
16  *
17  *      Fine-grained netlink support
18  *      IPv6 support
19  *      Code cleanup
20  *
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  * Copyright (C) 2003 - 2004 Red Hat, Inc.
24  *
25  *  This library is free software; you can redistribute it and/or
26  *  modify it under the terms of the GNU Lesser General Public
27  *  License as published by the Free Software Foundation; either
28  *  version 2.1 of the License, or (at your option) any later version.
29  *
30  *  This library is distributed in the hope that it will be useful,
31  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
32  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
33  *  Lesser General Public License for more details.
34  *
35  *  You should have received a copy of the GNU Lesser General Public
36  *  License along with this library; if not, write to the Free Software
37  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
38  */
39 
40 /* FLASK */
41 
42 /*
43  * Implementation of the security services.
44  */
45 
46 /* Initial sizes malloc'd for sepol_compute_av_reason_buffer() support */
47 #define REASON_BUF_SIZE 2048
48 #define EXPR_BUF_SIZE 1024
49 #define STACK_LEN 32
50 
51 #include <stdlib.h>
52 #include <sys/types.h>
53 #include <sys/socket.h>
54 #include <netinet/in.h>
55 #include <arpa/inet.h>
56 
57 #include <sepol/policydb/policydb.h>
58 #include <sepol/policydb/sidtab.h>
59 #include <sepol/policydb/services.h>
60 #include <sepol/policydb/conditional.h>
61 #include <sepol/policydb/flask.h>
62 #include <sepol/policydb/util.h>
63 
64 #include "debug.h"
65 #include "private.h"
66 #include "context.h"
67 #include "av_permissions.h"
68 #include "dso.h"
69 #include "mls.h"
70 
71 #define BUG() do { ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
72 #define BUG_ON(x) do { if (x) ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
73 
74 static int selinux_enforcing = 1;
75 
76 static sidtab_t mysidtab, *sidtab = &mysidtab;
77 static policydb_t mypolicydb, *policydb = &mypolicydb;
78 
79 /* Used by sepol_compute_av_reason_buffer() to keep track of entries */
80 static int reason_buf_used;
81 static int reason_buf_len;
82 
83 /* Stack services for RPN to infix conversion. */
84 static char **stack;
85 static int stack_len;
86 static int next_stack_entry;
87 
push(char * expr_ptr)88 static void push(char *expr_ptr)
89 {
90 	if (next_stack_entry >= stack_len) {
91 		char **new_stack = stack;
92 		int new_stack_len;
93 
94 		if (stack_len == 0)
95 			new_stack_len = STACK_LEN;
96 		else
97 			new_stack_len = stack_len * 2;
98 
99 		new_stack = realloc(stack, new_stack_len * sizeof(*stack));
100 		if (!new_stack) {
101 			ERR(NULL, "unable to allocate stack space");
102 			return;
103 		}
104 		stack_len = new_stack_len;
105 		stack = new_stack;
106 	}
107 	stack[next_stack_entry] = expr_ptr;
108 	next_stack_entry++;
109 }
110 
pop(void)111 static char *pop(void)
112 {
113 	next_stack_entry--;
114 	if (next_stack_entry < 0) {
115 		next_stack_entry = 0;
116 		ERR(NULL, "pop called with no stack entries");
117 		return NULL;
118 	}
119 	return stack[next_stack_entry];
120 }
121 /* End Stack services */
122 
sepol_set_sidtab(sidtab_t * s)123 int hidden sepol_set_sidtab(sidtab_t * s)
124 {
125 	sidtab = s;
126 	return 0;
127 }
128 
sepol_set_policydb(policydb_t * p)129 int hidden sepol_set_policydb(policydb_t * p)
130 {
131 	policydb = p;
132 	return 0;
133 }
134 
sepol_set_policydb_from_file(FILE * fp)135 int sepol_set_policydb_from_file(FILE * fp)
136 {
137 	struct policy_file pf;
138 
139 	policy_file_init(&pf);
140 	pf.fp = fp;
141 	pf.type = PF_USE_STDIO;
142 	if (mypolicydb.policy_type)
143 		policydb_destroy(&mypolicydb);
144 	if (policydb_init(&mypolicydb)) {
145 		ERR(NULL, "Out of memory!");
146 		return -1;
147 	}
148 	if (policydb_read(&mypolicydb, &pf, 0)) {
149 		policydb_destroy(&mypolicydb);
150 		ERR(NULL, "can't read binary policy: %s", strerror(errno));
151 		return -1;
152 	}
153 	policydb = &mypolicydb;
154 	return sepol_sidtab_init(sidtab);
155 }
156 
157 /*
158  * The largest sequence number that has been used when
159  * providing an access decision to the access vector cache.
160  * The sequence number only changes when a policy change
161  * occurs.
162  */
163 static uint32_t latest_granting = 0;
164 
165 /*
166  * cat_expr_buf adds a string to an expression buffer and handles
167  * realloc's if buffer is too small. The array of expression text
168  * buffer pointers and its counter are globally defined here as
169  * constraint_expr_eval_reason() sets them up and cat_expr_buf
170  * updates the e_buf pointer.
171  */
172 static int expr_counter;
173 static char **expr_list;
174 static int expr_buf_used;
175 static int expr_buf_len;
176 
cat_expr_buf(char * e_buf,const char * string)177 static void cat_expr_buf(char *e_buf, const char *string)
178 {
179 	int len, new_buf_len;
180 	char *p, *new_buf = e_buf;
181 
182 	while (1) {
183 		p = e_buf + expr_buf_used;
184 		len = snprintf(p, expr_buf_len - expr_buf_used, "%s", string);
185 		if (len < 0 || len >= expr_buf_len - expr_buf_used) {
186 			new_buf_len = expr_buf_len + EXPR_BUF_SIZE;
187 			new_buf = realloc(e_buf, new_buf_len);
188 			if (!new_buf) {
189 				ERR(NULL, "failed to realloc expr buffer");
190 				return;
191 			}
192 			/* Update new ptr in expr list and locally + new len */
193 			expr_list[expr_counter] = new_buf;
194 			e_buf = new_buf;
195 			expr_buf_len = new_buf_len;
196 		} else {
197 			expr_buf_used += len;
198 			return;
199 		}
200 	}
201 }
202 
203 /*
204  * If the POLICY_KERN version is >= POLICYDB_VERSION_CONSTRAINT_NAMES,
205  * then for 'types' only, read the types_names->types list as it will
206  * contain a list of types and attributes that were defined in the
207  * policy source.
208  * For user and role plus types (for policy vers <
209  * POLICYDB_VERSION_CONSTRAINT_NAMES) just read the e->names list.
210  */
get_name_list(constraint_expr_t * e,int type,const char * src,const char * op,int failed)211 static void get_name_list(constraint_expr_t *e, int type,
212 							const char *src, const char *op, int failed)
213 {
214 	ebitmap_t *types;
215 	int rc = 0;
216 	unsigned int i;
217 	char tmp_buf[128];
218 	int counter = 0;
219 
220 	if (policydb->policy_type == POLICY_KERN &&
221 			policydb->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES &&
222 			type == CEXPR_TYPE)
223 		types = &e->type_names->types;
224 	else
225 		types = &e->names;
226 
227 	/* Find out how many entries */
228 	for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
229 		rc = ebitmap_get_bit(types, i);
230 		if (rc == 0)
231 			continue;
232 		else
233 			counter++;
234 	}
235 	snprintf(tmp_buf, sizeof(tmp_buf), "(%s%s", src, op);
236 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
237 
238 	if (counter == 0)
239 		cat_expr_buf(expr_list[expr_counter], "<empty_set> ");
240 	if (counter > 1)
241 		cat_expr_buf(expr_list[expr_counter], " {");
242 	if (counter >= 1) {
243 		for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
244 			rc = ebitmap_get_bit(types, i);
245 			if (rc == 0)
246 				continue;
247 
248 			/* Collect entries */
249 			switch (type) {
250 			case CEXPR_USER:
251 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
252 							policydb->p_user_val_to_name[i]);
253 				break;
254 			case CEXPR_ROLE:
255 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
256 							policydb->p_role_val_to_name[i]);
257 				break;
258 			case CEXPR_TYPE:
259 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
260 							policydb->p_type_val_to_name[i]);
261 				break;
262 			}
263 			cat_expr_buf(expr_list[expr_counter], tmp_buf);
264 		}
265 	}
266 	if (counter > 1)
267 		cat_expr_buf(expr_list[expr_counter], " }");
268 	if (failed)
269 		cat_expr_buf(expr_list[expr_counter], " -Fail-) ");
270 	else
271 		cat_expr_buf(expr_list[expr_counter], ") ");
272 
273 	return;
274 }
275 
msgcat(const char * src,const char * tgt,const char * op,int failed)276 static void msgcat(const char *src, const char *tgt, const char *op, int failed)
277 {
278 	char tmp_buf[128];
279 	if (failed)
280 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s -Fail-) ",
281 				src, op, tgt);
282 	else
283 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s) ",
284 				src, op, tgt);
285 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
286 }
287 
288 /* Returns a buffer with class, statement type and permissions */
get_class_info(sepol_security_class_t tclass,constraint_node_t * constraint,context_struct_t * xcontext)289 static char *get_class_info(sepol_security_class_t tclass,
290 							constraint_node_t *constraint,
291 							context_struct_t *xcontext)
292 {
293 	constraint_expr_t *e;
294 	int mls, state_num;
295 
296 	/* Find if MLS statement or not */
297 	mls = 0;
298 	for (e = constraint->expr; e; e = e->next) {
299 		if (e->attr >= CEXPR_L1L2) {
300 			mls = 1;
301 			break;
302 		}
303 	}
304 
305 	/* Determine statement type */
306 	const char *statements[] = {
307 		"constrain ",			/* 0 */
308 		"mlsconstrain ",		/* 1 */
309 		"validatetrans ",		/* 2 */
310 		"mlsvalidatetrans ",	/* 3 */
311 		0 };
312 
313 	if (xcontext == NULL)
314 		state_num = mls + 0;
315 	else
316 		state_num = mls + 2;
317 
318 	int class_buf_len = 0;
319 	int new_class_buf_len;
320 	int len, buf_used;
321 	char *class_buf = NULL, *p;
322 	char *new_class_buf = NULL;
323 
324 	while (1) {
325 		new_class_buf_len = class_buf_len + EXPR_BUF_SIZE;
326 		new_class_buf = realloc(class_buf, new_class_buf_len);
327 			if (!new_class_buf)
328 				return NULL;
329 		class_buf_len = new_class_buf_len;
330 		class_buf = new_class_buf;
331 		buf_used = 0;
332 		p = class_buf;
333 
334 		/* Add statement type */
335 		len = snprintf(p, class_buf_len - buf_used, "%s", statements[state_num]);
336 		if (len < 0 || len >= class_buf_len - buf_used)
337 			continue;
338 
339 		/* Add class entry */
340 		p += len;
341 		buf_used += len;
342 		len = snprintf(p, class_buf_len - buf_used, "%s ",
343 				policydb->p_class_val_to_name[tclass - 1]);
344 		if (len < 0 || len >= class_buf_len - buf_used)
345 			continue;
346 
347 		/* Add permission entries (validatetrans does not have perms) */
348 		p += len;
349 		buf_used += len;
350 		if (state_num < 2) {
351 			len = snprintf(p, class_buf_len - buf_used, "{%s } (",
352 			sepol_av_to_string(policydb, tclass,
353 				constraint->permissions));
354 		} else {
355 			len = snprintf(p, class_buf_len - buf_used, "(");
356 		}
357 		if (len < 0 || len >= class_buf_len - buf_used)
358 			continue;
359 		break;
360 	}
361 	return class_buf;
362 }
363 
364 /*
365  * Modified version of constraint_expr_eval that will process each
366  * constraint as before but adds the information to text buffers that
367  * will hold various components. The expression will be in RPN format,
368  * therefore there is a stack based RPN to infix converter to produce
369  * the final readable constraint.
370  *
371  * Return the boolean value of a constraint expression
372  * when it is applied to the specified source and target
373  * security contexts.
374  *
375  * xcontext is a special beast...  It is used by the validatetrans rules
376  * only.  For these rules, scontext is the context before the transition,
377  * tcontext is the context after the transition, and xcontext is the
378  * context of the process performing the transition.  All other callers
379  * of constraint_expr_eval_reason should pass in NULL for xcontext.
380  *
381  * This function will also build a buffer as the constraint is processed
382  * for analysis. If this option is not required, then:
383  *      'tclass' should be '0' and r_buf MUST be NULL.
384  */
constraint_expr_eval_reason(context_struct_t * scontext,context_struct_t * tcontext,context_struct_t * xcontext,sepol_security_class_t tclass,constraint_node_t * constraint,char ** r_buf,unsigned int flags)385 static int constraint_expr_eval_reason(context_struct_t *scontext,
386 				context_struct_t *tcontext,
387 				context_struct_t *xcontext,
388 				sepol_security_class_t tclass,
389 				constraint_node_t *constraint,
390 				char **r_buf,
391 				unsigned int flags)
392 {
393 	uint32_t val1, val2;
394 	context_struct_t *c;
395 	role_datum_t *r1, *r2;
396 	mls_level_t *l1, *l2;
397 	constraint_expr_t *e;
398 	int s[CEXPR_MAXDEPTH];
399 	int sp = -1;
400 	char tmp_buf[128];
401 
402 /*
403  * Define the s_t_x_num values that make up r1, t2 etc. in text strings
404  * Set 1 = source, 2 = target, 3 = xcontext for validatetrans
405  */
406 #define SOURCE  1
407 #define TARGET  2
408 #define XTARGET 3
409 
410 	int s_t_x_num = SOURCE;
411 
412 	/* Set 0 = fail, u = CEXPR_USER, r = CEXPR_ROLE, t = CEXPR_TYPE */
413 	int u_r_t = 0;
414 
415 	char *src = NULL;
416 	char *tgt = NULL;
417 	int rc = 0, x;
418 	char *class_buf = NULL;
419 
420 	/*
421 	 * The array of expression answer buffer pointers and counter.
422 	 */
423 	char **answer_list = NULL;
424 	int answer_counter = 0;
425 
426 	class_buf = get_class_info(tclass, constraint, xcontext);
427 	if (!class_buf) {
428 		ERR(NULL, "failed to allocate class buffer");
429 		return -ENOMEM;
430 	}
431 
432 	/* Original function but with buffer support */
433 	int expr_list_len = 0;
434 	expr_counter = 0;
435 	expr_list = NULL;
436 	for (e = constraint->expr; e; e = e->next) {
437 		/* Allocate a stack to hold expression buffer entries */
438 		if (expr_counter >= expr_list_len) {
439 			char **new_expr_list = expr_list;
440 			int new_expr_list_len;
441 
442 			if (expr_list_len == 0)
443 				new_expr_list_len = STACK_LEN;
444 			else
445 				new_expr_list_len = expr_list_len * 2;
446 
447 			new_expr_list = realloc(expr_list,
448 					new_expr_list_len * sizeof(*expr_list));
449 			if (!new_expr_list) {
450 				ERR(NULL, "failed to allocate expr buffer stack");
451 				rc = -ENOMEM;
452 				goto out;
453 			}
454 			expr_list_len = new_expr_list_len;
455 			expr_list = new_expr_list;
456 		}
457 
458 		/*
459 		 * malloc a buffer to store each expression text component. If
460 		 * buffer is too small cat_expr_buf() will realloc extra space.
461 		 */
462 		expr_buf_len = EXPR_BUF_SIZE;
463 		expr_list[expr_counter] = malloc(expr_buf_len);
464 		if (!expr_list[expr_counter]) {
465 			ERR(NULL, "failed to allocate expr buffer");
466 			rc = -ENOMEM;
467 			goto out;
468 		}
469 		expr_buf_used = 0;
470 
471 		/* Now process each expression of the constraint */
472 		switch (e->expr_type) {
473 		case CEXPR_NOT:
474 			BUG_ON(sp < 0);
475 			s[sp] = !s[sp];
476 			cat_expr_buf(expr_list[expr_counter], "not");
477 			break;
478 		case CEXPR_AND:
479 			BUG_ON(sp < 1);
480 			sp--;
481 			s[sp] &= s[sp + 1];
482 			cat_expr_buf(expr_list[expr_counter], "and");
483 			break;
484 		case CEXPR_OR:
485 			BUG_ON(sp < 1);
486 			sp--;
487 			s[sp] |= s[sp + 1];
488 			cat_expr_buf(expr_list[expr_counter], "or");
489 			break;
490 		case CEXPR_ATTR:
491 			if (sp == (CEXPR_MAXDEPTH - 1))
492 				goto out;
493 
494 			switch (e->attr) {
495 			case CEXPR_USER:
496 				val1 = scontext->user;
497 				val2 = tcontext->user;
498 				free(src); src = strdup("u1");
499 				free(tgt); tgt = strdup("u2");
500 				break;
501 			case CEXPR_TYPE:
502 				val1 = scontext->type;
503 				val2 = tcontext->type;
504 				free(src); src = strdup("t1");
505 				free(tgt); tgt = strdup("t2");
506 				break;
507 			case CEXPR_ROLE:
508 				val1 = scontext->role;
509 				val2 = tcontext->role;
510 				r1 = policydb->role_val_to_struct[val1 - 1];
511 				r2 = policydb->role_val_to_struct[val2 - 1];
512 				free(src); src = strdup("r1");
513 				free(tgt); tgt = strdup("r2");
514 
515 				switch (e->op) {
516 				case CEXPR_DOM:
517 					s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1);
518 					msgcat(src, tgt, "dom", s[sp] == 0);
519 					expr_counter++;
520 					continue;
521 				case CEXPR_DOMBY:
522 					s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1);
523 					msgcat(src, tgt, "domby", s[sp] == 0);
524 					expr_counter++;
525 					continue;
526 				case CEXPR_INCOMP:
527 					s[++sp] = (!ebitmap_get_bit(&r1->dominates, val2 - 1)
528 						 && !ebitmap_get_bit(&r2->dominates, val1 - 1));
529 					msgcat(src, tgt, "incomp", s[sp] == 0);
530 					expr_counter++;
531 					continue;
532 				default:
533 					break;
534 				}
535 				break;
536 			case CEXPR_L1L2:
537 				l1 = &(scontext->range.level[0]);
538 				l2 = &(tcontext->range.level[0]);
539 				free(src); src = strdup("l1");
540 				free(tgt); tgt = strdup("l2");
541 				goto mls_ops;
542 			case CEXPR_L1H2:
543 				l1 = &(scontext->range.level[0]);
544 				l2 = &(tcontext->range.level[1]);
545 				free(src); src = strdup("l1");
546 				free(tgt); tgt = strdup("h2");
547 				goto mls_ops;
548 			case CEXPR_H1L2:
549 				l1 = &(scontext->range.level[1]);
550 				l2 = &(tcontext->range.level[0]);
551 				free(src); src = strdup("h1");
552 				free(tgt); tgt = strdup("l2");
553 				goto mls_ops;
554 			case CEXPR_H1H2:
555 				l1 = &(scontext->range.level[1]);
556 				l2 = &(tcontext->range.level[1]);
557 				free(src); src = strdup("h1");
558 				free(tgt); tgt = strdup("h2");
559 				goto mls_ops;
560 			case CEXPR_L1H1:
561 				l1 = &(scontext->range.level[0]);
562 				l2 = &(scontext->range.level[1]);
563 				free(src); src = strdup("l1");
564 				free(tgt); tgt = strdup("h1");
565 				goto mls_ops;
566 			case CEXPR_L2H2:
567 				l1 = &(tcontext->range.level[0]);
568 				l2 = &(tcontext->range.level[1]);
569 				free(src); src = strdup("l2");
570 				free(tgt); tgt = strdup("h2");
571 mls_ops:
572 				switch (e->op) {
573 				case CEXPR_EQ:
574 					s[++sp] = mls_level_eq(l1, l2);
575 					msgcat(src, tgt, "eq", s[sp] == 0);
576 					expr_counter++;
577 					continue;
578 				case CEXPR_NEQ:
579 					s[++sp] = !mls_level_eq(l1, l2);
580 					msgcat(src, tgt, "!=", s[sp] == 0);
581 					expr_counter++;
582 					continue;
583 				case CEXPR_DOM:
584 					s[++sp] = mls_level_dom(l1, l2);
585 					msgcat(src, tgt, "dom", s[sp] == 0);
586 					expr_counter++;
587 					continue;
588 				case CEXPR_DOMBY:
589 					s[++sp] = mls_level_dom(l2, l1);
590 					msgcat(src, tgt, "domby", s[sp] == 0);
591 					expr_counter++;
592 					continue;
593 				case CEXPR_INCOMP:
594 					s[++sp] = mls_level_incomp(l2, l1);
595 					msgcat(src, tgt, "incomp", s[sp] == 0);
596 					expr_counter++;
597 					continue;
598 				default:
599 					BUG();
600 					goto out;
601 				}
602 				break;
603 			default:
604 				BUG();
605 				goto out;
606 			}
607 
608 			switch (e->op) {
609 			case CEXPR_EQ:
610 				s[++sp] = (val1 == val2);
611 				msgcat(src, tgt, "==", s[sp] == 0);
612 				break;
613 			case CEXPR_NEQ:
614 				s[++sp] = (val1 != val2);
615 				msgcat(src, tgt, "!=", s[sp] == 0);
616 				break;
617 			default:
618 				BUG();
619 				goto out;
620 			}
621 			break;
622 		case CEXPR_NAMES:
623 			if (sp == (CEXPR_MAXDEPTH - 1))
624 				goto out;
625 			s_t_x_num = SOURCE;
626 			c = scontext;
627 			if (e->attr & CEXPR_TARGET) {
628 				s_t_x_num = TARGET;
629 				c = tcontext;
630 			} else if (e->attr & CEXPR_XTARGET) {
631 				s_t_x_num = XTARGET;
632 				c = xcontext;
633 			}
634 			if (!c) {
635 				BUG();
636 				goto out;
637 			}
638 			if (e->attr & CEXPR_USER) {
639 				u_r_t = CEXPR_USER;
640 				val1 = c->user;
641 				snprintf(tmp_buf, sizeof(tmp_buf), "u%d ", s_t_x_num);
642 				free(src); src = strdup(tmp_buf);
643 			} else if (e->attr & CEXPR_ROLE) {
644 				u_r_t = CEXPR_ROLE;
645 				val1 = c->role;
646 				snprintf(tmp_buf, sizeof(tmp_buf), "r%d ", s_t_x_num);
647 				free(src); src = strdup(tmp_buf);
648 			} else if (e->attr & CEXPR_TYPE) {
649 				u_r_t = CEXPR_TYPE;
650 				val1 = c->type;
651 				snprintf(tmp_buf, sizeof(tmp_buf), "t%d ", s_t_x_num);
652 				free(src); src = strdup(tmp_buf);
653 			} else {
654 				BUG();
655 				goto out;
656 			}
657 
658 			switch (e->op) {
659 			case CEXPR_EQ:
660 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
661 				get_name_list(e, u_r_t, src, "==", s[sp] == 0);
662 				break;
663 
664 			case CEXPR_NEQ:
665 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
666 				get_name_list(e, u_r_t, src, "!=", s[sp] == 0);
667 				break;
668 			default:
669 				BUG();
670 				goto out;
671 			}
672 			break;
673 		default:
674 			BUG();
675 			goto out;
676 		}
677 		expr_counter++;
678 	}
679 
680 	/*
681 	 * At this point each expression of the constraint is in
682 	 * expr_list[n+1] and in RPN format. Now convert to 'infix'
683 	 */
684 
685 	/*
686 	 * Save expr count but zero expr_counter to detect if
687 	 * 'BUG(); goto out;' was called as we need to release any used
688 	 * expr_list malloc's. Normally they are released by the RPN to
689 	 * infix code.
690 	 */
691 	int expr_count = expr_counter;
692 	expr_counter = 0;
693 
694 	/*
695 	 * Generate the same number of answer buffer entries as expression
696 	 * buffers (as there will never be more).
697 	 */
698 	answer_list = malloc(expr_count * sizeof(*answer_list));
699 	if (!answer_list) {
700 		ERR(NULL, "failed to allocate answer stack");
701 		rc = -ENOMEM;
702 		goto out;
703 	}
704 
705 	/* The pop operands */
706 	char *a;
707 	char *b;
708 	int a_len, b_len;
709 
710 	/* Convert constraint from RPN to infix notation. */
711 	for (x = 0; x != expr_count; x++) {
712 		if (strncmp(expr_list[x], "and", 3) == 0 || strncmp(expr_list[x],
713 					"or", 2) == 0) {
714 			b = pop();
715 			b_len = strlen(b);
716 			a = pop();
717 			a_len = strlen(a);
718 
719 			/* get a buffer to hold the answer */
720 			answer_list[answer_counter] = malloc(a_len + b_len + 8);
721 			if (!answer_list[answer_counter]) {
722 				ERR(NULL, "failed to allocate answer buffer");
723 				rc = -ENOMEM;
724 				goto out;
725 			}
726 			memset(answer_list[answer_counter], '\0', a_len + b_len + 8);
727 
728 			sprintf(answer_list[answer_counter], "%s %s %s", a,
729 					expr_list[x], b);
730 			push(answer_list[answer_counter++]);
731 			free(a);
732 			free(b);
733 			free(expr_list[x]);
734 		} else if (strncmp(expr_list[x], "not", 3) == 0) {
735 			b = pop();
736 			b_len = strlen(b);
737 
738 			answer_list[answer_counter] = malloc(b_len + 8);
739 			if (!answer_list[answer_counter]) {
740 				ERR(NULL, "failed to allocate answer buffer");
741 				rc = -ENOMEM;
742 				goto out;
743 			}
744 			memset(answer_list[answer_counter], '\0', b_len + 8);
745 
746 			if (strncmp(b, "not", 3) == 0)
747 				sprintf(answer_list[answer_counter], "%s (%s)",
748 						expr_list[x], b);
749 			else
750 				sprintf(answer_list[answer_counter], "%s%s",
751 						expr_list[x], b);
752 			push(answer_list[answer_counter++]);
753 			free(b);
754 			free(expr_list[x]);
755 		} else {
756 			push(expr_list[x]);
757 		}
758 	}
759 	/* Get the final answer from tos and build constraint text */
760 	a = pop();
761 
762 	/* validatetrans / constraint calculation:
763 				rc = 0 is denied, rc = 1 is granted */
764 	sprintf(tmp_buf, "%s %s\n",
765 			xcontext ? "Validatetrans" : "Constraint",
766 			s[0] ? "GRANTED" : "DENIED");
767 
768 	int len, new_buf_len;
769 	char *p, **new_buf = r_buf;
770 	/*
771 	 * These contain the constraint components that are added to the
772 	 * callers reason buffer.
773 	 */
774 	const char *buffers[] = { class_buf, a, "); ", tmp_buf, 0 };
775 
776 	/*
777 	 * This will add the constraints to the callers reason buffer (who is
778 	 * responsible for freeing the memory). It will handle any realloc's
779 	 * should the buffer be too short.
780 	 * The reason_buf_used and reason_buf_len counters are defined
781 	 * globally as multiple constraints can be in the buffer.
782 	 */
783 
784 	if (r_buf && ((s[0] == 0) || ((s[0] == 1 &&
785 				(flags & SHOW_GRANTED) == SHOW_GRANTED)))) {
786 		for (x = 0; buffers[x] != NULL; x++) {
787 			while (1) {
788 				p = *r_buf + reason_buf_used;
789 				len = snprintf(p, reason_buf_len - reason_buf_used,
790 						"%s", buffers[x]);
791 				if (len < 0 || len >= reason_buf_len - reason_buf_used) {
792 					new_buf_len = reason_buf_len + REASON_BUF_SIZE;
793 					*new_buf = realloc(*r_buf, new_buf_len);
794 					if (!new_buf) {
795 						ERR(NULL, "failed to realloc reason buffer");
796 						goto out1;
797 					}
798 					**r_buf = **new_buf;
799 					reason_buf_len = new_buf_len;
800 					continue;
801 				} else {
802 					reason_buf_used += len;
803 					break;
804 				}
805 			}
806 		}
807 	}
808 
809 out1:
810 	rc = s[0];
811 	free(a);
812 
813 out:
814 	free(class_buf);
815 	free(src);
816 	free(tgt);
817 
818 	if (expr_counter) {
819 		for (x = 0; expr_list[x] != NULL; x++)
820 			free(expr_list[x]);
821 	}
822 	free(answer_list);
823 	free(expr_list);
824 	return rc;
825 }
826 
827 /* Forward declaration */
828 static int context_struct_compute_av(context_struct_t * scontext,
829 				     context_struct_t * tcontext,
830 				     sepol_security_class_t tclass,
831 				     sepol_access_vector_t requested,
832 				     struct sepol_av_decision *avd,
833 				     unsigned int *reason,
834 				     char **r_buf,
835 				     unsigned int flags);
836 
type_attribute_bounds_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)837 static void type_attribute_bounds_av(context_struct_t *scontext,
838 				     context_struct_t *tcontext,
839 				     sepol_security_class_t tclass,
840 				     sepol_access_vector_t requested,
841 				     struct sepol_av_decision *avd,
842 				     unsigned int *reason)
843 {
844 	context_struct_t lo_scontext;
845 	context_struct_t lo_tcontext, *tcontextp = tcontext;
846 	struct sepol_av_decision lo_avd;
847 	type_datum_t *source;
848 	type_datum_t *target;
849 	sepol_access_vector_t masked = 0;
850 
851 	source = policydb->type_val_to_struct[scontext->type - 1];
852 	if (!source->bounds)
853 		return;
854 
855 	target = policydb->type_val_to_struct[tcontext->type - 1];
856 
857 	memset(&lo_avd, 0, sizeof(lo_avd));
858 
859 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
860 	lo_scontext.type = source->bounds;
861 
862 	if (target->bounds) {
863 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
864 		lo_tcontext.type = target->bounds;
865 		tcontextp = &lo_tcontext;
866 	}
867 
868 	context_struct_compute_av(&lo_scontext,
869 				  tcontextp,
870 				  tclass,
871 				  requested,
872 				  &lo_avd,
873 				  NULL, /* reason intentionally omitted */
874 				  NULL,
875 				  0);
876 
877 	masked = ~lo_avd.allowed & avd->allowed;
878 
879 	if (!masked)
880 		return;		/* no masked permission */
881 
882 	/* mask violated permissions */
883 	avd->allowed &= ~masked;
884 
885 	*reason |= SEPOL_COMPUTEAV_BOUNDS;
886 }
887 
888 /*
889  * Compute access vectors based on a context structure pair for
890  * the permissions in a particular class.
891  */
context_struct_compute_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** r_buf,unsigned int flags)892 static int context_struct_compute_av(context_struct_t * scontext,
893 				     context_struct_t * tcontext,
894 				     sepol_security_class_t tclass,
895 				     sepol_access_vector_t requested,
896 				     struct sepol_av_decision *avd,
897 				     unsigned int *reason,
898 				     char **r_buf,
899 				     unsigned int flags)
900 {
901 	constraint_node_t *constraint;
902 	struct role_allow *ra;
903 	avtab_key_t avkey;
904 	class_datum_t *tclass_datum;
905 	avtab_ptr_t node;
906 	ebitmap_t *sattr, *tattr;
907 	ebitmap_node_t *snode, *tnode;
908 	unsigned int i, j;
909 
910 	if (!tclass || tclass > policydb->p_classes.nprim) {
911 		ERR(NULL, "unrecognized class %d", tclass);
912 		return -EINVAL;
913 	}
914 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
915 
916 	/*
917 	 * Initialize the access vectors to the default values.
918 	 */
919 	avd->allowed = 0;
920 	avd->decided = 0xffffffff;
921 	avd->auditallow = 0;
922 	avd->auditdeny = 0xffffffff;
923 	avd->seqno = latest_granting;
924 	if (reason)
925 		*reason = 0;
926 
927 	/*
928 	 * If a specific type enforcement rule was defined for
929 	 * this permission check, then use it.
930 	 */
931 	avkey.target_class = tclass;
932 	avkey.specified = AVTAB_AV;
933 	sattr = &policydb->type_attr_map[scontext->type - 1];
934 	tattr = &policydb->type_attr_map[tcontext->type - 1];
935 	ebitmap_for_each_bit(sattr, snode, i) {
936 		if (!ebitmap_node_get_bit(snode, i))
937 			continue;
938 		ebitmap_for_each_bit(tattr, tnode, j) {
939 			if (!ebitmap_node_get_bit(tnode, j))
940 				continue;
941 			avkey.source_type = i + 1;
942 			avkey.target_type = j + 1;
943 			for (node =
944 			     avtab_search_node(&policydb->te_avtab, &avkey);
945 			     node != NULL;
946 			     node =
947 			     avtab_search_node_next(node, avkey.specified)) {
948 				if (node->key.specified == AVTAB_ALLOWED)
949 					avd->allowed |= node->datum.data;
950 				else if (node->key.specified ==
951 					 AVTAB_AUDITALLOW)
952 					avd->auditallow |= node->datum.data;
953 				else if (node->key.specified == AVTAB_AUDITDENY)
954 					avd->auditdeny &= node->datum.data;
955 			}
956 
957 			/* Check conditional av table for additional permissions */
958 			cond_compute_av(&policydb->te_cond_avtab, &avkey, avd);
959 
960 		}
961 	}
962 
963 	if (requested & ~avd->allowed) {
964 		if (reason)
965 			*reason |= SEPOL_COMPUTEAV_TE;
966 		requested &= avd->allowed;
967 	}
968 
969 	/*
970 	 * Remove any permissions prohibited by a constraint (this includes
971 	 * the MLS policy).
972 	 */
973 	constraint = tclass_datum->constraints;
974 	while (constraint) {
975 		if ((constraint->permissions & (avd->allowed)) &&
976 		    !constraint_expr_eval_reason(scontext, tcontext, NULL,
977 					  tclass, constraint, r_buf, flags)) {
978 			avd->allowed =
979 			    (avd->allowed) & ~(constraint->permissions);
980 		}
981 		constraint = constraint->next;
982 	}
983 
984 	if (requested & ~avd->allowed) {
985 		if (reason)
986 			*reason |= SEPOL_COMPUTEAV_CONS;
987 		requested &= avd->allowed;
988 	}
989 
990 	/*
991 	 * If checking process transition permission and the
992 	 * role is changing, then check the (current_role, new_role)
993 	 * pair.
994 	 */
995 	if (tclass == SECCLASS_PROCESS &&
996 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
997 	    scontext->role != tcontext->role) {
998 		for (ra = policydb->role_allow; ra; ra = ra->next) {
999 			if (scontext->role == ra->role &&
1000 			    tcontext->role == ra->new_role)
1001 				break;
1002 		}
1003 		if (!ra)
1004 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
1005 							  PROCESS__DYNTRANSITION);
1006 	}
1007 
1008 	if (requested & ~avd->allowed) {
1009 		if (reason)
1010 			*reason |= SEPOL_COMPUTEAV_RBAC;
1011 		requested &= avd->allowed;
1012 	}
1013 
1014 	type_attribute_bounds_av(scontext, tcontext, tclass, requested, avd,
1015 				 reason);
1016 	return 0;
1017 }
1018 
sepol_validate_transition(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass)1019 int hidden sepol_validate_transition(sepol_security_id_t oldsid,
1020 				     sepol_security_id_t newsid,
1021 				     sepol_security_id_t tasksid,
1022 				     sepol_security_class_t tclass)
1023 {
1024 	context_struct_t *ocontext;
1025 	context_struct_t *ncontext;
1026 	context_struct_t *tcontext;
1027 	class_datum_t *tclass_datum;
1028 	constraint_node_t *constraint;
1029 
1030 	if (!tclass || tclass > policydb->p_classes.nprim) {
1031 		ERR(NULL, "unrecognized class %d", tclass);
1032 		return -EINVAL;
1033 	}
1034 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1035 
1036 	ocontext = sepol_sidtab_search(sidtab, oldsid);
1037 	if (!ocontext) {
1038 		ERR(NULL, "unrecognized SID %d", oldsid);
1039 		return -EINVAL;
1040 	}
1041 
1042 	ncontext = sepol_sidtab_search(sidtab, newsid);
1043 	if (!ncontext) {
1044 		ERR(NULL, "unrecognized SID %d", newsid);
1045 		return -EINVAL;
1046 	}
1047 
1048 	tcontext = sepol_sidtab_search(sidtab, tasksid);
1049 	if (!tcontext) {
1050 		ERR(NULL, "unrecognized SID %d", tasksid);
1051 		return -EINVAL;
1052 	}
1053 
1054 	constraint = tclass_datum->validatetrans;
1055 	while (constraint) {
1056 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1057 					  0, constraint, NULL, 0)) {
1058 			return -EPERM;
1059 		}
1060 		constraint = constraint->next;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 /*
1067  * sepol_validate_transition_reason_buffer - the reason buffer is realloc'd
1068  * in the constraint_expr_eval_reason() function.
1069  */
sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass,char ** reason_buf,unsigned int flags)1070 int hidden sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,
1071 				     sepol_security_id_t newsid,
1072 				     sepol_security_id_t tasksid,
1073 				     sepol_security_class_t tclass,
1074 				     char **reason_buf,
1075 				     unsigned int flags)
1076 {
1077 	context_struct_t *ocontext;
1078 	context_struct_t *ncontext;
1079 	context_struct_t *tcontext;
1080 	class_datum_t *tclass_datum;
1081 	constraint_node_t *constraint;
1082 
1083 	if (!tclass || tclass > policydb->p_classes.nprim) {
1084 		ERR(NULL, "unrecognized class %d", tclass);
1085 		return -EINVAL;
1086 	}
1087 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1088 
1089 	ocontext = sepol_sidtab_search(sidtab, oldsid);
1090 	if (!ocontext) {
1091 		ERR(NULL, "unrecognized SID %d", oldsid);
1092 		return -EINVAL;
1093 	}
1094 
1095 	ncontext = sepol_sidtab_search(sidtab, newsid);
1096 	if (!ncontext) {
1097 		ERR(NULL, "unrecognized SID %d", newsid);
1098 		return -EINVAL;
1099 	}
1100 
1101 	tcontext = sepol_sidtab_search(sidtab, tasksid);
1102 	if (!tcontext) {
1103 		ERR(NULL, "unrecognized SID %d", tasksid);
1104 		return -EINVAL;
1105 	}
1106 
1107 	/*
1108 	 * Set the buffer to NULL as mls/validatetrans may not be processed.
1109 	 * If a buffer is required, then the routines in
1110 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1111 	 * chunks (as it gets called for each mls/validatetrans processed).
1112 	 * We just make sure these start from zero.
1113 	 */
1114 	*reason_buf = NULL;
1115 	reason_buf_used = 0;
1116 	reason_buf_len = 0;
1117 	constraint = tclass_datum->validatetrans;
1118 	while (constraint) {
1119 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1120 				tclass, constraint, reason_buf, flags)) {
1121 			return -EPERM;
1122 		}
1123 		constraint = constraint->next;
1124 	}
1125 	return 0;
1126 }
1127 
sepol_compute_av_reason(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)1128 int hidden sepol_compute_av_reason(sepol_security_id_t ssid,
1129 				   sepol_security_id_t tsid,
1130 				   sepol_security_class_t tclass,
1131 				   sepol_access_vector_t requested,
1132 				   struct sepol_av_decision *avd,
1133 				   unsigned int *reason)
1134 {
1135 	context_struct_t *scontext = 0, *tcontext = 0;
1136 	int rc = 0;
1137 
1138 	scontext = sepol_sidtab_search(sidtab, ssid);
1139 	if (!scontext) {
1140 		ERR(NULL, "unrecognized SID %d", ssid);
1141 		rc = -EINVAL;
1142 		goto out;
1143 	}
1144 	tcontext = sepol_sidtab_search(sidtab, tsid);
1145 	if (!tcontext) {
1146 		ERR(NULL, "unrecognized SID %d", tsid);
1147 		rc = -EINVAL;
1148 		goto out;
1149 	}
1150 
1151 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1152 					requested, avd, reason, NULL, 0);
1153       out:
1154 	return rc;
1155 }
1156 
1157 /*
1158  * sepol_compute_av_reason_buffer - the reason buffer is malloc'd to
1159  * REASON_BUF_SIZE. If the buffer size is exceeded, then it is realloc'd
1160  * in the constraint_expr_eval_reason() function.
1161  */
sepol_compute_av_reason_buffer(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** reason_buf,unsigned int flags)1162 int hidden sepol_compute_av_reason_buffer(sepol_security_id_t ssid,
1163 				   sepol_security_id_t tsid,
1164 				   sepol_security_class_t tclass,
1165 				   sepol_access_vector_t requested,
1166 				   struct sepol_av_decision *avd,
1167 				   unsigned int *reason,
1168 				   char **reason_buf,
1169 				   unsigned int flags)
1170 {
1171 	context_struct_t *scontext = 0, *tcontext = 0;
1172 	int rc = 0;
1173 
1174 	scontext = sepol_sidtab_search(sidtab, ssid);
1175 	if (!scontext) {
1176 		ERR(NULL, "unrecognized SID %d", ssid);
1177 		rc = -EINVAL;
1178 		goto out;
1179 	}
1180 	tcontext = sepol_sidtab_search(sidtab, tsid);
1181 	if (!tcontext) {
1182 		ERR(NULL, "unrecognized SID %d", tsid);
1183 		rc = -EINVAL;
1184 		goto out;
1185 	}
1186 
1187 	/*
1188 	 * Set the buffer to NULL as constraints may not be processed.
1189 	 * If a buffer is required, then the routines in
1190 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1191 	 * chunks (as it gets called for each constraint processed).
1192 	 * We just make sure these start from zero.
1193 	 */
1194 	*reason_buf = NULL;
1195 	reason_buf_used = 0;
1196 	reason_buf_len = 0;
1197 
1198 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1199 					   requested, avd, reason, reason_buf, flags);
1200 out:
1201 	return rc;
1202 }
1203 
sepol_compute_av(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd)1204 int hidden sepol_compute_av(sepol_security_id_t ssid,
1205 			    sepol_security_id_t tsid,
1206 			    sepol_security_class_t tclass,
1207 			    sepol_access_vector_t requested,
1208 			    struct sepol_av_decision *avd)
1209 {
1210 	unsigned int reason = 0;
1211 	return sepol_compute_av_reason(ssid, tsid, tclass, requested, avd,
1212 				       &reason);
1213 }
1214 
1215 /*
1216  * Return a class ID associated with the class string specified by
1217  * class_name.
1218  */
sepol_string_to_security_class(const char * class_name,sepol_security_class_t * tclass)1219 int hidden sepol_string_to_security_class(const char *class_name,
1220 			sepol_security_class_t *tclass)
1221 {
1222 	class_datum_t *tclass_datum;
1223 
1224 	tclass_datum = hashtab_search(policydb->p_classes.table,
1225 				      (hashtab_key_t) class_name);
1226 	if (!tclass_datum) {
1227 		ERR(NULL, "unrecognized class %s", class_name);
1228 		return STATUS_ERR;
1229 	}
1230 	*tclass = tclass_datum->s.value;
1231 	return STATUS_SUCCESS;
1232 }
1233 
1234 /*
1235  * Return access vector bit associated with the class ID and permission
1236  * string.
1237  */
sepol_string_to_av_perm(sepol_security_class_t tclass,const char * perm_name,sepol_access_vector_t * av)1238 int hidden sepol_string_to_av_perm(sepol_security_class_t tclass,
1239 					const char *perm_name,
1240 					sepol_access_vector_t *av)
1241 {
1242 	class_datum_t *tclass_datum;
1243 	perm_datum_t *perm_datum;
1244 
1245 	if (!tclass || tclass > policydb->p_classes.nprim) {
1246 		ERR(NULL, "unrecognized class %d", tclass);
1247 		return -EINVAL;
1248 	}
1249 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1250 
1251 	/* Check for unique perms then the common ones (if any) */
1252 	perm_datum = (perm_datum_t *)
1253 			hashtab_search(tclass_datum->permissions.table,
1254 			(hashtab_key_t)perm_name);
1255 	if (perm_datum != NULL) {
1256 		*av = 0x1 << (perm_datum->s.value - 1);
1257 		return STATUS_SUCCESS;
1258 	}
1259 
1260 	if (tclass_datum->comdatum == NULL)
1261 		goto out;
1262 
1263 	perm_datum = (perm_datum_t *)
1264 			hashtab_search(tclass_datum->comdatum->permissions.table,
1265 			(hashtab_key_t)perm_name);
1266 
1267 	if (perm_datum != NULL) {
1268 		*av = 0x1 << (perm_datum->s.value - 1);
1269 		return STATUS_SUCCESS;
1270 	}
1271 out:
1272 	ERR(NULL, "could not convert %s to av bit", perm_name);
1273 	return STATUS_ERR;
1274 }
1275 
1276 /*
1277  * Write the security context string representation of
1278  * the context associated with `sid' into a dynamically
1279  * allocated string of the correct size.  Set `*scontext'
1280  * to point to this string and set `*scontext_len' to
1281  * the length of the string.
1282  */
sepol_sid_to_context(sepol_security_id_t sid,sepol_security_context_t * scontext,size_t * scontext_len)1283 int hidden sepol_sid_to_context(sepol_security_id_t sid,
1284 				sepol_security_context_t * scontext,
1285 				size_t * scontext_len)
1286 {
1287 	context_struct_t *context;
1288 	int rc = 0;
1289 
1290 	context = sepol_sidtab_search(sidtab, sid);
1291 	if (!context) {
1292 		ERR(NULL, "unrecognized SID %d", sid);
1293 		rc = -EINVAL;
1294 		goto out;
1295 	}
1296 	rc = context_to_string(NULL, policydb, context, scontext, scontext_len);
1297       out:
1298 	return rc;
1299 
1300 }
1301 
1302 /*
1303  * Return a SID associated with the security context that
1304  * has the string representation specified by `scontext'.
1305  */
sepol_context_to_sid(const sepol_security_context_t scontext,size_t scontext_len,sepol_security_id_t * sid)1306 int hidden sepol_context_to_sid(const sepol_security_context_t scontext,
1307 				size_t scontext_len, sepol_security_id_t * sid)
1308 {
1309 
1310 	context_struct_t *context = NULL;
1311 
1312 	/* First, create the context */
1313 	if (context_from_string(NULL, policydb, &context,
1314 				scontext, scontext_len) < 0)
1315 		goto err;
1316 
1317 	/* Obtain the new sid */
1318 	if (sid && (sepol_sidtab_context_to_sid(sidtab, context, sid) < 0))
1319 		goto err;
1320 
1321 	context_destroy(context);
1322 	free(context);
1323 	return STATUS_SUCCESS;
1324 
1325       err:
1326 	if (context) {
1327 		context_destroy(context);
1328 		free(context);
1329 	}
1330 	ERR(NULL, "could not convert %s to sid", scontext);
1331 	return STATUS_ERR;
1332 }
1333 
compute_sid_handle_invalid_context(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,context_struct_t * newcontext)1334 static inline int compute_sid_handle_invalid_context(context_struct_t *
1335 						     scontext,
1336 						     context_struct_t *
1337 						     tcontext,
1338 						     sepol_security_class_t
1339 						     tclass,
1340 						     context_struct_t *
1341 						     newcontext)
1342 {
1343 	if (selinux_enforcing) {
1344 		return -EACCES;
1345 	} else {
1346 		sepol_security_context_t s, t, n;
1347 		size_t slen, tlen, nlen;
1348 
1349 		context_to_string(NULL, policydb, scontext, &s, &slen);
1350 		context_to_string(NULL, policydb, tcontext, &t, &tlen);
1351 		context_to_string(NULL, policydb, newcontext, &n, &nlen);
1352 		ERR(NULL, "invalid context %s for "
1353 		    "scontext=%s tcontext=%s tclass=%s",
1354 		    n, s, t, policydb->p_class_val_to_name[tclass - 1]);
1355 		free(s);
1356 		free(t);
1357 		free(n);
1358 		return 0;
1359 	}
1360 }
1361 
sepol_compute_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,uint32_t specified,sepol_security_id_t * out_sid)1362 static int sepol_compute_sid(sepol_security_id_t ssid,
1363 			     sepol_security_id_t tsid,
1364 			     sepol_security_class_t tclass,
1365 			     uint32_t specified, sepol_security_id_t * out_sid)
1366 {
1367 	context_struct_t *scontext = 0, *tcontext = 0, newcontext;
1368 	struct role_trans *roletr = 0;
1369 	avtab_key_t avkey;
1370 	avtab_datum_t *avdatum;
1371 	avtab_ptr_t node;
1372 	int rc = 0;
1373 
1374 	scontext = sepol_sidtab_search(sidtab, ssid);
1375 	if (!scontext) {
1376 		ERR(NULL, "unrecognized SID %d", ssid);
1377 		rc = -EINVAL;
1378 		goto out;
1379 	}
1380 	tcontext = sepol_sidtab_search(sidtab, tsid);
1381 	if (!tcontext) {
1382 		ERR(NULL, "unrecognized SID %d", tsid);
1383 		rc = -EINVAL;
1384 		goto out;
1385 	}
1386 
1387 	context_init(&newcontext);
1388 
1389 	/* Set the user identity. */
1390 	switch (specified) {
1391 	case AVTAB_TRANSITION:
1392 	case AVTAB_CHANGE:
1393 		/* Use the process user identity. */
1394 		newcontext.user = scontext->user;
1395 		break;
1396 	case AVTAB_MEMBER:
1397 		/* Use the related object owner. */
1398 		newcontext.user = tcontext->user;
1399 		break;
1400 	}
1401 
1402 	/* Set the role and type to default values. */
1403 	switch (tclass) {
1404 	case SECCLASS_PROCESS:
1405 		/* Use the current role and type of process. */
1406 		newcontext.role = scontext->role;
1407 		newcontext.type = scontext->type;
1408 		break;
1409 	default:
1410 		/* Use the well-defined object role. */
1411 		newcontext.role = OBJECT_R_VAL;
1412 		/* Use the type of the related object. */
1413 		newcontext.type = tcontext->type;
1414 	}
1415 
1416 	/* Look for a type transition/member/change rule. */
1417 	avkey.source_type = scontext->type;
1418 	avkey.target_type = tcontext->type;
1419 	avkey.target_class = tclass;
1420 	avkey.specified = specified;
1421 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1422 
1423 	/* If no permanent rule, also check for enabled conditional rules */
1424 	if (!avdatum) {
1425 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1426 		for (; node != NULL;
1427 		     node = avtab_search_node_next(node, specified)) {
1428 			if (node->key.specified & AVTAB_ENABLED) {
1429 				avdatum = &node->datum;
1430 				break;
1431 			}
1432 		}
1433 	}
1434 
1435 	if (avdatum) {
1436 		/* Use the type from the type transition/member/change rule. */
1437 		newcontext.type = avdatum->data;
1438 	}
1439 
1440 	/* Check for class-specific changes. */
1441 	switch (tclass) {
1442 	case SECCLASS_PROCESS:
1443 		if (specified & AVTAB_TRANSITION) {
1444 			/* Look for a role transition rule. */
1445 			for (roletr = policydb->role_tr; roletr;
1446 			     roletr = roletr->next) {
1447 				if (roletr->role == scontext->role &&
1448 				    roletr->type == tcontext->type) {
1449 					/* Use the role transition rule. */
1450 					newcontext.role = roletr->new_role;
1451 					break;
1452 				}
1453 			}
1454 		}
1455 		break;
1456 	default:
1457 		break;
1458 	}
1459 
1460 	/* Set the MLS attributes.
1461 	   This is done last because it may allocate memory. */
1462 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1463 			     &newcontext);
1464 	if (rc)
1465 		goto out;
1466 
1467 	/* Check the validity of the context. */
1468 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1469 		rc = compute_sid_handle_invalid_context(scontext,
1470 							tcontext,
1471 							tclass, &newcontext);
1472 		if (rc)
1473 			goto out;
1474 	}
1475 	/* Obtain the sid for the context. */
1476 	rc = sepol_sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1477       out:
1478 	context_destroy(&newcontext);
1479 	return rc;
1480 }
1481 
1482 /*
1483  * Compute a SID to use for labeling a new object in the
1484  * class `tclass' based on a SID pair.
1485  */
sepol_transition_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1486 int hidden sepol_transition_sid(sepol_security_id_t ssid,
1487 				sepol_security_id_t tsid,
1488 				sepol_security_class_t tclass,
1489 				sepol_security_id_t * out_sid)
1490 {
1491 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1492 }
1493 
1494 /*
1495  * Compute a SID to use when selecting a member of a
1496  * polyinstantiated object of class `tclass' based on
1497  * a SID pair.
1498  */
sepol_member_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1499 int hidden sepol_member_sid(sepol_security_id_t ssid,
1500 			    sepol_security_id_t tsid,
1501 			    sepol_security_class_t tclass,
1502 			    sepol_security_id_t * out_sid)
1503 {
1504 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1505 }
1506 
1507 /*
1508  * Compute a SID to use for relabeling an object in the
1509  * class `tclass' based on a SID pair.
1510  */
sepol_change_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1511 int hidden sepol_change_sid(sepol_security_id_t ssid,
1512 			    sepol_security_id_t tsid,
1513 			    sepol_security_class_t tclass,
1514 			    sepol_security_id_t * out_sid)
1515 {
1516 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1517 }
1518 
1519 /*
1520  * Verify that each permission that is defined under the
1521  * existing policy is still defined with the same value
1522  * in the new policy.
1523  */
validate_perm(hashtab_key_t key,hashtab_datum_t datum,void * p)1524 static int validate_perm(hashtab_key_t key, hashtab_datum_t datum, void *p)
1525 {
1526 	hashtab_t h;
1527 	perm_datum_t *perdatum, *perdatum2;
1528 
1529 	h = (hashtab_t) p;
1530 	perdatum = (perm_datum_t *) datum;
1531 
1532 	perdatum2 = (perm_datum_t *) hashtab_search(h, key);
1533 	if (!perdatum2) {
1534 		ERR(NULL, "permission %s disappeared", key);
1535 		return -1;
1536 	}
1537 	if (perdatum->s.value != perdatum2->s.value) {
1538 		ERR(NULL, "the value of permissions %s changed", key);
1539 		return -1;
1540 	}
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Verify that each class that is defined under the
1546  * existing policy is still defined with the same
1547  * attributes in the new policy.
1548  */
validate_class(hashtab_key_t key,hashtab_datum_t datum,void * p)1549 static int validate_class(hashtab_key_t key, hashtab_datum_t datum, void *p)
1550 {
1551 	policydb_t *newp;
1552 	class_datum_t *cladatum, *cladatum2;
1553 
1554 	newp = (policydb_t *) p;
1555 	cladatum = (class_datum_t *) datum;
1556 
1557 	cladatum2 =
1558 	    (class_datum_t *) hashtab_search(newp->p_classes.table, key);
1559 	if (!cladatum2) {
1560 		ERR(NULL, "class %s disappeared", key);
1561 		return -1;
1562 	}
1563 	if (cladatum->s.value != cladatum2->s.value) {
1564 		ERR(NULL, "the value of class %s changed", key);
1565 		return -1;
1566 	}
1567 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1568 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1569 		ERR(NULL, "the inherits clause for the access "
1570 		    "vector definition for class %s changed", key);
1571 		return -1;
1572 	}
1573 	if (cladatum->comdatum) {
1574 		if (hashtab_map
1575 		    (cladatum->comdatum->permissions.table, validate_perm,
1576 		     cladatum2->comdatum->permissions.table)) {
1577 			ERR(NULL,
1578 			    " in the access vector definition "
1579 			    "for class %s\n", key);
1580 			return -1;
1581 		}
1582 	}
1583 	if (hashtab_map(cladatum->permissions.table, validate_perm,
1584 			cladatum2->permissions.table)) {
1585 		ERR(NULL, " in access vector definition for class %s", key);
1586 		return -1;
1587 	}
1588 	return 0;
1589 }
1590 
1591 /* Clone the SID into the new SID table. */
clone_sid(sepol_security_id_t sid,context_struct_t * context,void * arg)1592 static int clone_sid(sepol_security_id_t sid,
1593 		     context_struct_t * context, void *arg)
1594 {
1595 	sidtab_t *s = arg;
1596 
1597 	return sepol_sidtab_insert(s, sid, context);
1598 }
1599 
convert_context_handle_invalid_context(context_struct_t * context)1600 static inline int convert_context_handle_invalid_context(context_struct_t *
1601 							 context)
1602 {
1603 	if (selinux_enforcing) {
1604 		return -EINVAL;
1605 	} else {
1606 		sepol_security_context_t s;
1607 		size_t len;
1608 
1609 		context_to_string(NULL, policydb, context, &s, &len);
1610 		ERR(NULL, "context %s is invalid", s);
1611 		free(s);
1612 		return 0;
1613 	}
1614 }
1615 
1616 typedef struct {
1617 	policydb_t *oldp;
1618 	policydb_t *newp;
1619 } convert_context_args_t;
1620 
1621 /*
1622  * Convert the values in the security context
1623  * structure `c' from the values specified
1624  * in the policy `p->oldp' to the values specified
1625  * in the policy `p->newp'.  Verify that the
1626  * context is valid under the new policy.
1627  */
convert_context(sepol_security_id_t key,context_struct_t * c,void * p)1628 static int convert_context(sepol_security_id_t key __attribute__ ((unused)),
1629 			   context_struct_t * c, void *p)
1630 {
1631 	convert_context_args_t *args;
1632 	context_struct_t oldc;
1633 	role_datum_t *role;
1634 	type_datum_t *typdatum;
1635 	user_datum_t *usrdatum;
1636 	sepol_security_context_t s;
1637 	size_t len;
1638 	int rc = -EINVAL;
1639 
1640 	args = (convert_context_args_t *) p;
1641 
1642 	if (context_cpy(&oldc, c))
1643 		return -ENOMEM;
1644 
1645 	/* Convert the user. */
1646 	usrdatum = (user_datum_t *) hashtab_search(args->newp->p_users.table,
1647 						   args->oldp->
1648 						   p_user_val_to_name[c->user -
1649 								      1]);
1650 
1651 	if (!usrdatum) {
1652 		goto bad;
1653 	}
1654 	c->user = usrdatum->s.value;
1655 
1656 	/* Convert the role. */
1657 	role = (role_datum_t *) hashtab_search(args->newp->p_roles.table,
1658 					       args->oldp->
1659 					       p_role_val_to_name[c->role - 1]);
1660 	if (!role) {
1661 		goto bad;
1662 	}
1663 	c->role = role->s.value;
1664 
1665 	/* Convert the type. */
1666 	typdatum = (type_datum_t *)
1667 	    hashtab_search(args->newp->p_types.table,
1668 			   args->oldp->p_type_val_to_name[c->type - 1]);
1669 	if (!typdatum) {
1670 		goto bad;
1671 	}
1672 	c->type = typdatum->s.value;
1673 
1674 	rc = mls_convert_context(args->oldp, args->newp, c);
1675 	if (rc)
1676 		goto bad;
1677 
1678 	/* Check the validity of the new context. */
1679 	if (!policydb_context_isvalid(args->newp, c)) {
1680 		rc = convert_context_handle_invalid_context(&oldc);
1681 		if (rc)
1682 			goto bad;
1683 	}
1684 
1685 	context_destroy(&oldc);
1686 	return 0;
1687 
1688       bad:
1689 	context_to_string(NULL, policydb, &oldc, &s, &len);
1690 	context_destroy(&oldc);
1691 	ERR(NULL, "invalidating context %s", s);
1692 	free(s);
1693 	return rc;
1694 }
1695 
1696 /* Reading from a policy "file". */
next_entry(void * buf,struct policy_file * fp,size_t bytes)1697 int hidden next_entry(void *buf, struct policy_file *fp, size_t bytes)
1698 {
1699 	size_t nread;
1700 
1701 	switch (fp->type) {
1702 	case PF_USE_STDIO:
1703 		nread = fread(buf, bytes, 1, fp->fp);
1704 
1705 		if (nread != 1)
1706 			return -1;
1707 		break;
1708 	case PF_USE_MEMORY:
1709 		if (bytes > fp->len) {
1710 			errno = EOVERFLOW;
1711 			return -1;
1712 		}
1713 		memcpy(buf, fp->data, bytes);
1714 		fp->data += bytes;
1715 		fp->len -= bytes;
1716 		break;
1717 	default:
1718 		errno = EINVAL;
1719 		return -1;
1720 	}
1721 	return 0;
1722 }
1723 
put_entry(const void * ptr,size_t size,size_t n,struct policy_file * fp)1724 size_t hidden put_entry(const void *ptr, size_t size, size_t n,
1725 			struct policy_file *fp)
1726 {
1727 	size_t bytes = size * n;
1728 
1729 	switch (fp->type) {
1730 	case PF_USE_STDIO:
1731 		return fwrite(ptr, size, n, fp->fp);
1732 	case PF_USE_MEMORY:
1733 		if (bytes > fp->len) {
1734 			errno = ENOSPC;
1735 			return 0;
1736 		}
1737 
1738 		memcpy(fp->data, ptr, bytes);
1739 		fp->data += bytes;
1740 		fp->len -= bytes;
1741 		return n;
1742 	case PF_LEN:
1743 		fp->len += bytes;
1744 		return n;
1745 	default:
1746 		return 0;
1747 	}
1748 	return 0;
1749 }
1750 
1751 /*
1752  * Reads a string and null terminates it from the policy file.
1753  * This is a port of str_read from the SE Linux kernel code.
1754  *
1755  * It returns:
1756  *   0 - Success
1757  *  -1 - Failure with errno set
1758  */
str_read(char ** strp,struct policy_file * fp,size_t len)1759 int hidden str_read(char **strp, struct policy_file *fp, size_t len)
1760 {
1761 	int rc;
1762 	char *str;
1763 
1764 	if (zero_or_saturated(len)) {
1765 		errno = EINVAL;
1766 		return -1;
1767 	}
1768 
1769 	str = malloc(len + 1);
1770 	if (!str)
1771 		return -1;
1772 
1773 	/* it's expected the caller should free the str */
1774 	*strp = str;
1775 
1776 	/* next_entry sets errno */
1777 	rc = next_entry(str, fp, len);
1778 	if (rc)
1779 		return rc;
1780 
1781 	str[len] = '\0';
1782 	return 0;
1783 }
1784 
1785 /*
1786  * Read a new set of configuration data from
1787  * a policy database binary representation file.
1788  *
1789  * Verify that each class that is defined under the
1790  * existing policy is still defined with the same
1791  * attributes in the new policy.
1792  *
1793  * Convert the context structures in the SID table to the
1794  * new representation and verify that all entries
1795  * in the SID table are valid under the new policy.
1796  *
1797  * Change the active policy database to use the new
1798  * configuration data.
1799  *
1800  * Reset the access vector cache.
1801  */
sepol_load_policy(void * data,size_t len)1802 int hidden sepol_load_policy(void *data, size_t len)
1803 {
1804 	policydb_t oldpolicydb, newpolicydb;
1805 	sidtab_t oldsidtab, newsidtab;
1806 	convert_context_args_t args;
1807 	int rc = 0;
1808 	struct policy_file file, *fp;
1809 
1810 	policy_file_init(&file);
1811 	file.type = PF_USE_MEMORY;
1812 	file.data = data;
1813 	file.len = len;
1814 	fp = &file;
1815 
1816 	if (policydb_init(&newpolicydb))
1817 		return -ENOMEM;
1818 
1819 	if (policydb_read(&newpolicydb, fp, 1)) {
1820 		policydb_destroy(&mypolicydb);
1821 		return -EINVAL;
1822 	}
1823 
1824 	sepol_sidtab_init(&newsidtab);
1825 
1826 	/* Verify that the existing classes did not change. */
1827 	if (hashtab_map
1828 	    (policydb->p_classes.table, validate_class, &newpolicydb)) {
1829 		ERR(NULL, "the definition of an existing class changed");
1830 		rc = -EINVAL;
1831 		goto err;
1832 	}
1833 
1834 	/* Clone the SID table. */
1835 	sepol_sidtab_shutdown(sidtab);
1836 	if (sepol_sidtab_map(sidtab, clone_sid, &newsidtab)) {
1837 		rc = -ENOMEM;
1838 		goto err;
1839 	}
1840 
1841 	/* Convert the internal representations of contexts
1842 	   in the new SID table and remove invalid SIDs. */
1843 	args.oldp = policydb;
1844 	args.newp = &newpolicydb;
1845 	sepol_sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1846 
1847 	/* Save the old policydb and SID table to free later. */
1848 	memcpy(&oldpolicydb, policydb, sizeof *policydb);
1849 	sepol_sidtab_set(&oldsidtab, sidtab);
1850 
1851 	/* Install the new policydb and SID table. */
1852 	memcpy(policydb, &newpolicydb, sizeof *policydb);
1853 	sepol_sidtab_set(sidtab, &newsidtab);
1854 
1855 	/* Free the old policydb and SID table. */
1856 	policydb_destroy(&oldpolicydb);
1857 	sepol_sidtab_destroy(&oldsidtab);
1858 
1859 	return 0;
1860 
1861       err:
1862 	sepol_sidtab_destroy(&newsidtab);
1863 	policydb_destroy(&newpolicydb);
1864 	return rc;
1865 
1866 }
1867 
1868 /*
1869  * Return the SIDs to use for an unlabeled file system
1870  * that is being mounted from the device with the
1871  * the kdevname `name'.  The `fs_sid' SID is returned for
1872  * the file system and the `file_sid' SID is returned
1873  * for all files within that file system.
1874  */
sepol_fs_sid(char * name,sepol_security_id_t * fs_sid,sepol_security_id_t * file_sid)1875 int hidden sepol_fs_sid(char *name,
1876 			sepol_security_id_t * fs_sid,
1877 			sepol_security_id_t * file_sid)
1878 {
1879 	int rc = 0;
1880 	ocontext_t *c;
1881 
1882 	c = policydb->ocontexts[OCON_FS];
1883 	while (c) {
1884 		if (strcmp(c->u.name, name) == 0)
1885 			break;
1886 		c = c->next;
1887 	}
1888 
1889 	if (c) {
1890 		if (!c->sid[0] || !c->sid[1]) {
1891 			rc = sepol_sidtab_context_to_sid(sidtab,
1892 							 &c->context[0],
1893 							 &c->sid[0]);
1894 			if (rc)
1895 				goto out;
1896 			rc = sepol_sidtab_context_to_sid(sidtab,
1897 							 &c->context[1],
1898 							 &c->sid[1]);
1899 			if (rc)
1900 				goto out;
1901 		}
1902 		*fs_sid = c->sid[0];
1903 		*file_sid = c->sid[1];
1904 	} else {
1905 		*fs_sid = SECINITSID_FS;
1906 		*file_sid = SECINITSID_FILE;
1907 	}
1908 
1909       out:
1910 	return rc;
1911 }
1912 
1913 /*
1914  * Return the SID of the port specified by
1915  * `domain', `type', `protocol', and `port'.
1916  */
sepol_port_sid(uint16_t domain,uint16_t type,uint8_t protocol,uint16_t port,sepol_security_id_t * out_sid)1917 int hidden sepol_port_sid(uint16_t domain __attribute__ ((unused)),
1918 			  uint16_t type __attribute__ ((unused)),
1919 			  uint8_t protocol,
1920 			  uint16_t port, sepol_security_id_t * out_sid)
1921 {
1922 	ocontext_t *c;
1923 	int rc = 0;
1924 
1925 	c = policydb->ocontexts[OCON_PORT];
1926 	while (c) {
1927 		if (c->u.port.protocol == protocol &&
1928 		    c->u.port.low_port <= port && c->u.port.high_port >= port)
1929 			break;
1930 		c = c->next;
1931 	}
1932 
1933 	if (c) {
1934 		if (!c->sid[0]) {
1935 			rc = sepol_sidtab_context_to_sid(sidtab,
1936 							 &c->context[0],
1937 							 &c->sid[0]);
1938 			if (rc)
1939 				goto out;
1940 		}
1941 		*out_sid = c->sid[0];
1942 	} else {
1943 		*out_sid = SECINITSID_PORT;
1944 	}
1945 
1946       out:
1947 	return rc;
1948 }
1949 
1950 /*
1951  * Return the SIDs to use for a network interface
1952  * with the name `name'.  The `if_sid' SID is returned for
1953  * the interface and the `msg_sid' SID is returned as
1954  * the default SID for messages received on the
1955  * interface.
1956  */
sepol_netif_sid(char * name,sepol_security_id_t * if_sid,sepol_security_id_t * msg_sid)1957 int hidden sepol_netif_sid(char *name,
1958 			   sepol_security_id_t * if_sid,
1959 			   sepol_security_id_t * msg_sid)
1960 {
1961 	int rc = 0;
1962 	ocontext_t *c;
1963 
1964 	c = policydb->ocontexts[OCON_NETIF];
1965 	while (c) {
1966 		if (strcmp(name, c->u.name) == 0)
1967 			break;
1968 		c = c->next;
1969 	}
1970 
1971 	if (c) {
1972 		if (!c->sid[0] || !c->sid[1]) {
1973 			rc = sepol_sidtab_context_to_sid(sidtab,
1974 							 &c->context[0],
1975 							 &c->sid[0]);
1976 			if (rc)
1977 				goto out;
1978 			rc = sepol_sidtab_context_to_sid(sidtab,
1979 							 &c->context[1],
1980 							 &c->sid[1]);
1981 			if (rc)
1982 				goto out;
1983 		}
1984 		*if_sid = c->sid[0];
1985 		*msg_sid = c->sid[1];
1986 	} else {
1987 		*if_sid = SECINITSID_NETIF;
1988 		*msg_sid = SECINITSID_NETMSG;
1989 	}
1990 
1991       out:
1992 	return rc;
1993 }
1994 
match_ipv6_addrmask(uint32_t * input,uint32_t * addr,uint32_t * mask)1995 static int match_ipv6_addrmask(uint32_t * input, uint32_t * addr,
1996 			       uint32_t * mask)
1997 {
1998 	int i, fail = 0;
1999 
2000 	for (i = 0; i < 4; i++)
2001 		if (addr[i] != (input[i] & mask[i])) {
2002 			fail = 1;
2003 			break;
2004 		}
2005 
2006 	return !fail;
2007 }
2008 
2009 /*
2010  * Return the SID of the node specified by the address
2011  * `addrp' where `addrlen' is the length of the address
2012  * in bytes and `domain' is the communications domain or
2013  * address family in which the address should be interpreted.
2014  */
sepol_node_sid(uint16_t domain,void * addrp,size_t addrlen,sepol_security_id_t * out_sid)2015 int hidden sepol_node_sid(uint16_t domain,
2016 			  void *addrp,
2017 			  size_t addrlen, sepol_security_id_t * out_sid)
2018 {
2019 	int rc = 0;
2020 	ocontext_t *c;
2021 
2022 	switch (domain) {
2023 	case AF_INET:{
2024 			uint32_t addr;
2025 
2026 			if (addrlen != sizeof(uint32_t)) {
2027 				rc = -EINVAL;
2028 				goto out;
2029 			}
2030 
2031 			addr = *((uint32_t *) addrp);
2032 
2033 			c = policydb->ocontexts[OCON_NODE];
2034 			while (c) {
2035 				if (c->u.node.addr == (addr & c->u.node.mask))
2036 					break;
2037 				c = c->next;
2038 			}
2039 			break;
2040 		}
2041 
2042 	case AF_INET6:
2043 		if (addrlen != sizeof(uint64_t) * 2) {
2044 			rc = -EINVAL;
2045 			goto out;
2046 		}
2047 
2048 		c = policydb->ocontexts[OCON_NODE6];
2049 		while (c) {
2050 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2051 						c->u.node6.mask))
2052 				break;
2053 			c = c->next;
2054 		}
2055 		break;
2056 
2057 	default:
2058 		*out_sid = SECINITSID_NODE;
2059 		goto out;
2060 	}
2061 
2062 	if (c) {
2063 		if (!c->sid[0]) {
2064 			rc = sepol_sidtab_context_to_sid(sidtab,
2065 							 &c->context[0],
2066 							 &c->sid[0]);
2067 			if (rc)
2068 				goto out;
2069 		}
2070 		*out_sid = c->sid[0];
2071 	} else {
2072 		*out_sid = SECINITSID_NODE;
2073 	}
2074 
2075       out:
2076 	return rc;
2077 }
2078 
2079 /*
2080  * Generate the set of SIDs for legal security contexts
2081  * for a given user that can be reached by `fromsid'.
2082  * Set `*sids' to point to a dynamically allocated
2083  * array containing the set of SIDs.  Set `*nel' to the
2084  * number of elements in the array.
2085  */
2086 #define SIDS_NEL 25
2087 
sepol_get_user_sids(sepol_security_id_t fromsid,char * username,sepol_security_id_t ** sids,uint32_t * nel)2088 int hidden sepol_get_user_sids(sepol_security_id_t fromsid,
2089 			       char *username,
2090 			       sepol_security_id_t ** sids, uint32_t * nel)
2091 {
2092 	context_struct_t *fromcon, usercon;
2093 	sepol_security_id_t *mysids, *mysids2, sid;
2094 	uint32_t mynel = 0, maxnel = SIDS_NEL;
2095 	user_datum_t *user;
2096 	role_datum_t *role;
2097 	struct sepol_av_decision avd;
2098 	int rc = 0;
2099 	unsigned int i, j, reason;
2100 	ebitmap_node_t *rnode, *tnode;
2101 
2102 	fromcon = sepol_sidtab_search(sidtab, fromsid);
2103 	if (!fromcon) {
2104 		rc = -EINVAL;
2105 		goto out;
2106 	}
2107 
2108 	user = (user_datum_t *) hashtab_search(policydb->p_users.table,
2109 					       username);
2110 	if (!user) {
2111 		rc = -EINVAL;
2112 		goto out;
2113 	}
2114 	usercon.user = user->s.value;
2115 
2116 	mysids = malloc(maxnel * sizeof(sepol_security_id_t));
2117 	if (!mysids) {
2118 		rc = -ENOMEM;
2119 		goto out;
2120 	}
2121 	memset(mysids, 0, maxnel * sizeof(sepol_security_id_t));
2122 
2123 	ebitmap_for_each_bit(&user->roles.roles, rnode, i) {
2124 		if (!ebitmap_node_get_bit(rnode, i))
2125 			continue;
2126 		role = policydb->role_val_to_struct[i];
2127 		usercon.role = i + 1;
2128 		ebitmap_for_each_bit(&role->types.types, tnode, j) {
2129 			if (!ebitmap_node_get_bit(tnode, j))
2130 				continue;
2131 			usercon.type = j + 1;
2132 			if (usercon.type == fromcon->type)
2133 				continue;
2134 
2135 			if (mls_setup_user_range
2136 			    (fromcon, user, &usercon, policydb->mls))
2137 				continue;
2138 
2139 			rc = context_struct_compute_av(fromcon, &usercon,
2140 						       SECCLASS_PROCESS,
2141 						       PROCESS__TRANSITION,
2142 						       &avd, &reason, NULL, 0);
2143 			if (rc || !(avd.allowed & PROCESS__TRANSITION))
2144 				continue;
2145 			rc = sepol_sidtab_context_to_sid(sidtab, &usercon,
2146 							 &sid);
2147 			if (rc) {
2148 				free(mysids);
2149 				goto out;
2150 			}
2151 			if (mynel < maxnel) {
2152 				mysids[mynel++] = sid;
2153 			} else {
2154 				maxnel += SIDS_NEL;
2155 				mysids2 =
2156 				    malloc(maxnel *
2157 					   sizeof(sepol_security_id_t));
2158 
2159 				if (!mysids2) {
2160 					rc = -ENOMEM;
2161 					free(mysids);
2162 					goto out;
2163 				}
2164 				memset(mysids2, 0,
2165 				       maxnel * sizeof(sepol_security_id_t));
2166 				memcpy(mysids2, mysids,
2167 				       mynel * sizeof(sepol_security_id_t));
2168 				free(mysids);
2169 				mysids = mysids2;
2170 				mysids[mynel++] = sid;
2171 			}
2172 		}
2173 	}
2174 
2175 	*sids = mysids;
2176 	*nel = mynel;
2177 
2178       out:
2179 	return rc;
2180 }
2181 
2182 /*
2183  * Return the SID to use for a file in a filesystem
2184  * that cannot support a persistent label mapping or use another
2185  * fixed labeling behavior like transition SIDs or task SIDs.
2186  */
sepol_genfs_sid(const char * fstype,const char * path,sepol_security_class_t sclass,sepol_security_id_t * sid)2187 int hidden sepol_genfs_sid(const char *fstype,
2188 			   const char *path,
2189 			   sepol_security_class_t sclass,
2190 			   sepol_security_id_t * sid)
2191 {
2192 	size_t len;
2193 	genfs_t *genfs;
2194 	ocontext_t *c;
2195 	int rc = 0, cmp = 0;
2196 
2197 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2198 		cmp = strcmp(fstype, genfs->fstype);
2199 		if (cmp <= 0)
2200 			break;
2201 	}
2202 
2203 	if (!genfs || cmp) {
2204 		*sid = SECINITSID_UNLABELED;
2205 		rc = -ENOENT;
2206 		goto out;
2207 	}
2208 
2209 	for (c = genfs->head; c; c = c->next) {
2210 		len = strlen(c->u.name);
2211 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2212 		    (strncmp(c->u.name, path, len) == 0))
2213 			break;
2214 	}
2215 
2216 	if (!c) {
2217 		*sid = SECINITSID_UNLABELED;
2218 		rc = -ENOENT;
2219 		goto out;
2220 	}
2221 
2222 	if (!c->sid[0]) {
2223 		rc = sepol_sidtab_context_to_sid(sidtab,
2224 						 &c->context[0], &c->sid[0]);
2225 		if (rc)
2226 			goto out;
2227 	}
2228 
2229 	*sid = c->sid[0];
2230       out:
2231 	return rc;
2232 }
2233 
sepol_fs_use(const char * fstype,unsigned int * behavior,sepol_security_id_t * sid)2234 int hidden sepol_fs_use(const char *fstype,
2235 			unsigned int *behavior, sepol_security_id_t * sid)
2236 {
2237 	int rc = 0;
2238 	ocontext_t *c;
2239 
2240 	c = policydb->ocontexts[OCON_FSUSE];
2241 	while (c) {
2242 		if (strcmp(fstype, c->u.name) == 0)
2243 			break;
2244 		c = c->next;
2245 	}
2246 
2247 	if (c) {
2248 		*behavior = c->v.behavior;
2249 		if (!c->sid[0]) {
2250 			rc = sepol_sidtab_context_to_sid(sidtab,
2251 							 &c->context[0],
2252 							 &c->sid[0]);
2253 			if (rc)
2254 				goto out;
2255 		}
2256 		*sid = c->sid[0];
2257 	} else {
2258 		rc = sepol_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2259 		if (rc) {
2260 			*behavior = SECURITY_FS_USE_NONE;
2261 			rc = 0;
2262 		} else {
2263 			*behavior = SECURITY_FS_USE_GENFS;
2264 		}
2265 	}
2266 
2267       out:
2268 	return rc;
2269 }
2270 
2271 /* FLASK */
2272