• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/RWMutex.h"
31 #include "llvm/Support/StringPool.h"
32 #include "llvm/Support/Threading.h"
33 using namespace llvm;
34 
35 // Explicit instantiations of SymbolTableListTraits since some of the methods
36 // are not in the public header file...
37 template class llvm::SymbolTableListTraits<Argument>;
38 template class llvm::SymbolTableListTraits<BasicBlock>;
39 
40 //===----------------------------------------------------------------------===//
41 // Argument Implementation
42 //===----------------------------------------------------------------------===//
43 
anchor()44 void Argument::anchor() { }
45 
Argument(Type * Ty,const Twine & Name,Function * Par)46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
47   : Value(Ty, Value::ArgumentVal) {
48   Parent = nullptr;
49 
50   if (Par)
51     Par->getArgumentList().push_back(this);
52   setName(Name);
53 }
54 
setParent(Function * parent)55 void Argument::setParent(Function *parent) {
56   Parent = parent;
57 }
58 
59 /// getArgNo - Return the index of this formal argument in its containing
60 /// function.  For example in "void foo(int a, float b)" a is 0 and b is 1.
getArgNo() const61 unsigned Argument::getArgNo() const {
62   const Function *F = getParent();
63   assert(F && "Argument is not in a function");
64 
65   Function::const_arg_iterator AI = F->arg_begin();
66   unsigned ArgIdx = 0;
67   for (; &*AI != this; ++AI)
68     ++ArgIdx;
69 
70   return ArgIdx;
71 }
72 
73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
74 /// it in its containing function. Also returns true if at least one byte is
75 /// known to be dereferenceable and the pointer is in addrspace(0).
hasNonNullAttr() const76 bool Argument::hasNonNullAttr() const {
77   if (!getType()->isPointerTy()) return false;
78   if (getParent()->getAttributes().
79         hasAttribute(getArgNo()+1, Attribute::NonNull))
80     return true;
81   else if (getDereferenceableBytes() > 0 &&
82            getType()->getPointerAddressSpace() == 0)
83     return true;
84   return false;
85 }
86 
87 /// hasByValAttr - Return true if this argument has the byval attribute on it
88 /// in its containing function.
hasByValAttr() const89 bool Argument::hasByValAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   return hasAttribute(Attribute::ByVal);
92 }
93 
hasSwiftSelfAttr() const94 bool Argument::hasSwiftSelfAttr() const {
95   return getParent()->getAttributes().
96     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
97 }
98 
hasSwiftErrorAttr() const99 bool Argument::hasSwiftErrorAttr() const {
100   return getParent()->getAttributes().
101     hasAttribute(getArgNo()+1, Attribute::SwiftError);
102 }
103 
104 /// \brief Return true if this argument has the inalloca attribute on it in
105 /// its containing function.
hasInAllocaAttr() const106 bool Argument::hasInAllocaAttr() const {
107   if (!getType()->isPointerTy()) return false;
108   return hasAttribute(Attribute::InAlloca);
109 }
110 
hasByValOrInAllocaAttr() const111 bool Argument::hasByValOrInAllocaAttr() const {
112   if (!getType()->isPointerTy()) return false;
113   AttributeSet Attrs = getParent()->getAttributes();
114   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
115          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
116 }
117 
getParamAlignment() const118 unsigned Argument::getParamAlignment() const {
119   assert(getType()->isPointerTy() && "Only pointers have alignments");
120   return getParent()->getParamAlignment(getArgNo()+1);
121 
122 }
123 
getDereferenceableBytes() const124 uint64_t Argument::getDereferenceableBytes() const {
125   assert(getType()->isPointerTy() &&
126          "Only pointers have dereferenceable bytes");
127   return getParent()->getDereferenceableBytes(getArgNo()+1);
128 }
129 
getDereferenceableOrNullBytes() const130 uint64_t Argument::getDereferenceableOrNullBytes() const {
131   assert(getType()->isPointerTy() &&
132          "Only pointers have dereferenceable bytes");
133   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
134 }
135 
136 /// hasNestAttr - Return true if this argument has the nest attribute on
137 /// it in its containing function.
hasNestAttr() const138 bool Argument::hasNestAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::Nest);
141 }
142 
143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
144 /// it in its containing function.
hasNoAliasAttr() const145 bool Argument::hasNoAliasAttr() const {
146   if (!getType()->isPointerTy()) return false;
147   return hasAttribute(Attribute::NoAlias);
148 }
149 
150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
151 /// on it in its containing function.
hasNoCaptureAttr() const152 bool Argument::hasNoCaptureAttr() const {
153   if (!getType()->isPointerTy()) return false;
154   return hasAttribute(Attribute::NoCapture);
155 }
156 
157 /// hasSRetAttr - Return true if this argument has the sret attribute on
158 /// it in its containing function.
hasStructRetAttr() const159 bool Argument::hasStructRetAttr() const {
160   if (!getType()->isPointerTy()) return false;
161   return hasAttribute(Attribute::StructRet);
162 }
163 
164 /// hasReturnedAttr - Return true if this argument has the returned attribute on
165 /// it in its containing function.
hasReturnedAttr() const166 bool Argument::hasReturnedAttr() const {
167   return hasAttribute(Attribute::Returned);
168 }
169 
170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
171 /// its containing function.
hasZExtAttr() const172 bool Argument::hasZExtAttr() const {
173   return hasAttribute(Attribute::ZExt);
174 }
175 
176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
177 /// containing function.
hasSExtAttr() const178 bool Argument::hasSExtAttr() const {
179   return hasAttribute(Attribute::SExt);
180 }
181 
182 /// Return true if this argument has the readonly or readnone attribute on it
183 /// in its containing function.
onlyReadsMemory() const184 bool Argument::onlyReadsMemory() const {
185   return getParent()->getAttributes().
186       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
187       getParent()->getAttributes().
188       hasAttribute(getArgNo()+1, Attribute::ReadNone);
189 }
190 
191 /// addAttr - Add attributes to an argument.
addAttr(AttributeSet AS)192 void Argument::addAttr(AttributeSet AS) {
193   assert(AS.getNumSlots() <= 1 &&
194          "Trying to add more than one attribute set to an argument!");
195   AttrBuilder B(AS, AS.getSlotIndex(0));
196   getParent()->addAttributes(getArgNo() + 1,
197                              AttributeSet::get(Parent->getContext(),
198                                                getArgNo() + 1, B));
199 }
200 
201 /// removeAttr - Remove attributes from an argument.
removeAttr(AttributeSet AS)202 void Argument::removeAttr(AttributeSet AS) {
203   assert(AS.getNumSlots() <= 1 &&
204          "Trying to remove more than one attribute set from an argument!");
205   AttrBuilder B(AS, AS.getSlotIndex(0));
206   getParent()->removeAttributes(getArgNo() + 1,
207                                 AttributeSet::get(Parent->getContext(),
208                                                   getArgNo() + 1, B));
209 }
210 
211 /// hasAttribute - Checks if an argument has a given attribute.
hasAttribute(Attribute::AttrKind Kind) const212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
213   return getParent()->hasAttribute(getArgNo() + 1, Kind);
214 }
215 
216 //===----------------------------------------------------------------------===//
217 // Helper Methods in Function
218 //===----------------------------------------------------------------------===//
219 
isMaterializable() const220 bool Function::isMaterializable() const {
221   return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
222 }
223 
setIsMaterializable(bool V)224 void Function::setIsMaterializable(bool V) {
225   unsigned Mask = 1 << IsMaterializableBit;
226   setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
227                               (V ? Mask : 0u));
228 }
229 
getContext() const230 LLVMContext &Function::getContext() const {
231   return getType()->getContext();
232 }
233 
getFunctionType() const234 FunctionType *Function::getFunctionType() const {
235   return cast<FunctionType>(getValueType());
236 }
237 
isVarArg() const238 bool Function::isVarArg() const {
239   return getFunctionType()->isVarArg();
240 }
241 
getReturnType() const242 Type *Function::getReturnType() const {
243   return getFunctionType()->getReturnType();
244 }
245 
removeFromParent()246 void Function::removeFromParent() {
247   getParent()->getFunctionList().remove(getIterator());
248 }
249 
eraseFromParent()250 void Function::eraseFromParent() {
251   getParent()->getFunctionList().erase(getIterator());
252 }
253 
254 //===----------------------------------------------------------------------===//
255 // Function Implementation
256 //===----------------------------------------------------------------------===//
257 
Function(FunctionType * Ty,LinkageTypes Linkage,const Twine & name,Module * ParentModule)258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
259                    Module *ParentModule)
260     : GlobalObject(Ty, Value::FunctionVal,
261                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
262   assert(FunctionType::isValidReturnType(getReturnType()) &&
263          "invalid return type");
264   setGlobalObjectSubClassData(0);
265   SymTab = new ValueSymbolTable();
266 
267   // If the function has arguments, mark them as lazily built.
268   if (Ty->getNumParams())
269     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
270 
271   if (ParentModule)
272     ParentModule->getFunctionList().push_back(this);
273 
274   // Ensure intrinsics have the right parameter attributes.
275   // Note, the IntID field will have been set in Value::setName if this function
276   // name is a valid intrinsic ID.
277   if (IntID)
278     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
279 }
280 
~Function()281 Function::~Function() {
282   dropAllReferences();    // After this it is safe to delete instructions.
283 
284   // Delete all of the method arguments and unlink from symbol table...
285   ArgumentList.clear();
286   delete SymTab;
287 
288   // Remove the function from the on-the-side GC table.
289   clearGC();
290 }
291 
BuildLazyArguments() const292 void Function::BuildLazyArguments() const {
293   // Create the arguments vector, all arguments start out unnamed.
294   FunctionType *FT = getFunctionType();
295   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
296     assert(!FT->getParamType(i)->isVoidTy() &&
297            "Cannot have void typed arguments!");
298     ArgumentList.push_back(new Argument(FT->getParamType(i)));
299   }
300 
301   // Clear the lazy arguments bit.
302   unsigned SDC = getSubclassDataFromValue();
303   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
304 }
305 
stealArgumentListFrom(Function & Src)306 void Function::stealArgumentListFrom(Function &Src) {
307   assert(isDeclaration() && "Expected no references to current arguments");
308 
309   // Drop the current arguments, if any, and set the lazy argument bit.
310   if (!hasLazyArguments()) {
311     assert(llvm::all_of(ArgumentList,
312                         [](const Argument &A) { return A.use_empty(); }) &&
313            "Expected arguments to be unused in declaration");
314     ArgumentList.clear();
315     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
316   }
317 
318   // Nothing to steal if Src has lazy arguments.
319   if (Src.hasLazyArguments())
320     return;
321 
322   // Steal arguments from Src, and fix the lazy argument bits.
323   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
324   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
325   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
326 }
327 
arg_size() const328 size_t Function::arg_size() const {
329   return getFunctionType()->getNumParams();
330 }
arg_empty() const331 bool Function::arg_empty() const {
332   return getFunctionType()->getNumParams() == 0;
333 }
334 
setParent(Module * parent)335 void Function::setParent(Module *parent) {
336   Parent = parent;
337 }
338 
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining.  This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero.  Then everything is deleted for real.  Note that no operations are
344 // valid on an object that has "dropped all references", except operator
345 // delete.
346 //
dropAllReferences()347 void Function::dropAllReferences() {
348   setIsMaterializable(false);
349 
350   for (BasicBlock &BB : *this)
351     BB.dropAllReferences();
352 
353   // Delete all basic blocks. They are now unused, except possibly by
354   // blockaddresses, but BasicBlock's destructor takes care of those.
355   while (!BasicBlocks.empty())
356     BasicBlocks.begin()->eraseFromParent();
357 
358   // Drop uses of any optional data (real or placeholder).
359   if (getNumOperands()) {
360     User::dropAllReferences();
361     setNumHungOffUseOperands(0);
362     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
363   }
364 
365   // Metadata is stored in a side-table.
366   clearMetadata();
367 }
368 
addAttribute(unsigned i,Attribute::AttrKind Kind)369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
370   AttributeSet PAL = getAttributes();
371   PAL = PAL.addAttribute(getContext(), i, Kind);
372   setAttributes(PAL);
373 }
374 
addAttribute(unsigned i,Attribute Attr)375 void Function::addAttribute(unsigned i, Attribute Attr) {
376   AttributeSet PAL = getAttributes();
377   PAL = PAL.addAttribute(getContext(), i, Attr);
378   setAttributes(PAL);
379 }
380 
addAttributes(unsigned i,AttributeSet Attrs)381 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
382   AttributeSet PAL = getAttributes();
383   PAL = PAL.addAttributes(getContext(), i, Attrs);
384   setAttributes(PAL);
385 }
386 
removeAttribute(unsigned i,Attribute::AttrKind Kind)387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
388   AttributeSet PAL = getAttributes();
389   PAL = PAL.removeAttribute(getContext(), i, Kind);
390   setAttributes(PAL);
391 }
392 
removeAttribute(unsigned i,StringRef Kind)393 void Function::removeAttribute(unsigned i, StringRef Kind) {
394   AttributeSet PAL = getAttributes();
395   PAL = PAL.removeAttribute(getContext(), i, Kind);
396   setAttributes(PAL);
397 }
398 
removeAttributes(unsigned i,AttributeSet Attrs)399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
400   AttributeSet PAL = getAttributes();
401   PAL = PAL.removeAttributes(getContext(), i, Attrs);
402   setAttributes(PAL);
403 }
404 
addDereferenceableAttr(unsigned i,uint64_t Bytes)405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
406   AttributeSet PAL = getAttributes();
407   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
408   setAttributes(PAL);
409 }
410 
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
412   AttributeSet PAL = getAttributes();
413   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
414   setAttributes(PAL);
415 }
416 
getGC() const417 const std::string &Function::getGC() const {
418   assert(hasGC() && "Function has no collector");
419   return getContext().getGC(*this);
420 }
421 
setGC(std::string Str)422 void Function::setGC(std::string Str) {
423   setValueSubclassDataBit(14, !Str.empty());
424   getContext().setGC(*this, std::move(Str));
425 }
426 
clearGC()427 void Function::clearGC() {
428   if (!hasGC())
429     return;
430   getContext().deleteGC(*this);
431   setValueSubclassDataBit(14, false);
432 }
433 
434 /// Copy all additional attributes (those not needed to create a Function) from
435 /// the Function Src to this one.
copyAttributesFrom(const GlobalValue * Src)436 void Function::copyAttributesFrom(const GlobalValue *Src) {
437   GlobalObject::copyAttributesFrom(Src);
438   const Function *SrcF = dyn_cast<Function>(Src);
439   if (!SrcF)
440     return;
441 
442   setCallingConv(SrcF->getCallingConv());
443   setAttributes(SrcF->getAttributes());
444   if (SrcF->hasGC())
445     setGC(SrcF->getGC());
446   else
447     clearGC();
448   if (SrcF->hasPersonalityFn())
449     setPersonalityFn(SrcF->getPersonalityFn());
450   if (SrcF->hasPrefixData())
451     setPrefixData(SrcF->getPrefixData());
452   if (SrcF->hasPrologueData())
453     setPrologueData(SrcF->getPrologueData());
454 }
455 
456 /// Table of string intrinsic names indexed by enum value.
457 static const char * const IntrinsicNameTable[] = {
458   "not_intrinsic",
459 #define GET_INTRINSIC_NAME_TABLE
460 #include "llvm/IR/Intrinsics.gen"
461 #undef GET_INTRINSIC_NAME_TABLE
462 };
463 
464 /// \brief This does the actual lookup of an intrinsic ID which
465 /// matches the given function name.
lookupIntrinsicID(const ValueName * ValName)466 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) {
467   StringRef Name = ValName->getKey();
468 
469   ArrayRef<const char *> NameTable(&IntrinsicNameTable[1],
470                                    std::end(IntrinsicNameTable));
471   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
472   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1);
473   if (ID == Intrinsic::not_intrinsic)
474     return ID;
475 
476   // If the intrinsic is not overloaded, require an exact match. If it is
477   // overloaded, require a prefix match.
478   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
479   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
480 }
481 
recalculateIntrinsicID()482 void Function::recalculateIntrinsicID() {
483   const ValueName *ValName = this->getValueName();
484   if (!ValName || !isIntrinsic()) {
485     IntID = Intrinsic::not_intrinsic;
486     return;
487   }
488   IntID = lookupIntrinsicID(ValName);
489 }
490 
491 /// Returns a stable mangling for the type specified for use in the name
492 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
493 /// of named types is simply their name.  Manglings for unnamed types consist
494 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
495 /// combined with the mangling of their component types.  A vararg function
496 /// type will have a suffix of 'vararg'.  Since function types can contain
497 /// other function types, we close a function type mangling with suffix 'f'
498 /// which can't be confused with it's prefix.  This ensures we don't have
499 /// collisions between two unrelated function types. Otherwise, you might
500 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
501 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
502 /// cases) fall back to the MVT codepath, where they could be mangled to
503 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
504 /// everything.
getMangledTypeStr(Type * Ty)505 static std::string getMangledTypeStr(Type* Ty) {
506   std::string Result;
507   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
508     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
509       getMangledTypeStr(PTyp->getElementType());
510   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
511     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
512       getMangledTypeStr(ATyp->getElementType());
513   } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
514     assert(!STyp->isLiteral() && "TODO: implement literal types");
515     Result += STyp->getName();
516   } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
517     Result += "f_" + getMangledTypeStr(FT->getReturnType());
518     for (size_t i = 0; i < FT->getNumParams(); i++)
519       Result += getMangledTypeStr(FT->getParamType(i));
520     if (FT->isVarArg())
521       Result += "vararg";
522     // Ensure nested function types are distinguishable.
523     Result += "f";
524   } else if (isa<VectorType>(Ty))
525     Result += "v" + utostr(Ty->getVectorNumElements()) +
526       getMangledTypeStr(Ty->getVectorElementType());
527   else if (Ty)
528     Result += EVT::getEVT(Ty).getEVTString();
529   return Result;
530 }
531 
getName(ID id,ArrayRef<Type * > Tys)532 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
533   assert(id < num_intrinsics && "Invalid intrinsic ID!");
534   std::string Result(IntrinsicNameTable[id]);
535   for (Type *Ty : Tys) {
536     Result += "." + getMangledTypeStr(Ty);
537   }
538   return Result;
539 }
540 
541 
542 /// IIT_Info - These are enumerators that describe the entries returned by the
543 /// getIntrinsicInfoTableEntries function.
544 ///
545 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
546 enum IIT_Info {
547   // Common values should be encoded with 0-15.
548   IIT_Done = 0,
549   IIT_I1   = 1,
550   IIT_I8   = 2,
551   IIT_I16  = 3,
552   IIT_I32  = 4,
553   IIT_I64  = 5,
554   IIT_F16  = 6,
555   IIT_F32  = 7,
556   IIT_F64  = 8,
557   IIT_V2   = 9,
558   IIT_V4   = 10,
559   IIT_V8   = 11,
560   IIT_V16  = 12,
561   IIT_V32  = 13,
562   IIT_PTR  = 14,
563   IIT_ARG  = 15,
564 
565   // Values from 16+ are only encodable with the inefficient encoding.
566   IIT_V64  = 16,
567   IIT_MMX  = 17,
568   IIT_TOKEN = 18,
569   IIT_METADATA = 19,
570   IIT_EMPTYSTRUCT = 20,
571   IIT_STRUCT2 = 21,
572   IIT_STRUCT3 = 22,
573   IIT_STRUCT4 = 23,
574   IIT_STRUCT5 = 24,
575   IIT_EXTEND_ARG = 25,
576   IIT_TRUNC_ARG = 26,
577   IIT_ANYPTR = 27,
578   IIT_V1   = 28,
579   IIT_VARARG = 29,
580   IIT_HALF_VEC_ARG = 30,
581   IIT_SAME_VEC_WIDTH_ARG = 31,
582   IIT_PTR_TO_ARG = 32,
583   IIT_VEC_OF_PTRS_TO_ELT = 33,
584   IIT_I128 = 34,
585   IIT_V512 = 35,
586   IIT_V1024 = 36
587 };
588 
589 
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)590 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
591                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
592   IIT_Info Info = IIT_Info(Infos[NextElt++]);
593   unsigned StructElts = 2;
594   using namespace Intrinsic;
595 
596   switch (Info) {
597   case IIT_Done:
598     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
599     return;
600   case IIT_VARARG:
601     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
602     return;
603   case IIT_MMX:
604     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
605     return;
606   case IIT_TOKEN:
607     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
608     return;
609   case IIT_METADATA:
610     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
611     return;
612   case IIT_F16:
613     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
614     return;
615   case IIT_F32:
616     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
617     return;
618   case IIT_F64:
619     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
620     return;
621   case IIT_I1:
622     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
623     return;
624   case IIT_I8:
625     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
626     return;
627   case IIT_I16:
628     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
629     return;
630   case IIT_I32:
631     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
632     return;
633   case IIT_I64:
634     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
635     return;
636   case IIT_I128:
637     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
638     return;
639   case IIT_V1:
640     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
641     DecodeIITType(NextElt, Infos, OutputTable);
642     return;
643   case IIT_V2:
644     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
645     DecodeIITType(NextElt, Infos, OutputTable);
646     return;
647   case IIT_V4:
648     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
649     DecodeIITType(NextElt, Infos, OutputTable);
650     return;
651   case IIT_V8:
652     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
653     DecodeIITType(NextElt, Infos, OutputTable);
654     return;
655   case IIT_V16:
656     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
657     DecodeIITType(NextElt, Infos, OutputTable);
658     return;
659   case IIT_V32:
660     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
661     DecodeIITType(NextElt, Infos, OutputTable);
662     return;
663   case IIT_V64:
664     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
665     DecodeIITType(NextElt, Infos, OutputTable);
666     return;
667   case IIT_V512:
668     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
669     DecodeIITType(NextElt, Infos, OutputTable);
670     return;
671   case IIT_V1024:
672     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
673     DecodeIITType(NextElt, Infos, OutputTable);
674     return;
675   case IIT_PTR:
676     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
677     DecodeIITType(NextElt, Infos, OutputTable);
678     return;
679   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
680     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
681                                              Infos[NextElt++]));
682     DecodeIITType(NextElt, Infos, OutputTable);
683     return;
684   }
685   case IIT_ARG: {
686     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
687     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
688     return;
689   }
690   case IIT_EXTEND_ARG: {
691     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
692     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
693                                              ArgInfo));
694     return;
695   }
696   case IIT_TRUNC_ARG: {
697     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
698     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
699                                              ArgInfo));
700     return;
701   }
702   case IIT_HALF_VEC_ARG: {
703     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
704     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
705                                              ArgInfo));
706     return;
707   }
708   case IIT_SAME_VEC_WIDTH_ARG: {
709     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
710     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
711                                              ArgInfo));
712     return;
713   }
714   case IIT_PTR_TO_ARG: {
715     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
716     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
717                                              ArgInfo));
718     return;
719   }
720   case IIT_VEC_OF_PTRS_TO_ELT: {
721     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
722     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
723                                              ArgInfo));
724     return;
725   }
726   case IIT_EMPTYSTRUCT:
727     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
728     return;
729   case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
730   case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
731   case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
732   case IIT_STRUCT2: {
733     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
734 
735     for (unsigned i = 0; i != StructElts; ++i)
736       DecodeIITType(NextElt, Infos, OutputTable);
737     return;
738   }
739   }
740   llvm_unreachable("unhandled");
741 }
742 
743 
744 #define GET_INTRINSIC_GENERATOR_GLOBAL
745 #include "llvm/IR/Intrinsics.gen"
746 #undef GET_INTRINSIC_GENERATOR_GLOBAL
747 
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)748 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
749                                              SmallVectorImpl<IITDescriptor> &T){
750   // Check to see if the intrinsic's type was expressible by the table.
751   unsigned TableVal = IIT_Table[id-1];
752 
753   // Decode the TableVal into an array of IITValues.
754   SmallVector<unsigned char, 8> IITValues;
755   ArrayRef<unsigned char> IITEntries;
756   unsigned NextElt = 0;
757   if ((TableVal >> 31) != 0) {
758     // This is an offset into the IIT_LongEncodingTable.
759     IITEntries = IIT_LongEncodingTable;
760 
761     // Strip sentinel bit.
762     NextElt = (TableVal << 1) >> 1;
763   } else {
764     // Decode the TableVal into an array of IITValues.  If the entry was encoded
765     // into a single word in the table itself, decode it now.
766     do {
767       IITValues.push_back(TableVal & 0xF);
768       TableVal >>= 4;
769     } while (TableVal);
770 
771     IITEntries = IITValues;
772     NextElt = 0;
773   }
774 
775   // Okay, decode the table into the output vector of IITDescriptors.
776   DecodeIITType(NextElt, IITEntries, T);
777   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
778     DecodeIITType(NextElt, IITEntries, T);
779 }
780 
781 
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)782 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
783                              ArrayRef<Type*> Tys, LLVMContext &Context) {
784   using namespace Intrinsic;
785   IITDescriptor D = Infos.front();
786   Infos = Infos.slice(1);
787 
788   switch (D.Kind) {
789   case IITDescriptor::Void: return Type::getVoidTy(Context);
790   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
791   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
792   case IITDescriptor::Token: return Type::getTokenTy(Context);
793   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
794   case IITDescriptor::Half: return Type::getHalfTy(Context);
795   case IITDescriptor::Float: return Type::getFloatTy(Context);
796   case IITDescriptor::Double: return Type::getDoubleTy(Context);
797 
798   case IITDescriptor::Integer:
799     return IntegerType::get(Context, D.Integer_Width);
800   case IITDescriptor::Vector:
801     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
802   case IITDescriptor::Pointer:
803     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
804                             D.Pointer_AddressSpace);
805   case IITDescriptor::Struct: {
806     Type *Elts[5];
807     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
808     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
809       Elts[i] = DecodeFixedType(Infos, Tys, Context);
810     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
811   }
812 
813   case IITDescriptor::Argument:
814     return Tys[D.getArgumentNumber()];
815   case IITDescriptor::ExtendArgument: {
816     Type *Ty = Tys[D.getArgumentNumber()];
817     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
818       return VectorType::getExtendedElementVectorType(VTy);
819 
820     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
821   }
822   case IITDescriptor::TruncArgument: {
823     Type *Ty = Tys[D.getArgumentNumber()];
824     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
825       return VectorType::getTruncatedElementVectorType(VTy);
826 
827     IntegerType *ITy = cast<IntegerType>(Ty);
828     assert(ITy->getBitWidth() % 2 == 0);
829     return IntegerType::get(Context, ITy->getBitWidth() / 2);
830   }
831   case IITDescriptor::HalfVecArgument:
832     return VectorType::getHalfElementsVectorType(cast<VectorType>(
833                                                   Tys[D.getArgumentNumber()]));
834   case IITDescriptor::SameVecWidthArgument: {
835     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
836     Type *Ty = Tys[D.getArgumentNumber()];
837     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
838       return VectorType::get(EltTy, VTy->getNumElements());
839     }
840     llvm_unreachable("unhandled");
841   }
842   case IITDescriptor::PtrToArgument: {
843     Type *Ty = Tys[D.getArgumentNumber()];
844     return PointerType::getUnqual(Ty);
845   }
846   case IITDescriptor::VecOfPtrsToElt: {
847     Type *Ty = Tys[D.getArgumentNumber()];
848     VectorType *VTy = dyn_cast<VectorType>(Ty);
849     if (!VTy)
850       llvm_unreachable("Expected an argument of Vector Type");
851     Type *EltTy = VTy->getVectorElementType();
852     return VectorType::get(PointerType::getUnqual(EltTy),
853                            VTy->getNumElements());
854   }
855  }
856   llvm_unreachable("unhandled");
857 }
858 
859 
860 
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)861 FunctionType *Intrinsic::getType(LLVMContext &Context,
862                                  ID id, ArrayRef<Type*> Tys) {
863   SmallVector<IITDescriptor, 8> Table;
864   getIntrinsicInfoTableEntries(id, Table);
865 
866   ArrayRef<IITDescriptor> TableRef = Table;
867   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
868 
869   SmallVector<Type*, 8> ArgTys;
870   while (!TableRef.empty())
871     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
872 
873   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
874   // If we see void type as the type of the last argument, it is vararg intrinsic
875   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
876     ArgTys.pop_back();
877     return FunctionType::get(ResultTy, ArgTys, true);
878   }
879   return FunctionType::get(ResultTy, ArgTys, false);
880 }
881 
isOverloaded(ID id)882 bool Intrinsic::isOverloaded(ID id) {
883 #define GET_INTRINSIC_OVERLOAD_TABLE
884 #include "llvm/IR/Intrinsics.gen"
885 #undef GET_INTRINSIC_OVERLOAD_TABLE
886 }
887 
isLeaf(ID id)888 bool Intrinsic::isLeaf(ID id) {
889   switch (id) {
890   default:
891     return true;
892 
893   case Intrinsic::experimental_gc_statepoint:
894   case Intrinsic::experimental_patchpoint_void:
895   case Intrinsic::experimental_patchpoint_i64:
896     return false;
897   }
898 }
899 
900 /// This defines the "Intrinsic::getAttributes(ID id)" method.
901 #define GET_INTRINSIC_ATTRIBUTES
902 #include "llvm/IR/Intrinsics.gen"
903 #undef GET_INTRINSIC_ATTRIBUTES
904 
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)905 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
906   // There can never be multiple globals with the same name of different types,
907   // because intrinsics must be a specific type.
908   return
909     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
910                                           getType(M->getContext(), id, Tys)));
911 }
912 
913 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
914 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
915 #include "llvm/IR/Intrinsics.gen"
916 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
917 
918 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
919 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
920 #include "llvm/IR/Intrinsics.gen"
921 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
922 
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)923 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
924                                    SmallVectorImpl<Type*> &ArgTys) {
925   using namespace Intrinsic;
926 
927   // If we ran out of descriptors, there are too many arguments.
928   if (Infos.empty()) return true;
929   IITDescriptor D = Infos.front();
930   Infos = Infos.slice(1);
931 
932   switch (D.Kind) {
933     case IITDescriptor::Void: return !Ty->isVoidTy();
934     case IITDescriptor::VarArg: return true;
935     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
936     case IITDescriptor::Token: return !Ty->isTokenTy();
937     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
938     case IITDescriptor::Half: return !Ty->isHalfTy();
939     case IITDescriptor::Float: return !Ty->isFloatTy();
940     case IITDescriptor::Double: return !Ty->isDoubleTy();
941     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
942     case IITDescriptor::Vector: {
943       VectorType *VT = dyn_cast<VectorType>(Ty);
944       return !VT || VT->getNumElements() != D.Vector_Width ||
945              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
946     }
947     case IITDescriptor::Pointer: {
948       PointerType *PT = dyn_cast<PointerType>(Ty);
949       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
950              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
951     }
952 
953     case IITDescriptor::Struct: {
954       StructType *ST = dyn_cast<StructType>(Ty);
955       if (!ST || ST->getNumElements() != D.Struct_NumElements)
956         return true;
957 
958       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
959         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
960           return true;
961       return false;
962     }
963 
964     case IITDescriptor::Argument:
965       // Two cases here - If this is the second occurrence of an argument, verify
966       // that the later instance matches the previous instance.
967       if (D.getArgumentNumber() < ArgTys.size())
968         return Ty != ArgTys[D.getArgumentNumber()];
969 
970           // Otherwise, if this is the first instance of an argument, record it and
971           // verify the "Any" kind.
972           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
973           ArgTys.push_back(Ty);
974 
975           switch (D.getArgumentKind()) {
976             case IITDescriptor::AK_Any:        return false; // Success
977             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
978             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
979             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
980             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
981           }
982           llvm_unreachable("all argument kinds not covered");
983 
984     case IITDescriptor::ExtendArgument: {
985       // This may only be used when referring to a previous vector argument.
986       if (D.getArgumentNumber() >= ArgTys.size())
987         return true;
988 
989       Type *NewTy = ArgTys[D.getArgumentNumber()];
990       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
991         NewTy = VectorType::getExtendedElementVectorType(VTy);
992       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
993         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
994       else
995         return true;
996 
997       return Ty != NewTy;
998     }
999     case IITDescriptor::TruncArgument: {
1000       // This may only be used when referring to a previous vector argument.
1001       if (D.getArgumentNumber() >= ArgTys.size())
1002         return true;
1003 
1004       Type *NewTy = ArgTys[D.getArgumentNumber()];
1005       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1006         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1007       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1008         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1009       else
1010         return true;
1011 
1012       return Ty != NewTy;
1013     }
1014     case IITDescriptor::HalfVecArgument:
1015       // This may only be used when referring to a previous vector argument.
1016       return D.getArgumentNumber() >= ArgTys.size() ||
1017              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1018              VectorType::getHalfElementsVectorType(
1019                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1020     case IITDescriptor::SameVecWidthArgument: {
1021       if (D.getArgumentNumber() >= ArgTys.size())
1022         return true;
1023       VectorType * ReferenceType =
1024               dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1025       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1026       if (!ThisArgType || !ReferenceType ||
1027           (ReferenceType->getVectorNumElements() !=
1028            ThisArgType->getVectorNumElements()))
1029         return true;
1030       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1031                                 Infos, ArgTys);
1032     }
1033     case IITDescriptor::PtrToArgument: {
1034       if (D.getArgumentNumber() >= ArgTys.size())
1035         return true;
1036       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1037       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1038       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1039     }
1040     case IITDescriptor::VecOfPtrsToElt: {
1041       if (D.getArgumentNumber() >= ArgTys.size())
1042         return true;
1043       VectorType * ReferenceType =
1044               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1045       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1046       if (!ThisArgVecTy || !ReferenceType ||
1047           (ReferenceType->getVectorNumElements() !=
1048            ThisArgVecTy->getVectorNumElements()))
1049         return true;
1050       PointerType *ThisArgEltTy =
1051               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1052       if (!ThisArgEltTy)
1053         return true;
1054       return ThisArgEltTy->getElementType() !=
1055              ReferenceType->getVectorElementType();
1056     }
1057   }
1058   llvm_unreachable("unhandled");
1059 }
1060 
1061 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1062 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1063                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1064   // If there are no descriptors left, then it can't be a vararg.
1065   if (Infos.empty())
1066     return isVarArg;
1067 
1068   // There should be only one descriptor remaining at this point.
1069   if (Infos.size() != 1)
1070     return true;
1071 
1072   // Check and verify the descriptor.
1073   IITDescriptor D = Infos.front();
1074   Infos = Infos.slice(1);
1075   if (D.Kind == IITDescriptor::VarArg)
1076     return !isVarArg;
1077 
1078   return true;
1079 }
1080 
remangleIntrinsicFunction(Function * F)1081 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1082   Intrinsic::ID ID = F->getIntrinsicID();
1083   if (!ID)
1084     return None;
1085 
1086   FunctionType *FTy = F->getFunctionType();
1087   // Accumulate an array of overloaded types for the given intrinsic
1088   SmallVector<Type *, 4> ArgTys;
1089   {
1090     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1091     getIntrinsicInfoTableEntries(ID, Table);
1092     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1093 
1094     // If we encounter any problems matching the signature with the descriptor
1095     // just give up remangling. It's up to verifier to report the discrepancy.
1096     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1097       return None;
1098     for (auto Ty : FTy->params())
1099       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1100         return None;
1101     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1102       return None;
1103   }
1104 
1105   StringRef Name = F->getName();
1106   if (Name == Intrinsic::getName(ID, ArgTys))
1107     return None;
1108 
1109   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1110   NewDecl->setCallingConv(F->getCallingConv());
1111   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1112   return NewDecl;
1113 }
1114 
1115 /// hasAddressTaken - returns true if there are any uses of this function
1116 /// other than direct calls or invokes to it.
hasAddressTaken(const User ** PutOffender) const1117 bool Function::hasAddressTaken(const User* *PutOffender) const {
1118   for (const Use &U : uses()) {
1119     const User *FU = U.getUser();
1120     if (isa<BlockAddress>(FU))
1121       continue;
1122     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1123       if (PutOffender)
1124         *PutOffender = FU;
1125       return true;
1126     }
1127     ImmutableCallSite CS(cast<Instruction>(FU));
1128     if (!CS.isCallee(&U)) {
1129       if (PutOffender)
1130         *PutOffender = FU;
1131       return true;
1132     }
1133   }
1134   return false;
1135 }
1136 
isDefTriviallyDead() const1137 bool Function::isDefTriviallyDead() const {
1138   // Check the linkage
1139   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1140       !hasAvailableExternallyLinkage())
1141     return false;
1142 
1143   // Check if the function is used by anything other than a blockaddress.
1144   for (const User *U : users())
1145     if (!isa<BlockAddress>(U))
1146       return false;
1147 
1148   return true;
1149 }
1150 
1151 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1152 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1153 bool Function::callsFunctionThatReturnsTwice() const {
1154   for (const_inst_iterator
1155          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1156     ImmutableCallSite CS(&*I);
1157     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1158       return true;
1159   }
1160 
1161   return false;
1162 }
1163 
getPersonalityFn() const1164 Constant *Function::getPersonalityFn() const {
1165   assert(hasPersonalityFn() && getNumOperands());
1166   return cast<Constant>(Op<0>());
1167 }
1168 
setPersonalityFn(Constant * Fn)1169 void Function::setPersonalityFn(Constant *Fn) {
1170   setHungoffOperand<0>(Fn);
1171   setValueSubclassDataBit(3, Fn != nullptr);
1172 }
1173 
getPrefixData() const1174 Constant *Function::getPrefixData() const {
1175   assert(hasPrefixData() && getNumOperands());
1176   return cast<Constant>(Op<1>());
1177 }
1178 
setPrefixData(Constant * PrefixData)1179 void Function::setPrefixData(Constant *PrefixData) {
1180   setHungoffOperand<1>(PrefixData);
1181   setValueSubclassDataBit(1, PrefixData != nullptr);
1182 }
1183 
getPrologueData() const1184 Constant *Function::getPrologueData() const {
1185   assert(hasPrologueData() && getNumOperands());
1186   return cast<Constant>(Op<2>());
1187 }
1188 
setPrologueData(Constant * PrologueData)1189 void Function::setPrologueData(Constant *PrologueData) {
1190   setHungoffOperand<2>(PrologueData);
1191   setValueSubclassDataBit(2, PrologueData != nullptr);
1192 }
1193 
allocHungoffUselist()1194 void Function::allocHungoffUselist() {
1195   // If we've already allocated a uselist, stop here.
1196   if (getNumOperands())
1197     return;
1198 
1199   allocHungoffUses(3, /*IsPhi=*/ false);
1200   setNumHungOffUseOperands(3);
1201 
1202   // Initialize the uselist with placeholder operands to allow traversal.
1203   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1204   Op<0>().set(CPN);
1205   Op<1>().set(CPN);
1206   Op<2>().set(CPN);
1207 }
1208 
1209 template <int Idx>
setHungoffOperand(Constant * C)1210 void Function::setHungoffOperand(Constant *C) {
1211   if (C) {
1212     allocHungoffUselist();
1213     Op<Idx>().set(C);
1214   } else if (getNumOperands()) {
1215     Op<Idx>().set(
1216         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1217   }
1218 }
1219 
setValueSubclassDataBit(unsigned Bit,bool On)1220 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1221   assert(Bit < 16 && "SubclassData contains only 16 bits");
1222   if (On)
1223     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1224   else
1225     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1226 }
1227 
setEntryCount(uint64_t Count)1228 void Function::setEntryCount(uint64_t Count) {
1229   MDBuilder MDB(getContext());
1230   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
1231 }
1232 
getEntryCount() const1233 Optional<uint64_t> Function::getEntryCount() const {
1234   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1235   if (MD && MD->getOperand(0))
1236     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1237       if (MDS->getString().equals("function_entry_count")) {
1238         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1239         return CI->getValue().getZExtValue();
1240       }
1241   return None;
1242 }
1243