• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Transform/Utils/BasicBlockUtils.h - BasicBlock Utils ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
16 #define LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
17 
18 // FIXME: Move to this file: BasicBlock::removePredecessor, BB::splitBasicBlock
19 
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 
23 namespace llvm {
24 
25 class MemoryDependenceResults;
26 class DominatorTree;
27 class LoopInfo;
28 class Instruction;
29 class MDNode;
30 class ReturnInst;
31 class TargetLibraryInfo;
32 class TerminatorInst;
33 
34 /// Delete the specified block, which must have no predecessors.
35 void DeleteDeadBlock(BasicBlock *BB);
36 
37 /// We know that BB has one predecessor. If there are any single-entry PHI nodes
38 /// in it, fold them away. This handles the case when all entries to the PHI
39 /// nodes in a block are guaranteed equal, such as when the block has exactly
40 /// one predecessor.
41 void FoldSingleEntryPHINodes(BasicBlock *BB,
42                              MemoryDependenceResults *MemDep = nullptr);
43 
44 /// Examine each PHI in the given block and delete it if it is dead. Also
45 /// recursively delete any operands that become dead as a result. This includes
46 /// tracing the def-use list from the PHI to see if it is ultimately unused or
47 /// if it reaches an unused cycle. Return true if any PHIs were deleted.
48 bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI = nullptr);
49 
50 /// Attempts to merge a block into its predecessor, if possible. The return
51 /// value indicates success or failure.
52 bool MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT = nullptr,
53                                LoopInfo *LI = nullptr,
54                                MemoryDependenceResults *MemDep = nullptr);
55 
56 /// Replace all uses of an instruction (specified by BI) with a value, then
57 /// remove and delete the original instruction.
58 void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
59                           BasicBlock::iterator &BI, Value *V);
60 
61 /// Replace the instruction specified by BI with the instruction specified by I.
62 /// Copies DebugLoc from BI to I, if I doesn't already have a DebugLoc. The
63 /// original instruction is deleted and BI is updated to point to the new
64 /// instruction.
65 void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
66                          BasicBlock::iterator &BI, Instruction *I);
67 
68 /// Replace the instruction specified by From with the instruction specified by
69 /// To. Copies DebugLoc from BI to I, if I doesn't already have a DebugLoc.
70 void ReplaceInstWithInst(Instruction *From, Instruction *To);
71 
72 /// Option class for critical edge splitting.
73 ///
74 /// This provides a builder interface for overriding the default options used
75 /// during critical edge splitting.
76 struct CriticalEdgeSplittingOptions {
77   DominatorTree *DT;
78   LoopInfo *LI;
79   bool MergeIdenticalEdges;
80   bool DontDeleteUselessPHIs;
81   bool PreserveLCSSA;
82 
83   CriticalEdgeSplittingOptions(DominatorTree *DT = nullptr,
84                                LoopInfo *LI = nullptr)
DTCriticalEdgeSplittingOptions85       : DT(DT), LI(LI), MergeIdenticalEdges(false),
86         DontDeleteUselessPHIs(false), PreserveLCSSA(false) {}
87 
setMergeIdenticalEdgesCriticalEdgeSplittingOptions88   CriticalEdgeSplittingOptions &setMergeIdenticalEdges() {
89     MergeIdenticalEdges = true;
90     return *this;
91   }
92 
setDontDeleteUselessPHIsCriticalEdgeSplittingOptions93   CriticalEdgeSplittingOptions &setDontDeleteUselessPHIs() {
94     DontDeleteUselessPHIs = true;
95     return *this;
96   }
97 
setPreserveLCSSACriticalEdgeSplittingOptions98   CriticalEdgeSplittingOptions &setPreserveLCSSA() {
99     PreserveLCSSA = true;
100     return *this;
101   }
102 };
103 
104 /// If this edge is a critical edge, insert a new node to split the critical
105 /// edge. This will update the analyses passed in through the option struct.
106 /// This returns the new block if the edge was split, null otherwise.
107 ///
108 /// If MergeIdenticalEdges in the options struct is true (not the default),
109 /// *all* edges from TI to the specified successor will be merged into the same
110 /// critical edge block. This is most commonly interesting with switch
111 /// instructions, which may have many edges to any one destination.  This
112 /// ensures that all edges to that dest go to one block instead of each going
113 /// to a different block, but isn't the standard definition of a "critical
114 /// edge".
115 ///
116 /// It is invalid to call this function on a critical edge that starts at an
117 /// IndirectBrInst.  Splitting these edges will almost always create an invalid
118 /// program because the address of the new block won't be the one that is jumped
119 /// to.
120 ///
121 BasicBlock *SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
122                               const CriticalEdgeSplittingOptions &Options =
123                                   CriticalEdgeSplittingOptions());
124 
125 inline BasicBlock *
126 SplitCriticalEdge(BasicBlock *BB, succ_iterator SI,
127                   const CriticalEdgeSplittingOptions &Options =
128                       CriticalEdgeSplittingOptions()) {
129   return SplitCriticalEdge(BB->getTerminator(), SI.getSuccessorIndex(),
130                            Options);
131 }
132 
133 /// If the edge from *PI to BB is not critical, return false. Otherwise, split
134 /// all edges between the two blocks and return true. This updates all of the
135 /// same analyses as the other SplitCriticalEdge function. If P is specified, it
136 /// updates the analyses described above.
137 inline bool SplitCriticalEdge(BasicBlock *Succ, pred_iterator PI,
138                               const CriticalEdgeSplittingOptions &Options =
139                                   CriticalEdgeSplittingOptions()) {
140   bool MadeChange = false;
141   TerminatorInst *TI = (*PI)->getTerminator();
142   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
143     if (TI->getSuccessor(i) == Succ)
144       MadeChange |= !!SplitCriticalEdge(TI, i, Options);
145   return MadeChange;
146 }
147 
148 /// If an edge from Src to Dst is critical, split the edge and return true,
149 /// otherwise return false. This method requires that there be an edge between
150 /// the two blocks. It updates the analyses passed in the options struct
151 inline BasicBlock *
152 SplitCriticalEdge(BasicBlock *Src, BasicBlock *Dst,
153                   const CriticalEdgeSplittingOptions &Options =
154                       CriticalEdgeSplittingOptions()) {
155   TerminatorInst *TI = Src->getTerminator();
156   unsigned i = 0;
157   while (1) {
158     assert(i != TI->getNumSuccessors() && "Edge doesn't exist!");
159     if (TI->getSuccessor(i) == Dst)
160       return SplitCriticalEdge(TI, i, Options);
161     ++i;
162   }
163 }
164 
165 /// Loop over all of the edges in the CFG, breaking critical edges as they are
166 /// found. Returns the number of broken edges.
167 unsigned SplitAllCriticalEdges(Function &F,
168                                const CriticalEdgeSplittingOptions &Options =
169                                    CriticalEdgeSplittingOptions());
170 
171 /// Split the edge connecting specified block.
172 BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To,
173                       DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
174 
175 /// Split the specified block at the specified instruction - everything before
176 /// SplitPt stays in Old and everything starting with SplitPt moves to a new
177 /// block. The two blocks are joined by an unconditional branch and the loop
178 /// info is updated.
179 BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt,
180                        DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
181 
182 /// This method introduces at least one new basic block into the function and
183 /// moves some of the predecessors of BB to be predecessors of the new block.
184 /// The new predecessors are indicated by the Preds array. The new block is
185 /// given a suffix of 'Suffix'. Returns new basic block to which predecessors
186 /// from Preds are now pointing.
187 ///
188 /// If BB is a landingpad block then additional basicblock might be introduced.
189 /// It will have Suffix+".split_lp". See SplitLandingPadPredecessors for more
190 /// details on this case.
191 ///
192 /// This currently updates the LLVM IR, DominatorTree, LoopInfo, and LCCSA but
193 /// no other analyses. In particular, it does not preserve LoopSimplify
194 /// (because it's complicated to handle the case where one of the edges being
195 /// split is an exit of a loop with other exits).
196 ///
197 BasicBlock *SplitBlockPredecessors(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
198                                    const char *Suffix,
199                                    DominatorTree *DT = nullptr,
200                                    LoopInfo *LI = nullptr,
201                                    bool PreserveLCSSA = false);
202 
203 /// This method transforms the landing pad, OrigBB, by introducing two new basic
204 /// blocks into the function. One of those new basic blocks gets the
205 /// predecessors listed in Preds. The other basic block gets the remaining
206 /// predecessors of OrigBB. The landingpad instruction OrigBB is clone into both
207 /// of the new basic blocks. The new blocks are given the suffixes 'Suffix1' and
208 /// 'Suffix2', and are returned in the NewBBs vector.
209 ///
210 /// This currently updates the LLVM IR, DominatorTree, LoopInfo, and LCCSA but
211 /// no other analyses. In particular, it does not preserve LoopSimplify
212 /// (because it's complicated to handle the case where one of the edges being
213 /// split is an exit of a loop with other exits).
214 ///
215 void SplitLandingPadPredecessors(BasicBlock *OrigBB,
216                                  ArrayRef<BasicBlock *> Preds,
217                                  const char *Suffix, const char *Suffix2,
218                                  SmallVectorImpl<BasicBlock *> &NewBBs,
219                                  DominatorTree *DT = nullptr,
220                                  LoopInfo *LI = nullptr,
221                                  bool PreserveLCSSA = false);
222 
223 /// This method duplicates the specified return instruction into a predecessor
224 /// which ends in an unconditional branch. If the return instruction returns a
225 /// value defined by a PHI, propagate the right value into the return. It
226 /// returns the new return instruction in the predecessor.
227 ReturnInst *FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
228                                        BasicBlock *Pred);
229 
230 /// Split the containing block at the specified instruction - everything before
231 /// and including SplitBefore stays in the old basic block, and everything after
232 /// SplitBefore is moved to a new block. The two blocks are connected by a
233 /// conditional branch (with value of Cmp being the condition).
234 /// Before:
235 ///   Head
236 ///   SplitBefore
237 ///   Tail
238 /// After:
239 ///   Head
240 ///   if (Cond)
241 ///     ThenBlock
242 ///   SplitBefore
243 ///   Tail
244 ///
245 /// If Unreachable is true, then ThenBlock ends with
246 /// UnreachableInst, otherwise it branches to Tail.
247 /// Returns the NewBasicBlock's terminator.
248 ///
249 /// Updates DT and LI if given.
250 TerminatorInst *SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
251                                           bool Unreachable,
252                                           MDNode *BranchWeights = nullptr,
253                                           DominatorTree *DT = nullptr,
254                                           LoopInfo *LI = nullptr);
255 
256 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
257 /// but also creates the ElseBlock.
258 /// Before:
259 ///   Head
260 ///   SplitBefore
261 ///   Tail
262 /// After:
263 ///   Head
264 ///   if (Cond)
265 ///     ThenBlock
266 ///   else
267 ///     ElseBlock
268 ///   SplitBefore
269 ///   Tail
270 void SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
271                                    TerminatorInst **ThenTerm,
272                                    TerminatorInst **ElseTerm,
273                                    MDNode *BranchWeights = nullptr);
274 
275 /// Check whether BB is the merge point of a if-region.
276 /// If so, return the boolean condition that determines which entry into
277 /// BB will be taken.  Also, return by references the block that will be
278 /// entered from if the condition is true, and the block that will be
279 /// entered if the condition is false.
280 ///
281 /// This does no checking to see if the true/false blocks have large or unsavory
282 /// instructions in them.
283 Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
284                       BasicBlock *&IfFalse);
285 } // End llvm namespace
286 
287 #endif
288