1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47
48 static cl::opt<bool> PrintWholeRegMask(
49 "print-whole-regmask",
50 cl::desc("Print the full contents of regmask operands in IR dumps"),
51 cl::init(true), cl::Hidden);
52
53 //===----------------------------------------------------------------------===//
54 // MachineOperand Implementation
55 //===----------------------------------------------------------------------===//
56
setReg(unsigned Reg)57 void MachineOperand::setReg(unsigned Reg) {
58 if (getReg() == Reg) return; // No change.
59
60 // Otherwise, we have to change the register. If this operand is embedded
61 // into a machine function, we need to update the old and new register's
62 // use/def lists.
63 if (MachineInstr *MI = getParent())
64 if (MachineBasicBlock *MBB = MI->getParent())
65 if (MachineFunction *MF = MBB->getParent()) {
66 MachineRegisterInfo &MRI = MF->getRegInfo();
67 MRI.removeRegOperandFromUseList(this);
68 SmallContents.RegNo = Reg;
69 MRI.addRegOperandToUseList(this);
70 return;
71 }
72
73 // Otherwise, just change the register, no problem. :)
74 SmallContents.RegNo = Reg;
75 }
76
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)77 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
78 const TargetRegisterInfo &TRI) {
79 assert(TargetRegisterInfo::isVirtualRegister(Reg));
80 if (SubIdx && getSubReg())
81 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
82 setReg(Reg);
83 if (SubIdx)
84 setSubReg(SubIdx);
85 }
86
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)87 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
88 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
89 if (getSubReg()) {
90 Reg = TRI.getSubReg(Reg, getSubReg());
91 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
92 // That won't happen in legal code.
93 setSubReg(0);
94 }
95 setReg(Reg);
96 }
97
98 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)99 void MachineOperand::setIsDef(bool Val) {
100 assert(isReg() && "Wrong MachineOperand accessor");
101 assert((!Val || !isDebug()) && "Marking a debug operation as def");
102 if (IsDef == Val)
103 return;
104 // MRI may keep uses and defs in different list positions.
105 if (MachineInstr *MI = getParent())
106 if (MachineBasicBlock *MBB = MI->getParent())
107 if (MachineFunction *MF = MBB->getParent()) {
108 MachineRegisterInfo &MRI = MF->getRegInfo();
109 MRI.removeRegOperandFromUseList(this);
110 IsDef = Val;
111 MRI.addRegOperandToUseList(this);
112 return;
113 }
114 IsDef = Val;
115 }
116
117 // If this operand is currently a register operand, and if this is in a
118 // function, deregister the operand from the register's use/def list.
removeRegFromUses()119 void MachineOperand::removeRegFromUses() {
120 if (!isReg() || !isOnRegUseList())
121 return;
122
123 if (MachineInstr *MI = getParent()) {
124 if (MachineBasicBlock *MBB = MI->getParent()) {
125 if (MachineFunction *MF = MBB->getParent())
126 MF->getRegInfo().removeRegOperandFromUseList(this);
127 }
128 }
129 }
130
131 /// ChangeToImmediate - Replace this operand with a new immediate operand of
132 /// the specified value. If an operand is known to be an immediate already,
133 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)134 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
135 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
136
137 removeRegFromUses();
138
139 OpKind = MO_Immediate;
140 Contents.ImmVal = ImmVal;
141 }
142
ChangeToFPImmediate(const ConstantFP * FPImm)143 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
144 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
145
146 removeRegFromUses();
147
148 OpKind = MO_FPImmediate;
149 Contents.CFP = FPImm;
150 }
151
ChangeToES(const char * SymName,unsigned char TargetFlags)152 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
153 assert((!isReg() || !isTied()) &&
154 "Cannot change a tied operand into an external symbol");
155
156 removeRegFromUses();
157
158 OpKind = MO_ExternalSymbol;
159 Contents.OffsetedInfo.Val.SymbolName = SymName;
160 setOffset(0); // Offset is always 0.
161 setTargetFlags(TargetFlags);
162 }
163
ChangeToMCSymbol(MCSymbol * Sym)164 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
165 assert((!isReg() || !isTied()) &&
166 "Cannot change a tied operand into an MCSymbol");
167
168 removeRegFromUses();
169
170 OpKind = MO_MCSymbol;
171 Contents.Sym = Sym;
172 }
173
174 /// ChangeToRegister - Replace this operand with a new register operand of
175 /// the specified value. If an operand is known to be an register already,
176 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)177 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
178 bool isKill, bool isDead, bool isUndef,
179 bool isDebug) {
180 MachineRegisterInfo *RegInfo = nullptr;
181 if (MachineInstr *MI = getParent())
182 if (MachineBasicBlock *MBB = MI->getParent())
183 if (MachineFunction *MF = MBB->getParent())
184 RegInfo = &MF->getRegInfo();
185 // If this operand is already a register operand, remove it from the
186 // register's use/def lists.
187 bool WasReg = isReg();
188 if (RegInfo && WasReg)
189 RegInfo->removeRegOperandFromUseList(this);
190
191 // Change this to a register and set the reg#.
192 OpKind = MO_Register;
193 SmallContents.RegNo = Reg;
194 SubReg_TargetFlags = 0;
195 IsDef = isDef;
196 IsImp = isImp;
197 IsKill = isKill;
198 IsDead = isDead;
199 IsUndef = isUndef;
200 IsInternalRead = false;
201 IsEarlyClobber = false;
202 IsDebug = isDebug;
203 // Ensure isOnRegUseList() returns false.
204 Contents.Reg.Prev = nullptr;
205 // Preserve the tie when the operand was already a register.
206 if (!WasReg)
207 TiedTo = 0;
208
209 // If this operand is embedded in a function, add the operand to the
210 // register's use/def list.
211 if (RegInfo)
212 RegInfo->addRegOperandToUseList(this);
213 }
214
215 /// isIdenticalTo - Return true if this operand is identical to the specified
216 /// operand. Note that this should stay in sync with the hash_value overload
217 /// below.
isIdenticalTo(const MachineOperand & Other) const218 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
219 if (getType() != Other.getType() ||
220 getTargetFlags() != Other.getTargetFlags())
221 return false;
222
223 switch (getType()) {
224 case MachineOperand::MO_Register:
225 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
226 getSubReg() == Other.getSubReg();
227 case MachineOperand::MO_Immediate:
228 return getImm() == Other.getImm();
229 case MachineOperand::MO_CImmediate:
230 return getCImm() == Other.getCImm();
231 case MachineOperand::MO_FPImmediate:
232 return getFPImm() == Other.getFPImm();
233 case MachineOperand::MO_MachineBasicBlock:
234 return getMBB() == Other.getMBB();
235 case MachineOperand::MO_FrameIndex:
236 return getIndex() == Other.getIndex();
237 case MachineOperand::MO_ConstantPoolIndex:
238 case MachineOperand::MO_TargetIndex:
239 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
240 case MachineOperand::MO_JumpTableIndex:
241 return getIndex() == Other.getIndex();
242 case MachineOperand::MO_GlobalAddress:
243 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
244 case MachineOperand::MO_ExternalSymbol:
245 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
246 getOffset() == Other.getOffset();
247 case MachineOperand::MO_BlockAddress:
248 return getBlockAddress() == Other.getBlockAddress() &&
249 getOffset() == Other.getOffset();
250 case MachineOperand::MO_RegisterMask:
251 case MachineOperand::MO_RegisterLiveOut:
252 return getRegMask() == Other.getRegMask();
253 case MachineOperand::MO_MCSymbol:
254 return getMCSymbol() == Other.getMCSymbol();
255 case MachineOperand::MO_CFIIndex:
256 return getCFIIndex() == Other.getCFIIndex();
257 case MachineOperand::MO_Metadata:
258 return getMetadata() == Other.getMetadata();
259 }
260 llvm_unreachable("Invalid machine operand type");
261 }
262
263 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)264 hash_code llvm::hash_value(const MachineOperand &MO) {
265 switch (MO.getType()) {
266 case MachineOperand::MO_Register:
267 // Register operands don't have target flags.
268 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
269 case MachineOperand::MO_Immediate:
270 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
271 case MachineOperand::MO_CImmediate:
272 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
273 case MachineOperand::MO_FPImmediate:
274 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
275 case MachineOperand::MO_MachineBasicBlock:
276 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
277 case MachineOperand::MO_FrameIndex:
278 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
279 case MachineOperand::MO_ConstantPoolIndex:
280 case MachineOperand::MO_TargetIndex:
281 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
282 MO.getOffset());
283 case MachineOperand::MO_JumpTableIndex:
284 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
285 case MachineOperand::MO_ExternalSymbol:
286 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
287 MO.getSymbolName());
288 case MachineOperand::MO_GlobalAddress:
289 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
290 MO.getOffset());
291 case MachineOperand::MO_BlockAddress:
292 return hash_combine(MO.getType(), MO.getTargetFlags(),
293 MO.getBlockAddress(), MO.getOffset());
294 case MachineOperand::MO_RegisterMask:
295 case MachineOperand::MO_RegisterLiveOut:
296 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
297 case MachineOperand::MO_Metadata:
298 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
299 case MachineOperand::MO_MCSymbol:
300 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
301 case MachineOperand::MO_CFIIndex:
302 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
303 }
304 llvm_unreachable("Invalid machine operand type");
305 }
306
print(raw_ostream & OS,const TargetRegisterInfo * TRI) const307 void MachineOperand::print(raw_ostream &OS,
308 const TargetRegisterInfo *TRI) const {
309 ModuleSlotTracker DummyMST(nullptr);
310 print(OS, DummyMST, TRI);
311 }
312
print(raw_ostream & OS,ModuleSlotTracker & MST,const TargetRegisterInfo * TRI) const313 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
314 const TargetRegisterInfo *TRI) const {
315 switch (getType()) {
316 case MachineOperand::MO_Register:
317 OS << PrintReg(getReg(), TRI, getSubReg());
318
319 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
320 isInternalRead() || isEarlyClobber() || isTied()) {
321 OS << '<';
322 bool NeedComma = false;
323 if (isDef()) {
324 if (NeedComma) OS << ',';
325 if (isEarlyClobber())
326 OS << "earlyclobber,";
327 if (isImplicit())
328 OS << "imp-";
329 OS << "def";
330 NeedComma = true;
331 // <def,read-undef> only makes sense when getSubReg() is set.
332 // Don't clutter the output otherwise.
333 if (isUndef() && getSubReg())
334 OS << ",read-undef";
335 } else if (isImplicit()) {
336 OS << "imp-use";
337 NeedComma = true;
338 }
339
340 if (isKill()) {
341 if (NeedComma) OS << ',';
342 OS << "kill";
343 NeedComma = true;
344 }
345 if (isDead()) {
346 if (NeedComma) OS << ',';
347 OS << "dead";
348 NeedComma = true;
349 }
350 if (isUndef() && isUse()) {
351 if (NeedComma) OS << ',';
352 OS << "undef";
353 NeedComma = true;
354 }
355 if (isInternalRead()) {
356 if (NeedComma) OS << ',';
357 OS << "internal";
358 NeedComma = true;
359 }
360 if (isTied()) {
361 if (NeedComma) OS << ',';
362 OS << "tied";
363 if (TiedTo != 15)
364 OS << unsigned(TiedTo - 1);
365 }
366 OS << '>';
367 }
368 break;
369 case MachineOperand::MO_Immediate:
370 OS << getImm();
371 break;
372 case MachineOperand::MO_CImmediate:
373 getCImm()->getValue().print(OS, false);
374 break;
375 case MachineOperand::MO_FPImmediate:
376 if (getFPImm()->getType()->isFloatTy()) {
377 OS << getFPImm()->getValueAPF().convertToFloat();
378 } else if (getFPImm()->getType()->isHalfTy()) {
379 APFloat APF = getFPImm()->getValueAPF();
380 bool Unused;
381 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &Unused);
382 OS << "half " << APF.convertToFloat();
383 } else {
384 OS << getFPImm()->getValueAPF().convertToDouble();
385 }
386 break;
387 case MachineOperand::MO_MachineBasicBlock:
388 OS << "<BB#" << getMBB()->getNumber() << ">";
389 break;
390 case MachineOperand::MO_FrameIndex:
391 OS << "<fi#" << getIndex() << '>';
392 break;
393 case MachineOperand::MO_ConstantPoolIndex:
394 OS << "<cp#" << getIndex();
395 if (getOffset()) OS << "+" << getOffset();
396 OS << '>';
397 break;
398 case MachineOperand::MO_TargetIndex:
399 OS << "<ti#" << getIndex();
400 if (getOffset()) OS << "+" << getOffset();
401 OS << '>';
402 break;
403 case MachineOperand::MO_JumpTableIndex:
404 OS << "<jt#" << getIndex() << '>';
405 break;
406 case MachineOperand::MO_GlobalAddress:
407 OS << "<ga:";
408 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
409 if (getOffset()) OS << "+" << getOffset();
410 OS << '>';
411 break;
412 case MachineOperand::MO_ExternalSymbol:
413 OS << "<es:" << getSymbolName();
414 if (getOffset()) OS << "+" << getOffset();
415 OS << '>';
416 break;
417 case MachineOperand::MO_BlockAddress:
418 OS << '<';
419 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
420 if (getOffset()) OS << "+" << getOffset();
421 OS << '>';
422 break;
423 case MachineOperand::MO_RegisterMask: {
424 unsigned NumRegsInMask = 0;
425 unsigned NumRegsEmitted = 0;
426 OS << "<regmask";
427 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
428 unsigned MaskWord = i / 32;
429 unsigned MaskBit = i % 32;
430 if (getRegMask()[MaskWord] & (1 << MaskBit)) {
431 if (PrintWholeRegMask || NumRegsEmitted <= 10) {
432 OS << " " << PrintReg(i, TRI);
433 NumRegsEmitted++;
434 }
435 NumRegsInMask++;
436 }
437 }
438 if (NumRegsEmitted != NumRegsInMask)
439 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
440 OS << ">";
441 break;
442 }
443 case MachineOperand::MO_RegisterLiveOut:
444 OS << "<regliveout>";
445 break;
446 case MachineOperand::MO_Metadata:
447 OS << '<';
448 getMetadata()->printAsOperand(OS, MST);
449 OS << '>';
450 break;
451 case MachineOperand::MO_MCSymbol:
452 OS << "<MCSym=" << *getMCSymbol() << '>';
453 break;
454 case MachineOperand::MO_CFIIndex:
455 OS << "<call frame instruction>";
456 break;
457 }
458
459 if (unsigned TF = getTargetFlags())
460 OS << "[TF=" << TF << ']';
461 }
462
463 //===----------------------------------------------------------------------===//
464 // MachineMemOperand Implementation
465 //===----------------------------------------------------------------------===//
466
467 /// getAddrSpace - Return the LLVM IR address space number that this pointer
468 /// points into.
getAddrSpace() const469 unsigned MachinePointerInfo::getAddrSpace() const {
470 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
471 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
472 }
473
474 /// getConstantPool - Return a MachinePointerInfo record that refers to the
475 /// constant pool.
getConstantPool(MachineFunction & MF)476 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
477 return MachinePointerInfo(MF.getPSVManager().getConstantPool());
478 }
479
480 /// getFixedStack - Return a MachinePointerInfo record that refers to the
481 /// the specified FrameIndex.
getFixedStack(MachineFunction & MF,int FI,int64_t Offset)482 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
483 int FI, int64_t Offset) {
484 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
485 }
486
getJumpTable(MachineFunction & MF)487 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
488 return MachinePointerInfo(MF.getPSVManager().getJumpTable());
489 }
490
getGOT(MachineFunction & MF)491 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
492 return MachinePointerInfo(MF.getPSVManager().getGOT());
493 }
494
getStack(MachineFunction & MF,int64_t Offset)495 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
496 int64_t Offset) {
497 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
498 }
499
MachineMemOperand(MachinePointerInfo ptrinfo,Flags f,uint64_t s,unsigned int a,const AAMDNodes & AAInfo,const MDNode * Ranges)500 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
501 uint64_t s, unsigned int a,
502 const AAMDNodes &AAInfo,
503 const MDNode *Ranges)
504 : PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
505 AAInfo(AAInfo), Ranges(Ranges) {
506 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
507 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
508 "invalid pointer value");
509 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
510 assert((isLoad() || isStore()) && "Not a load/store!");
511 }
512
513 /// Profile - Gather unique data for the object.
514 ///
Profile(FoldingSetNodeID & ID) const515 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
516 ID.AddInteger(getOffset());
517 ID.AddInteger(Size);
518 ID.AddPointer(getOpaqueValue());
519 ID.AddInteger(getFlags());
520 ID.AddInteger(getBaseAlignment());
521 }
522
refineAlignment(const MachineMemOperand * MMO)523 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
524 // The Value and Offset may differ due to CSE. But the flags and size
525 // should be the same.
526 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
527 assert(MMO->getSize() == getSize() && "Size mismatch!");
528
529 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
530 // Update the alignment value.
531 BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
532 // Also update the base and offset, because the new alignment may
533 // not be applicable with the old ones.
534 PtrInfo = MMO->PtrInfo;
535 }
536 }
537
538 /// getAlignment - Return the minimum known alignment in bytes of the
539 /// actual memory reference.
getAlignment() const540 uint64_t MachineMemOperand::getAlignment() const {
541 return MinAlign(getBaseAlignment(), getOffset());
542 }
543
print(raw_ostream & OS) const544 void MachineMemOperand::print(raw_ostream &OS) const {
545 ModuleSlotTracker DummyMST(nullptr);
546 print(OS, DummyMST);
547 }
print(raw_ostream & OS,ModuleSlotTracker & MST) const548 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
549 assert((isLoad() || isStore()) &&
550 "SV has to be a load, store or both.");
551
552 if (isVolatile())
553 OS << "Volatile ";
554
555 if (isLoad())
556 OS << "LD";
557 if (isStore())
558 OS << "ST";
559 OS << getSize();
560
561 // Print the address information.
562 OS << "[";
563 if (const Value *V = getValue())
564 V->printAsOperand(OS, /*PrintType=*/false, MST);
565 else if (const PseudoSourceValue *PSV = getPseudoValue())
566 PSV->printCustom(OS);
567 else
568 OS << "<unknown>";
569
570 unsigned AS = getAddrSpace();
571 if (AS != 0)
572 OS << "(addrspace=" << AS << ')';
573
574 // If the alignment of the memory reference itself differs from the alignment
575 // of the base pointer, print the base alignment explicitly, next to the base
576 // pointer.
577 if (getBaseAlignment() != getAlignment())
578 OS << "(align=" << getBaseAlignment() << ")";
579
580 if (getOffset() != 0)
581 OS << "+" << getOffset();
582 OS << "]";
583
584 // Print the alignment of the reference.
585 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
586 OS << "(align=" << getAlignment() << ")";
587
588 // Print TBAA info.
589 if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
590 OS << "(tbaa=";
591 if (TBAAInfo->getNumOperands() > 0)
592 TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
593 else
594 OS << "<unknown>";
595 OS << ")";
596 }
597
598 // Print AA scope info.
599 if (const MDNode *ScopeInfo = getAAInfo().Scope) {
600 OS << "(alias.scope=";
601 if (ScopeInfo->getNumOperands() > 0)
602 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
603 ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
604 if (i != ie-1)
605 OS << ",";
606 }
607 else
608 OS << "<unknown>";
609 OS << ")";
610 }
611
612 // Print AA noalias scope info.
613 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
614 OS << "(noalias=";
615 if (NoAliasInfo->getNumOperands() > 0)
616 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
617 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
618 if (i != ie-1)
619 OS << ",";
620 }
621 else
622 OS << "<unknown>";
623 OS << ")";
624 }
625
626 // Print nontemporal info.
627 if (isNonTemporal())
628 OS << "(nontemporal)";
629
630 if (isInvariant())
631 OS << "(invariant)";
632 }
633
634 //===----------------------------------------------------------------------===//
635 // MachineInstr Implementation
636 //===----------------------------------------------------------------------===//
637
addImplicitDefUseOperands(MachineFunction & MF)638 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
639 if (MCID->ImplicitDefs)
640 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
641 ++ImpDefs)
642 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
643 if (MCID->ImplicitUses)
644 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
645 ++ImpUses)
646 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
647 }
648
649 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
650 /// implicit operands. It reserves space for the number of operands specified by
651 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,DebugLoc dl,bool NoImp)652 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
653 DebugLoc dl, bool NoImp)
654 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
655 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
656 debugLoc(std::move(dl))
657 #ifdef LLVM_BUILD_GLOBAL_ISEL
658 ,
659 Ty(nullptr)
660 #endif
661 {
662 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
663
664 // Reserve space for the expected number of operands.
665 if (unsigned NumOps = MCID->getNumOperands() +
666 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
667 CapOperands = OperandCapacity::get(NumOps);
668 Operands = MF.allocateOperandArray(CapOperands);
669 }
670
671 if (!NoImp)
672 addImplicitDefUseOperands(MF);
673 }
674
675 /// MachineInstr ctor - Copies MachineInstr arg exactly
676 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)677 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
678 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
679 Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
680 MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc())
681 #ifdef LLVM_BUILD_GLOBAL_ISEL
682 ,
683 Ty(nullptr)
684 #endif
685 {
686 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
687
688 CapOperands = OperandCapacity::get(MI.getNumOperands());
689 Operands = MF.allocateOperandArray(CapOperands);
690
691 // Copy operands.
692 for (const MachineOperand &MO : MI.operands())
693 addOperand(MF, MO);
694
695 // Copy all the sensible flags.
696 setFlags(MI.Flags);
697 }
698
699 /// getRegInfo - If this instruction is embedded into a MachineFunction,
700 /// return the MachineRegisterInfo object for the current function, otherwise
701 /// return null.
getRegInfo()702 MachineRegisterInfo *MachineInstr::getRegInfo() {
703 if (MachineBasicBlock *MBB = getParent())
704 return &MBB->getParent()->getRegInfo();
705 return nullptr;
706 }
707
708 // Implement dummy setter and getter for type when
709 // global-isel is not built.
710 // The proper implementation is WIP and is tracked here:
711 // PR26576.
712 #ifndef LLVM_BUILD_GLOBAL_ISEL
setType(Type * Ty)713 void MachineInstr::setType(Type *Ty) {}
714
getType() const715 Type *MachineInstr::getType() const { return nullptr; }
716
717 #else
setType(Type * Ty)718 void MachineInstr::setType(Type *Ty) {
719 assert((!Ty || isPreISelGenericOpcode(getOpcode())) &&
720 "Non generic instructions are not supposed to be typed");
721 this->Ty = Ty;
722 }
723
getType() const724 Type *MachineInstr::getType() const { return Ty; }
725 #endif // LLVM_BUILD_GLOBAL_ISEL
726
727 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
728 /// this instruction from their respective use lists. This requires that the
729 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)730 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
731 for (MachineOperand &MO : operands())
732 if (MO.isReg())
733 MRI.removeRegOperandFromUseList(&MO);
734 }
735
736 /// AddRegOperandsToUseLists - Add all of the register operands in
737 /// this instruction from their respective use lists. This requires that the
738 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)739 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
740 for (MachineOperand &MO : operands())
741 if (MO.isReg())
742 MRI.addRegOperandToUseList(&MO);
743 }
744
addOperand(const MachineOperand & Op)745 void MachineInstr::addOperand(const MachineOperand &Op) {
746 MachineBasicBlock *MBB = getParent();
747 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
748 MachineFunction *MF = MBB->getParent();
749 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
750 addOperand(*MF, Op);
751 }
752
753 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
754 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)755 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
756 unsigned NumOps, MachineRegisterInfo *MRI) {
757 if (MRI)
758 return MRI->moveOperands(Dst, Src, NumOps);
759
760 // MachineOperand is a trivially copyable type so we can just use memmove.
761 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
762 }
763
764 /// addOperand - Add the specified operand to the instruction. If it is an
765 /// implicit operand, it is added to the end of the operand list. If it is
766 /// an explicit operand it is added at the end of the explicit operand list
767 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)768 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
769 assert(MCID && "Cannot add operands before providing an instr descriptor");
770
771 // Check if we're adding one of our existing operands.
772 if (&Op >= Operands && &Op < Operands + NumOperands) {
773 // This is unusual: MI->addOperand(MI->getOperand(i)).
774 // If adding Op requires reallocating or moving existing operands around,
775 // the Op reference could go stale. Support it by copying Op.
776 MachineOperand CopyOp(Op);
777 return addOperand(MF, CopyOp);
778 }
779
780 // Find the insert location for the new operand. Implicit registers go at
781 // the end, everything else goes before the implicit regs.
782 //
783 // FIXME: Allow mixed explicit and implicit operands on inline asm.
784 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
785 // implicit-defs, but they must not be moved around. See the FIXME in
786 // InstrEmitter.cpp.
787 unsigned OpNo = getNumOperands();
788 bool isImpReg = Op.isReg() && Op.isImplicit();
789 if (!isImpReg && !isInlineAsm()) {
790 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
791 --OpNo;
792 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
793 }
794 }
795
796 #ifndef NDEBUG
797 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
798 // OpNo now points as the desired insertion point. Unless this is a variadic
799 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
800 // RegMask operands go between the explicit and implicit operands.
801 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
802 OpNo < MCID->getNumOperands() || isMetaDataOp) &&
803 "Trying to add an operand to a machine instr that is already done!");
804 #endif
805
806 MachineRegisterInfo *MRI = getRegInfo();
807
808 // Determine if the Operands array needs to be reallocated.
809 // Save the old capacity and operand array.
810 OperandCapacity OldCap = CapOperands;
811 MachineOperand *OldOperands = Operands;
812 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
813 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
814 Operands = MF.allocateOperandArray(CapOperands);
815 // Move the operands before the insertion point.
816 if (OpNo)
817 moveOperands(Operands, OldOperands, OpNo, MRI);
818 }
819
820 // Move the operands following the insertion point.
821 if (OpNo != NumOperands)
822 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
823 MRI);
824 ++NumOperands;
825
826 // Deallocate the old operand array.
827 if (OldOperands != Operands && OldOperands)
828 MF.deallocateOperandArray(OldCap, OldOperands);
829
830 // Copy Op into place. It still needs to be inserted into the MRI use lists.
831 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
832 NewMO->ParentMI = this;
833
834 // When adding a register operand, tell MRI about it.
835 if (NewMO->isReg()) {
836 // Ensure isOnRegUseList() returns false, regardless of Op's status.
837 NewMO->Contents.Reg.Prev = nullptr;
838 // Ignore existing ties. This is not a property that can be copied.
839 NewMO->TiedTo = 0;
840 // Add the new operand to MRI, but only for instructions in an MBB.
841 if (MRI)
842 MRI->addRegOperandToUseList(NewMO);
843 // The MCID operand information isn't accurate until we start adding
844 // explicit operands. The implicit operands are added first, then the
845 // explicits are inserted before them.
846 if (!isImpReg) {
847 // Tie uses to defs as indicated in MCInstrDesc.
848 if (NewMO->isUse()) {
849 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
850 if (DefIdx != -1)
851 tieOperands(DefIdx, OpNo);
852 }
853 // If the register operand is flagged as early, mark the operand as such.
854 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
855 NewMO->setIsEarlyClobber(true);
856 }
857 }
858 }
859
860 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
861 /// fewer operand than it started with.
862 ///
RemoveOperand(unsigned OpNo)863 void MachineInstr::RemoveOperand(unsigned OpNo) {
864 assert(OpNo < getNumOperands() && "Invalid operand number");
865 untieRegOperand(OpNo);
866
867 #ifndef NDEBUG
868 // Moving tied operands would break the ties.
869 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
870 if (Operands[i].isReg())
871 assert(!Operands[i].isTied() && "Cannot move tied operands");
872 #endif
873
874 MachineRegisterInfo *MRI = getRegInfo();
875 if (MRI && Operands[OpNo].isReg())
876 MRI->removeRegOperandFromUseList(Operands + OpNo);
877
878 // Don't call the MachineOperand destructor. A lot of this code depends on
879 // MachineOperand having a trivial destructor anyway, and adding a call here
880 // wouldn't make it 'destructor-correct'.
881
882 if (unsigned N = NumOperands - 1 - OpNo)
883 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
884 --NumOperands;
885 }
886
887 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
888 /// This function should be used only occasionally. The setMemRefs function
889 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)890 void MachineInstr::addMemOperand(MachineFunction &MF,
891 MachineMemOperand *MO) {
892 mmo_iterator OldMemRefs = MemRefs;
893 unsigned OldNumMemRefs = NumMemRefs;
894
895 unsigned NewNum = NumMemRefs + 1;
896 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
897
898 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
899 NewMemRefs[NewNum - 1] = MO;
900 setMemRefs(NewMemRefs, NewMemRefs + NewNum);
901 }
902
903 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
904 /// identical.
hasIdenticalMMOs(const MachineInstr & MI1,const MachineInstr & MI2)905 static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
906 auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
907 auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
908 if ((E1 - I1) != (E2 - I2))
909 return false;
910 for (; I1 != E1; ++I1, ++I2) {
911 if (**I1 != **I2)
912 return false;
913 }
914 return true;
915 }
916
917 std::pair<MachineInstr::mmo_iterator, unsigned>
mergeMemRefsWith(const MachineInstr & Other)918 MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
919
920 // If either of the incoming memrefs are empty, we must be conservative and
921 // treat this as if we've exhausted our space for memrefs and dropped them.
922 if (memoperands_empty() || Other.memoperands_empty())
923 return std::make_pair(nullptr, 0);
924
925 // If both instructions have identical memrefs, we don't need to merge them.
926 // Since many instructions have a single memref, and we tend to merge things
927 // like pairs of loads from the same location, this catches a large number of
928 // cases in practice.
929 if (hasIdenticalMMOs(*this, Other))
930 return std::make_pair(MemRefs, NumMemRefs);
931
932 // TODO: consider uniquing elements within the operand lists to reduce
933 // space usage and fall back to conservative information less often.
934 size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
935
936 // If we don't have enough room to store this many memrefs, be conservative
937 // and drop them. Otherwise, we'd fail asserts when trying to add them to
938 // the new instruction.
939 if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
940 return std::make_pair(nullptr, 0);
941
942 MachineFunction *MF = getParent()->getParent();
943 mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
944 mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
945 MemBegin);
946 MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
947 MemEnd);
948 assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
949 "missing memrefs");
950
951 return std::make_pair(MemBegin, CombinedNumMemRefs);
952 }
953
hasPropertyInBundle(unsigned Mask,QueryType Type) const954 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
955 assert(!isBundledWithPred() && "Must be called on bundle header");
956 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
957 if (MII->getDesc().getFlags() & Mask) {
958 if (Type == AnyInBundle)
959 return true;
960 } else {
961 if (Type == AllInBundle && !MII->isBundle())
962 return false;
963 }
964 // This was the last instruction in the bundle.
965 if (!MII->isBundledWithSucc())
966 return Type == AllInBundle;
967 }
968 }
969
isIdenticalTo(const MachineInstr & Other,MICheckType Check) const970 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
971 MICheckType Check) const {
972 // If opcodes or number of operands are not the same then the two
973 // instructions are obviously not identical.
974 if (Other.getOpcode() != getOpcode() ||
975 Other.getNumOperands() != getNumOperands())
976 return false;
977
978 if (isBundle()) {
979 // Both instructions are bundles, compare MIs inside the bundle.
980 MachineBasicBlock::const_instr_iterator I1 = getIterator();
981 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
982 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
983 MachineBasicBlock::const_instr_iterator E2 = Other.getParent()->instr_end();
984 while (++I1 != E1 && I1->isInsideBundle()) {
985 ++I2;
986 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(*I2, Check))
987 return false;
988 }
989 }
990
991 // Check operands to make sure they match.
992 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
993 const MachineOperand &MO = getOperand(i);
994 const MachineOperand &OMO = Other.getOperand(i);
995 if (!MO.isReg()) {
996 if (!MO.isIdenticalTo(OMO))
997 return false;
998 continue;
999 }
1000
1001 // Clients may or may not want to ignore defs when testing for equality.
1002 // For example, machine CSE pass only cares about finding common
1003 // subexpressions, so it's safe to ignore virtual register defs.
1004 if (MO.isDef()) {
1005 if (Check == IgnoreDefs)
1006 continue;
1007 else if (Check == IgnoreVRegDefs) {
1008 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1009 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
1010 if (MO.getReg() != OMO.getReg())
1011 return false;
1012 } else {
1013 if (!MO.isIdenticalTo(OMO))
1014 return false;
1015 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
1016 return false;
1017 }
1018 } else {
1019 if (!MO.isIdenticalTo(OMO))
1020 return false;
1021 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
1022 return false;
1023 }
1024 }
1025 // If DebugLoc does not match then two dbg.values are not identical.
1026 if (isDebugValue())
1027 if (getDebugLoc() && Other.getDebugLoc() &&
1028 getDebugLoc() != Other.getDebugLoc())
1029 return false;
1030 return true;
1031 }
1032
removeFromParent()1033 MachineInstr *MachineInstr::removeFromParent() {
1034 assert(getParent() && "Not embedded in a basic block!");
1035 return getParent()->remove(this);
1036 }
1037
removeFromBundle()1038 MachineInstr *MachineInstr::removeFromBundle() {
1039 assert(getParent() && "Not embedded in a basic block!");
1040 return getParent()->remove_instr(this);
1041 }
1042
eraseFromParent()1043 void MachineInstr::eraseFromParent() {
1044 assert(getParent() && "Not embedded in a basic block!");
1045 getParent()->erase(this);
1046 }
1047
eraseFromParentAndMarkDBGValuesForRemoval()1048 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
1049 assert(getParent() && "Not embedded in a basic block!");
1050 MachineBasicBlock *MBB = getParent();
1051 MachineFunction *MF = MBB->getParent();
1052 assert(MF && "Not embedded in a function!");
1053
1054 MachineInstr *MI = (MachineInstr *)this;
1055 MachineRegisterInfo &MRI = MF->getRegInfo();
1056
1057 for (const MachineOperand &MO : MI->operands()) {
1058 if (!MO.isReg() || !MO.isDef())
1059 continue;
1060 unsigned Reg = MO.getReg();
1061 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1062 continue;
1063 MRI.markUsesInDebugValueAsUndef(Reg);
1064 }
1065 MI->eraseFromParent();
1066 }
1067
eraseFromBundle()1068 void MachineInstr::eraseFromBundle() {
1069 assert(getParent() && "Not embedded in a basic block!");
1070 getParent()->erase_instr(this);
1071 }
1072
1073 /// getNumExplicitOperands - Returns the number of non-implicit operands.
1074 ///
getNumExplicitOperands() const1075 unsigned MachineInstr::getNumExplicitOperands() const {
1076 unsigned NumOperands = MCID->getNumOperands();
1077 if (!MCID->isVariadic())
1078 return NumOperands;
1079
1080 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
1081 const MachineOperand &MO = getOperand(i);
1082 if (!MO.isReg() || !MO.isImplicit())
1083 NumOperands++;
1084 }
1085 return NumOperands;
1086 }
1087
bundleWithPred()1088 void MachineInstr::bundleWithPred() {
1089 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1090 setFlag(BundledPred);
1091 MachineBasicBlock::instr_iterator Pred = getIterator();
1092 --Pred;
1093 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1094 Pred->setFlag(BundledSucc);
1095 }
1096
bundleWithSucc()1097 void MachineInstr::bundleWithSucc() {
1098 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1099 setFlag(BundledSucc);
1100 MachineBasicBlock::instr_iterator Succ = getIterator();
1101 ++Succ;
1102 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1103 Succ->setFlag(BundledPred);
1104 }
1105
unbundleFromPred()1106 void MachineInstr::unbundleFromPred() {
1107 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1108 clearFlag(BundledPred);
1109 MachineBasicBlock::instr_iterator Pred = getIterator();
1110 --Pred;
1111 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1112 Pred->clearFlag(BundledSucc);
1113 }
1114
unbundleFromSucc()1115 void MachineInstr::unbundleFromSucc() {
1116 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1117 clearFlag(BundledSucc);
1118 MachineBasicBlock::instr_iterator Succ = getIterator();
1119 ++Succ;
1120 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1121 Succ->clearFlag(BundledPred);
1122 }
1123
isStackAligningInlineAsm() const1124 bool MachineInstr::isStackAligningInlineAsm() const {
1125 if (isInlineAsm()) {
1126 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1127 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1128 return true;
1129 }
1130 return false;
1131 }
1132
getInlineAsmDialect() const1133 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1134 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1135 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1136 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1137 }
1138
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const1139 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1140 unsigned *GroupNo) const {
1141 assert(isInlineAsm() && "Expected an inline asm instruction");
1142 assert(OpIdx < getNumOperands() && "OpIdx out of range");
1143
1144 // Ignore queries about the initial operands.
1145 if (OpIdx < InlineAsm::MIOp_FirstOperand)
1146 return -1;
1147
1148 unsigned Group = 0;
1149 unsigned NumOps;
1150 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1151 i += NumOps) {
1152 const MachineOperand &FlagMO = getOperand(i);
1153 // If we reach the implicit register operands, stop looking.
1154 if (!FlagMO.isImm())
1155 return -1;
1156 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1157 if (i + NumOps > OpIdx) {
1158 if (GroupNo)
1159 *GroupNo = Group;
1160 return i;
1161 }
1162 ++Group;
1163 }
1164 return -1;
1165 }
1166
getDebugVariable() const1167 const DILocalVariable *MachineInstr::getDebugVariable() const {
1168 assert(isDebugValue() && "not a DBG_VALUE");
1169 return cast<DILocalVariable>(getOperand(2).getMetadata());
1170 }
1171
getDebugExpression() const1172 const DIExpression *MachineInstr::getDebugExpression() const {
1173 assert(isDebugValue() && "not a DBG_VALUE");
1174 return cast<DIExpression>(getOperand(3).getMetadata());
1175 }
1176
1177 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1178 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1179 const TargetInstrInfo *TII,
1180 const TargetRegisterInfo *TRI) const {
1181 assert(getParent() && "Can't have an MBB reference here!");
1182 assert(getParent()->getParent() && "Can't have an MF reference here!");
1183 const MachineFunction &MF = *getParent()->getParent();
1184
1185 // Most opcodes have fixed constraints in their MCInstrDesc.
1186 if (!isInlineAsm())
1187 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1188
1189 if (!getOperand(OpIdx).isReg())
1190 return nullptr;
1191
1192 // For tied uses on inline asm, get the constraint from the def.
1193 unsigned DefIdx;
1194 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1195 OpIdx = DefIdx;
1196
1197 // Inline asm stores register class constraints in the flag word.
1198 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1199 if (FlagIdx < 0)
1200 return nullptr;
1201
1202 unsigned Flag = getOperand(FlagIdx).getImm();
1203 unsigned RCID;
1204 if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1205 return TRI->getRegClass(RCID);
1206
1207 // Assume that all registers in a memory operand are pointers.
1208 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1209 return TRI->getPointerRegClass(MF);
1210
1211 return nullptr;
1212 }
1213
getRegClassConstraintEffectForVReg(unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const1214 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1215 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1216 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1217 // Check every operands inside the bundle if we have
1218 // been asked to.
1219 if (ExploreBundle)
1220 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
1221 ++OpndIt)
1222 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1223 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1224 else
1225 // Otherwise, just check the current operands.
1226 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1227 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1228 return CurRC;
1229 }
1230
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1231 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1232 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1233 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1234 assert(CurRC && "Invalid initial register class");
1235 // Check if Reg is constrained by some of its use/def from MI.
1236 const MachineOperand &MO = getOperand(OpIdx);
1237 if (!MO.isReg() || MO.getReg() != Reg)
1238 return CurRC;
1239 // If yes, accumulate the constraints through the operand.
1240 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1241 }
1242
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1243 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1244 unsigned OpIdx, const TargetRegisterClass *CurRC,
1245 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1246 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1247 const MachineOperand &MO = getOperand(OpIdx);
1248 assert(MO.isReg() &&
1249 "Cannot get register constraints for non-register operand");
1250 assert(CurRC && "Invalid initial register class");
1251 if (unsigned SubIdx = MO.getSubReg()) {
1252 if (OpRC)
1253 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1254 else
1255 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1256 } else if (OpRC)
1257 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1258 return CurRC;
1259 }
1260
1261 /// Return the number of instructions inside the MI bundle, not counting the
1262 /// header instruction.
getBundleSize() const1263 unsigned MachineInstr::getBundleSize() const {
1264 MachineBasicBlock::const_instr_iterator I = getIterator();
1265 unsigned Size = 0;
1266 while (I->isBundledWithSucc()) {
1267 ++Size;
1268 ++I;
1269 }
1270 return Size;
1271 }
1272
1273 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1274 /// the given register (not considering sub/super-registers).
hasRegisterImplicitUseOperand(unsigned Reg) const1275 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
1276 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1277 const MachineOperand &MO = getOperand(i);
1278 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1279 return true;
1280 }
1281 return false;
1282 }
1283
1284 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1285 /// the specific register or -1 if it is not found. It further tightens
1286 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const1287 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1288 const TargetRegisterInfo *TRI) const {
1289 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1290 const MachineOperand &MO = getOperand(i);
1291 if (!MO.isReg() || !MO.isUse())
1292 continue;
1293 unsigned MOReg = MO.getReg();
1294 if (!MOReg)
1295 continue;
1296 if (MOReg == Reg ||
1297 (TRI &&
1298 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1299 TargetRegisterInfo::isPhysicalRegister(Reg) &&
1300 TRI->isSubRegister(MOReg, Reg)))
1301 if (!isKill || MO.isKill())
1302 return i;
1303 }
1304 return -1;
1305 }
1306
1307 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1308 /// indicating if this instruction reads or writes Reg. This also considers
1309 /// partial defines.
1310 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1311 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1312 SmallVectorImpl<unsigned> *Ops) const {
1313 bool PartDef = false; // Partial redefine.
1314 bool FullDef = false; // Full define.
1315 bool Use = false;
1316
1317 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1318 const MachineOperand &MO = getOperand(i);
1319 if (!MO.isReg() || MO.getReg() != Reg)
1320 continue;
1321 if (Ops)
1322 Ops->push_back(i);
1323 if (MO.isUse())
1324 Use |= !MO.isUndef();
1325 else if (MO.getSubReg() && !MO.isUndef())
1326 // A partial <def,undef> doesn't count as reading the register.
1327 PartDef = true;
1328 else
1329 FullDef = true;
1330 }
1331 // A partial redefine uses Reg unless there is also a full define.
1332 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1333 }
1334
1335 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1336 /// the specified register or -1 if it is not found. If isDead is true, defs
1337 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1338 /// also checks if there is a def of a super-register.
1339 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1340 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1341 const TargetRegisterInfo *TRI) const {
1342 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1343 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1344 const MachineOperand &MO = getOperand(i);
1345 // Accept regmask operands when Overlap is set.
1346 // Ignore them when looking for a specific def operand (Overlap == false).
1347 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1348 return i;
1349 if (!MO.isReg() || !MO.isDef())
1350 continue;
1351 unsigned MOReg = MO.getReg();
1352 bool Found = (MOReg == Reg);
1353 if (!Found && TRI && isPhys &&
1354 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1355 if (Overlap)
1356 Found = TRI->regsOverlap(MOReg, Reg);
1357 else
1358 Found = TRI->isSubRegister(MOReg, Reg);
1359 }
1360 if (Found && (!isDead || MO.isDead()))
1361 return i;
1362 }
1363 return -1;
1364 }
1365
1366 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1367 /// operand list that is used to represent the predicate. It returns -1 if
1368 /// none is found.
findFirstPredOperandIdx() const1369 int MachineInstr::findFirstPredOperandIdx() const {
1370 // Don't call MCID.findFirstPredOperandIdx() because this variant
1371 // is sometimes called on an instruction that's not yet complete, and
1372 // so the number of operands is less than the MCID indicates. In
1373 // particular, the PTX target does this.
1374 const MCInstrDesc &MCID = getDesc();
1375 if (MCID.isPredicable()) {
1376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1377 if (MCID.OpInfo[i].isPredicate())
1378 return i;
1379 }
1380
1381 return -1;
1382 }
1383
1384 // MachineOperand::TiedTo is 4 bits wide.
1385 const unsigned TiedMax = 15;
1386
1387 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1388 ///
1389 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1390 /// field. TiedTo can have these values:
1391 ///
1392 /// 0: Operand is not tied to anything.
1393 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1394 /// TiedMax: Tied to an operand >= TiedMax-1.
1395 ///
1396 /// The tied def must be one of the first TiedMax operands on a normal
1397 /// instruction. INLINEASM instructions allow more tied defs.
1398 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1399 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1400 MachineOperand &DefMO = getOperand(DefIdx);
1401 MachineOperand &UseMO = getOperand(UseIdx);
1402 assert(DefMO.isDef() && "DefIdx must be a def operand");
1403 assert(UseMO.isUse() && "UseIdx must be a use operand");
1404 assert(!DefMO.isTied() && "Def is already tied to another use");
1405 assert(!UseMO.isTied() && "Use is already tied to another def");
1406
1407 if (DefIdx < TiedMax)
1408 UseMO.TiedTo = DefIdx + 1;
1409 else {
1410 // Inline asm can use the group descriptors to find tied operands, but on
1411 // normal instruction, the tied def must be within the first TiedMax
1412 // operands.
1413 assert(isInlineAsm() && "DefIdx out of range");
1414 UseMO.TiedTo = TiedMax;
1415 }
1416
1417 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1418 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1419 }
1420
1421 /// Given the index of a tied register operand, find the operand it is tied to.
1422 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1423 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1424 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1425 const MachineOperand &MO = getOperand(OpIdx);
1426 assert(MO.isTied() && "Operand isn't tied");
1427
1428 // Normally TiedTo is in range.
1429 if (MO.TiedTo < TiedMax)
1430 return MO.TiedTo - 1;
1431
1432 // Uses on normal instructions can be out of range.
1433 if (!isInlineAsm()) {
1434 // Normal tied defs must be in the 0..TiedMax-1 range.
1435 if (MO.isUse())
1436 return TiedMax - 1;
1437 // MO is a def. Search for the tied use.
1438 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1439 const MachineOperand &UseMO = getOperand(i);
1440 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1441 return i;
1442 }
1443 llvm_unreachable("Can't find tied use");
1444 }
1445
1446 // Now deal with inline asm by parsing the operand group descriptor flags.
1447 // Find the beginning of each operand group.
1448 SmallVector<unsigned, 8> GroupIdx;
1449 unsigned OpIdxGroup = ~0u;
1450 unsigned NumOps;
1451 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1452 i += NumOps) {
1453 const MachineOperand &FlagMO = getOperand(i);
1454 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1455 unsigned CurGroup = GroupIdx.size();
1456 GroupIdx.push_back(i);
1457 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1458 // OpIdx belongs to this operand group.
1459 if (OpIdx > i && OpIdx < i + NumOps)
1460 OpIdxGroup = CurGroup;
1461 unsigned TiedGroup;
1462 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1463 continue;
1464 // Operands in this group are tied to operands in TiedGroup which must be
1465 // earlier. Find the number of operands between the two groups.
1466 unsigned Delta = i - GroupIdx[TiedGroup];
1467
1468 // OpIdx is a use tied to TiedGroup.
1469 if (OpIdxGroup == CurGroup)
1470 return OpIdx - Delta;
1471
1472 // OpIdx is a def tied to this use group.
1473 if (OpIdxGroup == TiedGroup)
1474 return OpIdx + Delta;
1475 }
1476 llvm_unreachable("Invalid tied operand on inline asm");
1477 }
1478
1479 /// clearKillInfo - Clears kill flags on all operands.
1480 ///
clearKillInfo()1481 void MachineInstr::clearKillInfo() {
1482 for (MachineOperand &MO : operands()) {
1483 if (MO.isReg() && MO.isUse())
1484 MO.setIsKill(false);
1485 }
1486 }
1487
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1488 void MachineInstr::substituteRegister(unsigned FromReg,
1489 unsigned ToReg,
1490 unsigned SubIdx,
1491 const TargetRegisterInfo &RegInfo) {
1492 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1493 if (SubIdx)
1494 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1495 for (MachineOperand &MO : operands()) {
1496 if (!MO.isReg() || MO.getReg() != FromReg)
1497 continue;
1498 MO.substPhysReg(ToReg, RegInfo);
1499 }
1500 } else {
1501 for (MachineOperand &MO : operands()) {
1502 if (!MO.isReg() || MO.getReg() != FromReg)
1503 continue;
1504 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1505 }
1506 }
1507 }
1508
1509 /// isSafeToMove - Return true if it is safe to move this instruction. If
1510 /// SawStore is set to true, it means that there is a store (or call) between
1511 /// the instruction's location and its intended destination.
isSafeToMove(AliasAnalysis * AA,bool & SawStore) const1512 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1513 // Ignore stuff that we obviously can't move.
1514 //
1515 // Treat volatile loads as stores. This is not strictly necessary for
1516 // volatiles, but it is required for atomic loads. It is not allowed to move
1517 // a load across an atomic load with Ordering > Monotonic.
1518 if (mayStore() || isCall() ||
1519 (mayLoad() && hasOrderedMemoryRef())) {
1520 SawStore = true;
1521 return false;
1522 }
1523
1524 if (isPosition() || isDebugValue() || isTerminator() ||
1525 hasUnmodeledSideEffects())
1526 return false;
1527
1528 // See if this instruction does a load. If so, we have to guarantee that the
1529 // loaded value doesn't change between the load and the its intended
1530 // destination. The check for isInvariantLoad gives the targe the chance to
1531 // classify the load as always returning a constant, e.g. a constant pool
1532 // load.
1533 if (mayLoad() && !isInvariantLoad(AA))
1534 // Otherwise, this is a real load. If there is a store between the load and
1535 // end of block, we can't move it.
1536 return !SawStore;
1537
1538 return true;
1539 }
1540
1541 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1542 /// or volatile memory reference, or if the information describing the memory
1543 /// reference is not available. Return false if it is known to have no ordered
1544 /// memory references.
hasOrderedMemoryRef() const1545 bool MachineInstr::hasOrderedMemoryRef() const {
1546 // An instruction known never to access memory won't have a volatile access.
1547 if (!mayStore() &&
1548 !mayLoad() &&
1549 !isCall() &&
1550 !hasUnmodeledSideEffects())
1551 return false;
1552
1553 // Otherwise, if the instruction has no memory reference information,
1554 // conservatively assume it wasn't preserved.
1555 if (memoperands_empty())
1556 return true;
1557
1558 // Check if any of our memory operands are ordered.
1559 return any_of(memoperands(), [](const MachineMemOperand *MMO) {
1560 return !MMO->isUnordered();
1561 });
1562 }
1563
1564 /// isInvariantLoad - Return true if this instruction is loading from a
1565 /// location whose value is invariant across the function. For example,
1566 /// loading a value from the constant pool or from the argument area
1567 /// of a function if it does not change. This should only return true of
1568 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1569 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1570 // If the instruction doesn't load at all, it isn't an invariant load.
1571 if (!mayLoad())
1572 return false;
1573
1574 // If the instruction has lost its memoperands, conservatively assume that
1575 // it may not be an invariant load.
1576 if (memoperands_empty())
1577 return false;
1578
1579 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1580
1581 for (MachineMemOperand *MMO : memoperands()) {
1582 if (MMO->isVolatile()) return false;
1583 if (MMO->isStore()) return false;
1584 if (MMO->isInvariant()) continue;
1585
1586 // A load from a constant PseudoSourceValue is invariant.
1587 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1588 if (PSV->isConstant(MFI))
1589 continue;
1590
1591 if (const Value *V = MMO->getValue()) {
1592 // If we have an AliasAnalysis, ask it whether the memory is constant.
1593 if (AA &&
1594 AA->pointsToConstantMemory(
1595 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1596 continue;
1597 }
1598
1599 // Otherwise assume conservatively.
1600 return false;
1601 }
1602
1603 // Everything checks out.
1604 return true;
1605 }
1606
1607 /// isConstantValuePHI - If the specified instruction is a PHI that always
1608 /// merges together the same virtual register, return the register, otherwise
1609 /// return 0.
isConstantValuePHI() const1610 unsigned MachineInstr::isConstantValuePHI() const {
1611 if (!isPHI())
1612 return 0;
1613 assert(getNumOperands() >= 3 &&
1614 "It's illegal to have a PHI without source operands");
1615
1616 unsigned Reg = getOperand(1).getReg();
1617 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1618 if (getOperand(i).getReg() != Reg)
1619 return 0;
1620 return Reg;
1621 }
1622
hasUnmodeledSideEffects() const1623 bool MachineInstr::hasUnmodeledSideEffects() const {
1624 if (hasProperty(MCID::UnmodeledSideEffects))
1625 return true;
1626 if (isInlineAsm()) {
1627 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1628 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1629 return true;
1630 }
1631
1632 return false;
1633 }
1634
isLoadFoldBarrier() const1635 bool MachineInstr::isLoadFoldBarrier() const {
1636 return mayStore() || isCall() || hasUnmodeledSideEffects();
1637 }
1638
1639 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1640 ///
allDefsAreDead() const1641 bool MachineInstr::allDefsAreDead() const {
1642 for (const MachineOperand &MO : operands()) {
1643 if (!MO.isReg() || MO.isUse())
1644 continue;
1645 if (!MO.isDead())
1646 return false;
1647 }
1648 return true;
1649 }
1650
1651 /// copyImplicitOps - Copy implicit register operands from specified
1652 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr & MI)1653 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1654 const MachineInstr &MI) {
1655 for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1656 i != e; ++i) {
1657 const MachineOperand &MO = MI.getOperand(i);
1658 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1659 addOperand(MF, MO);
1660 }
1661 }
1662
dump() const1663 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1664 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1665 dbgs() << " " << *this;
1666 #endif
1667 }
1668
print(raw_ostream & OS,bool SkipOpers) const1669 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1670 const Module *M = nullptr;
1671 if (const MachineBasicBlock *MBB = getParent())
1672 if (const MachineFunction *MF = MBB->getParent())
1673 M = MF->getFunction()->getParent();
1674
1675 ModuleSlotTracker MST(M);
1676 print(OS, MST, SkipOpers);
1677 }
1678
print(raw_ostream & OS,ModuleSlotTracker & MST,bool SkipOpers) const1679 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1680 bool SkipOpers) const {
1681 // We can be a bit tidier if we know the MachineFunction.
1682 const MachineFunction *MF = nullptr;
1683 const TargetRegisterInfo *TRI = nullptr;
1684 const MachineRegisterInfo *MRI = nullptr;
1685 const TargetInstrInfo *TII = nullptr;
1686 if (const MachineBasicBlock *MBB = getParent()) {
1687 MF = MBB->getParent();
1688 if (MF) {
1689 MRI = &MF->getRegInfo();
1690 TRI = MF->getSubtarget().getRegisterInfo();
1691 TII = MF->getSubtarget().getInstrInfo();
1692 }
1693 }
1694
1695 // Save a list of virtual registers.
1696 SmallVector<unsigned, 8> VirtRegs;
1697
1698 // Print explicitly defined operands on the left of an assignment syntax.
1699 unsigned StartOp = 0, e = getNumOperands();
1700 for (; StartOp < e && getOperand(StartOp).isReg() &&
1701 getOperand(StartOp).isDef() &&
1702 !getOperand(StartOp).isImplicit();
1703 ++StartOp) {
1704 if (StartOp != 0) OS << ", ";
1705 getOperand(StartOp).print(OS, MST, TRI);
1706 unsigned Reg = getOperand(StartOp).getReg();
1707 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1708 VirtRegs.push_back(Reg);
1709 unsigned Size;
1710 if (MRI && (Size = MRI->getSize(Reg)))
1711 OS << '(' << Size << ')';
1712 }
1713 }
1714
1715 if (StartOp != 0)
1716 OS << " = ";
1717
1718 // Print the opcode name.
1719 if (TII)
1720 OS << TII->getName(getOpcode());
1721 else
1722 OS << "UNKNOWN";
1723
1724 if (getType()) {
1725 OS << ' ';
1726 getType()->print(OS, /*IsForDebug*/ false, /*NoDetails*/ true);
1727 OS << ' ';
1728 }
1729
1730 if (SkipOpers)
1731 return;
1732
1733 // Print the rest of the operands.
1734 bool OmittedAnyCallClobbers = false;
1735 bool FirstOp = true;
1736 unsigned AsmDescOp = ~0u;
1737 unsigned AsmOpCount = 0;
1738
1739 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1740 // Print asm string.
1741 OS << " ";
1742 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1743
1744 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1745 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1746 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1747 OS << " [sideeffect]";
1748 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1749 OS << " [mayload]";
1750 if (ExtraInfo & InlineAsm::Extra_MayStore)
1751 OS << " [maystore]";
1752 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1753 OS << " [isconvergent]";
1754 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1755 OS << " [alignstack]";
1756 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1757 OS << " [attdialect]";
1758 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1759 OS << " [inteldialect]";
1760
1761 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1762 FirstOp = false;
1763 }
1764
1765 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1766 const MachineOperand &MO = getOperand(i);
1767
1768 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1769 VirtRegs.push_back(MO.getReg());
1770
1771 // Omit call-clobbered registers which aren't used anywhere. This makes
1772 // call instructions much less noisy on targets where calls clobber lots
1773 // of registers. Don't rely on MO.isDead() because we may be called before
1774 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1775 if (MRI && isCall() &&
1776 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1777 unsigned Reg = MO.getReg();
1778 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1779 if (MRI->use_empty(Reg)) {
1780 bool HasAliasLive = false;
1781 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1782 unsigned AliasReg = *AI;
1783 if (!MRI->use_empty(AliasReg)) {
1784 HasAliasLive = true;
1785 break;
1786 }
1787 }
1788 if (!HasAliasLive) {
1789 OmittedAnyCallClobbers = true;
1790 continue;
1791 }
1792 }
1793 }
1794 }
1795
1796 if (FirstOp) FirstOp = false; else OS << ",";
1797 OS << " ";
1798 if (i < getDesc().NumOperands) {
1799 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1800 if (MCOI.isPredicate())
1801 OS << "pred:";
1802 if (MCOI.isOptionalDef())
1803 OS << "opt:";
1804 }
1805 if (isDebugValue() && MO.isMetadata()) {
1806 // Pretty print DBG_VALUE instructions.
1807 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1808 if (DIV && !DIV->getName().empty())
1809 OS << "!\"" << DIV->getName() << '\"';
1810 else
1811 MO.print(OS, MST, TRI);
1812 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1813 OS << TRI->getSubRegIndexName(MO.getImm());
1814 } else if (i == AsmDescOp && MO.isImm()) {
1815 // Pretty print the inline asm operand descriptor.
1816 OS << '$' << AsmOpCount++;
1817 unsigned Flag = MO.getImm();
1818 switch (InlineAsm::getKind(Flag)) {
1819 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1820 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1821 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1822 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1823 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1824 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1825 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1826 }
1827
1828 unsigned RCID = 0;
1829 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1830 if (TRI) {
1831 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1832 } else
1833 OS << ":RC" << RCID;
1834 }
1835
1836 unsigned TiedTo = 0;
1837 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1838 OS << " tiedto:$" << TiedTo;
1839
1840 OS << ']';
1841
1842 // Compute the index of the next operand descriptor.
1843 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1844 } else
1845 MO.print(OS, MST, TRI);
1846 }
1847
1848 // Briefly indicate whether any call clobbers were omitted.
1849 if (OmittedAnyCallClobbers) {
1850 if (!FirstOp) OS << ",";
1851 OS << " ...";
1852 }
1853
1854 bool HaveSemi = false;
1855 const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1856 if (Flags & PrintableFlags) {
1857 if (!HaveSemi) {
1858 OS << ";";
1859 HaveSemi = true;
1860 }
1861 OS << " flags: ";
1862
1863 if (Flags & FrameSetup)
1864 OS << "FrameSetup";
1865
1866 if (Flags & FrameDestroy)
1867 OS << "FrameDestroy";
1868 }
1869
1870 if (!memoperands_empty()) {
1871 if (!HaveSemi) {
1872 OS << ";";
1873 HaveSemi = true;
1874 }
1875
1876 OS << " mem:";
1877 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1878 i != e; ++i) {
1879 (*i)->print(OS, MST);
1880 if (std::next(i) != e)
1881 OS << " ";
1882 }
1883 }
1884
1885 // Print the regclass of any virtual registers encountered.
1886 if (MRI && !VirtRegs.empty()) {
1887 if (!HaveSemi) {
1888 OS << ";";
1889 HaveSemi = true;
1890 }
1891 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1892 const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
1893 if (!RC)
1894 continue;
1895 // Generic virtual registers do not have register classes.
1896 if (RC.is<const RegisterBank *>())
1897 OS << " " << RC.get<const RegisterBank *>()->getName();
1898 else
1899 OS << " "
1900 << TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
1901 OS << ':' << PrintReg(VirtRegs[i]);
1902 for (unsigned j = i+1; j != VirtRegs.size();) {
1903 if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
1904 ++j;
1905 continue;
1906 }
1907 if (VirtRegs[i] != VirtRegs[j])
1908 OS << "," << PrintReg(VirtRegs[j]);
1909 VirtRegs.erase(VirtRegs.begin()+j);
1910 }
1911 }
1912 }
1913
1914 // Print debug location information.
1915 if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1916 if (!HaveSemi)
1917 OS << ";";
1918 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1919 OS << " line no:" << DV->getLine();
1920 if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1921 DebugLoc InlinedAtDL(InlinedAt);
1922 if (InlinedAtDL && MF) {
1923 OS << " inlined @[ ";
1924 InlinedAtDL.print(OS);
1925 OS << " ]";
1926 }
1927 }
1928 if (isIndirectDebugValue())
1929 OS << " indirect";
1930 } else if (debugLoc && MF) {
1931 if (!HaveSemi)
1932 OS << ";";
1933 OS << " dbg:";
1934 debugLoc.print(OS);
1935 }
1936
1937 OS << '\n';
1938 }
1939
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1940 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1941 const TargetRegisterInfo *RegInfo,
1942 bool AddIfNotFound) {
1943 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1944 bool hasAliases = isPhysReg &&
1945 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1946 bool Found = false;
1947 SmallVector<unsigned,4> DeadOps;
1948 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1949 MachineOperand &MO = getOperand(i);
1950 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1951 continue;
1952
1953 // DEBUG_VALUE nodes do not contribute to code generation and should
1954 // always be ignored. Failure to do so may result in trying to modify
1955 // KILL flags on DEBUG_VALUE nodes.
1956 if (MO.isDebug())
1957 continue;
1958
1959 unsigned Reg = MO.getReg();
1960 if (!Reg)
1961 continue;
1962
1963 if (Reg == IncomingReg) {
1964 if (!Found) {
1965 if (MO.isKill())
1966 // The register is already marked kill.
1967 return true;
1968 if (isPhysReg && isRegTiedToDefOperand(i))
1969 // Two-address uses of physregs must not be marked kill.
1970 return true;
1971 MO.setIsKill();
1972 Found = true;
1973 }
1974 } else if (hasAliases && MO.isKill() &&
1975 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1976 // A super-register kill already exists.
1977 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1978 return true;
1979 if (RegInfo->isSubRegister(IncomingReg, Reg))
1980 DeadOps.push_back(i);
1981 }
1982 }
1983
1984 // Trim unneeded kill operands.
1985 while (!DeadOps.empty()) {
1986 unsigned OpIdx = DeadOps.back();
1987 if (getOperand(OpIdx).isImplicit())
1988 RemoveOperand(OpIdx);
1989 else
1990 getOperand(OpIdx).setIsKill(false);
1991 DeadOps.pop_back();
1992 }
1993
1994 // If not found, this means an alias of one of the operands is killed. Add a
1995 // new implicit operand if required.
1996 if (!Found && AddIfNotFound) {
1997 addOperand(MachineOperand::CreateReg(IncomingReg,
1998 false /*IsDef*/,
1999 true /*IsImp*/,
2000 true /*IsKill*/));
2001 return true;
2002 }
2003 return Found;
2004 }
2005
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)2006 void MachineInstr::clearRegisterKills(unsigned Reg,
2007 const TargetRegisterInfo *RegInfo) {
2008 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
2009 RegInfo = nullptr;
2010 for (MachineOperand &MO : operands()) {
2011 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2012 continue;
2013 unsigned OpReg = MO.getReg();
2014 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
2015 MO.setIsKill(false);
2016 }
2017 }
2018
addRegisterDead(unsigned Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)2019 bool MachineInstr::addRegisterDead(unsigned Reg,
2020 const TargetRegisterInfo *RegInfo,
2021 bool AddIfNotFound) {
2022 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
2023 bool hasAliases = isPhysReg &&
2024 MCRegAliasIterator(Reg, RegInfo, false).isValid();
2025 bool Found = false;
2026 SmallVector<unsigned,4> DeadOps;
2027 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2028 MachineOperand &MO = getOperand(i);
2029 if (!MO.isReg() || !MO.isDef())
2030 continue;
2031 unsigned MOReg = MO.getReg();
2032 if (!MOReg)
2033 continue;
2034
2035 if (MOReg == Reg) {
2036 MO.setIsDead();
2037 Found = true;
2038 } else if (hasAliases && MO.isDead() &&
2039 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
2040 // There exists a super-register that's marked dead.
2041 if (RegInfo->isSuperRegister(Reg, MOReg))
2042 return true;
2043 if (RegInfo->isSubRegister(Reg, MOReg))
2044 DeadOps.push_back(i);
2045 }
2046 }
2047
2048 // Trim unneeded dead operands.
2049 while (!DeadOps.empty()) {
2050 unsigned OpIdx = DeadOps.back();
2051 if (getOperand(OpIdx).isImplicit())
2052 RemoveOperand(OpIdx);
2053 else
2054 getOperand(OpIdx).setIsDead(false);
2055 DeadOps.pop_back();
2056 }
2057
2058 // If not found, this means an alias of one of the operands is dead. Add a
2059 // new implicit operand if required.
2060 if (Found || !AddIfNotFound)
2061 return Found;
2062
2063 addOperand(MachineOperand::CreateReg(Reg,
2064 true /*IsDef*/,
2065 true /*IsImp*/,
2066 false /*IsKill*/,
2067 true /*IsDead*/));
2068 return true;
2069 }
2070
clearRegisterDeads(unsigned Reg)2071 void MachineInstr::clearRegisterDeads(unsigned Reg) {
2072 for (MachineOperand &MO : operands()) {
2073 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2074 continue;
2075 MO.setIsDead(false);
2076 }
2077 }
2078
setRegisterDefReadUndef(unsigned Reg,bool IsUndef)2079 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
2080 for (MachineOperand &MO : operands()) {
2081 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2082 continue;
2083 MO.setIsUndef(IsUndef);
2084 }
2085 }
2086
addRegisterDefined(unsigned Reg,const TargetRegisterInfo * RegInfo)2087 void MachineInstr::addRegisterDefined(unsigned Reg,
2088 const TargetRegisterInfo *RegInfo) {
2089 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2090 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
2091 if (MO)
2092 return;
2093 } else {
2094 for (const MachineOperand &MO : operands()) {
2095 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2096 MO.getSubReg() == 0)
2097 return;
2098 }
2099 }
2100 addOperand(MachineOperand::CreateReg(Reg,
2101 true /*IsDef*/,
2102 true /*IsImp*/));
2103 }
2104
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)2105 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
2106 const TargetRegisterInfo &TRI) {
2107 bool HasRegMask = false;
2108 for (MachineOperand &MO : operands()) {
2109 if (MO.isRegMask()) {
2110 HasRegMask = true;
2111 continue;
2112 }
2113 if (!MO.isReg() || !MO.isDef()) continue;
2114 unsigned Reg = MO.getReg();
2115 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
2116 // If there are no uses, including partial uses, the def is dead.
2117 if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
2118 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
2119 MO.setIsDead();
2120 }
2121
2122 // This is a call with a register mask operand.
2123 // Mask clobbers are always dead, so add defs for the non-dead defines.
2124 if (HasRegMask)
2125 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2126 I != E; ++I)
2127 addRegisterDefined(*I, &TRI);
2128 }
2129
2130 unsigned
getHashValue(const MachineInstr * const & MI)2131 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2132 // Build up a buffer of hash code components.
2133 SmallVector<size_t, 8> HashComponents;
2134 HashComponents.reserve(MI->getNumOperands() + 1);
2135 HashComponents.push_back(MI->getOpcode());
2136 for (const MachineOperand &MO : MI->operands()) {
2137 if (MO.isReg() && MO.isDef() &&
2138 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2139 continue; // Skip virtual register defs.
2140
2141 HashComponents.push_back(hash_value(MO));
2142 }
2143 return hash_combine_range(HashComponents.begin(), HashComponents.end());
2144 }
2145
emitError(StringRef Msg) const2146 void MachineInstr::emitError(StringRef Msg) const {
2147 // Find the source location cookie.
2148 unsigned LocCookie = 0;
2149 const MDNode *LocMD = nullptr;
2150 for (unsigned i = getNumOperands(); i != 0; --i) {
2151 if (getOperand(i-1).isMetadata() &&
2152 (LocMD = getOperand(i-1).getMetadata()) &&
2153 LocMD->getNumOperands() != 0) {
2154 if (const ConstantInt *CI =
2155 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2156 LocCookie = CI->getZExtValue();
2157 break;
2158 }
2159 }
2160 }
2161
2162 if (const MachineBasicBlock *MBB = getParent())
2163 if (const MachineFunction *MF = MBB->getParent())
2164 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2165 report_fatal_error(Msg);
2166 }
2167
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,unsigned Reg,unsigned Offset,const MDNode * Variable,const MDNode * Expr)2168 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2169 const MCInstrDesc &MCID, bool IsIndirect,
2170 unsigned Reg, unsigned Offset,
2171 const MDNode *Variable, const MDNode *Expr) {
2172 assert(isa<DILocalVariable>(Variable) && "not a variable");
2173 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2174 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2175 "Expected inlined-at fields to agree");
2176 if (IsIndirect)
2177 return BuildMI(MF, DL, MCID)
2178 .addReg(Reg, RegState::Debug)
2179 .addImm(Offset)
2180 .addMetadata(Variable)
2181 .addMetadata(Expr);
2182 else {
2183 assert(Offset == 0 && "A direct address cannot have an offset.");
2184 return BuildMI(MF, DL, MCID)
2185 .addReg(Reg, RegState::Debug)
2186 .addReg(0U, RegState::Debug)
2187 .addMetadata(Variable)
2188 .addMetadata(Expr);
2189 }
2190 }
2191
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,unsigned Reg,unsigned Offset,const MDNode * Variable,const MDNode * Expr)2192 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2193 MachineBasicBlock::iterator I,
2194 const DebugLoc &DL, const MCInstrDesc &MCID,
2195 bool IsIndirect, unsigned Reg,
2196 unsigned Offset, const MDNode *Variable,
2197 const MDNode *Expr) {
2198 assert(isa<DILocalVariable>(Variable) && "not a variable");
2199 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2200 MachineFunction &MF = *BB.getParent();
2201 MachineInstr *MI =
2202 BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
2203 BB.insert(I, MI);
2204 return MachineInstrBuilder(MF, MI);
2205 }
2206