1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SetOperations.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Analysis/AliasAnalysis.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/GlobalsModRef.h"
52 #include "llvm/Analysis/InstructionSimplify.h"
53 #include "llvm/Analysis/LoopInfo.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
56 #include "llvm/IR/CFG.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 using namespace llvm;
72
73 #define DEBUG_TYPE "loop-simplify"
74
75 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
76 STATISTIC(NumNested , "Number of nested loops split out");
77
78 // If the block isn't already, move the new block to right after some 'outside
79 // block' block. This prevents the preheader from being placed inside the loop
80 // body, e.g. when the loop hasn't been rotated.
placeSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)81 static void placeSplitBlockCarefully(BasicBlock *NewBB,
82 SmallVectorImpl<BasicBlock *> &SplitPreds,
83 Loop *L) {
84 // Check to see if NewBB is already well placed.
85 Function::iterator BBI = --NewBB->getIterator();
86 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
87 if (&*BBI == SplitPreds[i])
88 return;
89 }
90
91 // If it isn't already after an outside block, move it after one. This is
92 // always good as it makes the uncond branch from the outside block into a
93 // fall-through.
94
95 // Figure out *which* outside block to put this after. Prefer an outside
96 // block that neighbors a BB actually in the loop.
97 BasicBlock *FoundBB = nullptr;
98 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
99 Function::iterator BBI = SplitPreds[i]->getIterator();
100 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
101 FoundBB = SplitPreds[i];
102 break;
103 }
104 }
105
106 // If our heuristic for a *good* bb to place this after doesn't find
107 // anything, just pick something. It's likely better than leaving it within
108 // the loop.
109 if (!FoundBB)
110 FoundBB = SplitPreds[0];
111 NewBB->moveAfter(FoundBB);
112 }
113
114 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
115 /// preheader, this method is called to insert one. This method has two phases:
116 /// preheader insertion and analysis updating.
117 ///
InsertPreheaderForLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)118 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
119 LoopInfo *LI, bool PreserveLCSSA) {
120 BasicBlock *Header = L->getHeader();
121
122 // Compute the set of predecessors of the loop that are not in the loop.
123 SmallVector<BasicBlock*, 8> OutsideBlocks;
124 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
125 PI != PE; ++PI) {
126 BasicBlock *P = *PI;
127 if (!L->contains(P)) { // Coming in from outside the loop?
128 // If the loop is branched to from an indirect branch, we won't
129 // be able to fully transform the loop, because it prohibits
130 // edge splitting.
131 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
132
133 // Keep track of it.
134 OutsideBlocks.push_back(P);
135 }
136 }
137
138 // Split out the loop pre-header.
139 BasicBlock *PreheaderBB;
140 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
141 LI, PreserveLCSSA);
142 if (!PreheaderBB)
143 return nullptr;
144
145 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
146 << PreheaderBB->getName() << "\n");
147
148 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
149 // code layout too horribly.
150 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
151
152 return PreheaderBB;
153 }
154
155 /// \brief Ensure that the loop preheader dominates all exit blocks.
156 ///
157 /// This method is used to split exit blocks that have predecessors outside of
158 /// the loop.
rewriteLoopExitBlock(Loop * L,BasicBlock * Exit,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
160 DominatorTree *DT, LoopInfo *LI,
161 bool PreserveLCSSA) {
162 SmallVector<BasicBlock*, 8> LoopBlocks;
163 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
164 BasicBlock *P = *I;
165 if (L->contains(P)) {
166 // Don't do this if the loop is exited via an indirect branch.
167 if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
168
169 LoopBlocks.push_back(P);
170 }
171 }
172
173 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
174 BasicBlock *NewExitBB = nullptr;
175
176 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI,
177 PreserveLCSSA);
178 if (!NewExitBB)
179 return nullptr;
180
181 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
182 << NewExitBB->getName() << "\n");
183 return NewExitBB;
184 }
185
186 /// Add the specified block, and all of its predecessors, to the specified set,
187 /// if it's not already in there. Stop predecessor traversal when we reach
188 /// StopBlock.
addBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)189 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
190 std::set<BasicBlock*> &Blocks) {
191 SmallVector<BasicBlock *, 8> Worklist;
192 Worklist.push_back(InputBB);
193 do {
194 BasicBlock *BB = Worklist.pop_back_val();
195 if (Blocks.insert(BB).second && BB != StopBlock)
196 // If BB is not already processed and it is not a stop block then
197 // insert its predecessor in the work list
198 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
199 BasicBlock *WBB = *I;
200 Worklist.push_back(WBB);
201 }
202 } while (!Worklist.empty());
203 }
204
205 /// \brief The first part of loop-nestification is to find a PHI node that tells
206 /// us how to partition the loops.
findPHIToPartitionLoops(Loop * L,DominatorTree * DT,AssumptionCache * AC)207 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
208 AssumptionCache *AC) {
209 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
210 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
211 PHINode *PN = cast<PHINode>(I);
212 ++I;
213 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
214 // This is a degenerate PHI already, don't modify it!
215 PN->replaceAllUsesWith(V);
216 PN->eraseFromParent();
217 continue;
218 }
219
220 // Scan this PHI node looking for a use of the PHI node by itself.
221 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
222 if (PN->getIncomingValue(i) == PN &&
223 L->contains(PN->getIncomingBlock(i)))
224 // We found something tasty to remove.
225 return PN;
226 }
227 return nullptr;
228 }
229
230 /// \brief If this loop has multiple backedges, try to pull one of them out into
231 /// a nested loop.
232 ///
233 /// This is important for code that looks like
234 /// this:
235 ///
236 /// Loop:
237 /// ...
238 /// br cond, Loop, Next
239 /// ...
240 /// br cond2, Loop, Out
241 ///
242 /// To identify this common case, we look at the PHI nodes in the header of the
243 /// loop. PHI nodes with unchanging values on one backedge correspond to values
244 /// that change in the "outer" loop, but not in the "inner" loop.
245 ///
246 /// If we are able to separate out a loop, return the new outer loop that was
247 /// created.
248 ///
separateNestedLoop(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,bool PreserveLCSSA,AssumptionCache * AC)249 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
250 DominatorTree *DT, LoopInfo *LI,
251 ScalarEvolution *SE, bool PreserveLCSSA,
252 AssumptionCache *AC) {
253 // Don't try to separate loops without a preheader.
254 if (!Preheader)
255 return nullptr;
256
257 // The header is not a landing pad; preheader insertion should ensure this.
258 BasicBlock *Header = L->getHeader();
259 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
260
261 PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
262 if (!PN) return nullptr; // No known way to partition.
263
264 // Pull out all predecessors that have varying values in the loop. This
265 // handles the case when a PHI node has multiple instances of itself as
266 // arguments.
267 SmallVector<BasicBlock*, 8> OuterLoopPreds;
268 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
269 if (PN->getIncomingValue(i) != PN ||
270 !L->contains(PN->getIncomingBlock(i))) {
271 // We can't split indirectbr edges.
272 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
273 return nullptr;
274 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
275 }
276 }
277 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
278
279 // If ScalarEvolution is around and knows anything about values in
280 // this loop, tell it to forget them, because we're about to
281 // substantially change it.
282 if (SE)
283 SE->forgetLoop(L);
284
285 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
286 DT, LI, PreserveLCSSA);
287
288 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
289 // code layout too horribly.
290 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
291
292 // Create the new outer loop.
293 Loop *NewOuter = new Loop();
294
295 // Change the parent loop to use the outer loop as its child now.
296 if (Loop *Parent = L->getParentLoop())
297 Parent->replaceChildLoopWith(L, NewOuter);
298 else
299 LI->changeTopLevelLoop(L, NewOuter);
300
301 // L is now a subloop of our outer loop.
302 NewOuter->addChildLoop(L);
303
304 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
305 I != E; ++I)
306 NewOuter->addBlockEntry(*I);
307
308 // Now reset the header in L, which had been moved by
309 // SplitBlockPredecessors for the outer loop.
310 L->moveToHeader(Header);
311
312 // Determine which blocks should stay in L and which should be moved out to
313 // the Outer loop now.
314 std::set<BasicBlock*> BlocksInL;
315 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
316 BasicBlock *P = *PI;
317 if (DT->dominates(Header, P))
318 addBlockAndPredsToSet(P, Header, BlocksInL);
319 }
320
321 // Scan all of the loop children of L, moving them to OuterLoop if they are
322 // not part of the inner loop.
323 const std::vector<Loop*> &SubLoops = L->getSubLoops();
324 for (size_t I = 0; I != SubLoops.size(); )
325 if (BlocksInL.count(SubLoops[I]->getHeader()))
326 ++I; // Loop remains in L
327 else
328 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
329
330 // Now that we know which blocks are in L and which need to be moved to
331 // OuterLoop, move any blocks that need it.
332 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
333 BasicBlock *BB = L->getBlocks()[i];
334 if (!BlocksInL.count(BB)) {
335 // Move this block to the parent, updating the exit blocks sets
336 L->removeBlockFromLoop(BB);
337 if ((*LI)[BB] == L)
338 LI->changeLoopFor(BB, NewOuter);
339 --i;
340 }
341 }
342
343 return NewOuter;
344 }
345
346 /// \brief This method is called when the specified loop has more than one
347 /// backedge in it.
348 ///
349 /// If this occurs, revector all of these backedges to target a new basic block
350 /// and have that block branch to the loop header. This ensures that loops
351 /// have exactly one backedge.
insertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI)352 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
353 DominatorTree *DT, LoopInfo *LI) {
354 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
355
356 // Get information about the loop
357 BasicBlock *Header = L->getHeader();
358 Function *F = Header->getParent();
359
360 // Unique backedge insertion currently depends on having a preheader.
361 if (!Preheader)
362 return nullptr;
363
364 // The header is not an EH pad; preheader insertion should ensure this.
365 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
366
367 // Figure out which basic blocks contain back-edges to the loop header.
368 std::vector<BasicBlock*> BackedgeBlocks;
369 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
370 BasicBlock *P = *I;
371
372 // Indirectbr edges cannot be split, so we must fail if we find one.
373 if (isa<IndirectBrInst>(P->getTerminator()))
374 return nullptr;
375
376 if (P != Preheader) BackedgeBlocks.push_back(P);
377 }
378
379 // Create and insert the new backedge block...
380 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
381 Header->getName() + ".backedge", F);
382 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
383 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
384
385 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
386 << BEBlock->getName() << "\n");
387
388 // Move the new backedge block to right after the last backedge block.
389 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
390 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
391
392 // Now that the block has been inserted into the function, create PHI nodes in
393 // the backedge block which correspond to any PHI nodes in the header block.
394 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
395 PHINode *PN = cast<PHINode>(I);
396 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
397 PN->getName()+".be", BETerminator);
398
399 // Loop over the PHI node, moving all entries except the one for the
400 // preheader over to the new PHI node.
401 unsigned PreheaderIdx = ~0U;
402 bool HasUniqueIncomingValue = true;
403 Value *UniqueValue = nullptr;
404 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
405 BasicBlock *IBB = PN->getIncomingBlock(i);
406 Value *IV = PN->getIncomingValue(i);
407 if (IBB == Preheader) {
408 PreheaderIdx = i;
409 } else {
410 NewPN->addIncoming(IV, IBB);
411 if (HasUniqueIncomingValue) {
412 if (!UniqueValue)
413 UniqueValue = IV;
414 else if (UniqueValue != IV)
415 HasUniqueIncomingValue = false;
416 }
417 }
418 }
419
420 // Delete all of the incoming values from the old PN except the preheader's
421 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
422 if (PreheaderIdx != 0) {
423 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
424 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
425 }
426 // Nuke all entries except the zero'th.
427 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
428 PN->removeIncomingValue(e-i, false);
429
430 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
431 PN->addIncoming(NewPN, BEBlock);
432
433 // As an optimization, if all incoming values in the new PhiNode (which is a
434 // subset of the incoming values of the old PHI node) have the same value,
435 // eliminate the PHI Node.
436 if (HasUniqueIncomingValue) {
437 NewPN->replaceAllUsesWith(UniqueValue);
438 BEBlock->getInstList().erase(NewPN);
439 }
440 }
441
442 // Now that all of the PHI nodes have been inserted and adjusted, modify the
443 // backedge blocks to just to the BEBlock instead of the header.
444 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
445 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
446 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
447 if (TI->getSuccessor(Op) == Header)
448 TI->setSuccessor(Op, BEBlock);
449 }
450
451 //===--- Update all analyses which we must preserve now -----------------===//
452
453 // Update Loop Information - we know that this block is now in the current
454 // loop and all parent loops.
455 L->addBasicBlockToLoop(BEBlock, *LI);
456
457 // Update dominator information
458 DT->splitBlock(BEBlock);
459
460 return BEBlock;
461 }
462
463 /// \brief Simplify one loop and queue further loops for simplification.
simplifyOneLoop(Loop * L,SmallVectorImpl<Loop * > & Worklist,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)464 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
465 DominatorTree *DT, LoopInfo *LI,
466 ScalarEvolution *SE, AssumptionCache *AC,
467 bool PreserveLCSSA) {
468 bool Changed = false;
469 ReprocessLoop:
470
471 // Check to see that no blocks (other than the header) in this loop have
472 // predecessors that are not in the loop. This is not valid for natural
473 // loops, but can occur if the blocks are unreachable. Since they are
474 // unreachable we can just shamelessly delete those CFG edges!
475 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
476 BB != E; ++BB) {
477 if (*BB == L->getHeader()) continue;
478
479 SmallPtrSet<BasicBlock*, 4> BadPreds;
480 for (pred_iterator PI = pred_begin(*BB),
481 PE = pred_end(*BB); PI != PE; ++PI) {
482 BasicBlock *P = *PI;
483 if (!L->contains(P))
484 BadPreds.insert(P);
485 }
486
487 // Delete each unique out-of-loop (and thus dead) predecessor.
488 for (BasicBlock *P : BadPreds) {
489
490 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
491 << P->getName() << "\n");
492
493 // Zap the dead pred's terminator and replace it with unreachable.
494 TerminatorInst *TI = P->getTerminator();
495 changeToUnreachable(TI, /*UseLLVMTrap=*/false);
496 Changed = true;
497 }
498 }
499
500 // If there are exiting blocks with branches on undef, resolve the undef in
501 // the direction which will exit the loop. This will help simplify loop
502 // trip count computations.
503 SmallVector<BasicBlock*, 8> ExitingBlocks;
504 L->getExitingBlocks(ExitingBlocks);
505 for (BasicBlock *ExitingBlock : ExitingBlocks)
506 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
507 if (BI->isConditional()) {
508 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
509
510 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
511 << ExitingBlock->getName() << "\n");
512
513 BI->setCondition(ConstantInt::get(Cond->getType(),
514 !L->contains(BI->getSuccessor(0))));
515
516 // This may make the loop analyzable, force SCEV recomputation.
517 if (SE)
518 SE->forgetLoop(L);
519
520 Changed = true;
521 }
522 }
523
524 // Does the loop already have a preheader? If so, don't insert one.
525 BasicBlock *Preheader = L->getLoopPreheader();
526 if (!Preheader) {
527 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
528 if (Preheader) {
529 ++NumInserted;
530 Changed = true;
531 }
532 }
533
534 // Next, check to make sure that all exit nodes of the loop only have
535 // predecessors that are inside of the loop. This check guarantees that the
536 // loop preheader/header will dominate the exit blocks. If the exit block has
537 // predecessors from outside of the loop, split the edge now.
538 SmallVector<BasicBlock*, 8> ExitBlocks;
539 L->getExitBlocks(ExitBlocks);
540
541 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
542 ExitBlocks.end());
543 for (BasicBlock *ExitBlock : ExitBlockSet) {
544 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
545 PI != PE; ++PI)
546 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
547 // allowed.
548 if (!L->contains(*PI)) {
549 if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) {
550 ++NumInserted;
551 Changed = true;
552 }
553 break;
554 }
555 }
556
557 // If the header has more than two predecessors at this point (from the
558 // preheader and from multiple backedges), we must adjust the loop.
559 BasicBlock *LoopLatch = L->getLoopLatch();
560 if (!LoopLatch) {
561 // If this is really a nested loop, rip it out into a child loop. Don't do
562 // this for loops with a giant number of backedges, just factor them into a
563 // common backedge instead.
564 if (L->getNumBackEdges() < 8) {
565 if (Loop *OuterL =
566 separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
567 ++NumNested;
568 // Enqueue the outer loop as it should be processed next in our
569 // depth-first nest walk.
570 Worklist.push_back(OuterL);
571
572 // This is a big restructuring change, reprocess the whole loop.
573 Changed = true;
574 // GCC doesn't tail recursion eliminate this.
575 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
576 goto ReprocessLoop;
577 }
578 }
579
580 // If we either couldn't, or didn't want to, identify nesting of the loops,
581 // insert a new block that all backedges target, then make it jump to the
582 // loop header.
583 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
584 if (LoopLatch) {
585 ++NumInserted;
586 Changed = true;
587 }
588 }
589
590 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
591
592 // Scan over the PHI nodes in the loop header. Since they now have only two
593 // incoming values (the loop is canonicalized), we may have simplified the PHI
594 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
595 PHINode *PN;
596 for (BasicBlock::iterator I = L->getHeader()->begin();
597 (PN = dyn_cast<PHINode>(I++)); )
598 if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
599 if (SE) SE->forgetValue(PN);
600 PN->replaceAllUsesWith(V);
601 PN->eraseFromParent();
602 }
603
604 // If this loop has multiple exits and the exits all go to the same
605 // block, attempt to merge the exits. This helps several passes, such
606 // as LoopRotation, which do not support loops with multiple exits.
607 // SimplifyCFG also does this (and this code uses the same utility
608 // function), however this code is loop-aware, where SimplifyCFG is
609 // not. That gives it the advantage of being able to hoist
610 // loop-invariant instructions out of the way to open up more
611 // opportunities, and the disadvantage of having the responsibility
612 // to preserve dominator information.
613 bool UniqueExit = true;
614 if (!ExitBlocks.empty())
615 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
616 if (ExitBlocks[i] != ExitBlocks[0]) {
617 UniqueExit = false;
618 break;
619 }
620 if (UniqueExit) {
621 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
622 BasicBlock *ExitingBlock = ExitingBlocks[i];
623 if (!ExitingBlock->getSinglePredecessor()) continue;
624 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
625 if (!BI || !BI->isConditional()) continue;
626 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
627 if (!CI || CI->getParent() != ExitingBlock) continue;
628
629 // Attempt to hoist out all instructions except for the
630 // comparison and the branch.
631 bool AllInvariant = true;
632 bool AnyInvariant = false;
633 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
634 Instruction *Inst = &*I++;
635 // Skip debug info intrinsics.
636 if (isa<DbgInfoIntrinsic>(Inst))
637 continue;
638 if (Inst == CI)
639 continue;
640 if (!L->makeLoopInvariant(Inst, AnyInvariant,
641 Preheader ? Preheader->getTerminator()
642 : nullptr)) {
643 AllInvariant = false;
644 break;
645 }
646 }
647 if (AnyInvariant) {
648 Changed = true;
649 // The loop disposition of all SCEV expressions that depend on any
650 // hoisted values have also changed.
651 if (SE)
652 SE->forgetLoopDispositions(L);
653 }
654 if (!AllInvariant) continue;
655
656 // The block has now been cleared of all instructions except for
657 // a comparison and a conditional branch. SimplifyCFG may be able
658 // to fold it now.
659 if (!FoldBranchToCommonDest(BI))
660 continue;
661
662 // Success. The block is now dead, so remove it from the loop,
663 // update the dominator tree and delete it.
664 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
665 << ExitingBlock->getName() << "\n");
666
667 // Notify ScalarEvolution before deleting this block. Currently assume the
668 // parent loop doesn't change (spliting edges doesn't count). If blocks,
669 // CFG edges, or other values in the parent loop change, then we need call
670 // to forgetLoop() for the parent instead.
671 if (SE)
672 SE->forgetLoop(L);
673
674 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
675 Changed = true;
676 LI->removeBlock(ExitingBlock);
677
678 DomTreeNode *Node = DT->getNode(ExitingBlock);
679 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
680 Node->getChildren();
681 while (!Children.empty()) {
682 DomTreeNode *Child = Children.front();
683 DT->changeImmediateDominator(Child, Node->getIDom());
684 }
685 DT->eraseNode(ExitingBlock);
686
687 BI->getSuccessor(0)->removePredecessor(
688 ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
689 BI->getSuccessor(1)->removePredecessor(
690 ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
691 ExitingBlock->eraseFromParent();
692 }
693 }
694
695 return Changed;
696 }
697
simplifyLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)698 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
699 ScalarEvolution *SE, AssumptionCache *AC,
700 bool PreserveLCSSA) {
701 bool Changed = false;
702
703 // Worklist maintains our depth-first queue of loops in this nest to process.
704 SmallVector<Loop *, 4> Worklist;
705 Worklist.push_back(L);
706
707 // Walk the worklist from front to back, pushing newly found sub loops onto
708 // the back. This will let us process loops from back to front in depth-first
709 // order. We can use this simple process because loops form a tree.
710 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
711 Loop *L2 = Worklist[Idx];
712 Worklist.append(L2->begin(), L2->end());
713 }
714
715 while (!Worklist.empty())
716 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
717 AC, PreserveLCSSA);
718
719 return Changed;
720 }
721
722 namespace {
723 struct LoopSimplify : public FunctionPass {
724 static char ID; // Pass identification, replacement for typeid
LoopSimplify__anonfa7ae8f60111::LoopSimplify725 LoopSimplify() : FunctionPass(ID) {
726 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
727 }
728
729 bool runOnFunction(Function &F) override;
730
getAnalysisUsage__anonfa7ae8f60111::LoopSimplify731 void getAnalysisUsage(AnalysisUsage &AU) const override {
732 AU.addRequired<AssumptionCacheTracker>();
733
734 // We need loop information to identify the loops...
735 AU.addRequired<DominatorTreeWrapperPass>();
736 AU.addPreserved<DominatorTreeWrapperPass>();
737
738 AU.addRequired<LoopInfoWrapperPass>();
739 AU.addPreserved<LoopInfoWrapperPass>();
740
741 AU.addPreserved<BasicAAWrapperPass>();
742 AU.addPreserved<AAResultsWrapperPass>();
743 AU.addPreserved<GlobalsAAWrapperPass>();
744 AU.addPreserved<ScalarEvolutionWrapperPass>();
745 AU.addPreserved<SCEVAAWrapperPass>();
746 AU.addPreservedID(LCSSAID);
747 AU.addPreserved<DependenceAnalysisWrapperPass>();
748 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
749 }
750
751 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
752 void verifyAnalysis() const override;
753 };
754 }
755
756 char LoopSimplify::ID = 0;
757 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
758 "Canonicalize natural loops", false, false)
759 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
761 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
762 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
763 "Canonicalize natural loops", false, false)
764
765 // Publicly exposed interface to pass...
766 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()767 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
768
769 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
770 /// it in any convenient order) inserting preheaders...
771 ///
runOnFunction(Function & F)772 bool LoopSimplify::runOnFunction(Function &F) {
773 bool Changed = false;
774 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
775 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
776 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
777 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
778 AssumptionCache *AC =
779 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
780
781 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
782 #ifndef NDEBUG
783 if (PreserveLCSSA) {
784 assert(DT && "DT not available.");
785 assert(LI && "LI not available.");
786 bool InLCSSA =
787 all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
788 assert(InLCSSA && "Requested to preserve LCSSA, but it's already broken.");
789 }
790 #endif
791
792 // Simplify each loop nest in the function.
793 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
794 Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
795
796 #ifndef NDEBUG
797 if (PreserveLCSSA) {
798 bool InLCSSA =
799 all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); });
800 assert(InLCSSA && "LCSSA is broken after loop-simplify.");
801 }
802 #endif
803 return Changed;
804 }
805
run(Function & F,AnalysisManager<Function> & AM)806 PreservedAnalyses LoopSimplifyPass::run(Function &F,
807 AnalysisManager<Function> &AM) {
808 bool Changed = false;
809 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
810 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
811 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
812 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
813
814 // FIXME: This pass should verify that the loops on which it's operating
815 // are in canonical SSA form, and that the pass itself preserves this form.
816 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
817 Changed |= simplifyLoop(*I, DT, LI, SE, AC, true /* PreserveLCSSA */);
818
819 if (!Changed)
820 return PreservedAnalyses::all();
821 PreservedAnalyses PA;
822 PA.preserve<DominatorTreeAnalysis>();
823 PA.preserve<LoopAnalysis>();
824 PA.preserve<BasicAA>();
825 PA.preserve<GlobalsAA>();
826 PA.preserve<SCEVAA>();
827 PA.preserve<ScalarEvolutionAnalysis>();
828 PA.preserve<DependenceAnalysis>();
829 return PA;
830 }
831
832 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
833 // below.
834 #if 0
835 static void verifyLoop(Loop *L) {
836 // Verify subloops.
837 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
838 verifyLoop(*I);
839
840 // It used to be possible to just assert L->isLoopSimplifyForm(), however
841 // with the introduction of indirectbr, there are now cases where it's
842 // not possible to transform a loop as necessary. We can at least check
843 // that there is an indirectbr near any time there's trouble.
844
845 // Indirectbr can interfere with preheader and unique backedge insertion.
846 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
847 bool HasIndBrPred = false;
848 for (pred_iterator PI = pred_begin(L->getHeader()),
849 PE = pred_end(L->getHeader()); PI != PE; ++PI)
850 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
851 HasIndBrPred = true;
852 break;
853 }
854 assert(HasIndBrPred &&
855 "LoopSimplify has no excuse for missing loop header info!");
856 (void)HasIndBrPred;
857 }
858
859 // Indirectbr can interfere with exit block canonicalization.
860 if (!L->hasDedicatedExits()) {
861 bool HasIndBrExiting = false;
862 SmallVector<BasicBlock*, 8> ExitingBlocks;
863 L->getExitingBlocks(ExitingBlocks);
864 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
865 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
866 HasIndBrExiting = true;
867 break;
868 }
869 }
870
871 assert(HasIndBrExiting &&
872 "LoopSimplify has no excuse for missing exit block info!");
873 (void)HasIndBrExiting;
874 }
875 }
876 #endif
877
verifyAnalysis() const878 void LoopSimplify::verifyAnalysis() const {
879 // FIXME: This routine is being called mid-way through the loop pass manager
880 // as loop passes destroy this analysis. That's actually fine, but we have no
881 // way of expressing that here. Once all of the passes that destroy this are
882 // hoisted out of the loop pass manager we can add back verification here.
883 #if 0
884 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
885 verifyLoop(*I);
886 #endif
887 }
888