1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. A natural loop 12 // has exactly one entry-point, which is called the header. Note that natural 13 // loops may actually be several loops that share the same header node. 14 // 15 // This analysis calculates the nesting structure of loops in a function. For 16 // each natural loop identified, this analysis identifies natural loops 17 // contained entirely within the loop and the basic blocks the make up the loop. 18 // 19 // It can calculate on the fly various bits of information, for example: 20 // 21 // * whether there is a preheader for the loop 22 // * the number of back edges to the header 23 // * whether or not a particular block branches out of the loop 24 // * the successor blocks of the loop 25 // * the loop depth 26 // * etc... 27 // 28 // Note that this analysis specifically identifies *Loops* not cycles or SCCs 29 // in the CFG. There can be strongly connected compontents in the CFG which 30 // this analysis will not recognize and that will not be represented by a Loop 31 // instance. In particular, a Loop might be inside such a non-loop SCC, or a 32 // non-loop SCC might contain a sub-SCC which is a Loop. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #ifndef LLVM_ANALYSIS_LOOPINFO_H 37 #define LLVM_ANALYSIS_LOOPINFO_H 38 39 #include "llvm/ADT/DenseMap.h" 40 #include "llvm/ADT/DenseSet.h" 41 #include "llvm/ADT/GraphTraits.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/Pass.h" 49 #include <algorithm> 50 51 namespace llvm { 52 53 class DominatorTree; 54 class LoopInfo; 55 class Loop; 56 class MDNode; 57 class PHINode; 58 class raw_ostream; 59 template<class N> class DominatorTreeBase; 60 template<class N, class M> class LoopInfoBase; 61 template<class N, class M> class LoopBase; 62 63 //===----------------------------------------------------------------------===// 64 /// Instances of this class are used to represent loops that are detected in the 65 /// flow graph. 66 /// 67 template<class BlockT, class LoopT> 68 class LoopBase { 69 LoopT *ParentLoop; 70 // Loops contained entirely within this one. 71 std::vector<LoopT *> SubLoops; 72 73 // The list of blocks in this loop. First entry is the header node. 74 std::vector<BlockT*> Blocks; 75 76 SmallPtrSet<const BlockT*, 8> DenseBlockSet; 77 78 /// Indicator that this loop is no longer a valid loop. 79 bool IsInvalid = false; 80 81 LoopBase(const LoopBase<BlockT, LoopT> &) = delete; 82 const LoopBase<BlockT, LoopT>& 83 operator=(const LoopBase<BlockT, LoopT> &) = delete; 84 public: 85 /// This creates an empty loop. LoopBase()86 LoopBase() : ParentLoop(nullptr) {} ~LoopBase()87 ~LoopBase() { 88 for (size_t i = 0, e = SubLoops.size(); i != e; ++i) 89 delete SubLoops[i]; 90 } 91 92 /// Return the nesting level of this loop. An outer-most loop has depth 1, 93 /// for consistency with loop depth values used for basic blocks, where depth 94 /// 0 is used for blocks not inside any loops. getLoopDepth()95 unsigned getLoopDepth() const { 96 unsigned D = 1; 97 for (const LoopT *CurLoop = ParentLoop; CurLoop; 98 CurLoop = CurLoop->ParentLoop) 99 ++D; 100 return D; 101 } getHeader()102 BlockT *getHeader() const { return Blocks.front(); } getParentLoop()103 LoopT *getParentLoop() const { return ParentLoop; } 104 105 /// This is a raw interface for bypassing addChildLoop. setParentLoop(LoopT * L)106 void setParentLoop(LoopT *L) { ParentLoop = L; } 107 108 /// Return true if the specified loop is contained within in this loop. contains(const LoopT * L)109 bool contains(const LoopT *L) const { 110 if (L == this) return true; 111 if (!L) return false; 112 return contains(L->getParentLoop()); 113 } 114 115 /// Return true if the specified basic block is in this loop. contains(const BlockT * BB)116 bool contains(const BlockT *BB) const { 117 return DenseBlockSet.count(BB); 118 } 119 120 /// Return true if the specified instruction is in this loop. 121 template<class InstT> contains(const InstT * Inst)122 bool contains(const InstT *Inst) const { 123 return contains(Inst->getParent()); 124 } 125 126 /// Return the loops contained entirely within this loop. getSubLoops()127 const std::vector<LoopT *> &getSubLoops() const { return SubLoops; } getSubLoopsVector()128 std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; } 129 typedef typename std::vector<LoopT *>::const_iterator iterator; 130 typedef typename std::vector<LoopT *>::const_reverse_iterator 131 reverse_iterator; begin()132 iterator begin() const { return SubLoops.begin(); } end()133 iterator end() const { return SubLoops.end(); } rbegin()134 reverse_iterator rbegin() const { return SubLoops.rbegin(); } rend()135 reverse_iterator rend() const { return SubLoops.rend(); } empty()136 bool empty() const { return SubLoops.empty(); } 137 138 /// Get a list of the basic blocks which make up this loop. getBlocks()139 const std::vector<BlockT*> &getBlocks() const { return Blocks; } 140 typedef typename std::vector<BlockT*>::const_iterator block_iterator; block_begin()141 block_iterator block_begin() const { return Blocks.begin(); } block_end()142 block_iterator block_end() const { return Blocks.end(); } blocks()143 inline iterator_range<block_iterator> blocks() const { 144 return make_range(block_begin(), block_end()); 145 } 146 147 /// Get the number of blocks in this loop in constant time. getNumBlocks()148 unsigned getNumBlocks() const { 149 return Blocks.size(); 150 } 151 152 /// Invalidate the loop, indicating that it is no longer a loop. invalidate()153 void invalidate() { IsInvalid = true; } 154 155 /// Return true if this loop is no longer valid. isInvalid()156 bool isInvalid() { return IsInvalid; } 157 158 /// True if terminator in the block can branch to another block that is 159 /// outside of the current loop. isLoopExiting(const BlockT * BB)160 bool isLoopExiting(const BlockT *BB) const { 161 typedef GraphTraits<const BlockT*> BlockTraits; 162 for (typename BlockTraits::ChildIteratorType SI = 163 BlockTraits::child_begin(BB), 164 SE = BlockTraits::child_end(BB); SI != SE; ++SI) { 165 if (!contains(*SI)) 166 return true; 167 } 168 return false; 169 } 170 171 /// Calculate the number of back edges to the loop header. getNumBackEdges()172 unsigned getNumBackEdges() const { 173 unsigned NumBackEdges = 0; 174 BlockT *H = getHeader(); 175 176 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; 177 for (typename InvBlockTraits::ChildIteratorType I = 178 InvBlockTraits::child_begin(H), 179 E = InvBlockTraits::child_end(H); I != E; ++I) 180 if (contains(*I)) 181 ++NumBackEdges; 182 183 return NumBackEdges; 184 } 185 186 //===--------------------------------------------------------------------===// 187 // APIs for simple analysis of the loop. 188 // 189 // Note that all of these methods can fail on general loops (ie, there may not 190 // be a preheader, etc). For best success, the loop simplification and 191 // induction variable canonicalization pass should be used to normalize loops 192 // for easy analysis. These methods assume canonical loops. 193 194 /// Return all blocks inside the loop that have successors outside of the 195 /// loop. These are the blocks _inside of the current loop_ which branch out. 196 /// The returned list is always unique. 197 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; 198 199 /// If getExitingBlocks would return exactly one block, return that block. 200 /// Otherwise return null. 201 BlockT *getExitingBlock() const; 202 203 /// Return all of the successor blocks of this loop. These are the blocks 204 /// _outside of the current loop_ which are branched to. 205 void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const; 206 207 /// If getExitBlocks would return exactly one block, return that block. 208 /// Otherwise return null. 209 BlockT *getExitBlock() const; 210 211 /// Edge type. 212 typedef std::pair<const BlockT*, const BlockT*> Edge; 213 214 /// Return all pairs of (_inside_block_,_outside_block_). 215 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; 216 217 /// If there is a preheader for this loop, return it. A loop has a preheader 218 /// if there is only one edge to the header of the loop from outside of the 219 /// loop. If this is the case, the block branching to the header of the loop 220 /// is the preheader node. 221 /// 222 /// This method returns null if there is no preheader for the loop. 223 BlockT *getLoopPreheader() const; 224 225 /// If the given loop's header has exactly one unique predecessor outside the 226 /// loop, return it. Otherwise return null. 227 /// This is less strict that the loop "preheader" concept, which requires 228 /// the predecessor to have exactly one successor. 229 BlockT *getLoopPredecessor() const; 230 231 /// If there is a single latch block for this loop, return it. 232 /// A latch block is a block that contains a branch back to the header. 233 BlockT *getLoopLatch() const; 234 235 /// Return all loop latch blocks of this loop. A latch block is a block that 236 /// contains a branch back to the header. getLoopLatches(SmallVectorImpl<BlockT * > & LoopLatches)237 void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { 238 BlockT *H = getHeader(); 239 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; 240 for (typename InvBlockTraits::ChildIteratorType I = 241 InvBlockTraits::child_begin(H), 242 E = InvBlockTraits::child_end(H); I != E; ++I) 243 if (contains(*I)) 244 LoopLatches.push_back(*I); 245 } 246 247 //===--------------------------------------------------------------------===// 248 // APIs for updating loop information after changing the CFG 249 // 250 251 /// This method is used by other analyses to update loop information. 252 /// NewBB is set to be a new member of the current loop. 253 /// Because of this, it is added as a member of all parent loops, and is added 254 /// to the specified LoopInfo object as being in the current basic block. It 255 /// is not valid to replace the loop header with this method. 256 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); 257 258 /// This is used when splitting loops up. It replaces the OldChild entry in 259 /// our children list with NewChild, and updates the parent pointer of 260 /// OldChild to be null and the NewChild to be this loop. 261 /// This updates the loop depth of the new child. 262 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); 263 264 /// Add the specified loop to be a child of this loop. 265 /// This updates the loop depth of the new child. addChildLoop(LoopT * NewChild)266 void addChildLoop(LoopT *NewChild) { 267 assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 268 NewChild->ParentLoop = static_cast<LoopT *>(this); 269 SubLoops.push_back(NewChild); 270 } 271 272 /// This removes the specified child from being a subloop of this loop. The 273 /// loop is not deleted, as it will presumably be inserted into another loop. removeChildLoop(iterator I)274 LoopT *removeChildLoop(iterator I) { 275 assert(I != SubLoops.end() && "Cannot remove end iterator!"); 276 LoopT *Child = *I; 277 assert(Child->ParentLoop == this && "Child is not a child of this loop!"); 278 SubLoops.erase(SubLoops.begin()+(I-begin())); 279 Child->ParentLoop = nullptr; 280 return Child; 281 } 282 283 /// This adds a basic block directly to the basic block list. 284 /// This should only be used by transformations that create new loops. Other 285 /// transformations should use addBasicBlockToLoop. addBlockEntry(BlockT * BB)286 void addBlockEntry(BlockT *BB) { 287 Blocks.push_back(BB); 288 DenseBlockSet.insert(BB); 289 } 290 291 /// interface to reverse Blocks[from, end of loop] in this loop reverseBlock(unsigned from)292 void reverseBlock(unsigned from) { 293 std::reverse(Blocks.begin() + from, Blocks.end()); 294 } 295 296 /// interface to do reserve() for Blocks reserveBlocks(unsigned size)297 void reserveBlocks(unsigned size) { 298 Blocks.reserve(size); 299 } 300 301 /// This method is used to move BB (which must be part of this loop) to be the 302 /// loop header of the loop (the block that dominates all others). moveToHeader(BlockT * BB)303 void moveToHeader(BlockT *BB) { 304 if (Blocks[0] == BB) return; 305 for (unsigned i = 0; ; ++i) { 306 assert(i != Blocks.size() && "Loop does not contain BB!"); 307 if (Blocks[i] == BB) { 308 Blocks[i] = Blocks[0]; 309 Blocks[0] = BB; 310 return; 311 } 312 } 313 } 314 315 /// This removes the specified basic block from the current loop, updating the 316 /// Blocks as appropriate. This does not update the mapping in the LoopInfo 317 /// class. removeBlockFromLoop(BlockT * BB)318 void removeBlockFromLoop(BlockT *BB) { 319 auto I = std::find(Blocks.begin(), Blocks.end(), BB); 320 assert(I != Blocks.end() && "N is not in this list!"); 321 Blocks.erase(I); 322 323 DenseBlockSet.erase(BB); 324 } 325 326 /// Verify loop structure 327 void verifyLoop() const; 328 329 /// Verify loop structure of this loop and all nested loops. 330 void verifyLoopNest(DenseSet<const LoopT*> *Loops) const; 331 332 void print(raw_ostream &OS, unsigned Depth = 0) const; 333 334 protected: 335 friend class LoopInfoBase<BlockT, LoopT>; LoopBase(BlockT * BB)336 explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { 337 Blocks.push_back(BB); 338 DenseBlockSet.insert(BB); 339 } 340 }; 341 342 template<class BlockT, class LoopT> 343 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { 344 Loop.print(OS); 345 return OS; 346 } 347 348 // Implementation in LoopInfoImpl.h 349 extern template class LoopBase<BasicBlock, Loop>; 350 351 352 /// Represents a single loop in the control flow graph. Note that not all SCCs 353 /// in the CFG are neccessarily loops. 354 class Loop : public LoopBase<BasicBlock, Loop> { 355 public: Loop()356 Loop() {} 357 358 /// Return true if the specified value is loop invariant. 359 bool isLoopInvariant(const Value *V) const; 360 361 /// Return true if all the operands of the specified instruction are loop 362 /// invariant. 363 bool hasLoopInvariantOperands(const Instruction *I) const; 364 365 /// If the given value is an instruction inside of the loop and it can be 366 /// hoisted, do so to make it trivially loop-invariant. 367 /// Return true if the value after any hoisting is loop invariant. This 368 /// function can be used as a slightly more aggressive replacement for 369 /// isLoopInvariant. 370 /// 371 /// If InsertPt is specified, it is the point to hoist instructions to. 372 /// If null, the terminator of the loop preheader is used. 373 bool makeLoopInvariant(Value *V, bool &Changed, 374 Instruction *InsertPt = nullptr) const; 375 376 /// If the given instruction is inside of the loop and it can be hoisted, do 377 /// so to make it trivially loop-invariant. 378 /// Return true if the instruction after any hoisting is loop invariant. This 379 /// function can be used as a slightly more aggressive replacement for 380 /// isLoopInvariant. 381 /// 382 /// If InsertPt is specified, it is the point to hoist instructions to. 383 /// If null, the terminator of the loop preheader is used. 384 /// 385 bool makeLoopInvariant(Instruction *I, bool &Changed, 386 Instruction *InsertPt = nullptr) const; 387 388 /// Check to see if the loop has a canonical induction variable: an integer 389 /// recurrence that starts at 0 and increments by one each time through the 390 /// loop. If so, return the phi node that corresponds to it. 391 /// 392 /// The IndVarSimplify pass transforms loops to have a canonical induction 393 /// variable. 394 /// 395 PHINode *getCanonicalInductionVariable() const; 396 397 /// Return true if the Loop is in LCSSA form. 398 bool isLCSSAForm(DominatorTree &DT) const; 399 400 /// Return true if this Loop and all inner subloops are in LCSSA form. 401 bool isRecursivelyLCSSAForm(DominatorTree &DT) const; 402 403 /// Return true if the Loop is in the form that the LoopSimplify form 404 /// transforms loops to, which is sometimes called normal form. 405 bool isLoopSimplifyForm() const; 406 407 /// Return true if the loop body is safe to clone in practice. 408 bool isSafeToClone() const; 409 410 /// Returns true if the loop is annotated parallel. 411 /// 412 /// A parallel loop can be assumed to not contain any dependencies between 413 /// iterations by the compiler. That is, any loop-carried dependency checking 414 /// can be skipped completely when parallelizing the loop on the target 415 /// machine. Thus, if the parallel loop information originates from the 416 /// programmer, e.g. via the OpenMP parallel for pragma, it is the 417 /// programmer's responsibility to ensure there are no loop-carried 418 /// dependencies. The final execution order of the instructions across 419 /// iterations is not guaranteed, thus, the end result might or might not 420 /// implement actual concurrent execution of instructions across multiple 421 /// iterations. 422 bool isAnnotatedParallel() const; 423 424 /// Return the llvm.loop loop id metadata node for this loop if it is present. 425 /// 426 /// If this loop contains the same llvm.loop metadata on each branch to the 427 /// header then the node is returned. If any latch instruction does not 428 /// contain llvm.loop or or if multiple latches contain different nodes then 429 /// 0 is returned. 430 MDNode *getLoopID() const; 431 /// Set the llvm.loop loop id metadata for this loop. 432 /// 433 /// The LoopID metadata node will be added to each terminator instruction in 434 /// the loop that branches to the loop header. 435 /// 436 /// The LoopID metadata node should have one or more operands and the first 437 /// operand should should be the node itself. 438 void setLoopID(MDNode *LoopID) const; 439 440 /// Return true if no exit block for the loop has a predecessor that is 441 /// outside the loop. 442 bool hasDedicatedExits() const; 443 444 /// Return all unique successor blocks of this loop. 445 /// These are the blocks _outside of the current loop_ which are branched to. 446 /// This assumes that loop exits are in canonical form. 447 void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const; 448 449 /// If getUniqueExitBlocks would return exactly one block, return that block. 450 /// Otherwise return null. 451 BasicBlock *getUniqueExitBlock() const; 452 453 void dump() const; 454 455 /// Return the debug location of the start of this loop. 456 /// This looks for a BB terminating instruction with a known debug 457 /// location by looking at the preheader and header blocks. If it 458 /// cannot find a terminating instruction with location information, 459 /// it returns an unknown location. 460 DebugLoc getStartLoc() const; 461 getName()462 StringRef getName() const { 463 if (BasicBlock *Header = getHeader()) 464 if (Header->hasName()) 465 return Header->getName(); 466 return "<unnamed loop>"; 467 } 468 469 private: 470 friend class LoopInfoBase<BasicBlock, Loop>; Loop(BasicBlock * BB)471 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} 472 }; 473 474 //===----------------------------------------------------------------------===// 475 /// This class builds and contains all of the top-level loop 476 /// structures in the specified function. 477 /// 478 479 template<class BlockT, class LoopT> 480 class LoopInfoBase { 481 // BBMap - Mapping of basic blocks to the inner most loop they occur in 482 DenseMap<const BlockT *, LoopT *> BBMap; 483 std::vector<LoopT *> TopLevelLoops; 484 std::vector<LoopT *> RemovedLoops; 485 486 friend class LoopBase<BlockT, LoopT>; 487 friend class LoopInfo; 488 489 void operator=(const LoopInfoBase &) = delete; 490 LoopInfoBase(const LoopInfoBase &) = delete; 491 public: LoopInfoBase()492 LoopInfoBase() { } ~LoopInfoBase()493 ~LoopInfoBase() { releaseMemory(); } 494 LoopInfoBase(LoopInfoBase && Arg)495 LoopInfoBase(LoopInfoBase &&Arg) 496 : BBMap(std::move(Arg.BBMap)), 497 TopLevelLoops(std::move(Arg.TopLevelLoops)) { 498 // We have to clear the arguments top level loops as we've taken ownership. 499 Arg.TopLevelLoops.clear(); 500 } 501 LoopInfoBase &operator=(LoopInfoBase &&RHS) { 502 BBMap = std::move(RHS.BBMap); 503 504 for (auto *L : TopLevelLoops) 505 delete L; 506 TopLevelLoops = std::move(RHS.TopLevelLoops); 507 RHS.TopLevelLoops.clear(); 508 return *this; 509 } 510 releaseMemory()511 void releaseMemory() { 512 BBMap.clear(); 513 514 for (auto *L : TopLevelLoops) 515 delete L; 516 TopLevelLoops.clear(); 517 for (auto *L : RemovedLoops) 518 delete L; 519 RemovedLoops.clear(); 520 } 521 522 /// iterator/begin/end - The interface to the top-level loops in the current 523 /// function. 524 /// 525 typedef typename std::vector<LoopT *>::const_iterator iterator; 526 typedef typename std::vector<LoopT *>::const_reverse_iterator 527 reverse_iterator; begin()528 iterator begin() const { return TopLevelLoops.begin(); } end()529 iterator end() const { return TopLevelLoops.end(); } rbegin()530 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } rend()531 reverse_iterator rend() const { return TopLevelLoops.rend(); } empty()532 bool empty() const { return TopLevelLoops.empty(); } 533 534 /// Return the inner most loop that BB lives in. If a basic block is in no 535 /// loop (for example the entry node), null is returned. getLoopFor(const BlockT * BB)536 LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } 537 538 /// Same as getLoopFor. 539 const LoopT *operator[](const BlockT *BB) const { 540 return getLoopFor(BB); 541 } 542 543 /// Return the loop nesting level of the specified block. A depth of 0 means 544 /// the block is not inside any loop. getLoopDepth(const BlockT * BB)545 unsigned getLoopDepth(const BlockT *BB) const { 546 const LoopT *L = getLoopFor(BB); 547 return L ? L->getLoopDepth() : 0; 548 } 549 550 // True if the block is a loop header node isLoopHeader(const BlockT * BB)551 bool isLoopHeader(const BlockT *BB) const { 552 const LoopT *L = getLoopFor(BB); 553 return L && L->getHeader() == BB; 554 } 555 556 /// This removes the specified top-level loop from this loop info object. 557 /// The loop is not deleted, as it will presumably be inserted into 558 /// another loop. removeLoop(iterator I)559 LoopT *removeLoop(iterator I) { 560 assert(I != end() && "Cannot remove end iterator!"); 561 LoopT *L = *I; 562 assert(!L->getParentLoop() && "Not a top-level loop!"); 563 TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); 564 return L; 565 } 566 567 /// Change the top-level loop that contains BB to the specified loop. 568 /// This should be used by transformations that restructure the loop hierarchy 569 /// tree. changeLoopFor(BlockT * BB,LoopT * L)570 void changeLoopFor(BlockT *BB, LoopT *L) { 571 if (!L) { 572 BBMap.erase(BB); 573 return; 574 } 575 BBMap[BB] = L; 576 } 577 578 /// Replace the specified loop in the top-level loops list with the indicated 579 /// loop. changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)580 void changeTopLevelLoop(LoopT *OldLoop, 581 LoopT *NewLoop) { 582 auto I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); 583 assert(I != TopLevelLoops.end() && "Old loop not at top level!"); 584 *I = NewLoop; 585 assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && 586 "Loops already embedded into a subloop!"); 587 } 588 589 /// This adds the specified loop to the collection of top-level loops. addTopLevelLoop(LoopT * New)590 void addTopLevelLoop(LoopT *New) { 591 assert(!New->getParentLoop() && "Loop already in subloop!"); 592 TopLevelLoops.push_back(New); 593 } 594 595 /// This method completely removes BB from all data structures, 596 /// including all of the Loop objects it is nested in and our mapping from 597 /// BasicBlocks to loops. removeBlock(BlockT * BB)598 void removeBlock(BlockT *BB) { 599 auto I = BBMap.find(BB); 600 if (I != BBMap.end()) { 601 for (LoopT *L = I->second; L; L = L->getParentLoop()) 602 L->removeBlockFromLoop(BB); 603 604 BBMap.erase(I); 605 } 606 } 607 608 // Internals 609 isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)610 static bool isNotAlreadyContainedIn(const LoopT *SubLoop, 611 const LoopT *ParentLoop) { 612 if (!SubLoop) return true; 613 if (SubLoop == ParentLoop) return false; 614 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); 615 } 616 617 /// Create the loop forest using a stable algorithm. 618 void analyze(const DominatorTreeBase<BlockT> &DomTree); 619 620 // Debugging 621 void print(raw_ostream &OS) const; 622 623 void verify() const; 624 }; 625 626 // Implementation in LoopInfoImpl.h 627 extern template class LoopInfoBase<BasicBlock, Loop>; 628 629 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { 630 typedef LoopInfoBase<BasicBlock, Loop> BaseT; 631 632 friend class LoopBase<BasicBlock, Loop>; 633 634 void operator=(const LoopInfo &) = delete; 635 LoopInfo(const LoopInfo &) = delete; 636 public: LoopInfo()637 LoopInfo() {} 638 explicit LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree); 639 LoopInfo(LoopInfo && Arg)640 LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} 641 LoopInfo &operator=(LoopInfo &&RHS) { 642 BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); 643 return *this; 644 } 645 646 // Most of the public interface is provided via LoopInfoBase. 647 648 /// Update LoopInfo after removing the last backedge from a loop. This updates 649 /// the loop forest and parent loops for each block so that \c L is no longer 650 /// referenced, but does not actually delete \c L immediately. The pointer 651 /// will remain valid until this LoopInfo's memory is released. 652 void markAsRemoved(Loop *L); 653 654 /// Returns true if replacing From with To everywhere is guaranteed to 655 /// preserve LCSSA form. replacementPreservesLCSSAForm(Instruction * From,Value * To)656 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { 657 // Preserving LCSSA form is only problematic if the replacing value is an 658 // instruction. 659 Instruction *I = dyn_cast<Instruction>(To); 660 if (!I) return true; 661 // If both instructions are defined in the same basic block then replacement 662 // cannot break LCSSA form. 663 if (I->getParent() == From->getParent()) 664 return true; 665 // If the instruction is not defined in a loop then it can safely replace 666 // anything. 667 Loop *ToLoop = getLoopFor(I->getParent()); 668 if (!ToLoop) return true; 669 // If the replacing instruction is defined in the same loop as the original 670 // instruction, or in a loop that contains it as an inner loop, then using 671 // it as a replacement will not break LCSSA form. 672 return ToLoop->contains(getLoopFor(From->getParent())); 673 } 674 675 /// Checks if moving a specific instruction can break LCSSA in any loop. 676 /// 677 /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, 678 /// assuming that the function containing \p Inst and \p NewLoc is currently 679 /// in LCSSA form. movementPreservesLCSSAForm(Instruction * Inst,Instruction * NewLoc)680 bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { 681 assert(Inst->getFunction() == NewLoc->getFunction() && 682 "Can't reason about IPO!"); 683 684 auto *OldBB = Inst->getParent(); 685 auto *NewBB = NewLoc->getParent(); 686 687 // Movement within the same loop does not break LCSSA (the equality check is 688 // to avoid doing a hashtable lookup in case of intra-block movement). 689 if (OldBB == NewBB) 690 return true; 691 692 auto *OldLoop = getLoopFor(OldBB); 693 auto *NewLoop = getLoopFor(NewBB); 694 695 if (OldLoop == NewLoop) 696 return true; 697 698 // Check if Outer contains Inner; with the null loop counting as the 699 // "outermost" loop. 700 auto Contains = [](const Loop *Outer, const Loop *Inner) { 701 return !Outer || Outer->contains(Inner); 702 }; 703 704 // To check that the movement of Inst to before NewLoc does not break LCSSA, 705 // we need to check two sets of uses for possible LCSSA violations at 706 // NewLoc: the users of NewInst, and the operands of NewInst. 707 708 // If we know we're hoisting Inst out of an inner loop to an outer loop, 709 // then the uses *of* Inst don't need to be checked. 710 711 if (!Contains(NewLoop, OldLoop)) { 712 for (Use &U : Inst->uses()) { 713 auto *UI = cast<Instruction>(U.getUser()); 714 auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) 715 : UI->getParent(); 716 if (UBB != NewBB && getLoopFor(UBB) != NewLoop) 717 return false; 718 } 719 } 720 721 // If we know we're sinking Inst from an outer loop into an inner loop, then 722 // the *operands* of Inst don't need to be checked. 723 724 if (!Contains(OldLoop, NewLoop)) { 725 // See below on why we can't handle phi nodes here. 726 if (isa<PHINode>(Inst)) 727 return false; 728 729 for (Use &U : Inst->operands()) { 730 auto *DefI = dyn_cast<Instruction>(U.get()); 731 if (!DefI) 732 return false; 733 734 // This would need adjustment if we allow Inst to be a phi node -- the 735 // new use block won't simply be NewBB. 736 737 auto *DefBlock = DefI->getParent(); 738 if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) 739 return false; 740 } 741 } 742 743 return true; 744 } 745 }; 746 747 // Allow clients to walk the list of nested loops... 748 template <> struct GraphTraits<const Loop*> { 749 typedef const Loop NodeType; 750 typedef LoopInfo::iterator ChildIteratorType; 751 752 static NodeType *getEntryNode(const Loop *L) { return L; } 753 static inline ChildIteratorType child_begin(NodeType *N) { 754 return N->begin(); 755 } 756 static inline ChildIteratorType child_end(NodeType *N) { 757 return N->end(); 758 } 759 }; 760 761 template <> struct GraphTraits<Loop*> { 762 typedef Loop NodeType; 763 typedef LoopInfo::iterator ChildIteratorType; 764 765 static NodeType *getEntryNode(Loop *L) { return L; } 766 static inline ChildIteratorType child_begin(NodeType *N) { 767 return N->begin(); 768 } 769 static inline ChildIteratorType child_end(NodeType *N) { 770 return N->end(); 771 } 772 }; 773 774 /// \brief Analysis pass that exposes the \c LoopInfo for a function. 775 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { 776 friend AnalysisInfoMixin<LoopAnalysis>; 777 static char PassID; 778 779 public: 780 typedef LoopInfo Result; 781 782 LoopInfo run(Function &F, AnalysisManager<Function> &AM); 783 }; 784 785 /// \brief Printer pass for the \c LoopAnalysis results. 786 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { 787 raw_ostream &OS; 788 789 public: 790 explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} 791 PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM); 792 }; 793 794 /// \brief The legacy pass manager's analysis pass to compute loop information. 795 class LoopInfoWrapperPass : public FunctionPass { 796 LoopInfo LI; 797 798 public: 799 static char ID; // Pass identification, replacement for typeid 800 801 LoopInfoWrapperPass() : FunctionPass(ID) { 802 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 803 } 804 805 LoopInfo &getLoopInfo() { return LI; } 806 const LoopInfo &getLoopInfo() const { return LI; } 807 808 /// \brief Calculate the natural loop information for a given function. 809 bool runOnFunction(Function &F) override; 810 811 void verifyAnalysis() const override; 812 813 void releaseMemory() override { LI.releaseMemory(); } 814 815 void print(raw_ostream &O, const Module *M = nullptr) const override; 816 817 void getAnalysisUsage(AnalysisUsage &AU) const override; 818 }; 819 820 /// \brief Pass for printing a loop's contents as LLVM's text IR assembly. 821 class PrintLoopPass : public PassInfoMixin<PrintLoopPass> { 822 raw_ostream &OS; 823 std::string Banner; 824 825 public: 826 PrintLoopPass(); 827 PrintLoopPass(raw_ostream &OS, const std::string &Banner = ""); 828 829 PreservedAnalyses run(Loop &L, AnalysisManager<Loop> &); 830 }; 831 832 } // End llvm namespace 833 834 #endif 835