• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Christian König <christian.koenig@amd.com>
25  *      Marek Olšák <maraeo@gmail.com>
26  */
27 
28 #include "si_pipe.h"
29 #include "sid.h"
30 #include "radeon/r600_cs.h"
31 
32 #include "tgsi/tgsi_parse.h"
33 #include "tgsi/tgsi_ureg.h"
34 #include "util/hash_table.h"
35 #include "util/crc32.h"
36 #include "util/u_memory.h"
37 #include "util/u_prim.h"
38 
39 /* SHADER_CACHE */
40 
41 /**
42  * Return the TGSI binary in a buffer. The first 4 bytes contain its size as
43  * integer.
44  */
si_get_tgsi_binary(struct si_shader_selector * sel)45 static void *si_get_tgsi_binary(struct si_shader_selector *sel)
46 {
47 	unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
48 			     sizeof(struct tgsi_token);
49 	unsigned size = 4 + tgsi_size + sizeof(sel->so);
50 	char *result = (char*)MALLOC(size);
51 
52 	if (!result)
53 		return NULL;
54 
55 	*((uint32_t*)result) = size;
56 	memcpy(result + 4, sel->tokens, tgsi_size);
57 	memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
58 	return result;
59 }
60 
61 /** Copy "data" to "ptr" and return the next dword following copied data. */
write_data(uint32_t * ptr,const void * data,unsigned size)62 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
63 {
64 	/* data may be NULL if size == 0 */
65 	if (size)
66 		memcpy(ptr, data, size);
67 	ptr += DIV_ROUND_UP(size, 4);
68 	return ptr;
69 }
70 
71 /** Read data from "ptr". Return the next dword following the data. */
read_data(uint32_t * ptr,void * data,unsigned size)72 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
73 {
74 	memcpy(data, ptr, size);
75 	ptr += DIV_ROUND_UP(size, 4);
76 	return ptr;
77 }
78 
79 /**
80  * Write the size as uint followed by the data. Return the next dword
81  * following the copied data.
82  */
write_chunk(uint32_t * ptr,const void * data,unsigned size)83 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
84 {
85 	*ptr++ = size;
86 	return write_data(ptr, data, size);
87 }
88 
89 /**
90  * Read the size as uint followed by the data. Return both via parameters.
91  * Return the next dword following the data.
92  */
read_chunk(uint32_t * ptr,void ** data,unsigned * size)93 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
94 {
95 	*size = *ptr++;
96 	assert(*data == NULL);
97 	if (!*size)
98 		return ptr;
99 	*data = malloc(*size);
100 	return read_data(ptr, *data, *size);
101 }
102 
103 /**
104  * Return the shader binary in a buffer. The first 4 bytes contain its size
105  * as integer.
106  */
si_get_shader_binary(struct si_shader * shader)107 static void *si_get_shader_binary(struct si_shader *shader)
108 {
109 	/* There is always a size of data followed by the data itself. */
110 	unsigned relocs_size = shader->binary.reloc_count *
111 			       sizeof(shader->binary.relocs[0]);
112 	unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
113 	unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
114 				strlen(shader->binary.llvm_ir_string) + 1 : 0;
115 	unsigned size =
116 		4 + /* total size */
117 		4 + /* CRC32 of the data below */
118 		align(sizeof(shader->config), 4) +
119 		align(sizeof(shader->info), 4) +
120 		4 + align(shader->binary.code_size, 4) +
121 		4 + align(shader->binary.rodata_size, 4) +
122 		4 + align(relocs_size, 4) +
123 		4 + align(disasm_size, 4) +
124 		4 + align(llvm_ir_size, 4);
125 	void *buffer = CALLOC(1, size);
126 	uint32_t *ptr = (uint32_t*)buffer;
127 
128 	if (!buffer)
129 		return NULL;
130 
131 	*ptr++ = size;
132 	ptr++; /* CRC32 is calculated at the end. */
133 
134 	ptr = write_data(ptr, &shader->config, sizeof(shader->config));
135 	ptr = write_data(ptr, &shader->info, sizeof(shader->info));
136 	ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
137 	ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
138 	ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
139 	ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
140 	ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
141 	assert((char *)ptr - (char *)buffer == size);
142 
143 	/* Compute CRC32. */
144 	ptr = (uint32_t*)buffer;
145 	ptr++;
146 	*ptr = util_hash_crc32(ptr + 1, size - 8);
147 
148 	return buffer;
149 }
150 
si_load_shader_binary(struct si_shader * shader,void * binary)151 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
152 {
153 	uint32_t *ptr = (uint32_t*)binary;
154 	uint32_t size = *ptr++;
155 	uint32_t crc32 = *ptr++;
156 	unsigned chunk_size;
157 
158 	if (util_hash_crc32(ptr, size - 8) != crc32) {
159 		fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
160 		return false;
161 	}
162 
163 	ptr = read_data(ptr, &shader->config, sizeof(shader->config));
164 	ptr = read_data(ptr, &shader->info, sizeof(shader->info));
165 	ptr = read_chunk(ptr, (void**)&shader->binary.code,
166 			 &shader->binary.code_size);
167 	ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
168 			 &shader->binary.rodata_size);
169 	ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
170 	shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
171 	ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
172 	ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
173 
174 	return true;
175 }
176 
177 /**
178  * Insert a shader into the cache. It's assumed the shader is not in the cache.
179  * Use si_shader_cache_load_shader before calling this.
180  *
181  * Returns false on failure, in which case the tgsi_binary should be freed.
182  */
si_shader_cache_insert_shader(struct si_screen * sscreen,void * tgsi_binary,struct si_shader * shader)183 static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
184 					  void *tgsi_binary,
185 					  struct si_shader *shader)
186 {
187 	void *hw_binary;
188 	struct hash_entry *entry;
189 
190 	entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
191 	if (entry)
192 		return false; /* already added */
193 
194 	hw_binary = si_get_shader_binary(shader);
195 	if (!hw_binary)
196 		return false;
197 
198 	if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
199 				    hw_binary) == NULL) {
200 		FREE(hw_binary);
201 		return false;
202 	}
203 
204 	return true;
205 }
206 
si_shader_cache_load_shader(struct si_screen * sscreen,void * tgsi_binary,struct si_shader * shader)207 static bool si_shader_cache_load_shader(struct si_screen *sscreen,
208 					void *tgsi_binary,
209 				        struct si_shader *shader)
210 {
211 	struct hash_entry *entry =
212 		_mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
213 	if (!entry)
214 		return false;
215 
216 	if (!si_load_shader_binary(shader, entry->data))
217 		return false;
218 
219 	p_atomic_inc(&sscreen->b.num_shader_cache_hits);
220 	return true;
221 }
222 
si_shader_cache_key_hash(const void * key)223 static uint32_t si_shader_cache_key_hash(const void *key)
224 {
225 	/* The first dword is the key size. */
226 	return util_hash_crc32(key, *(uint32_t*)key);
227 }
228 
si_shader_cache_key_equals(const void * a,const void * b)229 static bool si_shader_cache_key_equals(const void *a, const void *b)
230 {
231 	uint32_t *keya = (uint32_t*)a;
232 	uint32_t *keyb = (uint32_t*)b;
233 
234 	/* The first dword is the key size. */
235 	if (*keya != *keyb)
236 		return false;
237 
238 	return memcmp(keya, keyb, *keya) == 0;
239 }
240 
si_destroy_shader_cache_entry(struct hash_entry * entry)241 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
242 {
243 	FREE((void*)entry->key);
244 	FREE(entry->data);
245 }
246 
si_init_shader_cache(struct si_screen * sscreen)247 bool si_init_shader_cache(struct si_screen *sscreen)
248 {
249 	pipe_mutex_init(sscreen->shader_cache_mutex);
250 	sscreen->shader_cache =
251 		_mesa_hash_table_create(NULL,
252 					si_shader_cache_key_hash,
253 					si_shader_cache_key_equals);
254 	return sscreen->shader_cache != NULL;
255 }
256 
si_destroy_shader_cache(struct si_screen * sscreen)257 void si_destroy_shader_cache(struct si_screen *sscreen)
258 {
259 	if (sscreen->shader_cache)
260 		_mesa_hash_table_destroy(sscreen->shader_cache,
261 					 si_destroy_shader_cache_entry);
262 	pipe_mutex_destroy(sscreen->shader_cache_mutex);
263 }
264 
265 /* SHADER STATES */
266 
si_set_tesseval_regs(struct si_screen * sscreen,struct si_shader * shader,struct si_pm4_state * pm4)267 static void si_set_tesseval_regs(struct si_screen *sscreen,
268 				 struct si_shader *shader,
269 				 struct si_pm4_state *pm4)
270 {
271 	struct tgsi_shader_info *info = &shader->selector->info;
272 	unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
273 	unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
274 	bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
275 	bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
276 	unsigned type, partitioning, topology, distribution_mode;
277 
278 	switch (tes_prim_mode) {
279 	case PIPE_PRIM_LINES:
280 		type = V_028B6C_TESS_ISOLINE;
281 		break;
282 	case PIPE_PRIM_TRIANGLES:
283 		type = V_028B6C_TESS_TRIANGLE;
284 		break;
285 	case PIPE_PRIM_QUADS:
286 		type = V_028B6C_TESS_QUAD;
287 		break;
288 	default:
289 		assert(0);
290 		return;
291 	}
292 
293 	switch (tes_spacing) {
294 	case PIPE_TESS_SPACING_FRACTIONAL_ODD:
295 		partitioning = V_028B6C_PART_FRAC_ODD;
296 		break;
297 	case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
298 		partitioning = V_028B6C_PART_FRAC_EVEN;
299 		break;
300 	case PIPE_TESS_SPACING_EQUAL:
301 		partitioning = V_028B6C_PART_INTEGER;
302 		break;
303 	default:
304 		assert(0);
305 		return;
306 	}
307 
308 	if (tes_point_mode)
309 		topology = V_028B6C_OUTPUT_POINT;
310 	else if (tes_prim_mode == PIPE_PRIM_LINES)
311 		topology = V_028B6C_OUTPUT_LINE;
312 	else if (tes_vertex_order_cw)
313 		/* for some reason, this must be the other way around */
314 		topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
315 	else
316 		topology = V_028B6C_OUTPUT_TRIANGLE_CW;
317 
318 	if (sscreen->has_distributed_tess) {
319 		if (sscreen->b.family == CHIP_FIJI ||
320 		    sscreen->b.family >= CHIP_POLARIS10)
321 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
322 		else
323 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
324 	} else
325 		distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
326 
327 	si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
328 		       S_028B6C_TYPE(type) |
329 		       S_028B6C_PARTITIONING(partitioning) |
330 		       S_028B6C_TOPOLOGY(topology) |
331 		       S_028B6C_DISTRIBUTION_MODE(distribution_mode));
332 }
333 
si_get_shader_pm4_state(struct si_shader * shader)334 static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
335 {
336 	if (shader->pm4)
337 		si_pm4_clear_state(shader->pm4);
338 	else
339 		shader->pm4 = CALLOC_STRUCT(si_pm4_state);
340 
341 	return shader->pm4;
342 }
343 
si_shader_ls(struct si_shader * shader)344 static void si_shader_ls(struct si_shader *shader)
345 {
346 	struct si_pm4_state *pm4;
347 	unsigned vgpr_comp_cnt;
348 	uint64_t va;
349 
350 	pm4 = si_get_shader_pm4_state(shader);
351 	if (!pm4)
352 		return;
353 
354 	va = shader->bo->gpu_address;
355 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
356 
357 	/* We need at least 2 components for LS.
358 	 * VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
359 	vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
360 
361 	si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
362 	si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
363 
364 	shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
365 			   S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
366 		           S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
367 			   S_00B528_DX10_CLAMP(1) |
368 			   S_00B528_FLOAT_MODE(shader->config.float_mode);
369 	shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
370 			   S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
371 }
372 
si_shader_hs(struct si_shader * shader)373 static void si_shader_hs(struct si_shader *shader)
374 {
375 	struct si_pm4_state *pm4;
376 	uint64_t va;
377 
378 	pm4 = si_get_shader_pm4_state(shader);
379 	if (!pm4)
380 		return;
381 
382 	va = shader->bo->gpu_address;
383 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
384 
385 	si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
386 	si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
387 	si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
388 		       S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
389 		       S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
390 		       S_00B428_DX10_CLAMP(1) |
391 		       S_00B428_FLOAT_MODE(shader->config.float_mode));
392 	si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
393 		       S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
394 		       S_00B42C_OC_LDS_EN(1) |
395 		       S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
396 }
397 
si_shader_es(struct si_screen * sscreen,struct si_shader * shader)398 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
399 {
400 	struct si_pm4_state *pm4;
401 	unsigned num_user_sgprs;
402 	unsigned vgpr_comp_cnt;
403 	uint64_t va;
404 	unsigned oc_lds_en;
405 
406 	pm4 = si_get_shader_pm4_state(shader);
407 	if (!pm4)
408 		return;
409 
410 	va = shader->bo->gpu_address;
411 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
412 
413 	if (shader->selector->type == PIPE_SHADER_VERTEX) {
414 		vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
415 		num_user_sgprs = SI_ES_NUM_USER_SGPR;
416 	} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
417 		vgpr_comp_cnt = 3; /* all components are needed for TES */
418 		num_user_sgprs = SI_TES_NUM_USER_SGPR;
419 	} else
420 		unreachable("invalid shader selector type");
421 
422 	oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
423 
424 	si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
425 		       shader->selector->esgs_itemsize / 4);
426 	si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
427 	si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
428 	si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
429 		       S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
430 		       S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
431 		       S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
432 		       S_00B328_DX10_CLAMP(1) |
433 		       S_00B328_FLOAT_MODE(shader->config.float_mode));
434 	si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
435 		       S_00B32C_USER_SGPR(num_user_sgprs) |
436 		       S_00B32C_OC_LDS_EN(oc_lds_en) |
437 		       S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
438 
439 	if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
440 		si_set_tesseval_regs(sscreen, shader, pm4);
441 }
442 
443 /**
444  * Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
445  * geometry shader.
446  */
si_vgt_gs_mode(struct si_shader_selector * sel)447 static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
448 {
449 	unsigned gs_max_vert_out = sel->gs_max_out_vertices;
450 	unsigned cut_mode;
451 
452 	if (gs_max_vert_out <= 128) {
453 		cut_mode = V_028A40_GS_CUT_128;
454 	} else if (gs_max_vert_out <= 256) {
455 		cut_mode = V_028A40_GS_CUT_256;
456 	} else if (gs_max_vert_out <= 512) {
457 		cut_mode = V_028A40_GS_CUT_512;
458 	} else {
459 		assert(gs_max_vert_out <= 1024);
460 		cut_mode = V_028A40_GS_CUT_1024;
461 	}
462 
463 	return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
464 	       S_028A40_CUT_MODE(cut_mode)|
465 	       S_028A40_ES_WRITE_OPTIMIZE(1) |
466 	       S_028A40_GS_WRITE_OPTIMIZE(1);
467 }
468 
si_shader_gs(struct si_shader * shader)469 static void si_shader_gs(struct si_shader *shader)
470 {
471 	struct si_shader_selector *sel = shader->selector;
472 	const ubyte *num_components = sel->info.num_stream_output_components;
473 	unsigned gs_num_invocations = sel->gs_num_invocations;
474 	struct si_pm4_state *pm4;
475 	uint64_t va;
476 	unsigned max_stream = sel->max_gs_stream;
477 	unsigned offset;
478 
479 	pm4 = si_get_shader_pm4_state(shader);
480 	if (!pm4)
481 		return;
482 
483 	si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader->selector));
484 
485 	offset = num_components[0] * sel->gs_max_out_vertices;
486 	si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
487 	if (max_stream >= 1)
488 		offset += num_components[1] * sel->gs_max_out_vertices;
489 	si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
490 	if (max_stream >= 2)
491 		offset += num_components[2] * sel->gs_max_out_vertices;
492 	si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
493 	if (max_stream >= 3)
494 		offset += num_components[3] * sel->gs_max_out_vertices;
495 	si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
496 
497 	/* The GSVS_RING_ITEMSIZE register takes 15 bits */
498 	assert(offset < (1 << 15));
499 
500 	si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
501 
502 	si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
503 	si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
504 	si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
505 	si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
506 
507 	si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
508 		       S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
509 		       S_028B90_ENABLE(gs_num_invocations > 0));
510 
511 	va = shader->bo->gpu_address;
512 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
513 	si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
514 	si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
515 
516 	si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
517 		       S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
518 		       S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
519 		       S_00B228_DX10_CLAMP(1) |
520 		       S_00B228_FLOAT_MODE(shader->config.float_mode));
521 	si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
522 		       S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
523 		       S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
524 }
525 
526 /**
527  * Compute the state for \p shader, which will run as a vertex shader on the
528  * hardware.
529  *
530  * If \p gs is non-NULL, it points to the geometry shader for which this shader
531  * is the copy shader.
532  */
si_shader_vs(struct si_screen * sscreen,struct si_shader * shader,struct si_shader_selector * gs)533 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
534                          struct si_shader_selector *gs)
535 {
536 	struct si_pm4_state *pm4;
537 	unsigned num_user_sgprs;
538 	unsigned nparams, vgpr_comp_cnt;
539 	uint64_t va;
540 	unsigned oc_lds_en;
541 	unsigned window_space =
542 	   shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
543 	bool enable_prim_id = si_vs_exports_prim_id(shader);
544 
545 	pm4 = si_get_shader_pm4_state(shader);
546 	if (!pm4)
547 		return;
548 
549 	/* We always write VGT_GS_MODE in the VS state, because every switch
550 	 * between different shader pipelines involving a different GS or no
551 	 * GS at all involves a switch of the VS (different GS use different
552 	 * copy shaders). On the other hand, when the API switches from a GS to
553 	 * no GS and then back to the same GS used originally, the GS state is
554 	 * not sent again.
555 	 */
556 	if (!gs) {
557 		si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
558 			       S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
559 		si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
560 	} else {
561 		si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
562 		si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
563 	}
564 
565 	va = shader->bo->gpu_address;
566 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
567 
568 	if (gs) {
569 		vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
570 		num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
571 	} else if (shader->selector->type == PIPE_SHADER_VERTEX) {
572 		vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
573 		num_user_sgprs = SI_VS_NUM_USER_SGPR;
574 	} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
575 		vgpr_comp_cnt = 3; /* all components are needed for TES */
576 		num_user_sgprs = SI_TES_NUM_USER_SGPR;
577 	} else
578 		unreachable("invalid shader selector type");
579 
580 	/* VS is required to export at least one param. */
581 	nparams = MAX2(shader->info.nr_param_exports, 1);
582 	si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
583 		       S_0286C4_VS_EXPORT_COUNT(nparams - 1));
584 
585 	si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
586 		       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
587 		       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
588 						   V_02870C_SPI_SHADER_4COMP :
589 						   V_02870C_SPI_SHADER_NONE) |
590 		       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
591 						   V_02870C_SPI_SHADER_4COMP :
592 						   V_02870C_SPI_SHADER_NONE) |
593 		       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
594 						   V_02870C_SPI_SHADER_4COMP :
595 						   V_02870C_SPI_SHADER_NONE));
596 
597 	oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
598 
599 	si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
600 	si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
601 	si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
602 		       S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
603 		       S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
604 		       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
605 		       S_00B128_DX10_CLAMP(1) |
606 		       S_00B128_FLOAT_MODE(shader->config.float_mode));
607 	si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
608 		       S_00B12C_USER_SGPR(num_user_sgprs) |
609 		       S_00B12C_OC_LDS_EN(oc_lds_en) |
610 		       S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
611 		       S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
612 		       S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
613 		       S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
614 		       S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
615 		       S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
616 	if (window_space)
617 		si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
618 			       S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
619 	else
620 		si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
621 			       S_028818_VTX_W0_FMT(1) |
622 			       S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
623 			       S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
624 			       S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
625 
626 	if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
627 		si_set_tesseval_regs(sscreen, shader, pm4);
628 }
629 
si_get_ps_num_interp(struct si_shader * ps)630 static unsigned si_get_ps_num_interp(struct si_shader *ps)
631 {
632 	struct tgsi_shader_info *info = &ps->selector->info;
633 	unsigned num_colors = !!(info->colors_read & 0x0f) +
634 			      !!(info->colors_read & 0xf0);
635 	unsigned num_interp = ps->selector->info.num_inputs +
636 			      (ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
637 
638 	assert(num_interp <= 32);
639 	return MIN2(num_interp, 32);
640 }
641 
si_get_spi_shader_col_format(struct si_shader * shader)642 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
643 {
644 	unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
645 	unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
646 
647 	/* If the i-th target format is set, all previous target formats must
648 	 * be non-zero to avoid hangs.
649 	 */
650 	for (i = 0; i < num_targets; i++)
651 		if (!(value & (0xf << (i * 4))))
652 			value |= V_028714_SPI_SHADER_32_R << (i * 4);
653 
654 	return value;
655 }
656 
si_get_cb_shader_mask(unsigned spi_shader_col_format)657 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
658 {
659 	unsigned i, cb_shader_mask = 0;
660 
661 	for (i = 0; i < 8; i++) {
662 		switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
663 		case V_028714_SPI_SHADER_ZERO:
664 			break;
665 		case V_028714_SPI_SHADER_32_R:
666 			cb_shader_mask |= 0x1 << (i * 4);
667 			break;
668 		case V_028714_SPI_SHADER_32_GR:
669 			cb_shader_mask |= 0x3 << (i * 4);
670 			break;
671 		case V_028714_SPI_SHADER_32_AR:
672 			cb_shader_mask |= 0x9 << (i * 4);
673 			break;
674 		case V_028714_SPI_SHADER_FP16_ABGR:
675 		case V_028714_SPI_SHADER_UNORM16_ABGR:
676 		case V_028714_SPI_SHADER_SNORM16_ABGR:
677 		case V_028714_SPI_SHADER_UINT16_ABGR:
678 		case V_028714_SPI_SHADER_SINT16_ABGR:
679 		case V_028714_SPI_SHADER_32_ABGR:
680 			cb_shader_mask |= 0xf << (i * 4);
681 			break;
682 		default:
683 			assert(0);
684 		}
685 	}
686 	return cb_shader_mask;
687 }
688 
si_shader_ps(struct si_shader * shader)689 static void si_shader_ps(struct si_shader *shader)
690 {
691 	struct tgsi_shader_info *info = &shader->selector->info;
692 	struct si_pm4_state *pm4;
693 	unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
694 	unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
695 	uint64_t va;
696 	unsigned input_ena = shader->config.spi_ps_input_ena;
697 
698 	/* we need to enable at least one of them, otherwise we hang the GPU */
699 	assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
700 	       G_0286CC_PERSP_CENTER_ENA(input_ena) ||
701 	       G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
702 	       G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
703 	       G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
704 	       G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
705 	       G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
706 	       G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
707 	/* POS_W_FLOAT_ENA requires one of the perspective weights. */
708 	assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
709 	       G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
710 	       G_0286CC_PERSP_CENTER_ENA(input_ena) ||
711 	       G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
712 	       G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
713 
714 	/* Validate interpolation optimization flags (read as implications). */
715 	assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
716 	       (G_0286CC_PERSP_CENTER_ENA(input_ena) &&
717 		G_0286CC_PERSP_CENTROID_ENA(input_ena)));
718 	assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
719 	       (G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
720 		G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
721 	assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
722 	       (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
723 		!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
724 	assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
725 	       (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
726 		!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
727 	assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
728 	       (!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
729 		!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
730 	assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
731 	       (!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
732 		!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
733 
734 	/* Validate cases when the optimizations are off (read as implications). */
735 	assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
736 	       !G_0286CC_PERSP_CENTER_ENA(input_ena) ||
737 	       !G_0286CC_PERSP_CENTROID_ENA(input_ena));
738 	assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
739 	       !G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
740 	       !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
741 
742 	pm4 = si_get_shader_pm4_state(shader);
743 	if (!pm4)
744 		return;
745 
746 	/* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
747 	 * Possible vaules:
748 	 * 0 -> Position = pixel center
749 	 * 1 -> Position = pixel centroid
750 	 * 2 -> Position = at sample position
751 	 *
752 	 * From GLSL 4.5 specification, section 7.1:
753 	 *   "The variable gl_FragCoord is available as an input variable from
754 	 *    within fragment shaders and it holds the window relative coordinates
755 	 *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
756 	 *    value can be for any location within the pixel, or one of the
757 	 *    fragment samples. The use of centroid does not further restrict
758 	 *    this value to be inside the current primitive."
759 	 *
760 	 * Meaning that centroid has no effect and we can return anything within
761 	 * the pixel. Thus, return the value at sample position, because that's
762 	 * the most accurate one shaders can get.
763 	 */
764 	spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
765 
766 	if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
767 	    TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
768 		spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
769 
770 	spi_shader_col_format = si_get_spi_shader_col_format(shader);
771 	cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
772 
773 	/* Ensure that some export memory is always allocated, for two reasons:
774 	 *
775 	 * 1) Correctness: The hardware ignores the EXEC mask if no export
776 	 *    memory is allocated, so KILL and alpha test do not work correctly
777 	 *    without this.
778 	 * 2) Performance: Every shader needs at least a NULL export, even when
779 	 *    it writes no color/depth output. The NULL export instruction
780 	 *    stalls without this setting.
781 	 *
782 	 * Don't add this to CB_SHADER_MASK.
783 	 */
784 	if (!spi_shader_col_format &&
785 	    !info->writes_z && !info->writes_stencil && !info->writes_samplemask)
786 		spi_shader_col_format = V_028714_SPI_SHADER_32_R;
787 
788 	si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
789 	si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
790 		       shader->config.spi_ps_input_addr);
791 
792 	/* Set interpolation controls. */
793 	spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
794 
795 	/* Set registers. */
796 	si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
797 	si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
798 
799 	si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
800 		       si_get_spi_shader_z_format(info->writes_z,
801 						  info->writes_stencil,
802 						  info->writes_samplemask));
803 
804 	si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
805 	si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
806 
807 	va = shader->bo->gpu_address;
808 	si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
809 	si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
810 	si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
811 
812 	si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
813 		       S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
814 		       S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
815 		       S_00B028_DX10_CLAMP(1) |
816 		       S_00B028_FLOAT_MODE(shader->config.float_mode));
817 	si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
818 		       S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
819 		       S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
820 		       S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
821 }
822 
si_shader_init_pm4_state(struct si_screen * sscreen,struct si_shader * shader)823 static void si_shader_init_pm4_state(struct si_screen *sscreen,
824                                      struct si_shader *shader)
825 {
826 	switch (shader->selector->type) {
827 	case PIPE_SHADER_VERTEX:
828 		if (shader->key.as_ls)
829 			si_shader_ls(shader);
830 		else if (shader->key.as_es)
831 			si_shader_es(sscreen, shader);
832 		else
833 			si_shader_vs(sscreen, shader, NULL);
834 		break;
835 	case PIPE_SHADER_TESS_CTRL:
836 		si_shader_hs(shader);
837 		break;
838 	case PIPE_SHADER_TESS_EVAL:
839 		if (shader->key.as_es)
840 			si_shader_es(sscreen, shader);
841 		else
842 			si_shader_vs(sscreen, shader, NULL);
843 		break;
844 	case PIPE_SHADER_GEOMETRY:
845 		si_shader_gs(shader);
846 		break;
847 	case PIPE_SHADER_FRAGMENT:
848 		si_shader_ps(shader);
849 		break;
850 	default:
851 		assert(0);
852 	}
853 }
854 
si_get_alpha_test_func(struct si_context * sctx)855 static unsigned si_get_alpha_test_func(struct si_context *sctx)
856 {
857 	/* Alpha-test should be disabled if colorbuffer 0 is integer. */
858 	if (sctx->queued.named.dsa)
859 		return sctx->queued.named.dsa->alpha_func;
860 
861 	return PIPE_FUNC_ALWAYS;
862 }
863 
si_shader_selector_key_hw_vs(struct si_context * sctx,struct si_shader_selector * vs,struct si_shader_key * key)864 static void si_shader_selector_key_hw_vs(struct si_context *sctx,
865 					 struct si_shader_selector *vs,
866 					 struct si_shader_key *key)
867 {
868 	struct si_shader_selector *ps = sctx->ps_shader.cso;
869 
870 	key->opt.hw_vs.clip_disable =
871 		sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
872 		(vs->info.clipdist_writemask ||
873 		 vs->info.writes_clipvertex) &&
874 		!vs->info.culldist_writemask;
875 
876 	/* Find out if PS is disabled. */
877 	bool ps_disabled = true;
878 	if (ps) {
879 		bool ps_modifies_zs = ps->info.uses_kill ||
880 				      ps->info.writes_z ||
881 				      ps->info.writes_stencil ||
882 				      ps->info.writes_samplemask ||
883 				      si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
884 
885 		unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
886 					sctx->queued.named.blend->cb_target_mask;
887 		if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
888 			ps_colormask &= ps->colors_written_4bit;
889 
890 		ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
891 			      (!ps_colormask &&
892 			       !ps_modifies_zs &&
893 			       !ps->info.writes_memory);
894 	}
895 
896 	/* Find out which VS outputs aren't used by the PS. */
897 	uint64_t outputs_written = vs->outputs_written;
898 	uint32_t outputs_written2 = vs->outputs_written2;
899 	uint64_t inputs_read = 0;
900 	uint32_t inputs_read2 = 0;
901 
902 	outputs_written &= ~0x3; /* ignore POSITION, PSIZE */
903 
904 	if (!ps_disabled) {
905 		inputs_read = ps->inputs_read;
906 		inputs_read2 = ps->inputs_read2;
907 	}
908 
909 	uint64_t linked = outputs_written & inputs_read;
910 	uint32_t linked2 = outputs_written2 & inputs_read2;
911 
912 	key->opt.hw_vs.kill_outputs = ~linked & outputs_written;
913 	key->opt.hw_vs.kill_outputs2 = ~linked2 & outputs_written2;
914 }
915 
916 /* Compute the key for the hw shader variant */
si_shader_selector_key(struct pipe_context * ctx,struct si_shader_selector * sel,struct si_shader_key * key)917 static inline void si_shader_selector_key(struct pipe_context *ctx,
918 					  struct si_shader_selector *sel,
919 					  struct si_shader_key *key)
920 {
921 	struct si_context *sctx = (struct si_context *)ctx;
922 	unsigned i;
923 
924 	memset(key, 0, sizeof(*key));
925 
926 	switch (sel->type) {
927 	case PIPE_SHADER_VERTEX:
928 		if (sctx->vertex_elements) {
929 			unsigned count = MIN2(sel->info.num_inputs,
930 					      sctx->vertex_elements->count);
931 			for (i = 0; i < count; ++i)
932 				key->part.vs.prolog.instance_divisors[i] =
933 					sctx->vertex_elements->elements[i].instance_divisor;
934 
935 			key->mono.vs.fix_fetch =
936 				sctx->vertex_elements->fix_fetch &
937 				u_bit_consecutive64(0, 4 * count);
938 		}
939 		if (sctx->tes_shader.cso)
940 			key->as_ls = 1;
941 		else if (sctx->gs_shader.cso)
942 			key->as_es = 1;
943 		else {
944 			si_shader_selector_key_hw_vs(sctx, sel, key);
945 
946 			if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
947 				key->part.vs.epilog.export_prim_id = 1;
948 		}
949 		break;
950 	case PIPE_SHADER_TESS_CTRL:
951 		key->part.tcs.epilog.prim_mode =
952 			sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
953 
954 		if (sel == sctx->fixed_func_tcs_shader.cso)
955 			key->mono.tcs.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
956 		break;
957 	case PIPE_SHADER_TESS_EVAL:
958 		if (sctx->gs_shader.cso)
959 			key->as_es = 1;
960 		else {
961 			si_shader_selector_key_hw_vs(sctx, sel, key);
962 
963 			if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
964 				key->part.tes.epilog.export_prim_id = 1;
965 		}
966 		break;
967 	case PIPE_SHADER_GEOMETRY:
968 		key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
969 		break;
970 	case PIPE_SHADER_FRAGMENT: {
971 		struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
972 		struct si_state_blend *blend = sctx->queued.named.blend;
973 
974 		if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
975 		    sel->info.colors_written == 0x1)
976 			key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
977 
978 		if (blend) {
979 			/* Select the shader color format based on whether
980 			 * blending or alpha are needed.
981 			 */
982 			key->part.ps.epilog.spi_shader_col_format =
983 				(blend->blend_enable_4bit & blend->need_src_alpha_4bit &
984 				 sctx->framebuffer.spi_shader_col_format_blend_alpha) |
985 				(blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
986 				 sctx->framebuffer.spi_shader_col_format_blend) |
987 				(~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
988 				 sctx->framebuffer.spi_shader_col_format_alpha) |
989 				(~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
990 				 sctx->framebuffer.spi_shader_col_format);
991 
992 			/* The output for dual source blending should have
993 			 * the same format as the first output.
994 			 */
995 			if (blend->dual_src_blend)
996 				key->part.ps.epilog.spi_shader_col_format |=
997 					(key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
998 		} else
999 			key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
1000 
1001 		/* If alpha-to-coverage is enabled, we have to export alpha
1002 		 * even if there is no color buffer.
1003 		 */
1004 		if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
1005 		    blend && blend->alpha_to_coverage)
1006 			key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
1007 
1008 		/* On SI and CIK except Hawaii, the CB doesn't clamp outputs
1009 		 * to the range supported by the type if a channel has less
1010 		 * than 16 bits and the export format is 16_ABGR.
1011 		 */
1012 		if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII) {
1013 			key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
1014 			key->part.ps.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
1015 		}
1016 
1017 		/* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
1018 		if (!key->part.ps.epilog.last_cbuf) {
1019 			key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
1020 			key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
1021 			key->part.ps.epilog.color_is_int10 &= sel->info.colors_written;
1022 		}
1023 
1024 		if (rs) {
1025 			bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
1026 					sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
1027 				       sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
1028 			bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
1029 
1030 			key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
1031 			key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
1032 
1033 			if (sctx->queued.named.blend) {
1034 				key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
1035 							      rs->multisample_enable;
1036 			}
1037 
1038 			key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
1039 			key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
1040 							      (is_line && rs->line_smooth)) &&
1041 							     sctx->framebuffer.nr_samples <= 1;
1042 			key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
1043 
1044 			if (rs->force_persample_interp &&
1045 			    rs->multisample_enable &&
1046 			    sctx->framebuffer.nr_samples > 1 &&
1047 			    sctx->ps_iter_samples > 1) {
1048 				key->part.ps.prolog.force_persp_sample_interp =
1049 					sel->info.uses_persp_center ||
1050 					sel->info.uses_persp_centroid;
1051 
1052 				key->part.ps.prolog.force_linear_sample_interp =
1053 					sel->info.uses_linear_center ||
1054 					sel->info.uses_linear_centroid;
1055 			} else if (rs->multisample_enable &&
1056 				   sctx->framebuffer.nr_samples > 1) {
1057 				key->part.ps.prolog.bc_optimize_for_persp =
1058 					sel->info.uses_persp_center &&
1059 					sel->info.uses_persp_centroid;
1060 				key->part.ps.prolog.bc_optimize_for_linear =
1061 					sel->info.uses_linear_center &&
1062 					sel->info.uses_linear_centroid;
1063 			} else {
1064 				/* Make sure SPI doesn't compute more than 1 pair
1065 				 * of (i,j), which is the optimization here. */
1066 				key->part.ps.prolog.force_persp_center_interp =
1067 					sel->info.uses_persp_center +
1068 					sel->info.uses_persp_centroid +
1069 					sel->info.uses_persp_sample > 1;
1070 
1071 				key->part.ps.prolog.force_linear_center_interp =
1072 					sel->info.uses_linear_center +
1073 					sel->info.uses_linear_centroid +
1074 					sel->info.uses_linear_sample > 1;
1075 			}
1076 		}
1077 
1078 		key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
1079 		break;
1080 	}
1081 	default:
1082 		assert(0);
1083 	}
1084 }
1085 
si_build_shader_variant(void * job,int thread_index)1086 static void si_build_shader_variant(void *job, int thread_index)
1087 {
1088 	struct si_shader *shader = (struct si_shader *)job;
1089 	struct si_shader_selector *sel = shader->selector;
1090 	struct si_screen *sscreen = sel->screen;
1091 	LLVMTargetMachineRef tm;
1092 	struct pipe_debug_callback *debug = &shader->compiler_ctx_state.debug;
1093 	int r;
1094 
1095 	if (thread_index >= 0) {
1096 		assert(thread_index < ARRAY_SIZE(sscreen->tm));
1097 		tm = sscreen->tm[thread_index];
1098 		if (!debug->async)
1099 			debug = NULL;
1100 	} else {
1101 		tm = shader->compiler_ctx_state.tm;
1102 	}
1103 
1104 	r = si_shader_create(sscreen, tm, shader, debug);
1105 	if (unlikely(r)) {
1106 		R600_ERR("Failed to build shader variant (type=%u) %d\n",
1107 			 sel->type, r);
1108 		shader->compilation_failed = true;
1109 		return;
1110 	}
1111 
1112 	if (shader->compiler_ctx_state.is_debug_context) {
1113 		FILE *f = open_memstream(&shader->shader_log,
1114 					 &shader->shader_log_size);
1115 		if (f) {
1116 			si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
1117 			fclose(f);
1118 		}
1119 	}
1120 
1121 	si_shader_init_pm4_state(sscreen, shader);
1122 }
1123 
1124 /* Select the hw shader variant depending on the current state. */
si_shader_select_with_key(struct si_screen * sscreen,struct si_shader_ctx_state * state,struct si_compiler_ctx_state * compiler_state,struct si_shader_key * key,int thread_index)1125 static int si_shader_select_with_key(struct si_screen *sscreen,
1126 				     struct si_shader_ctx_state *state,
1127 				     struct si_compiler_ctx_state *compiler_state,
1128 				     struct si_shader_key *key,
1129 				     int thread_index)
1130 {
1131 	static const struct si_shader_key zeroed;
1132 	struct si_shader_selector *sel = state->cso;
1133 	struct si_shader *current = state->current;
1134 	struct si_shader *iter, *shader = NULL;
1135 
1136 	if (unlikely(sscreen->b.debug_flags & DBG_NO_OPT_VARIANT)) {
1137 		memset(&key->opt, 0, sizeof(key->opt));
1138 	}
1139 
1140 again:
1141 	/* Check if we don't need to change anything.
1142 	 * This path is also used for most shaders that don't need multiple
1143 	 * variants, it will cost just a computation of the key and this
1144 	 * test. */
1145 	if (likely(current &&
1146 		   memcmp(&current->key, key, sizeof(*key)) == 0 &&
1147 		   (!current->is_optimized ||
1148 		    util_queue_fence_is_signalled(&current->optimized_ready))))
1149 		return current->compilation_failed ? -1 : 0;
1150 
1151 	/* This must be done before the mutex is locked, because async GS
1152 	 * compilation calls this function too, and therefore must enter
1153 	 * the mutex first.
1154 	 *
1155 	 * Only wait if we are in a draw call. Don't wait if we are
1156 	 * in a compiler thread.
1157 	 */
1158 	if (thread_index < 0)
1159 		util_queue_job_wait(&sel->ready);
1160 
1161 	pipe_mutex_lock(sel->mutex);
1162 
1163 	/* Find the shader variant. */
1164 	for (iter = sel->first_variant; iter; iter = iter->next_variant) {
1165 		/* Don't check the "current" shader. We checked it above. */
1166 		if (current != iter &&
1167 		    memcmp(&iter->key, key, sizeof(*key)) == 0) {
1168 			/* If it's an optimized shader and its compilation has
1169 			 * been started but isn't done, use the unoptimized
1170 			 * shader so as not to cause a stall due to compilation.
1171 			 */
1172 			if (iter->is_optimized &&
1173 			    !util_queue_fence_is_signalled(&iter->optimized_ready)) {
1174 				memset(&key->opt, 0, sizeof(key->opt));
1175 				pipe_mutex_unlock(sel->mutex);
1176 				goto again;
1177 			}
1178 
1179 			if (iter->compilation_failed) {
1180 				pipe_mutex_unlock(sel->mutex);
1181 				return -1; /* skip the draw call */
1182 			}
1183 
1184 			state->current = iter;
1185 			pipe_mutex_unlock(sel->mutex);
1186 			return 0;
1187 		}
1188 	}
1189 
1190 	/* Build a new shader. */
1191 	shader = CALLOC_STRUCT(si_shader);
1192 	if (!shader) {
1193 		pipe_mutex_unlock(sel->mutex);
1194 		return -ENOMEM;
1195 	}
1196 	shader->selector = sel;
1197 	shader->key = *key;
1198 	shader->compiler_ctx_state = *compiler_state;
1199 
1200 	/* Monolithic-only shaders don't make a distinction between optimized
1201 	 * and unoptimized. */
1202 	shader->is_monolithic =
1203 		!sel->main_shader_part ||
1204 		sel->main_shader_part->key.as_ls != key->as_ls ||
1205 		sel->main_shader_part->key.as_es != key->as_es ||
1206 		memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0 ||
1207 		memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
1208 
1209 	shader->is_optimized =
1210 		!sscreen->use_monolithic_shaders &&
1211 		memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
1212 	if (shader->is_optimized)
1213 		util_queue_fence_init(&shader->optimized_ready);
1214 
1215 	if (!sel->last_variant) {
1216 		sel->first_variant = shader;
1217 		sel->last_variant = shader;
1218 	} else {
1219 		sel->last_variant->next_variant = shader;
1220 		sel->last_variant = shader;
1221 	}
1222 
1223 	/* If it's an optimized shader, compile it asynchronously. */
1224 	if (shader->is_optimized &&
1225 	    thread_index < 0) {
1226 		/* Compile it asynchronously. */
1227 		util_queue_add_job(&sscreen->shader_compiler_queue,
1228 				   shader, &shader->optimized_ready,
1229 				   si_build_shader_variant, NULL);
1230 
1231 		/* Use the default (unoptimized) shader for now. */
1232 		memset(&key->opt, 0, sizeof(key->opt));
1233 		pipe_mutex_unlock(sel->mutex);
1234 		goto again;
1235 	}
1236 
1237 	assert(!shader->is_optimized);
1238 	si_build_shader_variant(shader, thread_index);
1239 
1240 	if (!shader->compilation_failed)
1241 		state->current = shader;
1242 
1243 	pipe_mutex_unlock(sel->mutex);
1244 	return shader->compilation_failed ? -1 : 0;
1245 }
1246 
si_shader_select(struct pipe_context * ctx,struct si_shader_ctx_state * state,struct si_compiler_ctx_state * compiler_state)1247 static int si_shader_select(struct pipe_context *ctx,
1248 			    struct si_shader_ctx_state *state,
1249 			    struct si_compiler_ctx_state *compiler_state)
1250 {
1251 	struct si_context *sctx = (struct si_context *)ctx;
1252 	struct si_shader_key key;
1253 
1254 	si_shader_selector_key(ctx, state->cso, &key);
1255 	return si_shader_select_with_key(sctx->screen, state, compiler_state,
1256 					 &key, -1);
1257 }
1258 
si_parse_next_shader_property(const struct tgsi_shader_info * info,struct si_shader_key * key)1259 static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
1260 					  struct si_shader_key *key)
1261 {
1262 	unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
1263 
1264 	switch (info->processor) {
1265 	case PIPE_SHADER_VERTEX:
1266 		switch (next_shader) {
1267 		case PIPE_SHADER_GEOMETRY:
1268 			key->as_es = 1;
1269 			break;
1270 		case PIPE_SHADER_TESS_CTRL:
1271 		case PIPE_SHADER_TESS_EVAL:
1272 			key->as_ls = 1;
1273 			break;
1274 		default:
1275 			/* If POSITION isn't written, it can't be a HW VS.
1276 			 * Assume that it's a HW LS. (the next shader is TCS)
1277 			 * This heuristic is needed for separate shader objects.
1278 			 */
1279 			if (!info->writes_position)
1280 				key->as_ls = 1;
1281 		}
1282 		break;
1283 
1284 	case PIPE_SHADER_TESS_EVAL:
1285 		if (next_shader == PIPE_SHADER_GEOMETRY ||
1286 		    !info->writes_position)
1287 			key->as_es = 1;
1288 		break;
1289 	}
1290 }
1291 
1292 /**
1293  * Compile the main shader part or the monolithic shader as part of
1294  * si_shader_selector initialization. Since it can be done asynchronously,
1295  * there is no way to report compile failures to applications.
1296  */
si_init_shader_selector_async(void * job,int thread_index)1297 void si_init_shader_selector_async(void *job, int thread_index)
1298 {
1299 	struct si_shader_selector *sel = (struct si_shader_selector *)job;
1300 	struct si_screen *sscreen = sel->screen;
1301 	LLVMTargetMachineRef tm;
1302 	struct pipe_debug_callback *debug = &sel->compiler_ctx_state.debug;
1303 	unsigned i;
1304 
1305 	if (thread_index >= 0) {
1306 		assert(thread_index < ARRAY_SIZE(sscreen->tm));
1307 		tm = sscreen->tm[thread_index];
1308 		if (!debug->async)
1309 			debug = NULL;
1310 	} else {
1311 		tm = sel->compiler_ctx_state.tm;
1312 	}
1313 
1314 	/* Compile the main shader part for use with a prolog and/or epilog.
1315 	 * If this fails, the driver will try to compile a monolithic shader
1316 	 * on demand.
1317 	 */
1318 	if (!sscreen->use_monolithic_shaders) {
1319 		struct si_shader *shader = CALLOC_STRUCT(si_shader);
1320 		void *tgsi_binary;
1321 
1322 		if (!shader) {
1323 			fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
1324 			return;
1325 		}
1326 
1327 		shader->selector = sel;
1328 		si_parse_next_shader_property(&sel->info, &shader->key);
1329 
1330 		tgsi_binary = si_get_tgsi_binary(sel);
1331 
1332 		/* Try to load the shader from the shader cache. */
1333 		pipe_mutex_lock(sscreen->shader_cache_mutex);
1334 
1335 		if (tgsi_binary &&
1336 		    si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
1337 			FREE(tgsi_binary);
1338 			pipe_mutex_unlock(sscreen->shader_cache_mutex);
1339 		} else {
1340 			pipe_mutex_unlock(sscreen->shader_cache_mutex);
1341 
1342 			/* Compile the shader if it hasn't been loaded from the cache. */
1343 			if (si_compile_tgsi_shader(sscreen, tm, shader, false,
1344 						   debug) != 0) {
1345 				FREE(shader);
1346 				FREE(tgsi_binary);
1347 				fprintf(stderr, "radeonsi: can't compile a main shader part\n");
1348 				return;
1349 			}
1350 
1351 			if (tgsi_binary) {
1352 				pipe_mutex_lock(sscreen->shader_cache_mutex);
1353 				if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
1354 					FREE(tgsi_binary);
1355 				pipe_mutex_unlock(sscreen->shader_cache_mutex);
1356 			}
1357 		}
1358 
1359 		sel->main_shader_part = shader;
1360 
1361 		/* Unset "outputs_written" flags for outputs converted to
1362 		 * DEFAULT_VAL, so that later inter-shader optimizations don't
1363 		 * try to eliminate outputs that don't exist in the final
1364 		 * shader.
1365 		 *
1366 		 * This is only done if non-monolithic shaders are enabled.
1367 		 */
1368 		if ((sel->type == PIPE_SHADER_VERTEX ||
1369 		     sel->type == PIPE_SHADER_TESS_EVAL) &&
1370 		    !shader->key.as_ls &&
1371 		    !shader->key.as_es) {
1372 			unsigned i;
1373 
1374 			for (i = 0; i < sel->info.num_outputs; i++) {
1375 				unsigned offset = shader->info.vs_output_param_offset[i];
1376 
1377 				if (offset <= EXP_PARAM_OFFSET_31)
1378 					continue;
1379 
1380 				unsigned name = sel->info.output_semantic_name[i];
1381 				unsigned index = sel->info.output_semantic_index[i];
1382 				unsigned id;
1383 
1384 				switch (name) {
1385 				case TGSI_SEMANTIC_GENERIC:
1386 					/* don't process indices the function can't handle */
1387 					if (index >= 60)
1388 						break;
1389 					/* fall through */
1390 				case TGSI_SEMANTIC_CLIPDIST:
1391 					id = si_shader_io_get_unique_index(name, index);
1392 					sel->outputs_written &= ~(1ull << id);
1393 					break;
1394 				case TGSI_SEMANTIC_POSITION: /* ignore these */
1395 				case TGSI_SEMANTIC_PSIZE:
1396 				case TGSI_SEMANTIC_CLIPVERTEX:
1397 				case TGSI_SEMANTIC_EDGEFLAG:
1398 					break;
1399 				default:
1400 					id = si_shader_io_get_unique_index2(name, index);
1401 					sel->outputs_written2 &= ~(1u << id);
1402 				}
1403 			}
1404 		}
1405 	}
1406 
1407 	/* Pre-compilation. */
1408 	if (sscreen->b.debug_flags & DBG_PRECOMPILE) {
1409 		struct si_shader_ctx_state state = {sel};
1410 		struct si_shader_key key;
1411 
1412 		memset(&key, 0, sizeof(key));
1413 		si_parse_next_shader_property(&sel->info, &key);
1414 
1415 		/* Set reasonable defaults, so that the shader key doesn't
1416 		 * cause any code to be eliminated.
1417 		 */
1418 		switch (sel->type) {
1419 		case PIPE_SHADER_TESS_CTRL:
1420 			key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
1421 			break;
1422 		case PIPE_SHADER_FRAGMENT:
1423 			key.part.ps.prolog.bc_optimize_for_persp =
1424 				sel->info.uses_persp_center &&
1425 				sel->info.uses_persp_centroid;
1426 			key.part.ps.prolog.bc_optimize_for_linear =
1427 				sel->info.uses_linear_center &&
1428 				sel->info.uses_linear_centroid;
1429 			key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
1430 			for (i = 0; i < 8; i++)
1431 				if (sel->info.colors_written & (1 << i))
1432 					key.part.ps.epilog.spi_shader_col_format |=
1433 						V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
1434 			break;
1435 		}
1436 
1437 		if (si_shader_select_with_key(sscreen, &state,
1438 					      &sel->compiler_ctx_state, &key,
1439 					      thread_index))
1440 			fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
1441 	}
1442 
1443 	/* The GS copy shader is always pre-compiled. */
1444 	if (sel->type == PIPE_SHADER_GEOMETRY) {
1445 		sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
1446 		if (!sel->gs_copy_shader) {
1447 			fprintf(stderr, "radeonsi: can't create GS copy shader\n");
1448 			return;
1449 		}
1450 
1451 		si_shader_vs(sscreen, sel->gs_copy_shader, sel);
1452 	}
1453 }
1454 
si_create_shader_selector(struct pipe_context * ctx,const struct pipe_shader_state * state)1455 static void *si_create_shader_selector(struct pipe_context *ctx,
1456 				       const struct pipe_shader_state *state)
1457 {
1458 	struct si_screen *sscreen = (struct si_screen *)ctx->screen;
1459 	struct si_context *sctx = (struct si_context*)ctx;
1460 	struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
1461 	int i;
1462 
1463 	if (!sel)
1464 		return NULL;
1465 
1466 	sel->screen = sscreen;
1467 	sel->compiler_ctx_state.tm = sctx->tm;
1468 	sel->compiler_ctx_state.debug = sctx->b.debug;
1469 	sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
1470 	sel->tokens = tgsi_dup_tokens(state->tokens);
1471 	if (!sel->tokens) {
1472 		FREE(sel);
1473 		return NULL;
1474 	}
1475 
1476 	sel->so = state->stream_output;
1477 	tgsi_scan_shader(state->tokens, &sel->info);
1478 	sel->type = sel->info.processor;
1479 	p_atomic_inc(&sscreen->b.num_shaders_created);
1480 
1481 	/* Set which opcode uses which (i,j) pair. */
1482 	if (sel->info.uses_persp_opcode_interp_centroid)
1483 		sel->info.uses_persp_centroid = true;
1484 
1485 	if (sel->info.uses_linear_opcode_interp_centroid)
1486 		sel->info.uses_linear_centroid = true;
1487 
1488 	if (sel->info.uses_persp_opcode_interp_offset ||
1489 	    sel->info.uses_persp_opcode_interp_sample)
1490 		sel->info.uses_persp_center = true;
1491 
1492 	if (sel->info.uses_linear_opcode_interp_offset ||
1493 	    sel->info.uses_linear_opcode_interp_sample)
1494 		sel->info.uses_linear_center = true;
1495 
1496 	switch (sel->type) {
1497 	case PIPE_SHADER_GEOMETRY:
1498 		sel->gs_output_prim =
1499 			sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
1500 		sel->gs_max_out_vertices =
1501 			sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
1502 		sel->gs_num_invocations =
1503 			sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
1504 		sel->gsvs_vertex_size = sel->info.num_outputs * 16;
1505 		sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
1506 					  sel->gs_max_out_vertices;
1507 
1508 		sel->max_gs_stream = 0;
1509 		for (i = 0; i < sel->so.num_outputs; i++)
1510 			sel->max_gs_stream = MAX2(sel->max_gs_stream,
1511 						  sel->so.output[i].stream);
1512 
1513 		sel->gs_input_verts_per_prim =
1514 			u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
1515 		break;
1516 
1517 	case PIPE_SHADER_TESS_CTRL:
1518 		/* Always reserve space for these. */
1519 		sel->patch_outputs_written |=
1520 			(1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
1521 			(1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
1522 		/* fall through */
1523 	case PIPE_SHADER_VERTEX:
1524 	case PIPE_SHADER_TESS_EVAL:
1525 		for (i = 0; i < sel->info.num_outputs; i++) {
1526 			unsigned name = sel->info.output_semantic_name[i];
1527 			unsigned index = sel->info.output_semantic_index[i];
1528 
1529 			switch (name) {
1530 			case TGSI_SEMANTIC_TESSINNER:
1531 			case TGSI_SEMANTIC_TESSOUTER:
1532 			case TGSI_SEMANTIC_PATCH:
1533 				sel->patch_outputs_written |=
1534 					1llu << si_shader_io_get_unique_index(name, index);
1535 				break;
1536 
1537 			case TGSI_SEMANTIC_GENERIC:
1538 				/* don't process indices the function can't handle */
1539 				if (index >= 60)
1540 					break;
1541 				/* fall through */
1542 			case TGSI_SEMANTIC_POSITION:
1543 			case TGSI_SEMANTIC_PSIZE:
1544 			case TGSI_SEMANTIC_CLIPDIST:
1545 				sel->outputs_written |=
1546 					1llu << si_shader_io_get_unique_index(name, index);
1547 				break;
1548 			case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
1549 			case TGSI_SEMANTIC_EDGEFLAG:
1550 				break;
1551 			default:
1552 				sel->outputs_written2 |=
1553 					1u << si_shader_io_get_unique_index2(name, index);
1554 			}
1555 		}
1556 		sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
1557 		break;
1558 
1559 	case PIPE_SHADER_FRAGMENT:
1560 		for (i = 0; i < sel->info.num_inputs; i++) {
1561 			unsigned name = sel->info.input_semantic_name[i];
1562 			unsigned index = sel->info.input_semantic_index[i];
1563 
1564 			switch (name) {
1565 			case TGSI_SEMANTIC_CLIPDIST:
1566 			case TGSI_SEMANTIC_GENERIC:
1567 				sel->inputs_read |=
1568 					1llu << si_shader_io_get_unique_index(name, index);
1569 				break;
1570 			case TGSI_SEMANTIC_PCOORD: /* ignore this */
1571 				break;
1572 			default:
1573 				sel->inputs_read2 |=
1574 					1u << si_shader_io_get_unique_index2(name, index);
1575 			}
1576 		}
1577 
1578 		for (i = 0; i < 8; i++)
1579 			if (sel->info.colors_written & (1 << i))
1580 				sel->colors_written_4bit |= 0xf << (4 * i);
1581 
1582 		for (i = 0; i < sel->info.num_inputs; i++) {
1583 			if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
1584 				int index = sel->info.input_semantic_index[i];
1585 				sel->color_attr_index[index] = i;
1586 			}
1587 		}
1588 		break;
1589 	}
1590 
1591 	/* DB_SHADER_CONTROL */
1592 	sel->db_shader_control =
1593 		S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
1594 		S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
1595 		S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
1596 		S_02880C_KILL_ENABLE(sel->info.uses_kill);
1597 
1598 	switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
1599 	case TGSI_FS_DEPTH_LAYOUT_GREATER:
1600 		sel->db_shader_control |=
1601 			S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1602 		break;
1603 	case TGSI_FS_DEPTH_LAYOUT_LESS:
1604 		sel->db_shader_control |=
1605 			S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1606 		break;
1607 	}
1608 
1609 	/* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
1610 	 *
1611 	 *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
1612 	 * --|-----------|------------|------------|--------------------|-------------------|-------------
1613 	 * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
1614 	 * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
1615 	 * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
1616 	 * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
1617 	 * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
1618 	 *
1619 	 * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
1620 	 * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
1621 	 *
1622 	 * Don't use ReZ without profiling !!!
1623 	 *
1624 	 * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
1625 	 * shaders.
1626 	 */
1627 	if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
1628 		/* Cases 3, 4. */
1629 		sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
1630 					  S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
1631 					  S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
1632 	} else if (sel->info.writes_memory) {
1633 		/* Case 2. */
1634 		sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
1635 					  S_02880C_EXEC_ON_HIER_FAIL(1);
1636 	} else {
1637 		/* Case 1. */
1638 		sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
1639 	}
1640 
1641 	pipe_mutex_init(sel->mutex);
1642 	util_queue_fence_init(&sel->ready);
1643 
1644 	if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
1645 	    sctx->is_debug ||
1646 	    r600_can_dump_shader(&sscreen->b, sel->info.processor) ||
1647 	    !util_queue_is_initialized(&sscreen->shader_compiler_queue))
1648 		si_init_shader_selector_async(sel, -1);
1649 	else
1650 		util_queue_add_job(&sscreen->shader_compiler_queue, sel,
1651                                    &sel->ready, si_init_shader_selector_async,
1652                                    NULL);
1653 
1654 	return sel;
1655 }
1656 
si_bind_vs_shader(struct pipe_context * ctx,void * state)1657 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
1658 {
1659 	struct si_context *sctx = (struct si_context *)ctx;
1660 	struct si_shader_selector *sel = state;
1661 
1662 	if (sctx->vs_shader.cso == sel)
1663 		return;
1664 
1665 	sctx->vs_shader.cso = sel;
1666 	sctx->vs_shader.current = sel ? sel->first_variant : NULL;
1667 	sctx->do_update_shaders = true;
1668 	si_mark_atom_dirty(sctx, &sctx->clip_regs);
1669 	r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1670 }
1671 
si_bind_gs_shader(struct pipe_context * ctx,void * state)1672 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
1673 {
1674 	struct si_context *sctx = (struct si_context *)ctx;
1675 	struct si_shader_selector *sel = state;
1676 	bool enable_changed = !!sctx->gs_shader.cso != !!sel;
1677 
1678 	if (sctx->gs_shader.cso == sel)
1679 		return;
1680 
1681 	sctx->gs_shader.cso = sel;
1682 	sctx->gs_shader.current = sel ? sel->first_variant : NULL;
1683 	sctx->do_update_shaders = true;
1684 	si_mark_atom_dirty(sctx, &sctx->clip_regs);
1685 	sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1686 
1687 	if (enable_changed)
1688 		si_shader_change_notify(sctx);
1689 	r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1690 }
1691 
si_bind_tcs_shader(struct pipe_context * ctx,void * state)1692 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
1693 {
1694 	struct si_context *sctx = (struct si_context *)ctx;
1695 	struct si_shader_selector *sel = state;
1696 	bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
1697 
1698 	if (sctx->tcs_shader.cso == sel)
1699 		return;
1700 
1701 	sctx->tcs_shader.cso = sel;
1702 	sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
1703 	sctx->do_update_shaders = true;
1704 
1705 	if (enable_changed)
1706 		sctx->last_tcs = NULL; /* invalidate derived tess state */
1707 }
1708 
si_bind_tes_shader(struct pipe_context * ctx,void * state)1709 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
1710 {
1711 	struct si_context *sctx = (struct si_context *)ctx;
1712 	struct si_shader_selector *sel = state;
1713 	bool enable_changed = !!sctx->tes_shader.cso != !!sel;
1714 
1715 	if (sctx->tes_shader.cso == sel)
1716 		return;
1717 
1718 	sctx->tes_shader.cso = sel;
1719 	sctx->tes_shader.current = sel ? sel->first_variant : NULL;
1720 	sctx->do_update_shaders = true;
1721 	si_mark_atom_dirty(sctx, &sctx->clip_regs);
1722 	sctx->last_rast_prim = -1; /* reset this so that it gets updated */
1723 
1724 	if (enable_changed) {
1725 		si_shader_change_notify(sctx);
1726 		sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
1727 	}
1728 	r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
1729 }
1730 
si_bind_ps_shader(struct pipe_context * ctx,void * state)1731 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
1732 {
1733 	struct si_context *sctx = (struct si_context *)ctx;
1734 	struct si_shader_selector *sel = state;
1735 
1736 	/* skip if supplied shader is one already in use */
1737 	if (sctx->ps_shader.cso == sel)
1738 		return;
1739 
1740 	sctx->ps_shader.cso = sel;
1741 	sctx->ps_shader.current = sel ? sel->first_variant : NULL;
1742 	sctx->do_update_shaders = true;
1743 	si_mark_atom_dirty(sctx, &sctx->cb_render_state);
1744 }
1745 
si_delete_shader(struct si_context * sctx,struct si_shader * shader)1746 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
1747 {
1748 	if (shader->is_optimized) {
1749 		util_queue_job_wait(&shader->optimized_ready);
1750 		util_queue_fence_destroy(&shader->optimized_ready);
1751 	}
1752 
1753 	if (shader->pm4) {
1754 		switch (shader->selector->type) {
1755 		case PIPE_SHADER_VERTEX:
1756 			if (shader->key.as_ls)
1757 				si_pm4_delete_state(sctx, ls, shader->pm4);
1758 			else if (shader->key.as_es)
1759 				si_pm4_delete_state(sctx, es, shader->pm4);
1760 			else
1761 				si_pm4_delete_state(sctx, vs, shader->pm4);
1762 			break;
1763 		case PIPE_SHADER_TESS_CTRL:
1764 			si_pm4_delete_state(sctx, hs, shader->pm4);
1765 			break;
1766 		case PIPE_SHADER_TESS_EVAL:
1767 			if (shader->key.as_es)
1768 				si_pm4_delete_state(sctx, es, shader->pm4);
1769 			else
1770 				si_pm4_delete_state(sctx, vs, shader->pm4);
1771 			break;
1772 		case PIPE_SHADER_GEOMETRY:
1773 			if (shader->is_gs_copy_shader)
1774 				si_pm4_delete_state(sctx, vs, shader->pm4);
1775 			else
1776 				si_pm4_delete_state(sctx, gs, shader->pm4);
1777 			break;
1778 		case PIPE_SHADER_FRAGMENT:
1779 			si_pm4_delete_state(sctx, ps, shader->pm4);
1780 			break;
1781 		}
1782 	}
1783 
1784 	si_shader_destroy(shader);
1785 	free(shader);
1786 }
1787 
si_delete_shader_selector(struct pipe_context * ctx,void * state)1788 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
1789 {
1790 	struct si_context *sctx = (struct si_context *)ctx;
1791 	struct si_shader_selector *sel = (struct si_shader_selector *)state;
1792 	struct si_shader *p = sel->first_variant, *c;
1793 	struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
1794 		[PIPE_SHADER_VERTEX] = &sctx->vs_shader,
1795 		[PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
1796 		[PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
1797 		[PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
1798 		[PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
1799 	};
1800 
1801 	util_queue_job_wait(&sel->ready);
1802 
1803 	if (current_shader[sel->type]->cso == sel) {
1804 		current_shader[sel->type]->cso = NULL;
1805 		current_shader[sel->type]->current = NULL;
1806 	}
1807 
1808 	while (p) {
1809 		c = p->next_variant;
1810 		si_delete_shader(sctx, p);
1811 		p = c;
1812 	}
1813 
1814 	if (sel->main_shader_part)
1815 		si_delete_shader(sctx, sel->main_shader_part);
1816 	if (sel->gs_copy_shader)
1817 		si_delete_shader(sctx, sel->gs_copy_shader);
1818 
1819 	util_queue_fence_destroy(&sel->ready);
1820 	pipe_mutex_destroy(sel->mutex);
1821 	free(sel->tokens);
1822 	free(sel);
1823 }
1824 
si_get_ps_input_cntl(struct si_context * sctx,struct si_shader * vs,unsigned name,unsigned index,unsigned interpolate)1825 static unsigned si_get_ps_input_cntl(struct si_context *sctx,
1826 				     struct si_shader *vs, unsigned name,
1827 				     unsigned index, unsigned interpolate)
1828 {
1829 	struct tgsi_shader_info *vsinfo = &vs->selector->info;
1830 	unsigned j, offset, ps_input_cntl = 0;
1831 
1832 	if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
1833 	    (interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
1834 		ps_input_cntl |= S_028644_FLAT_SHADE(1);
1835 
1836 	if (name == TGSI_SEMANTIC_PCOORD ||
1837 	    (name == TGSI_SEMANTIC_TEXCOORD &&
1838 	     sctx->sprite_coord_enable & (1 << index))) {
1839 		ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
1840 	}
1841 
1842 	for (j = 0; j < vsinfo->num_outputs; j++) {
1843 		if (name == vsinfo->output_semantic_name[j] &&
1844 		    index == vsinfo->output_semantic_index[j]) {
1845 			offset = vs->info.vs_output_param_offset[j];
1846 
1847 			if (offset <= EXP_PARAM_OFFSET_31) {
1848 				/* The input is loaded from parameter memory. */
1849 				ps_input_cntl |= S_028644_OFFSET(offset);
1850 			} else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1851 				if (offset == EXP_PARAM_UNDEFINED) {
1852 					/* This can happen with depth-only rendering. */
1853 					offset = 0;
1854 				} else {
1855 					/* The input is a DEFAULT_VAL constant. */
1856 					assert(offset >= EXP_PARAM_DEFAULT_VAL_0000 &&
1857 					       offset <= EXP_PARAM_DEFAULT_VAL_1111);
1858 					offset -= EXP_PARAM_DEFAULT_VAL_0000;
1859 				}
1860 
1861 				ps_input_cntl = S_028644_OFFSET(0x20) |
1862 						S_028644_DEFAULT_VAL(offset);
1863 			}
1864 			break;
1865 		}
1866 	}
1867 
1868 	if (name == TGSI_SEMANTIC_PRIMID)
1869 		/* PrimID is written after the last output. */
1870 		ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
1871 	else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
1872 		/* No corresponding output found, load defaults into input.
1873 		 * Don't set any other bits.
1874 		 * (FLAT_SHADE=1 completely changes behavior) */
1875 		ps_input_cntl = S_028644_OFFSET(0x20);
1876 		/* D3D 9 behaviour. GL is undefined */
1877 		if (name == TGSI_SEMANTIC_COLOR && index == 0)
1878 			ps_input_cntl |= S_028644_DEFAULT_VAL(3);
1879 	}
1880 	return ps_input_cntl;
1881 }
1882 
si_emit_spi_map(struct si_context * sctx,struct r600_atom * atom)1883 static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
1884 {
1885 	struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
1886 	struct si_shader *ps = sctx->ps_shader.current;
1887 	struct si_shader *vs = si_get_vs_state(sctx);
1888 	struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
1889 	unsigned i, num_interp, num_written = 0, bcol_interp[2];
1890 
1891 	if (!ps || !ps->selector->info.num_inputs)
1892 		return;
1893 
1894 	num_interp = si_get_ps_num_interp(ps);
1895 	assert(num_interp > 0);
1896 	radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
1897 
1898 	for (i = 0; i < psinfo->num_inputs; i++) {
1899 		unsigned name = psinfo->input_semantic_name[i];
1900 		unsigned index = psinfo->input_semantic_index[i];
1901 		unsigned interpolate = psinfo->input_interpolate[i];
1902 
1903 		radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
1904 						     interpolate));
1905 		num_written++;
1906 
1907 		if (name == TGSI_SEMANTIC_COLOR) {
1908 			assert(index < ARRAY_SIZE(bcol_interp));
1909 			bcol_interp[index] = interpolate;
1910 		}
1911 	}
1912 
1913 	if (ps->key.part.ps.prolog.color_two_side) {
1914 		unsigned bcol = TGSI_SEMANTIC_BCOLOR;
1915 
1916 		for (i = 0; i < 2; i++) {
1917 			if (!(psinfo->colors_read & (0xf << (i * 4))))
1918 				continue;
1919 
1920 			radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
1921 							     i, bcol_interp[i]));
1922 			num_written++;
1923 		}
1924 	}
1925 	assert(num_interp == num_written);
1926 }
1927 
1928 /**
1929  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
1930  */
si_init_config_add_vgt_flush(struct si_context * sctx)1931 static void si_init_config_add_vgt_flush(struct si_context *sctx)
1932 {
1933 	if (sctx->init_config_has_vgt_flush)
1934 		return;
1935 
1936 	/* Done by Vulkan before VGT_FLUSH. */
1937 	si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1938 	si_pm4_cmd_add(sctx->init_config,
1939 		       EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1940 	si_pm4_cmd_end(sctx->init_config, false);
1941 
1942 	/* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
1943 	si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
1944 	si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1945 	si_pm4_cmd_end(sctx->init_config, false);
1946 	sctx->init_config_has_vgt_flush = true;
1947 }
1948 
1949 /* Initialize state related to ESGS / GSVS ring buffers */
si_update_gs_ring_buffers(struct si_context * sctx)1950 static bool si_update_gs_ring_buffers(struct si_context *sctx)
1951 {
1952 	struct si_shader_selector *es =
1953 		sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
1954 	struct si_shader_selector *gs = sctx->gs_shader.cso;
1955 	struct si_pm4_state *pm4;
1956 
1957 	/* Chip constants. */
1958 	unsigned num_se = sctx->screen->b.info.max_se;
1959 	unsigned wave_size = 64;
1960 	unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1961 	unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1962 	unsigned alignment = 256 * num_se;
1963 	/* The maximum size is 63.999 MB per SE. */
1964 	unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1965 
1966 	/* Calculate the minimum size. */
1967 	unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
1968 					    wave_size, alignment);
1969 
1970 	/* These are recommended sizes, not minimum sizes. */
1971 	unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1972 				  es->esgs_itemsize * gs->gs_input_verts_per_prim;
1973 	unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1974 				  gs->max_gsvs_emit_size;
1975 
1976 	min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1977 	esgs_ring_size = align(esgs_ring_size, alignment);
1978 	gsvs_ring_size = align(gsvs_ring_size, alignment);
1979 
1980 	esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1981 	gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1982 
1983 	/* Some rings don't have to be allocated if shaders don't use them.
1984 	 * (e.g. no varyings between ES and GS or GS and VS)
1985 	 */
1986 	bool update_esgs = esgs_ring_size &&
1987 			   (!sctx->esgs_ring ||
1988 			    sctx->esgs_ring->width0 < esgs_ring_size);
1989 	bool update_gsvs = gsvs_ring_size &&
1990 			   (!sctx->gsvs_ring ||
1991 			    sctx->gsvs_ring->width0 < gsvs_ring_size);
1992 
1993 	if (!update_esgs && !update_gsvs)
1994 		return true;
1995 
1996 	if (update_esgs) {
1997 		pipe_resource_reference(&sctx->esgs_ring, NULL);
1998 		sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
1999 						     PIPE_USAGE_DEFAULT,
2000 						     esgs_ring_size);
2001 		if (!sctx->esgs_ring)
2002 			return false;
2003 	}
2004 
2005 	if (update_gsvs) {
2006 		pipe_resource_reference(&sctx->gsvs_ring, NULL);
2007 		sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
2008 						     PIPE_USAGE_DEFAULT,
2009 						     gsvs_ring_size);
2010 		if (!sctx->gsvs_ring)
2011 			return false;
2012 	}
2013 
2014 	/* Create the "init_config_gs_rings" state. */
2015 	pm4 = CALLOC_STRUCT(si_pm4_state);
2016 	if (!pm4)
2017 		return false;
2018 
2019 	if (sctx->b.chip_class >= CIK) {
2020 		if (sctx->esgs_ring)
2021 			si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
2022 				       sctx->esgs_ring->width0 / 256);
2023 		if (sctx->gsvs_ring)
2024 			si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
2025 				       sctx->gsvs_ring->width0 / 256);
2026 	} else {
2027 		if (sctx->esgs_ring)
2028 			si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
2029 				       sctx->esgs_ring->width0 / 256);
2030 		if (sctx->gsvs_ring)
2031 			si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
2032 				       sctx->gsvs_ring->width0 / 256);
2033 	}
2034 
2035 	/* Set the state. */
2036 	if (sctx->init_config_gs_rings)
2037 		si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
2038 	sctx->init_config_gs_rings = pm4;
2039 
2040 	if (!sctx->init_config_has_vgt_flush) {
2041 		si_init_config_add_vgt_flush(sctx);
2042 		si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2043 	}
2044 
2045 	/* Flush the context to re-emit both init_config states. */
2046 	sctx->b.initial_gfx_cs_size = 0; /* force flush */
2047 	si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2048 
2049 	/* Set ring bindings. */
2050 	if (sctx->esgs_ring) {
2051 		si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
2052 				   sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2053 				   true, true, 4, 64, 0);
2054 		si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
2055 				   sctx->esgs_ring, 0, sctx->esgs_ring->width0,
2056 				   false, false, 0, 0, 0);
2057 	}
2058 	if (sctx->gsvs_ring) {
2059 		si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
2060 				   sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
2061 				   false, false, 0, 0, 0);
2062 	}
2063 
2064 	return true;
2065 }
2066 
2067 /**
2068  * @returns 1 if \p sel has been updated to use a new scratch buffer
2069  *          0 if not
2070  *          < 0 if there was a failure
2071  */
si_update_scratch_buffer(struct si_context * sctx,struct si_shader * shader)2072 static int si_update_scratch_buffer(struct si_context *sctx,
2073 				    struct si_shader *shader)
2074 {
2075 	uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
2076 	int r;
2077 
2078 	if (!shader)
2079 		return 0;
2080 
2081 	/* This shader doesn't need a scratch buffer */
2082 	if (shader->config.scratch_bytes_per_wave == 0)
2083 		return 0;
2084 
2085 	/* This shader is already configured to use the current
2086 	 * scratch buffer. */
2087 	if (shader->scratch_bo == sctx->scratch_buffer)
2088 		return 0;
2089 
2090 	assert(sctx->scratch_buffer);
2091 
2092 	si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
2093 
2094 	/* Replace the shader bo with a new bo that has the relocs applied. */
2095 	r = si_shader_binary_upload(sctx->screen, shader);
2096 	if (r)
2097 		return r;
2098 
2099 	/* Update the shader state to use the new shader bo. */
2100 	si_shader_init_pm4_state(sctx->screen, shader);
2101 
2102 	r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
2103 
2104 	return 1;
2105 }
2106 
si_get_current_scratch_buffer_size(struct si_context * sctx)2107 static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
2108 {
2109 	return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
2110 }
2111 
si_get_scratch_buffer_bytes_per_wave(struct si_shader * shader)2112 static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
2113 {
2114 	return shader ? shader->config.scratch_bytes_per_wave : 0;
2115 }
2116 
si_get_max_scratch_bytes_per_wave(struct si_context * sctx)2117 static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
2118 {
2119 	unsigned bytes = 0;
2120 
2121 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
2122 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
2123 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
2124 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
2125 	bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
2126 	return bytes;
2127 }
2128 
si_update_spi_tmpring_size(struct si_context * sctx)2129 static bool si_update_spi_tmpring_size(struct si_context *sctx)
2130 {
2131 	unsigned current_scratch_buffer_size =
2132 		si_get_current_scratch_buffer_size(sctx);
2133 	unsigned scratch_bytes_per_wave =
2134 		si_get_max_scratch_bytes_per_wave(sctx);
2135 	unsigned scratch_needed_size = scratch_bytes_per_wave *
2136 		sctx->scratch_waves;
2137 	unsigned spi_tmpring_size;
2138 	int r;
2139 
2140 	if (scratch_needed_size > 0) {
2141 		if (scratch_needed_size > current_scratch_buffer_size) {
2142 			/* Create a bigger scratch buffer */
2143 			r600_resource_reference(&sctx->scratch_buffer, NULL);
2144 
2145 			sctx->scratch_buffer = (struct r600_resource*)
2146 					pipe_buffer_create(&sctx->screen->b.b, 0,
2147 	                                PIPE_USAGE_DEFAULT, scratch_needed_size);
2148 			if (!sctx->scratch_buffer)
2149 				return false;
2150 			sctx->emit_scratch_reloc = true;
2151 		}
2152 
2153 		/* Update the shaders, so they are using the latest scratch.  The
2154 		 * scratch buffer may have been changed since these shaders were
2155 		 * last used, so we still need to try to update them, even if
2156 		 * they require scratch buffers smaller than the current size.
2157 		 */
2158 		r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
2159 		if (r < 0)
2160 			return false;
2161 		if (r == 1)
2162 			si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2163 
2164 		r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
2165 		if (r < 0)
2166 			return false;
2167 		if (r == 1)
2168 			si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2169 
2170 		r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
2171 		if (r < 0)
2172 			return false;
2173 		if (r == 1)
2174 			si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2175 
2176 		/* VS can be bound as LS, ES, or VS. */
2177 		r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
2178 		if (r < 0)
2179 			return false;
2180 		if (r == 1) {
2181 			if (sctx->tes_shader.current)
2182 				si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2183 			else if (sctx->gs_shader.current)
2184 				si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2185 			else
2186 				si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2187 		}
2188 
2189 		/* TES can be bound as ES or VS. */
2190 		r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
2191 		if (r < 0)
2192 			return false;
2193 		if (r == 1) {
2194 			if (sctx->gs_shader.current)
2195 				si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2196 			else
2197 				si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2198 		}
2199 	}
2200 
2201 	/* The LLVM shader backend should be reporting aligned scratch_sizes. */
2202 	assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
2203 		"scratch size should already be aligned correctly.");
2204 
2205 	spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
2206 			   S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
2207 	if (spi_tmpring_size != sctx->spi_tmpring_size) {
2208 		sctx->spi_tmpring_size = spi_tmpring_size;
2209 		sctx->emit_scratch_reloc = true;
2210 	}
2211 	return true;
2212 }
2213 
si_init_tess_factor_ring(struct si_context * sctx)2214 static void si_init_tess_factor_ring(struct si_context *sctx)
2215 {
2216 	bool double_offchip_buffers = sctx->b.chip_class >= CIK &&
2217 				      sctx->b.family != CHIP_CARRIZO &&
2218 				      sctx->b.family != CHIP_STONEY;
2219 	unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
2220 	unsigned max_offchip_buffers = max_offchip_buffers_per_se *
2221 				       sctx->screen->b.info.max_se;
2222 	unsigned offchip_granularity;
2223 
2224 	switch (sctx->screen->tess_offchip_block_dw_size) {
2225 	default:
2226 		assert(0);
2227 		/* fall through */
2228 	case 8192:
2229 		offchip_granularity = V_03093C_X_8K_DWORDS;
2230 		break;
2231 	case 4096:
2232 		offchip_granularity = V_03093C_X_4K_DWORDS;
2233 		break;
2234 	}
2235 
2236 	switch (sctx->b.chip_class) {
2237 	case SI:
2238 		max_offchip_buffers = MIN2(max_offchip_buffers, 126);
2239 		break;
2240 	case CIK:
2241 		max_offchip_buffers = MIN2(max_offchip_buffers, 508);
2242 		break;
2243 	case VI:
2244 	default:
2245 		max_offchip_buffers = MIN2(max_offchip_buffers, 512);
2246 		break;
2247 	}
2248 
2249 	assert(!sctx->tf_ring);
2250 	sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, 0,
2251 					   PIPE_USAGE_DEFAULT,
2252 					   32768 * sctx->screen->b.info.max_se);
2253 	if (!sctx->tf_ring)
2254 		return;
2255 
2256 	assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
2257 
2258 	sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen, 0,
2259 	                                             PIPE_USAGE_DEFAULT,
2260 	                                             max_offchip_buffers *
2261 	                                             sctx->screen->tess_offchip_block_dw_size * 4);
2262 	if (!sctx->tess_offchip_ring)
2263 		return;
2264 
2265 	si_init_config_add_vgt_flush(sctx);
2266 
2267 	/* Append these registers to the init config state. */
2268 	if (sctx->b.chip_class >= CIK) {
2269 		if (sctx->b.chip_class >= VI)
2270 			--max_offchip_buffers;
2271 
2272 		si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
2273 			       S_030938_SIZE(sctx->tf_ring->width0 / 4));
2274 		si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
2275 			       r600_resource(sctx->tf_ring)->gpu_address >> 8);
2276 		si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
2277 		             S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
2278 		             S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
2279 	} else {
2280 		assert(offchip_granularity == V_03093C_X_8K_DWORDS);
2281 		si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
2282 			       S_008988_SIZE(sctx->tf_ring->width0 / 4));
2283 		si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
2284 			       r600_resource(sctx->tf_ring)->gpu_address >> 8);
2285 		si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
2286 		               S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
2287 	}
2288 
2289 	/* Flush the context to re-emit the init_config state.
2290 	 * This is done only once in a lifetime of a context.
2291 	 */
2292 	si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
2293 	sctx->b.initial_gfx_cs_size = 0; /* force flush */
2294 	si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
2295 
2296 	si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
2297 			   0, sctx->tf_ring->width0, false, false, 0, 0, 0);
2298 
2299 	si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
2300 	                   sctx->tess_offchip_ring, 0,
2301 	                   sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
2302 }
2303 
2304 /**
2305  * This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
2306  * VS passes its outputs to TES directly, so the fixed-function shader only
2307  * has to write TESSOUTER and TESSINNER.
2308  */
si_generate_fixed_func_tcs(struct si_context * sctx)2309 static void si_generate_fixed_func_tcs(struct si_context *sctx)
2310 {
2311 	struct ureg_src outer, inner;
2312 	struct ureg_dst tessouter, tessinner;
2313 	struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
2314 
2315 	if (!ureg)
2316 		return; /* if we get here, we're screwed */
2317 
2318 	assert(!sctx->fixed_func_tcs_shader.cso);
2319 
2320 	outer = ureg_DECL_system_value(ureg,
2321 				       TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
2322 	inner = ureg_DECL_system_value(ureg,
2323 				       TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
2324 
2325 	tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
2326 	tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
2327 
2328 	ureg_MOV(ureg, tessouter, outer);
2329 	ureg_MOV(ureg, tessinner, inner);
2330 	ureg_END(ureg);
2331 
2332 	sctx->fixed_func_tcs_shader.cso =
2333 		ureg_create_shader_and_destroy(ureg, &sctx->b.b);
2334 }
2335 
si_update_vgt_shader_config(struct si_context * sctx)2336 static void si_update_vgt_shader_config(struct si_context *sctx)
2337 {
2338 	/* Calculate the index of the config.
2339 	 * 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
2340 	unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
2341 	struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
2342 
2343 	if (!*pm4) {
2344 		uint32_t stages = 0;
2345 
2346 		*pm4 = CALLOC_STRUCT(si_pm4_state);
2347 
2348 		if (sctx->tes_shader.cso) {
2349 			stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
2350 				  S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
2351 
2352 			if (sctx->gs_shader.cso)
2353 				stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
2354 					  S_028B54_GS_EN(1) |
2355 				          S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2356 			else
2357 				stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2358 		} else if (sctx->gs_shader.cso) {
2359 			stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
2360 				  S_028B54_GS_EN(1) |
2361 			          S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2362 		}
2363 
2364 		si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
2365 	}
2366 	si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
2367 }
2368 
si_update_so(struct si_context * sctx,struct si_shader_selector * shader)2369 static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
2370 {
2371 	struct pipe_stream_output_info *so = &shader->so;
2372 	uint32_t enabled_stream_buffers_mask = 0;
2373 	int i;
2374 
2375 	for (i = 0; i < so->num_outputs; i++)
2376 		enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
2377 	sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
2378 	sctx->b.streamout.stride_in_dw = shader->so.stride;
2379 }
2380 
si_update_shaders(struct si_context * sctx)2381 bool si_update_shaders(struct si_context *sctx)
2382 {
2383 	struct pipe_context *ctx = (struct pipe_context*)sctx;
2384 	struct si_compiler_ctx_state compiler_state;
2385 	struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2386 	struct si_shader *old_vs = si_get_vs_state(sctx);
2387 	bool old_clip_disable = old_vs ? old_vs->key.opt.hw_vs.clip_disable : false;
2388 	int r;
2389 
2390 	compiler_state.tm = sctx->tm;
2391 	compiler_state.debug = sctx->b.debug;
2392 	compiler_state.is_debug_context = sctx->is_debug;
2393 
2394 	/* Update stages before GS. */
2395 	if (sctx->tes_shader.cso) {
2396 		if (!sctx->tf_ring) {
2397 			si_init_tess_factor_ring(sctx);
2398 			if (!sctx->tf_ring)
2399 				return false;
2400 		}
2401 
2402 		/* VS as LS */
2403 		r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
2404 		if (r)
2405 			return false;
2406 		si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
2407 
2408 		if (sctx->tcs_shader.cso) {
2409 			r = si_shader_select(ctx, &sctx->tcs_shader,
2410 					     &compiler_state);
2411 			if (r)
2412 				return false;
2413 			si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
2414 		} else {
2415 			if (!sctx->fixed_func_tcs_shader.cso) {
2416 				si_generate_fixed_func_tcs(sctx);
2417 				if (!sctx->fixed_func_tcs_shader.cso)
2418 					return false;
2419 			}
2420 
2421 			r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader,
2422 					     &compiler_state);
2423 			if (r)
2424 				return false;
2425 			si_pm4_bind_state(sctx, hs,
2426 					  sctx->fixed_func_tcs_shader.current->pm4);
2427 		}
2428 
2429 		r = si_shader_select(ctx, &sctx->tes_shader, &compiler_state);
2430 		if (r)
2431 			return false;
2432 
2433 		if (sctx->gs_shader.cso) {
2434 			/* TES as ES */
2435 			si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
2436 		} else {
2437 			/* TES as VS */
2438 			si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
2439 			si_update_so(sctx, sctx->tes_shader.cso);
2440 		}
2441 	} else if (sctx->gs_shader.cso) {
2442 		/* VS as ES */
2443 		r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
2444 		if (r)
2445 			return false;
2446 		si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
2447 	} else {
2448 		/* VS as VS */
2449 		r = si_shader_select(ctx, &sctx->vs_shader, &compiler_state);
2450 		if (r)
2451 			return false;
2452 		si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
2453 		si_update_so(sctx, sctx->vs_shader.cso);
2454 	}
2455 
2456 	/* Update GS. */
2457 	if (sctx->gs_shader.cso) {
2458 		r = si_shader_select(ctx, &sctx->gs_shader, &compiler_state);
2459 		if (r)
2460 			return false;
2461 		si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
2462 		si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
2463 		si_update_so(sctx, sctx->gs_shader.cso);
2464 
2465 		if (!si_update_gs_ring_buffers(sctx))
2466 			return false;
2467 	} else {
2468 		si_pm4_bind_state(sctx, gs, NULL);
2469 		si_pm4_bind_state(sctx, es, NULL);
2470 	}
2471 
2472 	si_update_vgt_shader_config(sctx);
2473 
2474 	if (old_clip_disable != si_get_vs_state(sctx)->key.opt.hw_vs.clip_disable)
2475 		si_mark_atom_dirty(sctx, &sctx->clip_regs);
2476 
2477 	if (sctx->ps_shader.cso) {
2478 		unsigned db_shader_control;
2479 
2480 		r = si_shader_select(ctx, &sctx->ps_shader, &compiler_state);
2481 		if (r)
2482 			return false;
2483 		si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
2484 
2485 		db_shader_control =
2486 			sctx->ps_shader.cso->db_shader_control |
2487 			S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
2488 
2489 		if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
2490 		    sctx->sprite_coord_enable != rs->sprite_coord_enable ||
2491 		    sctx->flatshade != rs->flatshade) {
2492 			sctx->sprite_coord_enable = rs->sprite_coord_enable;
2493 			sctx->flatshade = rs->flatshade;
2494 			si_mark_atom_dirty(sctx, &sctx->spi_map);
2495 		}
2496 
2497 		if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
2498 			si_mark_atom_dirty(sctx, &sctx->cb_render_state);
2499 
2500 		if (sctx->ps_db_shader_control != db_shader_control) {
2501 			sctx->ps_db_shader_control = db_shader_control;
2502 			si_mark_atom_dirty(sctx, &sctx->db_render_state);
2503 		}
2504 
2505 		if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
2506 			sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
2507 			si_mark_atom_dirty(sctx, &sctx->msaa_config);
2508 
2509 			if (sctx->b.chip_class == SI)
2510 				si_mark_atom_dirty(sctx, &sctx->db_render_state);
2511 
2512 			if (sctx->framebuffer.nr_samples <= 1)
2513 				si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
2514 		}
2515 	}
2516 
2517 	if (si_pm4_state_changed(sctx, ls) ||
2518 	    si_pm4_state_changed(sctx, hs) ||
2519 	    si_pm4_state_changed(sctx, es) ||
2520 	    si_pm4_state_changed(sctx, gs) ||
2521 	    si_pm4_state_changed(sctx, vs) ||
2522 	    si_pm4_state_changed(sctx, ps)) {
2523 		if (!si_update_spi_tmpring_size(sctx))
2524 			return false;
2525 	}
2526 
2527 	sctx->do_update_shaders = false;
2528 	return true;
2529 }
2530 
si_init_shader_functions(struct si_context * sctx)2531 void si_init_shader_functions(struct si_context *sctx)
2532 {
2533 	si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
2534 
2535 	sctx->b.b.create_vs_state = si_create_shader_selector;
2536 	sctx->b.b.create_tcs_state = si_create_shader_selector;
2537 	sctx->b.b.create_tes_state = si_create_shader_selector;
2538 	sctx->b.b.create_gs_state = si_create_shader_selector;
2539 	sctx->b.b.create_fs_state = si_create_shader_selector;
2540 
2541 	sctx->b.b.bind_vs_state = si_bind_vs_shader;
2542 	sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
2543 	sctx->b.b.bind_tes_state = si_bind_tes_shader;
2544 	sctx->b.b.bind_gs_state = si_bind_gs_shader;
2545 	sctx->b.b.bind_fs_state = si_bind_ps_shader;
2546 
2547 	sctx->b.b.delete_vs_state = si_delete_shader_selector;
2548 	sctx->b.b.delete_tcs_state = si_delete_shader_selector;
2549 	sctx->b.b.delete_tes_state = si_delete_shader_selector;
2550 	sctx->b.b.delete_gs_state = si_delete_shader_selector;
2551 	sctx->b.b.delete_fs_state = si_delete_shader_selector;
2552 }
2553