• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9 // Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 
16 /*****************************************************************************
17 *** Platform checks for aligned malloc functions                           ***
18 *****************************************************************************/
19 
20 #ifndef EIGEN_MEMORY_H
21 #define EIGEN_MEMORY_H
22 
23 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
24 
25 // Try to determine automatically if malloc is already aligned.
26 
27 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
28 //   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
29 // This is true at least since glibc 2.8.
30 // This leaves the question how to detect 64-bit. According to this document,
31 //   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
32 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
33 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
34 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
35  && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
36   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
37 #else
38   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
39 #endif
40 
41 // FreeBSD 6 seems to have 16-byte aligned malloc
42 //   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
43 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
44 //   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
45 #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
46   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
47 #else
48   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
49 #endif
50 
51 #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16))     \
52  || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16))   \
53  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED              \
54  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
55   #define EIGEN_MALLOC_ALREADY_ALIGNED 1
56 #else
57   #define EIGEN_MALLOC_ALREADY_ALIGNED 0
58 #endif
59 
60 #endif
61 
62 namespace Eigen {
63 
64 namespace internal {
65 
66 EIGEN_DEVICE_FUNC
throw_std_bad_alloc()67 inline void throw_std_bad_alloc()
68 {
69   #ifdef EIGEN_EXCEPTIONS
70     throw std::bad_alloc();
71   #else
72     std::size_t huge = static_cast<std::size_t>(-1);
73     new int[huge];
74   #endif
75 }
76 
77 /*****************************************************************************
78 *** Implementation of handmade aligned functions                           ***
79 *****************************************************************************/
80 
81 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
82 
83 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
84   * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
85   */
handmade_aligned_malloc(std::size_t size)86 inline void* handmade_aligned_malloc(std::size_t size)
87 {
88   void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES);
89   if (original == 0) return 0;
90   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
91   *(reinterpret_cast<void**>(aligned) - 1) = original;
92   return aligned;
93 }
94 
95 /** \internal Frees memory allocated with handmade_aligned_malloc */
handmade_aligned_free(void * ptr)96 inline void handmade_aligned_free(void *ptr)
97 {
98   if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
99 }
100 
101 /** \internal
102   * \brief Reallocates aligned memory.
103   * Since we know that our handmade version is based on std::malloc
104   * we can use std::realloc to implement efficient reallocation.
105   */
106 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
107 {
108   if (ptr == 0) return handmade_aligned_malloc(size);
109   void *original = *(reinterpret_cast<void**>(ptr) - 1);
110   std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
111   original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES);
112   if (original == 0) return 0;
113   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
114   void *previous_aligned = static_cast<char *>(original)+previous_offset;
115   if(aligned!=previous_aligned)
116     std::memmove(aligned, previous_aligned, size);
117 
118   *(reinterpret_cast<void**>(aligned) - 1) = original;
119   return aligned;
120 }
121 
122 /*****************************************************************************
123 *** Implementation of portable aligned versions of malloc/free/realloc     ***
124 *****************************************************************************/
125 
126 #ifdef EIGEN_NO_MALLOC
check_that_malloc_is_allowed()127 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
128 {
129   eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
130 }
131 #elif defined EIGEN_RUNTIME_NO_MALLOC
132 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
133 {
134   static bool value = true;
135   if (update == 1)
136     value = new_value;
137   return value;
138 }
is_malloc_allowed()139 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
set_is_malloc_allowed(bool new_value)140 EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
check_that_malloc_is_allowed()141 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
142 {
143   eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
144 }
145 #else
check_that_malloc_is_allowed()146 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
147 {}
148 #endif
149 
150 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements.
151   * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
152   */
aligned_malloc(std::size_t size)153 EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size)
154 {
155   check_that_malloc_is_allowed();
156 
157   void *result;
158   #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
159     result = std::malloc(size);
160     #if EIGEN_DEFAULT_ALIGN_BYTES==16
161     eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator.");
162     #endif
163   #else
164     result = handmade_aligned_malloc(size);
165   #endif
166 
167   if(!result && size)
168     throw_std_bad_alloc();
169 
170   return result;
171 }
172 
173 /** \internal Frees memory allocated with aligned_malloc. */
aligned_free(void * ptr)174 EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr)
175 {
176   #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
177     std::free(ptr);
178   #else
179     handmade_aligned_free(ptr);
180   #endif
181 }
182 
183 /**
184   * \internal
185   * \brief Reallocates an aligned block of memory.
186   * \throws std::bad_alloc on allocation failure
187   */
aligned_realloc(void * ptr,std::size_t new_size,std::size_t old_size)188 inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
189 {
190   EIGEN_UNUSED_VARIABLE(old_size);
191 
192   void *result;
193 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
194   result = std::realloc(ptr,new_size);
195 #else
196   result = handmade_aligned_realloc(ptr,new_size,old_size);
197 #endif
198 
199   if (!result && new_size)
200     throw_std_bad_alloc();
201 
202   return result;
203 }
204 
205 /*****************************************************************************
206 *** Implementation of conditionally aligned functions                      ***
207 *****************************************************************************/
208 
209 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
210   * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
211   */
conditional_aligned_malloc(std::size_t size)212 template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size)
213 {
214   return aligned_malloc(size);
215 }
216 
217 template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size)
218 {
219   check_that_malloc_is_allowed();
220 
221   void *result = std::malloc(size);
222   if(!result && size)
223     throw_std_bad_alloc();
224   return result;
225 }
226 
227 /** \internal Frees memory allocated with conditional_aligned_malloc */
conditional_aligned_free(void * ptr)228 template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr)
229 {
230   aligned_free(ptr);
231 }
232 
233 template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr)
234 {
235   std::free(ptr);
236 }
237 
conditional_aligned_realloc(void * ptr,std::size_t new_size,std::size_t old_size)238 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size)
239 {
240   return aligned_realloc(ptr, new_size, old_size);
241 }
242 
243 template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t)
244 {
245   return std::realloc(ptr, new_size);
246 }
247 
248 /*****************************************************************************
249 *** Construction/destruction of array elements                             ***
250 *****************************************************************************/
251 
252 /** \internal Destructs the elements of an array.
253   * The \a size parameters tells on how many objects to call the destructor of T.
254   */
destruct_elements_of_array(T * ptr,std::size_t size)255 template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size)
256 {
257   // always destruct an array starting from the end.
258   if(ptr)
259     while(size) ptr[--size].~T();
260 }
261 
262 /** \internal Constructs the elements of an array.
263   * The \a size parameter tells on how many objects to call the constructor of T.
264   */
construct_elements_of_array(T * ptr,std::size_t size)265 template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size)
266 {
267   std::size_t i;
268   EIGEN_TRY
269   {
270       for (i = 0; i < size; ++i) ::new (ptr + i) T;
271       return ptr;
272   }
273   EIGEN_CATCH(...)
274   {
275     destruct_elements_of_array(ptr, i);
276     EIGEN_THROW;
277   }
278   return NULL;
279 }
280 
281 /*****************************************************************************
282 *** Implementation of aligned new/delete-like functions                    ***
283 *****************************************************************************/
284 
285 template<typename T>
check_size_for_overflow(std::size_t size)286 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
287 {
288   if(size > std::size_t(-1) / sizeof(T))
289     throw_std_bad_alloc();
290 }
291 
292 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
293   * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
294   * The default constructor of T is called.
295   */
aligned_new(std::size_t size)296 template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size)
297 {
298   check_size_for_overflow<T>(size);
299   T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
300   EIGEN_TRY
301   {
302     return construct_elements_of_array(result, size);
303   }
304   EIGEN_CATCH(...)
305   {
306     aligned_free(result);
307     EIGEN_THROW;
308   }
309   return result;
310 }
311 
conditional_aligned_new(std::size_t size)312 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size)
313 {
314   check_size_for_overflow<T>(size);
315   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
316   EIGEN_TRY
317   {
318     return construct_elements_of_array(result, size);
319   }
320   EIGEN_CATCH(...)
321   {
322     conditional_aligned_free<Align>(result);
323     EIGEN_THROW;
324   }
325   return result;
326 }
327 
328 /** \internal Deletes objects constructed with aligned_new
329   * The \a size parameters tells on how many objects to call the destructor of T.
330   */
aligned_delete(T * ptr,std::size_t size)331 template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size)
332 {
333   destruct_elements_of_array<T>(ptr, size);
334   aligned_free(ptr);
335 }
336 
337 /** \internal Deletes objects constructed with conditional_aligned_new
338   * The \a size parameters tells on how many objects to call the destructor of T.
339   */
conditional_aligned_delete(T * ptr,std::size_t size)340 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size)
341 {
342   destruct_elements_of_array<T>(ptr, size);
343   conditional_aligned_free<Align>(ptr);
344 }
345 
conditional_aligned_realloc_new(T * pts,std::size_t new_size,std::size_t old_size)346 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size)
347 {
348   check_size_for_overflow<T>(new_size);
349   check_size_for_overflow<T>(old_size);
350   if(new_size < old_size)
351     destruct_elements_of_array(pts+new_size, old_size-new_size);
352   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
353   if(new_size > old_size)
354   {
355     EIGEN_TRY
356     {
357       construct_elements_of_array(result+old_size, new_size-old_size);
358     }
359     EIGEN_CATCH(...)
360     {
361       conditional_aligned_free<Align>(result);
362       EIGEN_THROW;
363     }
364   }
365   return result;
366 }
367 
368 
conditional_aligned_new_auto(std::size_t size)369 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size)
370 {
371   if(size==0)
372     return 0; // short-cut. Also fixes Bug 884
373   check_size_for_overflow<T>(size);
374   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
375   if(NumTraits<T>::RequireInitialization)
376   {
377     EIGEN_TRY
378     {
379       construct_elements_of_array(result, size);
380     }
381     EIGEN_CATCH(...)
382     {
383       conditional_aligned_free<Align>(result);
384       EIGEN_THROW;
385     }
386   }
387   return result;
388 }
389 
conditional_aligned_realloc_new_auto(T * pts,std::size_t new_size,std::size_t old_size)390 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size)
391 {
392   check_size_for_overflow<T>(new_size);
393   check_size_for_overflow<T>(old_size);
394   if(NumTraits<T>::RequireInitialization && (new_size < old_size))
395     destruct_elements_of_array(pts+new_size, old_size-new_size);
396   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
397   if(NumTraits<T>::RequireInitialization && (new_size > old_size))
398   {
399     EIGEN_TRY
400     {
401       construct_elements_of_array(result+old_size, new_size-old_size);
402     }
403     EIGEN_CATCH(...)
404     {
405       conditional_aligned_free<Align>(result);
406       EIGEN_THROW;
407     }
408   }
409   return result;
410 }
411 
conditional_aligned_delete_auto(T * ptr,std::size_t size)412 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size)
413 {
414   if(NumTraits<T>::RequireInitialization)
415     destruct_elements_of_array<T>(ptr, size);
416   conditional_aligned_free<Align>(ptr);
417 }
418 
419 /****************************************************************************/
420 
421 /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment.
422   *
423   * \tparam Alignment requested alignment in Bytes.
424   * \param array the address of the start of the array
425   * \param size the size of the array
426   *
427   * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar,
428   * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If
429   * packet size for the given scalar type is 1, then everything is considered well-aligned.
430   *
431   * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a
432   * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
433   * example with Scalar=double on certain 32-bit platforms, see bug #79.
434   *
435   * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
436   * \sa first_default_aligned()
437   */
438 template<int Alignment, typename Scalar, typename Index>
first_aligned(const Scalar * array,Index size)439 EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size)
440 {
441   const Index ScalarSize = sizeof(Scalar);
442   const Index AlignmentSize = Alignment / ScalarSize;
443   const Index AlignmentMask = AlignmentSize-1;
444 
445   if(AlignmentSize<=1)
446   {
447     // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
448     // so that all elements of the array have the same alignment.
449     return 0;
450   }
451   else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0)
452   {
453     // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size.
454     // Consequently, no element of the array is well aligned.
455     return size;
456   }
457   else
458   {
459     Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
460     return (first < size) ? first : size;
461   }
462 }
463 
464 /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement.
465    * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */
466 template<typename Scalar, typename Index>
first_default_aligned(const Scalar * array,Index size)467 EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size)
468 {
469   typedef typename packet_traits<Scalar>::type DefaultPacketType;
470   return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
471 }
472 
473 /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
474   */
475 template<typename Index>
first_multiple(Index size,Index base)476 inline Index first_multiple(Index size, Index base)
477 {
478   return ((size+base-1)/base)*base;
479 }
480 
481 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
482 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
483 template<typename T, bool UseMemcpy> struct smart_copy_helper;
484 
smart_copy(const T * start,const T * end,T * target)485 template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target)
486 {
487   smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
488 }
489 
490 template<typename T> struct smart_copy_helper<T,true> {
491   EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
492   {
493     IntPtr size = IntPtr(end)-IntPtr(start);
494     if(size==0) return;
495     eigen_internal_assert(start!=0 && end!=0 && target!=0);
496     memcpy(target, start, size);
497   }
498 };
499 
500 template<typename T> struct smart_copy_helper<T,false> {
501   EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
502   { std::copy(start, end, target); }
503 };
504 
505 // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
506 template<typename T, bool UseMemmove> struct smart_memmove_helper;
507 
508 template<typename T> void smart_memmove(const T* start, const T* end, T* target)
509 {
510   smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
511 }
512 
513 template<typename T> struct smart_memmove_helper<T,true> {
514   static inline void run(const T* start, const T* end, T* target)
515   {
516     IntPtr size = IntPtr(end)-IntPtr(start);
517     if(size==0) return;
518     eigen_internal_assert(start!=0 && end!=0 && target!=0);
519     std::memmove(target, start, size);
520   }
521 };
522 
523 template<typename T> struct smart_memmove_helper<T,false> {
524   static inline void run(const T* start, const T* end, T* target)
525   {
526     if (UIntPtr(target) < UIntPtr(start))
527     {
528       std::copy(start, end, target);
529     }
530     else
531     {
532       std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
533       std::copy_backward(start, end, target + count);
534     }
535   }
536 };
537 
538 
539 /*****************************************************************************
540 *** Implementation of runtime stack allocation (falling back to malloc)    ***
541 *****************************************************************************/
542 
543 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
544 // to the appropriate stack allocation function
545 #ifndef EIGEN_ALLOCA
546   #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
547     #define EIGEN_ALLOCA alloca
548   #elif EIGEN_COMP_MSVC
549     #define EIGEN_ALLOCA _alloca
550   #endif
551 #endif
552 
553 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
554 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
555 template<typename T> class aligned_stack_memory_handler : noncopyable
556 {
557   public:
558     /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
559      * Note that \a ptr can be 0 regardless of the other parameters.
560      * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
561      * In this case, the buffer elements will also be destructed when this handler will be destructed.
562      * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
563      **/
564     aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
565       : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
566     {
567       if(NumTraits<T>::RequireInitialization && m_ptr)
568         Eigen::internal::construct_elements_of_array(m_ptr, size);
569     }
570     ~aligned_stack_memory_handler()
571     {
572       if(NumTraits<T>::RequireInitialization && m_ptr)
573         Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
574       if(m_deallocate)
575         Eigen::internal::aligned_free(m_ptr);
576     }
577   protected:
578     T* m_ptr;
579     std::size_t m_size;
580     bool m_deallocate;
581 };
582 
583 template<typename T> class scoped_array : noncopyable
584 {
585   T* m_ptr;
586 public:
587   explicit scoped_array(std::ptrdiff_t size)
588   {
589     m_ptr = new T[size];
590   }
591   ~scoped_array()
592   {
593     delete[] m_ptr;
594   }
595   T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
596   const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
597   T* &ptr() { return m_ptr; }
598   const T* ptr() const { return m_ptr; }
599   operator const T*() const { return m_ptr; }
600 };
601 
602 template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
603 {
604   std::swap(a.ptr(),b.ptr());
605 }
606 
607 } // end namespace internal
608 
609 /** \internal
610   * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
611   * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
612   * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
613   * The allocated buffer is automatically deleted when exiting the scope of this declaration.
614   * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
615   * Here is an example:
616   * \code
617   * {
618   *   ei_declare_aligned_stack_constructed_variable(float,data,size,0);
619   *   // use data[0] to data[size-1]
620   * }
621   * \endcode
622   * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
623   */
624 #ifdef EIGEN_ALLOCA
625 
626   #if EIGEN_DEFAULT_ALIGN_BYTES>0
627     // We always manually re-align the result of EIGEN_ALLOCA.
628     // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
629     #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)))
630   #else
631     #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
632   #endif
633 
634   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
635     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
636     TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
637                : reinterpret_cast<TYPE*>( \
638                       (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
639                     : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
640     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
641 
642 #else
643 
644   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
645     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
646     TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
647     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
648 
649 #endif
650 
651 
652 /*****************************************************************************
653 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
654 *****************************************************************************/
655 
656 #if EIGEN_MAX_ALIGN_BYTES!=0
657   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
658       void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
659         EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
660         EIGEN_CATCH (...) { return 0; } \
661       }
662   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
663       void *operator new(std::size_t size) { \
664         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
665       } \
666       void *operator new[](std::size_t size) { \
667         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
668       } \
669       void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
670       void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
671       void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
672       void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
673       /* in-place new and delete. since (at least afaik) there is no actual   */ \
674       /* memory allocated we can safely let the default implementation handle */ \
675       /* this particular case. */ \
676       static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \
677       static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \
678       void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \
679       void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \
680       /* nothrow-new (returns zero instead of std::bad_alloc) */ \
681       EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
682       void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
683         Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
684       } \
685       typedef void eigen_aligned_operator_new_marker_type;
686 #else
687   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
688 #endif
689 
690 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
691 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
692   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0)))
693 
694 /****************************************************************************/
695 
696 /** \class aligned_allocator
697 * \ingroup Core_Module
698 *
699 * \brief STL compatible allocator to use with with 16 byte aligned types
700 *
701 * Example:
702 * \code
703 * // Matrix4f requires 16 bytes alignment:
704 * std::map< int, Matrix4f, std::less<int>,
705 *           aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
706 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
707 * std::map< int, Vector3f > my_map_vec3;
708 * \endcode
709 *
710 * \sa \blank \ref TopicStlContainers.
711 */
712 template<class T>
713 class aligned_allocator : public std::allocator<T>
714 {
715 public:
716   typedef std::size_t     size_type;
717   typedef std::ptrdiff_t  difference_type;
718   typedef T*              pointer;
719   typedef const T*        const_pointer;
720   typedef T&              reference;
721   typedef const T&        const_reference;
722   typedef T               value_type;
723 
724   template<class U>
725   struct rebind
726   {
727     typedef aligned_allocator<U> other;
728   };
729 
730   aligned_allocator() : std::allocator<T>() {}
731 
732   aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
733 
734   template<class U>
735   aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
736 
737   ~aligned_allocator() {}
738 
739   pointer allocate(size_type num, const void* /*hint*/ = 0)
740   {
741     internal::check_size_for_overflow<T>(num);
742     return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
743   }
744 
745   void deallocate(pointer p, size_type /*num*/)
746   {
747     internal::aligned_free(p);
748   }
749 };
750 
751 //---------- Cache sizes ----------
752 
753 #if !defined(EIGEN_NO_CPUID)
754 #  if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
755 #    if defined(__PIC__) && EIGEN_ARCH_i386
756        // Case for x86 with PIC
757 #      define EIGEN_CPUID(abcd,func,id) \
758          __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
759 #    elif defined(__PIC__) && EIGEN_ARCH_x86_64
760        // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
761        // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
762 #      define EIGEN_CPUID(abcd,func,id) \
763         __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
764 #    else
765        // Case for x86_64 or x86 w/o PIC
766 #      define EIGEN_CPUID(abcd,func,id) \
767          __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
768 #    endif
769 #  elif EIGEN_COMP_MSVC
770 #    if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
771 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
772 #    endif
773 #  endif
774 #endif
775 
776 namespace internal {
777 
778 #ifdef EIGEN_CPUID
779 
780 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
781 {
782   return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
783 }
784 
785 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
786 {
787   int abcd[4];
788   l1 = l2 = l3 = 0;
789   int cache_id = 0;
790   int cache_type = 0;
791   do {
792     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
793     EIGEN_CPUID(abcd,0x4,cache_id);
794     cache_type  = (abcd[0] & 0x0F) >> 0;
795     if(cache_type==1||cache_type==3) // data or unified cache
796     {
797       int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
798       int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
799       int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
800       int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
801       int sets        = (abcd[2]);                    // C[31:0]
802 
803       int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
804 
805       switch(cache_level)
806       {
807         case 1: l1 = cache_size; break;
808         case 2: l2 = cache_size; break;
809         case 3: l3 = cache_size; break;
810         default: break;
811       }
812     }
813     cache_id++;
814   } while(cache_type>0 && cache_id<16);
815 }
816 
817 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
818 {
819   int abcd[4];
820   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
821   l1 = l2 = l3 = 0;
822   EIGEN_CPUID(abcd,0x00000002,0);
823   unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
824   bool check_for_p2_core2 = false;
825   for(int i=0; i<14; ++i)
826   {
827     switch(bytes[i])
828     {
829       case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
830       case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
831       case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
832       case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
833       case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
834       case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
835       case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
836       case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
837       case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
838       case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
839       case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
840       case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
841       case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
842       case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
843       case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
844       case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
845       case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
846       case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
847       case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
848       case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
849       case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
850       case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
851       case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
852       case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
853       case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
854       case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
855       case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
856       case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
857       case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
858       case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
859       case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
860       case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
861       case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
862       case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
863       case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
864       case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
865       case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
866       case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
867       case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
868       case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
869       case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
870       case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
871       case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
872       case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
873       case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
874       case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
875       case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
876       case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
877       case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
878       case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
879       case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
880       case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
881       case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
882       case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
883       case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
884       case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
885       case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
886 
887       default: break;
888     }
889   }
890   if(check_for_p2_core2 && l2 == l3)
891     l3 = 0;
892   l1 *= 1024;
893   l2 *= 1024;
894   l3 *= 1024;
895 }
896 
897 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
898 {
899   if(max_std_funcs>=4)
900     queryCacheSizes_intel_direct(l1,l2,l3);
901   else
902     queryCacheSizes_intel_codes(l1,l2,l3);
903 }
904 
905 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
906 {
907   int abcd[4];
908   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
909   EIGEN_CPUID(abcd,0x80000005,0);
910   l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
911   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
912   EIGEN_CPUID(abcd,0x80000006,0);
913   l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
914   l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
915 }
916 #endif
917 
918 /** \internal
919  * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
920 inline void queryCacheSizes(int& l1, int& l2, int& l3)
921 {
922   #ifdef EIGEN_CPUID
923   int abcd[4];
924   const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
925   const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
926   const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
927 
928   // identify the CPU vendor
929   EIGEN_CPUID(abcd,0x0,0);
930   int max_std_funcs = abcd[1];
931   if(cpuid_is_vendor(abcd,GenuineIntel))
932     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
933   else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
934     queryCacheSizes_amd(l1,l2,l3);
935   else
936     // by default let's use Intel's API
937     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
938 
939   // here is the list of other vendors:
940 //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
941 //   ||cpuid_is_vendor(abcd,"CyrixInstead")
942 //   ||cpuid_is_vendor(abcd,"CentaurHauls")
943 //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
944 //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
945 //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
946 //   ||cpuid_is_vendor(abcd,"Geode by NSC")
947 //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
948 //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
949 //   ||cpuid_is_vendor(abcd,"NexGenDriven")
950   #else
951   l1 = l2 = l3 = -1;
952   #endif
953 }
954 
955 /** \internal
956  * \returns the size in Bytes of the L1 data cache */
957 inline int queryL1CacheSize()
958 {
959   int l1(-1), l2, l3;
960   queryCacheSizes(l1,l2,l3);
961   return l1;
962 }
963 
964 /** \internal
965  * \returns the size in Bytes of the L2 or L3 cache if this later is present */
966 inline int queryTopLevelCacheSize()
967 {
968   int l1, l2(-1), l3(-1);
969   queryCacheSizes(l1,l2,l3);
970   return (std::max)(l2,l3);
971 }
972 
973 } // end namespace internal
974 
975 } // end namespace Eigen
976 
977 #endif // EIGEN_MEMORY_H
978