• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkWriteBuffer.h"
9 #include "SkBitmap.h"
10 #include "SkData.h"
11 #include "SkDeduper.h"
12 #include "SkPixelRef.h"
13 #include "SkPtrRecorder.h"
14 #include "SkStream.h"
15 #include "SkTypeface.h"
16 
17 ///////////////////////////////////////////////////////////////////////////////////////////////////
18 
SkBinaryWriteBuffer(uint32_t flags)19 SkBinaryWriteBuffer::SkBinaryWriteBuffer(uint32_t flags)
20     : fFlags(flags)
21     , fFactorySet(nullptr)
22     , fTFSet(nullptr) {
23 }
24 
SkBinaryWriteBuffer(void * storage,size_t storageSize,uint32_t flags)25 SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
26     : fFlags(flags)
27     , fFactorySet(nullptr)
28     , fWriter(storage, storageSize)
29     , fTFSet(nullptr) {
30 }
31 
~SkBinaryWriteBuffer()32 SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {
33     SkSafeUnref(fFactorySet);
34     SkSafeUnref(fTFSet);
35 }
36 
writeByteArray(const void * data,size_t size)37 void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) {
38     fWriter.write32(SkToU32(size));
39     fWriter.writePad(data, size);
40 }
41 
writeBool(bool value)42 void SkBinaryWriteBuffer::writeBool(bool value) {
43     fWriter.writeBool(value);
44 }
45 
writeScalar(SkScalar value)46 void SkBinaryWriteBuffer::writeScalar(SkScalar value) {
47     fWriter.writeScalar(value);
48 }
49 
writeScalarArray(const SkScalar * value,uint32_t count)50 void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
51     fWriter.write32(count);
52     fWriter.write(value, count * sizeof(SkScalar));
53 }
54 
writeInt(int32_t value)55 void SkBinaryWriteBuffer::writeInt(int32_t value) {
56     fWriter.write32(value);
57 }
58 
writeIntArray(const int32_t * value,uint32_t count)59 void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
60     fWriter.write32(count);
61     fWriter.write(value, count * sizeof(int32_t));
62 }
63 
writeUInt(uint32_t value)64 void SkBinaryWriteBuffer::writeUInt(uint32_t value) {
65     fWriter.write32(value);
66 }
67 
writeString(const char * value)68 void SkBinaryWriteBuffer::writeString(const char* value) {
69     fWriter.writeString(value);
70 }
71 
writeColor(SkColor color)72 void SkBinaryWriteBuffer::writeColor(SkColor color) {
73     fWriter.write32(color);
74 }
75 
writeColorArray(const SkColor * color,uint32_t count)76 void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
77     fWriter.write32(count);
78     fWriter.write(color, count * sizeof(SkColor));
79 }
80 
writeColor4f(const SkColor4f & color)81 void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) {
82     fWriter.write(&color, sizeof(SkColor4f));
83 }
84 
writeColor4fArray(const SkColor4f * color,uint32_t count)85 void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) {
86     fWriter.write32(count);
87     fWriter.write(color, count * sizeof(SkColor4f));
88 }
89 
writePoint(const SkPoint & point)90 void SkBinaryWriteBuffer::writePoint(const SkPoint& point) {
91     fWriter.writeScalar(point.fX);
92     fWriter.writeScalar(point.fY);
93 }
94 
writePointArray(const SkPoint * point,uint32_t count)95 void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
96     fWriter.write32(count);
97     fWriter.write(point, count * sizeof(SkPoint));
98 }
99 
writeMatrix(const SkMatrix & matrix)100 void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) {
101     fWriter.writeMatrix(matrix);
102 }
103 
writeIRect(const SkIRect & rect)104 void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) {
105     fWriter.write(&rect, sizeof(SkIRect));
106 }
107 
writeRect(const SkRect & rect)108 void SkBinaryWriteBuffer::writeRect(const SkRect& rect) {
109     fWriter.writeRect(rect);
110 }
111 
writeRegion(const SkRegion & region)112 void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) {
113     fWriter.writeRegion(region);
114 }
115 
writePath(const SkPath & path)116 void SkBinaryWriteBuffer::writePath(const SkPath& path) {
117     fWriter.writePath(path);
118 }
119 
writeStream(SkStream * stream,size_t length)120 size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) {
121     fWriter.write32(SkToU32(length));
122     size_t bytesWritten = fWriter.readFromStream(stream, length);
123     if (bytesWritten < length) {
124         fWriter.reservePad(length - bytesWritten);
125     }
126     return bytesWritten;
127 }
128 
writeToStream(SkWStream * stream)129 bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) {
130     return fWriter.writeToStream(stream);
131 }
132 
write_encoded_bitmap(SkBinaryWriteBuffer * buffer,SkData * data,const SkIPoint & origin)133 static void write_encoded_bitmap(SkBinaryWriteBuffer* buffer, SkData* data,
134                                  const SkIPoint& origin) {
135     buffer->writeDataAsByteArray(data);
136     buffer->write32(origin.fX);
137     buffer->write32(origin.fY);
138 }
139 
writeBitmap(const SkBitmap & bitmap)140 void SkBinaryWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
141     // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
142     // right size.
143     this->writeInt(bitmap.width());
144     this->writeInt(bitmap.height());
145 
146     // Record information about the bitmap in one of two ways, in order of priority:
147     // 1. If there is a function for encoding bitmaps, use it to write an encoded version of the
148     //    bitmap. After writing a boolean value of false, signifying that a heap was not used, write
149     //    the size of the encoded data. A non-zero size signifies that encoded data was written.
150     // 2. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
151     //    not used, write a zero to signify that the data was not encoded.
152 
153     // Write a bool to indicate that we did not use an SkBitmapHeap. That feature is deprecated.
154     this->writeBool(false);
155 
156     // see if the caller wants to manually encode
157     SkPixmap result;
158     if (fPixelSerializer && bitmap.peekPixels(&result)) {
159         sk_sp<SkData> data = fPixelSerializer->encodeToData(result);
160         if (data) {
161             // if we have to "encode" the bitmap, then we assume there is no
162             // offset to share, since we are effectively creating a new pixelref
163             write_encoded_bitmap(this, data.get(), SkIPoint::Make(0, 0));
164             return;
165         }
166     }
167 
168     this->writeUInt(0); // signal raw pixels
169     SkBitmap::WriteRawPixels(this, bitmap);
170 }
171 
writeImage(const SkImage * image)172 void SkBinaryWriteBuffer::writeImage(const SkImage* image) {
173     if (fDeduper) {
174         this->write32(fDeduper->findOrDefineImage(const_cast<SkImage*>(image)));
175         return;
176     }
177 
178     this->writeInt(image->width());
179     this->writeInt(image->height());
180 
181     sk_sp<SkData> encoded = image->encodeToData(this->getPixelSerializer());
182     if (encoded && encoded->size() > 0) {
183         write_encoded_bitmap(this, encoded.get(), SkIPoint::Make(0, 0));
184         return;
185     }
186 
187     SkBitmap bm;
188     if (image->asLegacyBitmap(&bm, SkImage::kRO_LegacyBitmapMode)) {
189         this->writeUInt(1);  // signal raw pixels.
190         SkBitmap::WriteRawPixels(this, bm);
191         return;
192     }
193 
194     this->writeUInt(0); // signal no pixels (in place of the size of the encoded data)
195 }
196 
writeTypeface(SkTypeface * obj)197 void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) {
198     if (fDeduper) {
199         this->write32(fDeduper->findOrDefineTypeface(obj));
200         return;
201     }
202 
203     if (nullptr == obj || nullptr == fTFSet) {
204         fWriter.write32(0);
205     } else {
206         fWriter.write32(fTFSet->add(obj));
207     }
208 }
209 
writePaint(const SkPaint & paint)210 void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) {
211     paint.flatten(*this);
212 }
213 
setFactoryRecorder(SkFactorySet * rec)214 SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
215     SkRefCnt_SafeAssign(fFactorySet, rec);
216     return rec;
217 }
218 
setTypefaceRecorder(SkRefCntSet * rec)219 SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
220     SkRefCnt_SafeAssign(fTFSet, rec);
221     return rec;
222 }
223 
setPixelSerializer(sk_sp<SkPixelSerializer> serializer)224 void SkBinaryWriteBuffer::setPixelSerializer(sk_sp<SkPixelSerializer> serializer) {
225     fPixelSerializer = std::move(serializer);
226 }
227 
writeFlattenable(const SkFlattenable * flattenable)228 void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
229     if (nullptr == flattenable) {
230         this->write32(0);
231         return;
232     }
233 
234     if (fDeduper) {
235         this->write32(fDeduper->findOrDefineFactory(const_cast<SkFlattenable*>(flattenable)));
236     } else {
237         /*
238          *  We can write 1 of 2 versions of the flattenable:
239          *  1.  index into fFactorySet : This assumes the writer will later
240          *      resolve the function-ptrs into strings for its reader. SkPicture
241          *      does exactly this, by writing a table of names (matching the indices)
242          *      up front in its serialized form.
243          *  2.  string name of the flattenable or index into fFlattenableDict:  We
244          *      store the string to allow the reader to specify its own factories
245          *      after write time.  In order to improve compression, if we have
246          *      already written the string, we write its index instead.
247          */
248         if (fFactorySet) {
249             SkFlattenable::Factory factory = flattenable->getFactory();
250             SkASSERT(factory);
251             this->write32(fFactorySet->add(factory));
252         } else {
253             const char* name = flattenable->getTypeName();
254             SkASSERT(name);
255             SkString key(name);
256             if (uint32_t* indexPtr = fFlattenableDict.find(key)) {
257                 // We will write the index as a 32-bit int.  We want the first byte
258                 // that we send to be zero - this will act as a sentinel that we
259                 // have an index (not a string).  This means that we will send the
260                 // the index shifted left by 8.  The remaining 24-bits should be
261                 // plenty to store the index.  Note that this strategy depends on
262                 // being little endian.
263                 SkASSERT(0 == *indexPtr >> 24);
264                 this->write32(*indexPtr << 8);
265             } else {
266                 // Otherwise write the string.  Clients should not use the empty
267                 // string as a name, or we will have a problem.
268                 SkASSERT(strcmp("", name));
269                 this->writeString(name);
270 
271                 // Add key to dictionary.
272                 fFlattenableDict.set(key, fFlattenableDict.count() + 1);
273             }
274         }
275     }
276 
277     // make room for the size of the flattened object
278     (void)fWriter.reserve(sizeof(uint32_t));
279     // record the current size, so we can subtract after the object writes.
280     size_t offset = fWriter.bytesWritten();
281     // now flatten the object
282     flattenable->flatten(*this);
283     size_t objSize = fWriter.bytesWritten() - offset;
284     // record the obj's size
285     fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
286 }
287