1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/RWMutex.h"
31 #include "llvm/Support/StringPool.h"
32 #include "llvm/Support/Threading.h"
33 using namespace llvm;
34
35 // Explicit instantiations of SymbolTableListTraits since some of the methods
36 // are not in the public header file...
37 template class llvm::SymbolTableListTraits<Argument>;
38 template class llvm::SymbolTableListTraits<BasicBlock>;
39
40 //===----------------------------------------------------------------------===//
41 // Argument Implementation
42 //===----------------------------------------------------------------------===//
43
anchor()44 void Argument::anchor() { }
45
Argument(Type * Ty,const Twine & Name,Function * Par)46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
47 : Value(Ty, Value::ArgumentVal) {
48 Parent = nullptr;
49
50 if (Par)
51 Par->getArgumentList().push_back(this);
52 setName(Name);
53 }
54
setParent(Function * parent)55 void Argument::setParent(Function *parent) {
56 Parent = parent;
57 }
58
59 /// getArgNo - Return the index of this formal argument in its containing
60 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1.
getArgNo() const61 unsigned Argument::getArgNo() const {
62 const Function *F = getParent();
63 assert(F && "Argument is not in a function");
64
65 Function::const_arg_iterator AI = F->arg_begin();
66 unsigned ArgIdx = 0;
67 for (; &*AI != this; ++AI)
68 ++ArgIdx;
69
70 return ArgIdx;
71 }
72
73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
74 /// it in its containing function. Also returns true if at least one byte is
75 /// known to be dereferenceable and the pointer is in addrspace(0).
hasNonNullAttr() const76 bool Argument::hasNonNullAttr() const {
77 if (!getType()->isPointerTy()) return false;
78 if (getParent()->getAttributes().
79 hasAttribute(getArgNo()+1, Attribute::NonNull))
80 return true;
81 else if (getDereferenceableBytes() > 0 &&
82 getType()->getPointerAddressSpace() == 0)
83 return true;
84 return false;
85 }
86
87 /// hasByValAttr - Return true if this argument has the byval attribute on it
88 /// in its containing function.
hasByValAttr() const89 bool Argument::hasByValAttr() const {
90 if (!getType()->isPointerTy()) return false;
91 return hasAttribute(Attribute::ByVal);
92 }
93
hasSwiftSelfAttr() const94 bool Argument::hasSwiftSelfAttr() const {
95 return getParent()->getAttributes().
96 hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
97 }
98
hasSwiftErrorAttr() const99 bool Argument::hasSwiftErrorAttr() const {
100 return getParent()->getAttributes().
101 hasAttribute(getArgNo()+1, Attribute::SwiftError);
102 }
103
104 /// \brief Return true if this argument has the inalloca attribute on it in
105 /// its containing function.
hasInAllocaAttr() const106 bool Argument::hasInAllocaAttr() const {
107 if (!getType()->isPointerTy()) return false;
108 return hasAttribute(Attribute::InAlloca);
109 }
110
hasByValOrInAllocaAttr() const111 bool Argument::hasByValOrInAllocaAttr() const {
112 if (!getType()->isPointerTy()) return false;
113 AttributeSet Attrs = getParent()->getAttributes();
114 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
115 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
116 }
117
getParamAlignment() const118 unsigned Argument::getParamAlignment() const {
119 assert(getType()->isPointerTy() && "Only pointers have alignments");
120 return getParent()->getParamAlignment(getArgNo()+1);
121
122 }
123
getDereferenceableBytes() const124 uint64_t Argument::getDereferenceableBytes() const {
125 assert(getType()->isPointerTy() &&
126 "Only pointers have dereferenceable bytes");
127 return getParent()->getDereferenceableBytes(getArgNo()+1);
128 }
129
getDereferenceableOrNullBytes() const130 uint64_t Argument::getDereferenceableOrNullBytes() const {
131 assert(getType()->isPointerTy() &&
132 "Only pointers have dereferenceable bytes");
133 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
134 }
135
136 /// hasNestAttr - Return true if this argument has the nest attribute on
137 /// it in its containing function.
hasNestAttr() const138 bool Argument::hasNestAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::Nest);
141 }
142
143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
144 /// it in its containing function.
hasNoAliasAttr() const145 bool Argument::hasNoAliasAttr() const {
146 if (!getType()->isPointerTy()) return false;
147 return hasAttribute(Attribute::NoAlias);
148 }
149
150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
151 /// on it in its containing function.
hasNoCaptureAttr() const152 bool Argument::hasNoCaptureAttr() const {
153 if (!getType()->isPointerTy()) return false;
154 return hasAttribute(Attribute::NoCapture);
155 }
156
157 /// hasSRetAttr - Return true if this argument has the sret attribute on
158 /// it in its containing function.
hasStructRetAttr() const159 bool Argument::hasStructRetAttr() const {
160 if (!getType()->isPointerTy()) return false;
161 return hasAttribute(Attribute::StructRet);
162 }
163
164 /// hasReturnedAttr - Return true if this argument has the returned attribute on
165 /// it in its containing function.
hasReturnedAttr() const166 bool Argument::hasReturnedAttr() const {
167 return hasAttribute(Attribute::Returned);
168 }
169
170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
171 /// its containing function.
hasZExtAttr() const172 bool Argument::hasZExtAttr() const {
173 return hasAttribute(Attribute::ZExt);
174 }
175
176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
177 /// containing function.
hasSExtAttr() const178 bool Argument::hasSExtAttr() const {
179 return hasAttribute(Attribute::SExt);
180 }
181
182 /// Return true if this argument has the readonly or readnone attribute on it
183 /// in its containing function.
onlyReadsMemory() const184 bool Argument::onlyReadsMemory() const {
185 return getParent()->getAttributes().
186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
187 getParent()->getAttributes().
188 hasAttribute(getArgNo()+1, Attribute::ReadNone);
189 }
190
191 /// addAttr - Add attributes to an argument.
addAttr(AttributeSet AS)192 void Argument::addAttr(AttributeSet AS) {
193 assert(AS.getNumSlots() <= 1 &&
194 "Trying to add more than one attribute set to an argument!");
195 AttrBuilder B(AS, AS.getSlotIndex(0));
196 getParent()->addAttributes(getArgNo() + 1,
197 AttributeSet::get(Parent->getContext(),
198 getArgNo() + 1, B));
199 }
200
201 /// removeAttr - Remove attributes from an argument.
removeAttr(AttributeSet AS)202 void Argument::removeAttr(AttributeSet AS) {
203 assert(AS.getNumSlots() <= 1 &&
204 "Trying to remove more than one attribute set from an argument!");
205 AttrBuilder B(AS, AS.getSlotIndex(0));
206 getParent()->removeAttributes(getArgNo() + 1,
207 AttributeSet::get(Parent->getContext(),
208 getArgNo() + 1, B));
209 }
210
211 /// hasAttribute - Checks if an argument has a given attribute.
hasAttribute(Attribute::AttrKind Kind) const212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
213 return getParent()->hasAttribute(getArgNo() + 1, Kind);
214 }
215
216 //===----------------------------------------------------------------------===//
217 // Helper Methods in Function
218 //===----------------------------------------------------------------------===//
219
isMaterializable() const220 bool Function::isMaterializable() const {
221 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
222 }
223
setIsMaterializable(bool V)224 void Function::setIsMaterializable(bool V) {
225 unsigned Mask = 1 << IsMaterializableBit;
226 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
227 (V ? Mask : 0u));
228 }
229
getContext() const230 LLVMContext &Function::getContext() const {
231 return getType()->getContext();
232 }
233
getFunctionType() const234 FunctionType *Function::getFunctionType() const {
235 return cast<FunctionType>(getValueType());
236 }
237
isVarArg() const238 bool Function::isVarArg() const {
239 return getFunctionType()->isVarArg();
240 }
241
getReturnType() const242 Type *Function::getReturnType() const {
243 return getFunctionType()->getReturnType();
244 }
245
removeFromParent()246 void Function::removeFromParent() {
247 getParent()->getFunctionList().remove(getIterator());
248 }
249
eraseFromParent()250 void Function::eraseFromParent() {
251 getParent()->getFunctionList().erase(getIterator());
252 }
253
254 //===----------------------------------------------------------------------===//
255 // Function Implementation
256 //===----------------------------------------------------------------------===//
257
Function(FunctionType * Ty,LinkageTypes Linkage,const Twine & name,Module * ParentModule)258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
259 Module *ParentModule)
260 : GlobalObject(Ty, Value::FunctionVal,
261 OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
262 assert(FunctionType::isValidReturnType(getReturnType()) &&
263 "invalid return type");
264 setGlobalObjectSubClassData(0);
265 SymTab = new ValueSymbolTable();
266
267 // If the function has arguments, mark them as lazily built.
268 if (Ty->getNumParams())
269 setValueSubclassData(1); // Set the "has lazy arguments" bit.
270
271 if (ParentModule)
272 ParentModule->getFunctionList().push_back(this);
273
274 // Ensure intrinsics have the right parameter attributes.
275 // Note, the IntID field will have been set in Value::setName if this function
276 // name is a valid intrinsic ID.
277 if (IntID)
278 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
279 }
280
~Function()281 Function::~Function() {
282 dropAllReferences(); // After this it is safe to delete instructions.
283
284 // Delete all of the method arguments and unlink from symbol table...
285 ArgumentList.clear();
286 delete SymTab;
287
288 // Remove the function from the on-the-side GC table.
289 clearGC();
290 }
291
BuildLazyArguments() const292 void Function::BuildLazyArguments() const {
293 // Create the arguments vector, all arguments start out unnamed.
294 FunctionType *FT = getFunctionType();
295 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
296 assert(!FT->getParamType(i)->isVoidTy() &&
297 "Cannot have void typed arguments!");
298 ArgumentList.push_back(new Argument(FT->getParamType(i)));
299 }
300
301 // Clear the lazy arguments bit.
302 unsigned SDC = getSubclassDataFromValue();
303 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
304 }
305
stealArgumentListFrom(Function & Src)306 void Function::stealArgumentListFrom(Function &Src) {
307 assert(isDeclaration() && "Expected no references to current arguments");
308
309 // Drop the current arguments, if any, and set the lazy argument bit.
310 if (!hasLazyArguments()) {
311 assert(llvm::all_of(ArgumentList,
312 [](const Argument &A) { return A.use_empty(); }) &&
313 "Expected arguments to be unused in declaration");
314 ArgumentList.clear();
315 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
316 }
317
318 // Nothing to steal if Src has lazy arguments.
319 if (Src.hasLazyArguments())
320 return;
321
322 // Steal arguments from Src, and fix the lazy argument bits.
323 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
324 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
325 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
326 }
327
arg_size() const328 size_t Function::arg_size() const {
329 return getFunctionType()->getNumParams();
330 }
arg_empty() const331 bool Function::arg_empty() const {
332 return getFunctionType()->getNumParams() == 0;
333 }
334
setParent(Module * parent)335 void Function::setParent(Module *parent) {
336 Parent = parent;
337 }
338
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining. This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero. Then everything is deleted for real. Note that no operations are
344 // valid on an object that has "dropped all references", except operator
345 // delete.
346 //
dropAllReferences()347 void Function::dropAllReferences() {
348 setIsMaterializable(false);
349
350 for (BasicBlock &BB : *this)
351 BB.dropAllReferences();
352
353 // Delete all basic blocks. They are now unused, except possibly by
354 // blockaddresses, but BasicBlock's destructor takes care of those.
355 while (!BasicBlocks.empty())
356 BasicBlocks.begin()->eraseFromParent();
357
358 // Drop uses of any optional data (real or placeholder).
359 if (getNumOperands()) {
360 User::dropAllReferences();
361 setNumHungOffUseOperands(0);
362 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
363 }
364
365 // Metadata is stored in a side-table.
366 clearMetadata();
367 }
368
addAttribute(unsigned i,Attribute::AttrKind Kind)369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
370 AttributeSet PAL = getAttributes();
371 PAL = PAL.addAttribute(getContext(), i, Kind);
372 setAttributes(PAL);
373 }
374
addAttribute(unsigned i,Attribute Attr)375 void Function::addAttribute(unsigned i, Attribute Attr) {
376 AttributeSet PAL = getAttributes();
377 PAL = PAL.addAttribute(getContext(), i, Attr);
378 setAttributes(PAL);
379 }
380
addAttributes(unsigned i,AttributeSet Attrs)381 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
382 AttributeSet PAL = getAttributes();
383 PAL = PAL.addAttributes(getContext(), i, Attrs);
384 setAttributes(PAL);
385 }
386
removeAttribute(unsigned i,Attribute::AttrKind Kind)387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
388 AttributeSet PAL = getAttributes();
389 PAL = PAL.removeAttribute(getContext(), i, Kind);
390 setAttributes(PAL);
391 }
392
removeAttribute(unsigned i,StringRef Kind)393 void Function::removeAttribute(unsigned i, StringRef Kind) {
394 AttributeSet PAL = getAttributes();
395 PAL = PAL.removeAttribute(getContext(), i, Kind);
396 setAttributes(PAL);
397 }
398
removeAttributes(unsigned i,AttributeSet Attrs)399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
400 AttributeSet PAL = getAttributes();
401 PAL = PAL.removeAttributes(getContext(), i, Attrs);
402 setAttributes(PAL);
403 }
404
addDereferenceableAttr(unsigned i,uint64_t Bytes)405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
406 AttributeSet PAL = getAttributes();
407 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
408 setAttributes(PAL);
409 }
410
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
412 AttributeSet PAL = getAttributes();
413 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
414 setAttributes(PAL);
415 }
416
getGC() const417 const std::string &Function::getGC() const {
418 assert(hasGC() && "Function has no collector");
419 return getContext().getGC(*this);
420 }
421
setGC(std::string Str)422 void Function::setGC(std::string Str) {
423 setValueSubclassDataBit(14, !Str.empty());
424 getContext().setGC(*this, std::move(Str));
425 }
426
clearGC()427 void Function::clearGC() {
428 if (!hasGC())
429 return;
430 getContext().deleteGC(*this);
431 setValueSubclassDataBit(14, false);
432 }
433
434 /// Copy all additional attributes (those not needed to create a Function) from
435 /// the Function Src to this one.
copyAttributesFrom(const GlobalValue * Src)436 void Function::copyAttributesFrom(const GlobalValue *Src) {
437 GlobalObject::copyAttributesFrom(Src);
438 const Function *SrcF = dyn_cast<Function>(Src);
439 if (!SrcF)
440 return;
441
442 setCallingConv(SrcF->getCallingConv());
443 setAttributes(SrcF->getAttributes());
444 if (SrcF->hasGC())
445 setGC(SrcF->getGC());
446 else
447 clearGC();
448 if (SrcF->hasPersonalityFn())
449 setPersonalityFn(SrcF->getPersonalityFn());
450 if (SrcF->hasPrefixData())
451 setPrefixData(SrcF->getPrefixData());
452 if (SrcF->hasPrologueData())
453 setPrologueData(SrcF->getPrologueData());
454 }
455
456 /// Table of string intrinsic names indexed by enum value.
457 static const char * const IntrinsicNameTable[] = {
458 "not_intrinsic",
459 #define GET_INTRINSIC_NAME_TABLE
460 #include "llvm/IR/Intrinsics.gen"
461 #undef GET_INTRINSIC_NAME_TABLE
462 };
463
464 /// \brief This does the actual lookup of an intrinsic ID which
465 /// matches the given function name.
lookupIntrinsicID(const ValueName * ValName)466 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) {
467 StringRef Name = ValName->getKey();
468
469 ArrayRef<const char *> NameTable(&IntrinsicNameTable[1],
470 std::end(IntrinsicNameTable));
471 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
472 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1);
473 if (ID == Intrinsic::not_intrinsic)
474 return ID;
475
476 // If the intrinsic is not overloaded, require an exact match. If it is
477 // overloaded, require a prefix match.
478 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
479 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
480 }
481
recalculateIntrinsicID()482 void Function::recalculateIntrinsicID() {
483 const ValueName *ValName = this->getValueName();
484 if (!ValName || !isIntrinsic()) {
485 IntID = Intrinsic::not_intrinsic;
486 return;
487 }
488 IntID = lookupIntrinsicID(ValName);
489 }
490
491 /// Returns a stable mangling for the type specified for use in the name
492 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
493 /// of named types is simply their name. Manglings for unnamed types consist
494 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
495 /// combined with the mangling of their component types. A vararg function
496 /// type will have a suffix of 'vararg'. Since function types can contain
497 /// other function types, we close a function type mangling with suffix 'f'
498 /// which can't be confused with it's prefix. This ensures we don't have
499 /// collisions between two unrelated function types. Otherwise, you might
500 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
501 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
502 /// cases) fall back to the MVT codepath, where they could be mangled to
503 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
504 /// everything.
getMangledTypeStr(Type * Ty)505 static std::string getMangledTypeStr(Type* Ty) {
506 std::string Result;
507 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
508 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
509 getMangledTypeStr(PTyp->getElementType());
510 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
511 Result += "a" + llvm::utostr(ATyp->getNumElements()) +
512 getMangledTypeStr(ATyp->getElementType());
513 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
514 assert(!STyp->isLiteral() && "TODO: implement literal types");
515 Result += STyp->getName();
516 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
517 Result += "f_" + getMangledTypeStr(FT->getReturnType());
518 for (size_t i = 0; i < FT->getNumParams(); i++)
519 Result += getMangledTypeStr(FT->getParamType(i));
520 if (FT->isVarArg())
521 Result += "vararg";
522 // Ensure nested function types are distinguishable.
523 Result += "f";
524 } else if (isa<VectorType>(Ty))
525 Result += "v" + utostr(Ty->getVectorNumElements()) +
526 getMangledTypeStr(Ty->getVectorElementType());
527 else if (Ty)
528 Result += EVT::getEVT(Ty).getEVTString();
529 return Result;
530 }
531
getName(ID id,ArrayRef<Type * > Tys)532 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
533 assert(id < num_intrinsics && "Invalid intrinsic ID!");
534 std::string Result(IntrinsicNameTable[id]);
535 for (Type *Ty : Tys) {
536 Result += "." + getMangledTypeStr(Ty);
537 }
538 return Result;
539 }
540
541
542 /// IIT_Info - These are enumerators that describe the entries returned by the
543 /// getIntrinsicInfoTableEntries function.
544 ///
545 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
546 enum IIT_Info {
547 // Common values should be encoded with 0-15.
548 IIT_Done = 0,
549 IIT_I1 = 1,
550 IIT_I8 = 2,
551 IIT_I16 = 3,
552 IIT_I32 = 4,
553 IIT_I64 = 5,
554 IIT_F16 = 6,
555 IIT_F32 = 7,
556 IIT_F64 = 8,
557 IIT_V2 = 9,
558 IIT_V4 = 10,
559 IIT_V8 = 11,
560 IIT_V16 = 12,
561 IIT_V32 = 13,
562 IIT_PTR = 14,
563 IIT_ARG = 15,
564
565 // Values from 16+ are only encodable with the inefficient encoding.
566 IIT_V64 = 16,
567 IIT_MMX = 17,
568 IIT_TOKEN = 18,
569 IIT_METADATA = 19,
570 IIT_EMPTYSTRUCT = 20,
571 IIT_STRUCT2 = 21,
572 IIT_STRUCT3 = 22,
573 IIT_STRUCT4 = 23,
574 IIT_STRUCT5 = 24,
575 IIT_EXTEND_ARG = 25,
576 IIT_TRUNC_ARG = 26,
577 IIT_ANYPTR = 27,
578 IIT_V1 = 28,
579 IIT_VARARG = 29,
580 IIT_HALF_VEC_ARG = 30,
581 IIT_SAME_VEC_WIDTH_ARG = 31,
582 IIT_PTR_TO_ARG = 32,
583 IIT_VEC_OF_PTRS_TO_ELT = 33,
584 IIT_I128 = 34,
585 IIT_V512 = 35,
586 IIT_V1024 = 36
587 };
588
589
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)590 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
591 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
592 IIT_Info Info = IIT_Info(Infos[NextElt++]);
593 unsigned StructElts = 2;
594 using namespace Intrinsic;
595
596 switch (Info) {
597 case IIT_Done:
598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
599 return;
600 case IIT_VARARG:
601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
602 return;
603 case IIT_MMX:
604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
605 return;
606 case IIT_TOKEN:
607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
608 return;
609 case IIT_METADATA:
610 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
611 return;
612 case IIT_F16:
613 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
614 return;
615 case IIT_F32:
616 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
617 return;
618 case IIT_F64:
619 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
620 return;
621 case IIT_I1:
622 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
623 return;
624 case IIT_I8:
625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
626 return;
627 case IIT_I16:
628 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
629 return;
630 case IIT_I32:
631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
632 return;
633 case IIT_I64:
634 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
635 return;
636 case IIT_I128:
637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
638 return;
639 case IIT_V1:
640 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
641 DecodeIITType(NextElt, Infos, OutputTable);
642 return;
643 case IIT_V2:
644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
645 DecodeIITType(NextElt, Infos, OutputTable);
646 return;
647 case IIT_V4:
648 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
649 DecodeIITType(NextElt, Infos, OutputTable);
650 return;
651 case IIT_V8:
652 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
653 DecodeIITType(NextElt, Infos, OutputTable);
654 return;
655 case IIT_V16:
656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
657 DecodeIITType(NextElt, Infos, OutputTable);
658 return;
659 case IIT_V32:
660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
661 DecodeIITType(NextElt, Infos, OutputTable);
662 return;
663 case IIT_V64:
664 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
665 DecodeIITType(NextElt, Infos, OutputTable);
666 return;
667 case IIT_V512:
668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
669 DecodeIITType(NextElt, Infos, OutputTable);
670 return;
671 case IIT_V1024:
672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
673 DecodeIITType(NextElt, Infos, OutputTable);
674 return;
675 case IIT_PTR:
676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
677 DecodeIITType(NextElt, Infos, OutputTable);
678 return;
679 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
680 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
681 Infos[NextElt++]));
682 DecodeIITType(NextElt, Infos, OutputTable);
683 return;
684 }
685 case IIT_ARG: {
686 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
688 return;
689 }
690 case IIT_EXTEND_ARG: {
691 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
692 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
693 ArgInfo));
694 return;
695 }
696 case IIT_TRUNC_ARG: {
697 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
698 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
699 ArgInfo));
700 return;
701 }
702 case IIT_HALF_VEC_ARG: {
703 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
704 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
705 ArgInfo));
706 return;
707 }
708 case IIT_SAME_VEC_WIDTH_ARG: {
709 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
710 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
711 ArgInfo));
712 return;
713 }
714 case IIT_PTR_TO_ARG: {
715 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
716 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
717 ArgInfo));
718 return;
719 }
720 case IIT_VEC_OF_PTRS_TO_ELT: {
721 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
723 ArgInfo));
724 return;
725 }
726 case IIT_EMPTYSTRUCT:
727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
728 return;
729 case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
730 case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
731 case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
732 case IIT_STRUCT2: {
733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
734
735 for (unsigned i = 0; i != StructElts; ++i)
736 DecodeIITType(NextElt, Infos, OutputTable);
737 return;
738 }
739 }
740 llvm_unreachable("unhandled");
741 }
742
743
744 #define GET_INTRINSIC_GENERATOR_GLOBAL
745 #include "llvm/IR/Intrinsics.gen"
746 #undef GET_INTRINSIC_GENERATOR_GLOBAL
747
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)748 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
749 SmallVectorImpl<IITDescriptor> &T){
750 // Check to see if the intrinsic's type was expressible by the table.
751 unsigned TableVal = IIT_Table[id-1];
752
753 // Decode the TableVal into an array of IITValues.
754 SmallVector<unsigned char, 8> IITValues;
755 ArrayRef<unsigned char> IITEntries;
756 unsigned NextElt = 0;
757 if ((TableVal >> 31) != 0) {
758 // This is an offset into the IIT_LongEncodingTable.
759 IITEntries = IIT_LongEncodingTable;
760
761 // Strip sentinel bit.
762 NextElt = (TableVal << 1) >> 1;
763 } else {
764 // Decode the TableVal into an array of IITValues. If the entry was encoded
765 // into a single word in the table itself, decode it now.
766 do {
767 IITValues.push_back(TableVal & 0xF);
768 TableVal >>= 4;
769 } while (TableVal);
770
771 IITEntries = IITValues;
772 NextElt = 0;
773 }
774
775 // Okay, decode the table into the output vector of IITDescriptors.
776 DecodeIITType(NextElt, IITEntries, T);
777 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
778 DecodeIITType(NextElt, IITEntries, T);
779 }
780
781
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)782 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
783 ArrayRef<Type*> Tys, LLVMContext &Context) {
784 using namespace Intrinsic;
785 IITDescriptor D = Infos.front();
786 Infos = Infos.slice(1);
787
788 switch (D.Kind) {
789 case IITDescriptor::Void: return Type::getVoidTy(Context);
790 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
791 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
792 case IITDescriptor::Token: return Type::getTokenTy(Context);
793 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
794 case IITDescriptor::Half: return Type::getHalfTy(Context);
795 case IITDescriptor::Float: return Type::getFloatTy(Context);
796 case IITDescriptor::Double: return Type::getDoubleTy(Context);
797
798 case IITDescriptor::Integer:
799 return IntegerType::get(Context, D.Integer_Width);
800 case IITDescriptor::Vector:
801 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
802 case IITDescriptor::Pointer:
803 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
804 D.Pointer_AddressSpace);
805 case IITDescriptor::Struct: {
806 Type *Elts[5];
807 assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
808 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
809 Elts[i] = DecodeFixedType(Infos, Tys, Context);
810 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
811 }
812
813 case IITDescriptor::Argument:
814 return Tys[D.getArgumentNumber()];
815 case IITDescriptor::ExtendArgument: {
816 Type *Ty = Tys[D.getArgumentNumber()];
817 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
818 return VectorType::getExtendedElementVectorType(VTy);
819
820 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
821 }
822 case IITDescriptor::TruncArgument: {
823 Type *Ty = Tys[D.getArgumentNumber()];
824 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
825 return VectorType::getTruncatedElementVectorType(VTy);
826
827 IntegerType *ITy = cast<IntegerType>(Ty);
828 assert(ITy->getBitWidth() % 2 == 0);
829 return IntegerType::get(Context, ITy->getBitWidth() / 2);
830 }
831 case IITDescriptor::HalfVecArgument:
832 return VectorType::getHalfElementsVectorType(cast<VectorType>(
833 Tys[D.getArgumentNumber()]));
834 case IITDescriptor::SameVecWidthArgument: {
835 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
836 Type *Ty = Tys[D.getArgumentNumber()];
837 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
838 return VectorType::get(EltTy, VTy->getNumElements());
839 }
840 llvm_unreachable("unhandled");
841 }
842 case IITDescriptor::PtrToArgument: {
843 Type *Ty = Tys[D.getArgumentNumber()];
844 return PointerType::getUnqual(Ty);
845 }
846 case IITDescriptor::VecOfPtrsToElt: {
847 Type *Ty = Tys[D.getArgumentNumber()];
848 VectorType *VTy = dyn_cast<VectorType>(Ty);
849 if (!VTy)
850 llvm_unreachable("Expected an argument of Vector Type");
851 Type *EltTy = VTy->getVectorElementType();
852 return VectorType::get(PointerType::getUnqual(EltTy),
853 VTy->getNumElements());
854 }
855 }
856 llvm_unreachable("unhandled");
857 }
858
859
860
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)861 FunctionType *Intrinsic::getType(LLVMContext &Context,
862 ID id, ArrayRef<Type*> Tys) {
863 SmallVector<IITDescriptor, 8> Table;
864 getIntrinsicInfoTableEntries(id, Table);
865
866 ArrayRef<IITDescriptor> TableRef = Table;
867 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
868
869 SmallVector<Type*, 8> ArgTys;
870 while (!TableRef.empty())
871 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
872
873 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
874 // If we see void type as the type of the last argument, it is vararg intrinsic
875 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
876 ArgTys.pop_back();
877 return FunctionType::get(ResultTy, ArgTys, true);
878 }
879 return FunctionType::get(ResultTy, ArgTys, false);
880 }
881
isOverloaded(ID id)882 bool Intrinsic::isOverloaded(ID id) {
883 #define GET_INTRINSIC_OVERLOAD_TABLE
884 #include "llvm/IR/Intrinsics.gen"
885 #undef GET_INTRINSIC_OVERLOAD_TABLE
886 }
887
isLeaf(ID id)888 bool Intrinsic::isLeaf(ID id) {
889 switch (id) {
890 default:
891 return true;
892
893 case Intrinsic::experimental_gc_statepoint:
894 case Intrinsic::experimental_patchpoint_void:
895 case Intrinsic::experimental_patchpoint_i64:
896 return false;
897 }
898 }
899
900 /// This defines the "Intrinsic::getAttributes(ID id)" method.
901 #define GET_INTRINSIC_ATTRIBUTES
902 #include "llvm/IR/Intrinsics.gen"
903 #undef GET_INTRINSIC_ATTRIBUTES
904
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)905 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
906 // There can never be multiple globals with the same name of different types,
907 // because intrinsics must be a specific type.
908 return
909 cast<Function>(M->getOrInsertFunction(getName(id, Tys),
910 getType(M->getContext(), id, Tys)));
911 }
912
913 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
914 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
915 #include "llvm/IR/Intrinsics.gen"
916 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
917
918 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
919 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
920 #include "llvm/IR/Intrinsics.gen"
921 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
922
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)923 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
924 SmallVectorImpl<Type*> &ArgTys) {
925 using namespace Intrinsic;
926
927 // If we ran out of descriptors, there are too many arguments.
928 if (Infos.empty()) return true;
929 IITDescriptor D = Infos.front();
930 Infos = Infos.slice(1);
931
932 switch (D.Kind) {
933 case IITDescriptor::Void: return !Ty->isVoidTy();
934 case IITDescriptor::VarArg: return true;
935 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
936 case IITDescriptor::Token: return !Ty->isTokenTy();
937 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
938 case IITDescriptor::Half: return !Ty->isHalfTy();
939 case IITDescriptor::Float: return !Ty->isFloatTy();
940 case IITDescriptor::Double: return !Ty->isDoubleTy();
941 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
942 case IITDescriptor::Vector: {
943 VectorType *VT = dyn_cast<VectorType>(Ty);
944 return !VT || VT->getNumElements() != D.Vector_Width ||
945 matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
946 }
947 case IITDescriptor::Pointer: {
948 PointerType *PT = dyn_cast<PointerType>(Ty);
949 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
950 matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
951 }
952
953 case IITDescriptor::Struct: {
954 StructType *ST = dyn_cast<StructType>(Ty);
955 if (!ST || ST->getNumElements() != D.Struct_NumElements)
956 return true;
957
958 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
959 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
960 return true;
961 return false;
962 }
963
964 case IITDescriptor::Argument:
965 // Two cases here - If this is the second occurrence of an argument, verify
966 // that the later instance matches the previous instance.
967 if (D.getArgumentNumber() < ArgTys.size())
968 return Ty != ArgTys[D.getArgumentNumber()];
969
970 // Otherwise, if this is the first instance of an argument, record it and
971 // verify the "Any" kind.
972 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
973 ArgTys.push_back(Ty);
974
975 switch (D.getArgumentKind()) {
976 case IITDescriptor::AK_Any: return false; // Success
977 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
978 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
979 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
980 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
981 }
982 llvm_unreachable("all argument kinds not covered");
983
984 case IITDescriptor::ExtendArgument: {
985 // This may only be used when referring to a previous vector argument.
986 if (D.getArgumentNumber() >= ArgTys.size())
987 return true;
988
989 Type *NewTy = ArgTys[D.getArgumentNumber()];
990 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
991 NewTy = VectorType::getExtendedElementVectorType(VTy);
992 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
993 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
994 else
995 return true;
996
997 return Ty != NewTy;
998 }
999 case IITDescriptor::TruncArgument: {
1000 // This may only be used when referring to a previous vector argument.
1001 if (D.getArgumentNumber() >= ArgTys.size())
1002 return true;
1003
1004 Type *NewTy = ArgTys[D.getArgumentNumber()];
1005 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1006 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1007 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1008 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1009 else
1010 return true;
1011
1012 return Ty != NewTy;
1013 }
1014 case IITDescriptor::HalfVecArgument:
1015 // This may only be used when referring to a previous vector argument.
1016 return D.getArgumentNumber() >= ArgTys.size() ||
1017 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1018 VectorType::getHalfElementsVectorType(
1019 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1020 case IITDescriptor::SameVecWidthArgument: {
1021 if (D.getArgumentNumber() >= ArgTys.size())
1022 return true;
1023 VectorType * ReferenceType =
1024 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1025 VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1026 if (!ThisArgType || !ReferenceType ||
1027 (ReferenceType->getVectorNumElements() !=
1028 ThisArgType->getVectorNumElements()))
1029 return true;
1030 return matchIntrinsicType(ThisArgType->getVectorElementType(),
1031 Infos, ArgTys);
1032 }
1033 case IITDescriptor::PtrToArgument: {
1034 if (D.getArgumentNumber() >= ArgTys.size())
1035 return true;
1036 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1037 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1038 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1039 }
1040 case IITDescriptor::VecOfPtrsToElt: {
1041 if (D.getArgumentNumber() >= ArgTys.size())
1042 return true;
1043 VectorType * ReferenceType =
1044 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1045 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1046 if (!ThisArgVecTy || !ReferenceType ||
1047 (ReferenceType->getVectorNumElements() !=
1048 ThisArgVecTy->getVectorNumElements()))
1049 return true;
1050 PointerType *ThisArgEltTy =
1051 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1052 if (!ThisArgEltTy)
1053 return true;
1054 return ThisArgEltTy->getElementType() !=
1055 ReferenceType->getVectorElementType();
1056 }
1057 }
1058 llvm_unreachable("unhandled");
1059 }
1060
1061 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1062 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1063 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1064 // If there are no descriptors left, then it can't be a vararg.
1065 if (Infos.empty())
1066 return isVarArg;
1067
1068 // There should be only one descriptor remaining at this point.
1069 if (Infos.size() != 1)
1070 return true;
1071
1072 // Check and verify the descriptor.
1073 IITDescriptor D = Infos.front();
1074 Infos = Infos.slice(1);
1075 if (D.Kind == IITDescriptor::VarArg)
1076 return !isVarArg;
1077
1078 return true;
1079 }
1080
remangleIntrinsicFunction(Function * F)1081 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1082 Intrinsic::ID ID = F->getIntrinsicID();
1083 if (!ID)
1084 return None;
1085
1086 FunctionType *FTy = F->getFunctionType();
1087 // Accumulate an array of overloaded types for the given intrinsic
1088 SmallVector<Type *, 4> ArgTys;
1089 {
1090 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1091 getIntrinsicInfoTableEntries(ID, Table);
1092 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1093
1094 // If we encounter any problems matching the signature with the descriptor
1095 // just give up remangling. It's up to verifier to report the discrepancy.
1096 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1097 return None;
1098 for (auto Ty : FTy->params())
1099 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1100 return None;
1101 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1102 return None;
1103 }
1104
1105 StringRef Name = F->getName();
1106 if (Name == Intrinsic::getName(ID, ArgTys))
1107 return None;
1108
1109 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1110 NewDecl->setCallingConv(F->getCallingConv());
1111 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1112 return NewDecl;
1113 }
1114
1115 /// hasAddressTaken - returns true if there are any uses of this function
1116 /// other than direct calls or invokes to it.
hasAddressTaken(const User ** PutOffender) const1117 bool Function::hasAddressTaken(const User* *PutOffender) const {
1118 for (const Use &U : uses()) {
1119 const User *FU = U.getUser();
1120 if (isa<BlockAddress>(FU))
1121 continue;
1122 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1123 if (PutOffender)
1124 *PutOffender = FU;
1125 return true;
1126 }
1127 ImmutableCallSite CS(cast<Instruction>(FU));
1128 if (!CS.isCallee(&U)) {
1129 if (PutOffender)
1130 *PutOffender = FU;
1131 return true;
1132 }
1133 }
1134 return false;
1135 }
1136
isDefTriviallyDead() const1137 bool Function::isDefTriviallyDead() const {
1138 // Check the linkage
1139 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1140 !hasAvailableExternallyLinkage())
1141 return false;
1142
1143 // Check if the function is used by anything other than a blockaddress.
1144 for (const User *U : users())
1145 if (!isa<BlockAddress>(U))
1146 return false;
1147
1148 return true;
1149 }
1150
1151 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1152 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1153 bool Function::callsFunctionThatReturnsTwice() const {
1154 for (const_inst_iterator
1155 I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1156 ImmutableCallSite CS(&*I);
1157 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1158 return true;
1159 }
1160
1161 return false;
1162 }
1163
getPersonalityFn() const1164 Constant *Function::getPersonalityFn() const {
1165 assert(hasPersonalityFn() && getNumOperands());
1166 return cast<Constant>(Op<0>());
1167 }
1168
setPersonalityFn(Constant * Fn)1169 void Function::setPersonalityFn(Constant *Fn) {
1170 setHungoffOperand<0>(Fn);
1171 setValueSubclassDataBit(3, Fn != nullptr);
1172 }
1173
getPrefixData() const1174 Constant *Function::getPrefixData() const {
1175 assert(hasPrefixData() && getNumOperands());
1176 return cast<Constant>(Op<1>());
1177 }
1178
setPrefixData(Constant * PrefixData)1179 void Function::setPrefixData(Constant *PrefixData) {
1180 setHungoffOperand<1>(PrefixData);
1181 setValueSubclassDataBit(1, PrefixData != nullptr);
1182 }
1183
getPrologueData() const1184 Constant *Function::getPrologueData() const {
1185 assert(hasPrologueData() && getNumOperands());
1186 return cast<Constant>(Op<2>());
1187 }
1188
setPrologueData(Constant * PrologueData)1189 void Function::setPrologueData(Constant *PrologueData) {
1190 setHungoffOperand<2>(PrologueData);
1191 setValueSubclassDataBit(2, PrologueData != nullptr);
1192 }
1193
allocHungoffUselist()1194 void Function::allocHungoffUselist() {
1195 // If we've already allocated a uselist, stop here.
1196 if (getNumOperands())
1197 return;
1198
1199 allocHungoffUses(3, /*IsPhi=*/ false);
1200 setNumHungOffUseOperands(3);
1201
1202 // Initialize the uselist with placeholder operands to allow traversal.
1203 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1204 Op<0>().set(CPN);
1205 Op<1>().set(CPN);
1206 Op<2>().set(CPN);
1207 }
1208
1209 template <int Idx>
setHungoffOperand(Constant * C)1210 void Function::setHungoffOperand(Constant *C) {
1211 if (C) {
1212 allocHungoffUselist();
1213 Op<Idx>().set(C);
1214 } else if (getNumOperands()) {
1215 Op<Idx>().set(
1216 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1217 }
1218 }
1219
setValueSubclassDataBit(unsigned Bit,bool On)1220 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1221 assert(Bit < 16 && "SubclassData contains only 16 bits");
1222 if (On)
1223 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1224 else
1225 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1226 }
1227
setEntryCount(uint64_t Count)1228 void Function::setEntryCount(uint64_t Count) {
1229 MDBuilder MDB(getContext());
1230 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
1231 }
1232
getEntryCount() const1233 Optional<uint64_t> Function::getEntryCount() const {
1234 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1235 if (MD && MD->getOperand(0))
1236 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1237 if (MDS->getString().equals("function_entry_count")) {
1238 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1239 return CI->getValue().getZExtValue();
1240 }
1241 return None;
1242 }
1243