1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkWriteBuffer.h"
9 #include "SkBitmap.h"
10 #include "SkData.h"
11 #include "SkDeduper.h"
12 #include "SkPixelRef.h"
13 #include "SkPtrRecorder.h"
14 #include "SkStream.h"
15 #include "SkTypeface.h"
16
17 ///////////////////////////////////////////////////////////////////////////////////////////////////
18
SkBinaryWriteBuffer(uint32_t flags)19 SkBinaryWriteBuffer::SkBinaryWriteBuffer(uint32_t flags)
20 : fFlags(flags)
21 , fFactorySet(nullptr)
22 , fTFSet(nullptr) {
23 }
24
SkBinaryWriteBuffer(void * storage,size_t storageSize,uint32_t flags)25 SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
26 : fFlags(flags)
27 , fFactorySet(nullptr)
28 , fWriter(storage, storageSize)
29 , fTFSet(nullptr) {
30 }
31
~SkBinaryWriteBuffer()32 SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {
33 SkSafeUnref(fFactorySet);
34 SkSafeUnref(fTFSet);
35 }
36
writeByteArray(const void * data,size_t size)37 void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) {
38 fWriter.write32(SkToU32(size));
39 fWriter.writePad(data, size);
40 }
41
writeBool(bool value)42 void SkBinaryWriteBuffer::writeBool(bool value) {
43 fWriter.writeBool(value);
44 }
45
writeScalar(SkScalar value)46 void SkBinaryWriteBuffer::writeScalar(SkScalar value) {
47 fWriter.writeScalar(value);
48 }
49
writeScalarArray(const SkScalar * value,uint32_t count)50 void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
51 fWriter.write32(count);
52 fWriter.write(value, count * sizeof(SkScalar));
53 }
54
writeInt(int32_t value)55 void SkBinaryWriteBuffer::writeInt(int32_t value) {
56 fWriter.write32(value);
57 }
58
writeIntArray(const int32_t * value,uint32_t count)59 void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
60 fWriter.write32(count);
61 fWriter.write(value, count * sizeof(int32_t));
62 }
63
writeUInt(uint32_t value)64 void SkBinaryWriteBuffer::writeUInt(uint32_t value) {
65 fWriter.write32(value);
66 }
67
writeString(const char * value)68 void SkBinaryWriteBuffer::writeString(const char* value) {
69 fWriter.writeString(value);
70 }
71
writeColor(SkColor color)72 void SkBinaryWriteBuffer::writeColor(SkColor color) {
73 fWriter.write32(color);
74 }
75
writeColorArray(const SkColor * color,uint32_t count)76 void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
77 fWriter.write32(count);
78 fWriter.write(color, count * sizeof(SkColor));
79 }
80
writeColor4f(const SkColor4f & color)81 void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) {
82 fWriter.write(&color, sizeof(SkColor4f));
83 }
84
writeColor4fArray(const SkColor4f * color,uint32_t count)85 void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) {
86 fWriter.write32(count);
87 fWriter.write(color, count * sizeof(SkColor4f));
88 }
89
writePoint(const SkPoint & point)90 void SkBinaryWriteBuffer::writePoint(const SkPoint& point) {
91 fWriter.writeScalar(point.fX);
92 fWriter.writeScalar(point.fY);
93 }
94
writePointArray(const SkPoint * point,uint32_t count)95 void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
96 fWriter.write32(count);
97 fWriter.write(point, count * sizeof(SkPoint));
98 }
99
writeMatrix(const SkMatrix & matrix)100 void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) {
101 fWriter.writeMatrix(matrix);
102 }
103
writeIRect(const SkIRect & rect)104 void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) {
105 fWriter.write(&rect, sizeof(SkIRect));
106 }
107
writeRect(const SkRect & rect)108 void SkBinaryWriteBuffer::writeRect(const SkRect& rect) {
109 fWriter.writeRect(rect);
110 }
111
writeRegion(const SkRegion & region)112 void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) {
113 fWriter.writeRegion(region);
114 }
115
writePath(const SkPath & path)116 void SkBinaryWriteBuffer::writePath(const SkPath& path) {
117 fWriter.writePath(path);
118 }
119
writeStream(SkStream * stream,size_t length)120 size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) {
121 fWriter.write32(SkToU32(length));
122 size_t bytesWritten = fWriter.readFromStream(stream, length);
123 if (bytesWritten < length) {
124 fWriter.reservePad(length - bytesWritten);
125 }
126 return bytesWritten;
127 }
128
writeToStream(SkWStream * stream)129 bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) {
130 return fWriter.writeToStream(stream);
131 }
132
write_encoded_bitmap(SkBinaryWriteBuffer * buffer,SkData * data,const SkIPoint & origin)133 static void write_encoded_bitmap(SkBinaryWriteBuffer* buffer, SkData* data,
134 const SkIPoint& origin) {
135 buffer->writeDataAsByteArray(data);
136 buffer->write32(origin.fX);
137 buffer->write32(origin.fY);
138 }
139
writeBitmap(const SkBitmap & bitmap)140 void SkBinaryWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
141 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
142 // right size.
143 this->writeInt(bitmap.width());
144 this->writeInt(bitmap.height());
145
146 // Record information about the bitmap in one of two ways, in order of priority:
147 // 1. If there is a function for encoding bitmaps, use it to write an encoded version of the
148 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write
149 // the size of the encoded data. A non-zero size signifies that encoded data was written.
150 // 2. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
151 // not used, write a zero to signify that the data was not encoded.
152
153 // Write a bool to indicate that we did not use an SkBitmapHeap. That feature is deprecated.
154 this->writeBool(false);
155
156 // see if the caller wants to manually encode
157 SkPixmap result;
158 if (fPixelSerializer && bitmap.peekPixels(&result)) {
159 sk_sp<SkData> data = fPixelSerializer->encodeToData(result);
160 if (data) {
161 // if we have to "encode" the bitmap, then we assume there is no
162 // offset to share, since we are effectively creating a new pixelref
163 write_encoded_bitmap(this, data.get(), SkIPoint::Make(0, 0));
164 return;
165 }
166 }
167
168 this->writeUInt(0); // signal raw pixels
169 SkBitmap::WriteRawPixels(this, bitmap);
170 }
171
writeImage(const SkImage * image)172 void SkBinaryWriteBuffer::writeImage(const SkImage* image) {
173 if (fDeduper) {
174 this->write32(fDeduper->findOrDefineImage(const_cast<SkImage*>(image)));
175 return;
176 }
177
178 this->writeInt(image->width());
179 this->writeInt(image->height());
180
181 sk_sp<SkData> encoded = image->encodeToData(this->getPixelSerializer());
182 if (encoded && encoded->size() > 0) {
183 write_encoded_bitmap(this, encoded.get(), SkIPoint::Make(0, 0));
184 return;
185 }
186
187 SkBitmap bm;
188 if (image->asLegacyBitmap(&bm, SkImage::kRO_LegacyBitmapMode)) {
189 this->writeUInt(1); // signal raw pixels.
190 SkBitmap::WriteRawPixels(this, bm);
191 return;
192 }
193
194 this->writeUInt(0); // signal no pixels (in place of the size of the encoded data)
195 }
196
writeTypeface(SkTypeface * obj)197 void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) {
198 if (fDeduper) {
199 this->write32(fDeduper->findOrDefineTypeface(obj));
200 return;
201 }
202
203 if (nullptr == obj || nullptr == fTFSet) {
204 fWriter.write32(0);
205 } else {
206 fWriter.write32(fTFSet->add(obj));
207 }
208 }
209
writePaint(const SkPaint & paint)210 void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) {
211 paint.flatten(*this);
212 }
213
setFactoryRecorder(SkFactorySet * rec)214 SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
215 SkRefCnt_SafeAssign(fFactorySet, rec);
216 return rec;
217 }
218
setTypefaceRecorder(SkRefCntSet * rec)219 SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
220 SkRefCnt_SafeAssign(fTFSet, rec);
221 return rec;
222 }
223
setPixelSerializer(sk_sp<SkPixelSerializer> serializer)224 void SkBinaryWriteBuffer::setPixelSerializer(sk_sp<SkPixelSerializer> serializer) {
225 fPixelSerializer = std::move(serializer);
226 }
227
writeFlattenable(const SkFlattenable * flattenable)228 void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
229 if (nullptr == flattenable) {
230 this->write32(0);
231 return;
232 }
233
234 if (fDeduper) {
235 this->write32(fDeduper->findOrDefineFactory(const_cast<SkFlattenable*>(flattenable)));
236 } else {
237 /*
238 * We can write 1 of 2 versions of the flattenable:
239 * 1. index into fFactorySet : This assumes the writer will later
240 * resolve the function-ptrs into strings for its reader. SkPicture
241 * does exactly this, by writing a table of names (matching the indices)
242 * up front in its serialized form.
243 * 2. string name of the flattenable or index into fFlattenableDict: We
244 * store the string to allow the reader to specify its own factories
245 * after write time. In order to improve compression, if we have
246 * already written the string, we write its index instead.
247 */
248 if (fFactorySet) {
249 SkFlattenable::Factory factory = flattenable->getFactory();
250 SkASSERT(factory);
251 this->write32(fFactorySet->add(factory));
252 } else {
253 const char* name = flattenable->getTypeName();
254 SkASSERT(name);
255 SkString key(name);
256 if (uint32_t* indexPtr = fFlattenableDict.find(key)) {
257 // We will write the index as a 32-bit int. We want the first byte
258 // that we send to be zero - this will act as a sentinel that we
259 // have an index (not a string). This means that we will send the
260 // the index shifted left by 8. The remaining 24-bits should be
261 // plenty to store the index. Note that this strategy depends on
262 // being little endian.
263 SkASSERT(0 == *indexPtr >> 24);
264 this->write32(*indexPtr << 8);
265 } else {
266 // Otherwise write the string. Clients should not use the empty
267 // string as a name, or we will have a problem.
268 SkASSERT(strcmp("", name));
269 this->writeString(name);
270
271 // Add key to dictionary.
272 fFlattenableDict.set(key, fFlattenableDict.count() + 1);
273 }
274 }
275 }
276
277 // make room for the size of the flattened object
278 (void)fWriter.reserve(sizeof(uint32_t));
279 // record the current size, so we can subtract after the object writes.
280 size_t offset = fWriter.bytesWritten();
281 // now flatten the object
282 flattenable->flatten(*this);
283 size_t objSize = fWriter.bytesWritten() - offset;
284 // record the obj's size
285 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
286 }
287