1 //===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ScheduleDAG class, which is used as the common 11 // base class for instruction schedulers. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_SCHEDULEDAG_H 16 #define LLVM_CODEGEN_SCHEDULEDAG_H 17 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/Target/TargetMachine.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/GraphTraits.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/PointerIntPair.h" 25 26 namespace llvm { 27 class AliasAnalysis; 28 class SUnit; 29 class MachineConstantPool; 30 class MachineFunction; 31 class MachineRegisterInfo; 32 class MachineInstr; 33 class TargetRegisterInfo; 34 class ScheduleDAG; 35 class SDNode; 36 class TargetInstrInfo; 37 class MCInstrDesc; 38 class TargetMachine; 39 class TargetRegisterClass; 40 template<class Graph> class GraphWriter; 41 42 /// SDep - Scheduling dependency. This represents one direction of an 43 /// edge in the scheduling DAG. 44 class SDep { 45 public: 46 /// Kind - These are the different kinds of scheduling dependencies. 47 enum Kind { 48 Data, ///< Regular data dependence (aka true-dependence). 49 Anti, ///< A register anti-dependedence (aka WAR). 50 Output, ///< A register output-dependence (aka WAW). 51 Order ///< Any other ordering dependency. 52 }; 53 54 private: 55 /// Dep - A pointer to the depending/depended-on SUnit, and an enum 56 /// indicating the kind of the dependency. 57 PointerIntPair<SUnit *, 2, Kind> Dep; 58 59 /// Contents - A union discriminated by the dependence kind. 60 union { 61 /// Reg - For Data, Anti, and Output dependencies, the associated 62 /// register. For Data dependencies that don't currently have a register 63 /// assigned, this is set to zero. 64 unsigned Reg; 65 66 /// Order - Additional information about Order dependencies. 67 struct { 68 /// isNormalMemory - True if both sides of the dependence 69 /// access memory in non-volatile and fully modeled ways. 70 bool isNormalMemory : 1; 71 72 /// isMustAlias - True if both sides of the dependence are known to 73 /// access the same memory. 74 bool isMustAlias : 1; 75 76 /// isArtificial - True if this is an artificial dependency, meaning 77 /// it is not necessary for program correctness, and may be safely 78 /// deleted if necessary. 79 bool isArtificial : 1; 80 } Order; 81 } Contents; 82 83 /// Latency - The time associated with this edge. Often this is just 84 /// the value of the Latency field of the predecessor, however advanced 85 /// models may provide additional information about specific edges. 86 unsigned Latency; 87 88 public: 89 /// SDep - Construct a null SDep. This is only for use by container 90 /// classes which require default constructors. SUnits may not 91 /// have null SDep edges. SDep()92 SDep() : Dep(0, Data) {} 93 94 /// SDep - Construct an SDep with the specified values. 95 SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0, 96 bool isNormalMemory = false, bool isMustAlias = false, 97 bool isArtificial = false) Dep(S,kind)98 : Dep(S, kind), Contents(), Latency(latency) { 99 switch (kind) { 100 case Anti: 101 case Output: 102 assert(Reg != 0 && 103 "SDep::Anti and SDep::Output must use a non-zero Reg!"); 104 // fall through 105 case Data: 106 assert(!isMustAlias && "isMustAlias only applies with SDep::Order!"); 107 assert(!isArtificial && "isArtificial only applies with SDep::Order!"); 108 Contents.Reg = Reg; 109 break; 110 case Order: 111 assert(Reg == 0 && "Reg given for non-register dependence!"); 112 Contents.Order.isNormalMemory = isNormalMemory; 113 Contents.Order.isMustAlias = isMustAlias; 114 Contents.Order.isArtificial = isArtificial; 115 break; 116 } 117 } 118 119 bool operator==(const SDep &Other) const { 120 if (Dep != Other.Dep || Latency != Other.Latency) return false; 121 switch (Dep.getInt()) { 122 case Data: 123 case Anti: 124 case Output: 125 return Contents.Reg == Other.Contents.Reg; 126 case Order: 127 return Contents.Order.isNormalMemory == 128 Other.Contents.Order.isNormalMemory && 129 Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias && 130 Contents.Order.isArtificial == Other.Contents.Order.isArtificial; 131 } 132 assert(0 && "Invalid dependency kind!"); 133 return false; 134 } 135 136 bool operator!=(const SDep &Other) const { 137 return !operator==(Other); 138 } 139 140 /// getLatency - Return the latency value for this edge, which roughly 141 /// means the minimum number of cycles that must elapse between the 142 /// predecessor and the successor, given that they have this edge 143 /// between them. getLatency()144 unsigned getLatency() const { 145 return Latency; 146 } 147 148 /// setLatency - Set the latency for this edge. setLatency(unsigned Lat)149 void setLatency(unsigned Lat) { 150 Latency = Lat; 151 } 152 153 //// getSUnit - Return the SUnit to which this edge points. getSUnit()154 SUnit *getSUnit() const { 155 return Dep.getPointer(); 156 } 157 158 //// setSUnit - Assign the SUnit to which this edge points. setSUnit(SUnit * SU)159 void setSUnit(SUnit *SU) { 160 Dep.setPointer(SU); 161 } 162 163 /// getKind - Return an enum value representing the kind of the dependence. getKind()164 Kind getKind() const { 165 return Dep.getInt(); 166 } 167 168 /// isCtrl - Shorthand for getKind() != SDep::Data. isCtrl()169 bool isCtrl() const { 170 return getKind() != Data; 171 } 172 173 /// isNormalMemory - Test if this is an Order dependence between two 174 /// memory accesses where both sides of the dependence access memory 175 /// in non-volatile and fully modeled ways. isNormalMemory()176 bool isNormalMemory() const { 177 return getKind() == Order && Contents.Order.isNormalMemory; 178 } 179 180 /// isMustAlias - Test if this is an Order dependence that is marked 181 /// as "must alias", meaning that the SUnits at either end of the edge 182 /// have a memory dependence on a known memory location. isMustAlias()183 bool isMustAlias() const { 184 return getKind() == Order && Contents.Order.isMustAlias; 185 } 186 187 /// isArtificial - Test if this is an Order dependence that is marked 188 /// as "artificial", meaning it isn't necessary for correctness. isArtificial()189 bool isArtificial() const { 190 return getKind() == Order && Contents.Order.isArtificial; 191 } 192 193 /// isAssignedRegDep - Test if this is a Data dependence that is 194 /// associated with a register. isAssignedRegDep()195 bool isAssignedRegDep() const { 196 return getKind() == Data && Contents.Reg != 0; 197 } 198 199 /// getReg - Return the register associated with this edge. This is 200 /// only valid on Data, Anti, and Output edges. On Data edges, this 201 /// value may be zero, meaning there is no associated register. getReg()202 unsigned getReg() const { 203 assert((getKind() == Data || getKind() == Anti || getKind() == Output) && 204 "getReg called on non-register dependence edge!"); 205 return Contents.Reg; 206 } 207 208 /// setReg - Assign the associated register for this edge. This is 209 /// only valid on Data, Anti, and Output edges. On Anti and Output 210 /// edges, this value must not be zero. On Data edges, the value may 211 /// be zero, which would mean that no specific register is associated 212 /// with this edge. setReg(unsigned Reg)213 void setReg(unsigned Reg) { 214 assert((getKind() == Data || getKind() == Anti || getKind() == Output) && 215 "setReg called on non-register dependence edge!"); 216 assert((getKind() != Anti || Reg != 0) && 217 "SDep::Anti edge cannot use the zero register!"); 218 assert((getKind() != Output || Reg != 0) && 219 "SDep::Output edge cannot use the zero register!"); 220 Contents.Reg = Reg; 221 } 222 }; 223 224 template <> 225 struct isPodLike<SDep> { static const bool value = true; }; 226 227 /// SUnit - Scheduling unit. This is a node in the scheduling DAG. 228 class SUnit { 229 private: 230 SDNode *Node; // Representative node. 231 MachineInstr *Instr; // Alternatively, a MachineInstr. 232 public: 233 SUnit *OrigNode; // If not this, the node from which 234 // this node was cloned. 235 236 // Preds/Succs - The SUnits before/after us in the graph. 237 SmallVector<SDep, 4> Preds; // All sunit predecessors. 238 SmallVector<SDep, 4> Succs; // All sunit successors. 239 240 typedef SmallVector<SDep, 4>::iterator pred_iterator; 241 typedef SmallVector<SDep, 4>::iterator succ_iterator; 242 typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator; 243 typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator; 244 245 unsigned NodeNum; // Entry # of node in the node vector. 246 unsigned NodeQueueId; // Queue id of node. 247 unsigned NumPreds; // # of SDep::Data preds. 248 unsigned NumSuccs; // # of SDep::Data sucss. 249 unsigned NumPredsLeft; // # of preds not scheduled. 250 unsigned NumSuccsLeft; // # of succs not scheduled. 251 unsigned short NumRegDefsLeft; // # of reg defs with no scheduled use. 252 unsigned short Latency; // Node latency. 253 bool isVRegCycle : 1; // May use and def the same vreg. 254 bool isCall : 1; // Is a function call. 255 bool isCallOp : 1; // Is a function call operand. 256 bool isTwoAddress : 1; // Is a two-address instruction. 257 bool isCommutable : 1; // Is a commutable instruction. 258 bool hasPhysRegDefs : 1; // Has physreg defs that are being used. 259 bool hasPhysRegClobbers : 1; // Has any physreg defs, used or not. 260 bool isPending : 1; // True once pending. 261 bool isAvailable : 1; // True once available. 262 bool isScheduled : 1; // True once scheduled. 263 bool isScheduleHigh : 1; // True if preferable to schedule high. 264 bool isScheduleLow : 1; // True if preferable to schedule low. 265 bool isCloned : 1; // True if this node has been cloned. 266 Sched::Preference SchedulingPref; // Scheduling preference. 267 268 private: 269 bool isDepthCurrent : 1; // True if Depth is current. 270 bool isHeightCurrent : 1; // True if Height is current. 271 unsigned Depth; // Node depth. 272 unsigned Height; // Node height. 273 public: 274 const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null. 275 const TargetRegisterClass *CopySrcRC; 276 277 /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent 278 /// an SDNode and any nodes flagged to it. 279 SUnit(SDNode *node, unsigned nodenum) 280 : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), 281 NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), 282 NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0), 283 isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false), 284 isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), 285 isPending(false), isAvailable(false), isScheduled(false), 286 isScheduleHigh(false), isScheduleLow(false), isCloned(false), 287 SchedulingPref(Sched::None), 288 isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0), 289 CopyDstRC(NULL), CopySrcRC(NULL) {} 290 291 /// SUnit - Construct an SUnit for post-regalloc scheduling to represent 292 /// a MachineInstr. 293 SUnit(MachineInstr *instr, unsigned nodenum) 294 : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), 295 NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), 296 NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0), 297 isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false), 298 isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), 299 isPending(false), isAvailable(false), isScheduled(false), 300 isScheduleHigh(false), isScheduleLow(false), isCloned(false), 301 SchedulingPref(Sched::None), 302 isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0), 303 CopyDstRC(NULL), CopySrcRC(NULL) {} 304 305 /// SUnit - Construct a placeholder SUnit. 306 SUnit() 307 : Node(0), Instr(0), OrigNode(0), NodeNum(~0u), 308 NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), 309 NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0), 310 isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false), 311 isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), 312 isPending(false), isAvailable(false), isScheduled(false), 313 isScheduleHigh(false), isScheduleLow(false), isCloned(false), 314 SchedulingPref(Sched::None), 315 isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0), 316 CopyDstRC(NULL), CopySrcRC(NULL) {} 317 318 /// setNode - Assign the representative SDNode for this SUnit. 319 /// This may be used during pre-regalloc scheduling. 320 void setNode(SDNode *N) { 321 assert(!Instr && "Setting SDNode of SUnit with MachineInstr!"); 322 Node = N; 323 } 324 325 /// getNode - Return the representative SDNode for this SUnit. 326 /// This may be used during pre-regalloc scheduling. 327 SDNode *getNode() const { 328 assert(!Instr && "Reading SDNode of SUnit with MachineInstr!"); 329 return Node; 330 } 331 332 /// isInstr - Return true if this SUnit refers to a machine instruction as 333 /// opposed to an SDNode. 334 bool isInstr() const { return Instr; } 335 336 /// setInstr - Assign the instruction for the SUnit. 337 /// This may be used during post-regalloc scheduling. 338 void setInstr(MachineInstr *MI) { 339 assert(!Node && "Setting MachineInstr of SUnit with SDNode!"); 340 Instr = MI; 341 } 342 343 /// getInstr - Return the representative MachineInstr for this SUnit. 344 /// This may be used during post-regalloc scheduling. 345 MachineInstr *getInstr() const { 346 assert(!Node && "Reading MachineInstr of SUnit with SDNode!"); 347 return Instr; 348 } 349 350 /// addPred - This adds the specified edge as a pred of the current node if 351 /// not already. It also adds the current node as a successor of the 352 /// specified node. 353 bool addPred(const SDep &D); 354 355 /// removePred - This removes the specified edge as a pred of the current 356 /// node if it exists. It also removes the current node as a successor of 357 /// the specified node. 358 void removePred(const SDep &D); 359 360 /// getDepth - Return the depth of this node, which is the length of the 361 /// maximum path up to any node which has no predecessors. 362 unsigned getDepth() const { 363 if (!isDepthCurrent) 364 const_cast<SUnit *>(this)->ComputeDepth(); 365 return Depth; 366 } 367 368 /// getHeight - Return the height of this node, which is the length of the 369 /// maximum path down to any node which has no successors. 370 unsigned getHeight() const { 371 if (!isHeightCurrent) 372 const_cast<SUnit *>(this)->ComputeHeight(); 373 return Height; 374 } 375 376 /// setDepthToAtLeast - If NewDepth is greater than this node's 377 /// depth value, set it to be the new depth value. This also 378 /// recursively marks successor nodes dirty. 379 void setDepthToAtLeast(unsigned NewDepth); 380 381 /// setDepthToAtLeast - If NewDepth is greater than this node's 382 /// depth value, set it to be the new height value. This also 383 /// recursively marks predecessor nodes dirty. 384 void setHeightToAtLeast(unsigned NewHeight); 385 386 /// setDepthDirty - Set a flag in this node to indicate that its 387 /// stored Depth value will require recomputation the next time 388 /// getDepth() is called. 389 void setDepthDirty(); 390 391 /// setHeightDirty - Set a flag in this node to indicate that its 392 /// stored Height value will require recomputation the next time 393 /// getHeight() is called. 394 void setHeightDirty(); 395 396 /// isPred - Test if node N is a predecessor of this node. 397 bool isPred(SUnit *N) { 398 for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i) 399 if (Preds[i].getSUnit() == N) 400 return true; 401 return false; 402 } 403 404 /// isSucc - Test if node N is a successor of this node. 405 bool isSucc(SUnit *N) { 406 for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i) 407 if (Succs[i].getSUnit() == N) 408 return true; 409 return false; 410 } 411 412 void dump(const ScheduleDAG *G) const; 413 void dumpAll(const ScheduleDAG *G) const; 414 void print(raw_ostream &O, const ScheduleDAG *G) const; 415 416 private: 417 void ComputeDepth(); 418 void ComputeHeight(); 419 }; 420 421 //===--------------------------------------------------------------------===// 422 /// SchedulingPriorityQueue - This interface is used to plug different 423 /// priorities computation algorithms into the list scheduler. It implements 424 /// the interface of a standard priority queue, where nodes are inserted in 425 /// arbitrary order and returned in priority order. The computation of the 426 /// priority and the representation of the queue are totally up to the 427 /// implementation to decide. 428 /// 429 class SchedulingPriorityQueue { 430 unsigned CurCycle; 431 bool HasReadyFilter; 432 public: 433 SchedulingPriorityQueue(bool rf = false): 434 CurCycle(0), HasReadyFilter(rf) {} 435 virtual ~SchedulingPriorityQueue() {} 436 437 virtual bool isBottomUp() const = 0; 438 439 virtual void initNodes(std::vector<SUnit> &SUnits) = 0; 440 virtual void addNode(const SUnit *SU) = 0; 441 virtual void updateNode(const SUnit *SU) = 0; 442 virtual void releaseState() = 0; 443 444 virtual bool empty() const = 0; 445 446 bool hasReadyFilter() const { return HasReadyFilter; } 447 448 virtual bool tracksRegPressure() const { return false; } 449 450 virtual bool isReady(SUnit *) const { 451 assert(!HasReadyFilter && "The ready filter must override isReady()"); 452 return true; 453 } 454 virtual void push(SUnit *U) = 0; 455 456 void push_all(const std::vector<SUnit *> &Nodes) { 457 for (std::vector<SUnit *>::const_iterator I = Nodes.begin(), 458 E = Nodes.end(); I != E; ++I) 459 push(*I); 460 } 461 462 virtual SUnit *pop() = 0; 463 464 virtual void remove(SUnit *SU) = 0; 465 466 virtual void dump(ScheduleDAG *) const {} 467 468 /// ScheduledNode - As each node is scheduled, this method is invoked. This 469 /// allows the priority function to adjust the priority of related 470 /// unscheduled nodes, for example. 471 /// 472 virtual void ScheduledNode(SUnit *) {} 473 474 virtual void UnscheduledNode(SUnit *) {} 475 476 void setCurCycle(unsigned Cycle) { 477 CurCycle = Cycle; 478 } 479 480 unsigned getCurCycle() const { 481 return CurCycle; 482 } 483 }; 484 485 class ScheduleDAG { 486 public: 487 MachineBasicBlock *BB; // The block in which to insert instructions 488 MachineBasicBlock::iterator InsertPos;// The position to insert instructions 489 const TargetMachine &TM; // Target processor 490 const TargetInstrInfo *TII; // Target instruction information 491 const TargetRegisterInfo *TRI; // Target processor register info 492 MachineFunction &MF; // Machine function 493 MachineRegisterInfo &MRI; // Virtual/real register map 494 std::vector<SUnit*> Sequence; // The schedule. Null SUnit*'s 495 // represent noop instructions. 496 std::vector<SUnit> SUnits; // The scheduling units. 497 SUnit EntrySU; // Special node for the region entry. 498 SUnit ExitSU; // Special node for the region exit. 499 500 #ifdef NDEBUG 501 static const bool StressSched = false; 502 #else 503 bool StressSched; 504 #endif 505 506 explicit ScheduleDAG(MachineFunction &mf); 507 508 virtual ~ScheduleDAG(); 509 510 /// getInstrDesc - Return the MCInstrDesc of this SUnit. 511 /// Return NULL for SDNodes without a machine opcode. 512 const MCInstrDesc *getInstrDesc(const SUnit *SU) const { 513 if (SU->isInstr()) return &SU->getInstr()->getDesc(); 514 return getNodeDesc(SU->getNode()); 515 } 516 517 /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered 518 /// using 'dot'. 519 /// 520 void viewGraph(); 521 522 /// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock 523 /// according to the order specified in Sequence. 524 /// 525 virtual MachineBasicBlock *EmitSchedule() = 0; 526 527 void dumpSchedule() const; 528 529 virtual void dumpNode(const SUnit *SU) const = 0; 530 531 /// getGraphNodeLabel - Return a label for an SUnit node in a visualization 532 /// of the ScheduleDAG. 533 virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0; 534 535 /// addCustomGraphFeatures - Add custom features for a visualization of 536 /// the ScheduleDAG. 537 virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {} 538 539 #ifndef NDEBUG 540 /// VerifySchedule - Verify that all SUnits were scheduled and that 541 /// their state is consistent. 542 void VerifySchedule(bool isBottomUp); 543 #endif 544 545 protected: 546 /// Run - perform scheduling. 547 /// 548 void Run(MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos); 549 550 /// BuildSchedGraph - Build SUnits and set up their Preds and Succs 551 /// to form the scheduling dependency graph. 552 /// 553 virtual void BuildSchedGraph(AliasAnalysis *AA) = 0; 554 555 /// ComputeLatency - Compute node latency. 556 /// 557 virtual void ComputeLatency(SUnit *SU) = 0; 558 559 /// ComputeOperandLatency - Override dependence edge latency using 560 /// operand use/def information 561 /// 562 virtual void ComputeOperandLatency(SUnit *, SUnit *, 563 SDep&) const { } 564 565 /// Schedule - Order nodes according to selected style, filling 566 /// in the Sequence member. 567 /// 568 virtual void Schedule() = 0; 569 570 /// ForceUnitLatencies - Return true if all scheduling edges should be given 571 /// a latency value of one. The default is to return false; schedulers may 572 /// override this as needed. 573 virtual bool ForceUnitLatencies() const { return false; } 574 575 /// EmitNoop - Emit a noop instruction. 576 /// 577 void EmitNoop(); 578 579 void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap); 580 581 private: 582 // Return the MCInstrDesc of this SDNode or NULL. 583 const MCInstrDesc *getNodeDesc(const SDNode *Node) const; 584 }; 585 586 class SUnitIterator : public std::iterator<std::forward_iterator_tag, 587 SUnit, ptrdiff_t> { 588 SUnit *Node; 589 unsigned Operand; 590 591 SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {} 592 public: 593 bool operator==(const SUnitIterator& x) const { 594 return Operand == x.Operand; 595 } 596 bool operator!=(const SUnitIterator& x) const { return !operator==(x); } 597 598 const SUnitIterator &operator=(const SUnitIterator &I) { 599 assert(I.Node==Node && "Cannot assign iterators to two different nodes!"); 600 Operand = I.Operand; 601 return *this; 602 } 603 604 pointer operator*() const { 605 return Node->Preds[Operand].getSUnit(); 606 } 607 pointer operator->() const { return operator*(); } 608 609 SUnitIterator& operator++() { // Preincrement 610 ++Operand; 611 return *this; 612 } 613 SUnitIterator operator++(int) { // Postincrement 614 SUnitIterator tmp = *this; ++*this; return tmp; 615 } 616 617 static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); } 618 static SUnitIterator end (SUnit *N) { 619 return SUnitIterator(N, (unsigned)N->Preds.size()); 620 } 621 622 unsigned getOperand() const { return Operand; } 623 const SUnit *getNode() const { return Node; } 624 /// isCtrlDep - Test if this is not an SDep::Data dependence. 625 bool isCtrlDep() const { 626 return getSDep().isCtrl(); 627 } 628 bool isArtificialDep() const { 629 return getSDep().isArtificial(); 630 } 631 const SDep &getSDep() const { 632 return Node->Preds[Operand]; 633 } 634 }; 635 636 template <> struct GraphTraits<SUnit*> { 637 typedef SUnit NodeType; 638 typedef SUnitIterator ChildIteratorType; 639 static inline NodeType *getEntryNode(SUnit *N) { return N; } 640 static inline ChildIteratorType child_begin(NodeType *N) { 641 return SUnitIterator::begin(N); 642 } 643 static inline ChildIteratorType child_end(NodeType *N) { 644 return SUnitIterator::end(N); 645 } 646 }; 647 648 template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> { 649 typedef std::vector<SUnit>::iterator nodes_iterator; 650 static nodes_iterator nodes_begin(ScheduleDAG *G) { 651 return G->SUnits.begin(); 652 } 653 static nodes_iterator nodes_end(ScheduleDAG *G) { 654 return G->SUnits.end(); 655 } 656 }; 657 658 /// ScheduleDAGTopologicalSort is a class that computes a topological 659 /// ordering for SUnits and provides methods for dynamically updating 660 /// the ordering as new edges are added. 661 /// 662 /// This allows a very fast implementation of IsReachable, for example. 663 /// 664 class ScheduleDAGTopologicalSort { 665 /// SUnits - A reference to the ScheduleDAG's SUnits. 666 std::vector<SUnit> &SUnits; 667 668 /// Index2Node - Maps topological index to the node number. 669 std::vector<int> Index2Node; 670 /// Node2Index - Maps the node number to its topological index. 671 std::vector<int> Node2Index; 672 /// Visited - a set of nodes visited during a DFS traversal. 673 BitVector Visited; 674 675 /// DFS - make a DFS traversal and mark all nodes affected by the 676 /// edge insertion. These nodes will later get new topological indexes 677 /// by means of the Shift method. 678 void DFS(const SUnit *SU, int UpperBound, bool& HasLoop); 679 680 /// Shift - reassign topological indexes for the nodes in the DAG 681 /// to preserve the topological ordering. 682 void Shift(BitVector& Visited, int LowerBound, int UpperBound); 683 684 /// Allocate - assign the topological index to the node n. 685 void Allocate(int n, int index); 686 687 public: 688 explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits); 689 690 /// InitDAGTopologicalSorting - create the initial topological 691 /// ordering from the DAG to be scheduled. 692 void InitDAGTopologicalSorting(); 693 694 /// IsReachable - Checks if SU is reachable from TargetSU. 695 bool IsReachable(const SUnit *SU, const SUnit *TargetSU); 696 697 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU 698 /// will create a cycle. 699 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU); 700 701 /// AddPred - Updates the topological ordering to accommodate an edge 702 /// to be added from SUnit X to SUnit Y. 703 void AddPred(SUnit *Y, SUnit *X); 704 705 /// RemovePred - Updates the topological ordering to accommodate an 706 /// an edge to be removed from the specified node N from the predecessors 707 /// of the current node M. 708 void RemovePred(SUnit *M, SUnit *N); 709 710 typedef std::vector<int>::iterator iterator; 711 typedef std::vector<int>::const_iterator const_iterator; 712 iterator begin() { return Index2Node.begin(); } 713 const_iterator begin() const { return Index2Node.begin(); } 714 iterator end() { return Index2Node.end(); } 715 const_iterator end() const { return Index2Node.end(); } 716 717 typedef std::vector<int>::reverse_iterator reverse_iterator; 718 typedef std::vector<int>::const_reverse_iterator const_reverse_iterator; 719 reverse_iterator rbegin() { return Index2Node.rbegin(); } 720 const_reverse_iterator rbegin() const { return Index2Node.rbegin(); } 721 reverse_iterator rend() { return Index2Node.rend(); } 722 const_reverse_iterator rend() const { return Index2Node.rend(); } 723 }; 724 } 725 726 #endif 727