• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #include <openssl/ssl.h>
110 
111 #include <assert.h>
112 #include <string.h>
113 
114 #include <openssl/bytestring.h>
115 #include <openssl/err.h>
116 #include <openssl/mem.h>
117 
118 #include "internal.h"
119 #include "../crypto/internal.h"
120 
121 
122 /* kMaxEmptyRecords is the number of consecutive, empty records that will be
123  * processed. Without this limit an attacker could send empty records at a
124  * faster rate than we can process and cause record processing to loop
125  * forever. */
126 static const uint8_t kMaxEmptyRecords = 32;
127 
128 /* kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that
129  * will be skipped. Without this limit an attacker could send records at a
130  * faster rate than we can process and cause trial decryption to loop forever.
131  * This value should be slightly above kMaxEarlyDataAccepted, which is measured
132  * in plaintext. */
133 static const size_t kMaxEarlyDataSkipped = 16384;
134 
135 /* kMaxWarningAlerts is the number of consecutive warning alerts that will be
136  * processed. */
137 static const uint8_t kMaxWarningAlerts = 4;
138 
139 /* ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher
140  * state needs record-splitting and zero otherwise. */
ssl_needs_record_splitting(const SSL * ssl)141 static int ssl_needs_record_splitting(const SSL *ssl) {
142 #if !defined(BORINGSSL_UNSAFE_FUZZER_MODE)
143   return ssl->s3->aead_write_ctx != NULL &&
144          ssl->s3->aead_write_ctx->version < TLS1_1_VERSION &&
145          (ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 &&
146          SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher);
147 #else
148   return 0;
149 #endif
150 }
151 
ssl_record_sequence_update(uint8_t * seq,size_t seq_len)152 int ssl_record_sequence_update(uint8_t *seq, size_t seq_len) {
153   for (size_t i = seq_len - 1; i < seq_len; i--) {
154     ++seq[i];
155     if (seq[i] != 0) {
156       return 1;
157     }
158   }
159   OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
160   return 0;
161 }
162 
ssl_record_prefix_len(const SSL * ssl)163 size_t ssl_record_prefix_len(const SSL *ssl) {
164   size_t header_len;
165   if (SSL_is_dtls(ssl)) {
166     header_len = DTLS1_RT_HEADER_LENGTH;
167   } else {
168     header_len = SSL3_RT_HEADER_LENGTH;
169   }
170 
171   return header_len + SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_read_ctx);
172 }
173 
ssl_seal_align_prefix_len(const SSL * ssl)174 size_t ssl_seal_align_prefix_len(const SSL *ssl) {
175   if (SSL_is_dtls(ssl)) {
176     return DTLS1_RT_HEADER_LENGTH +
177            SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_write_ctx);
178   }
179 
180   size_t ret = SSL3_RT_HEADER_LENGTH +
181                SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_write_ctx);
182   if (ssl_needs_record_splitting(ssl)) {
183     ret += SSL3_RT_HEADER_LENGTH;
184     ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher);
185   }
186   return ret;
187 }
188 
SSL_max_seal_overhead(const SSL * ssl)189 size_t SSL_max_seal_overhead(const SSL *ssl) {
190   if (SSL_is_dtls(ssl)) {
191     return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch);
192   }
193 
194   size_t ret = SSL3_RT_HEADER_LENGTH;
195   ret += SSL_AEAD_CTX_max_overhead(ssl->s3->aead_write_ctx);
196   /* TLS 1.3 needs an extra byte for the encrypted record type. */
197   if (ssl->s3->aead_write_ctx != NULL &&
198       ssl->s3->aead_write_ctx->version >= TLS1_3_VERSION) {
199     ret += 1;
200   }
201   if (ssl_needs_record_splitting(ssl)) {
202     ret *= 2;
203   }
204   return ret;
205 }
206 
tls_open_record(SSL * ssl,uint8_t * out_type,CBS * out,size_t * out_consumed,uint8_t * out_alert,uint8_t * in,size_t in_len)207 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, CBS *out,
208                                        size_t *out_consumed, uint8_t *out_alert,
209                                        uint8_t *in, size_t in_len) {
210   *out_consumed = 0;
211 
212   CBS cbs;
213   CBS_init(&cbs, in, in_len);
214 
215   /* Decode the record header. */
216   uint8_t type;
217   uint16_t version, ciphertext_len;
218   if (!CBS_get_u8(&cbs, &type) ||
219       !CBS_get_u16(&cbs, &version) ||
220       !CBS_get_u16(&cbs, &ciphertext_len)) {
221     *out_consumed = SSL3_RT_HEADER_LENGTH;
222     return ssl_open_record_partial;
223   }
224 
225   int version_ok;
226   if (ssl->s3->aead_read_ctx == NULL) {
227     /* Only check the first byte. Enforcing beyond that can prevent decoding
228      * version negotiation failure alerts. */
229     version_ok = (version >> 8) == SSL3_VERSION_MAJOR;
230   } else if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
231     /* Earlier versions of TLS switch the record version. */
232     version_ok = version == ssl->version;
233   } else {
234     /* Starting TLS 1.3, the version field is frozen at {3, 1}. */
235     version_ok = version == TLS1_VERSION;
236   }
237 
238   if (!version_ok) {
239     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
240     *out_alert = SSL_AD_PROTOCOL_VERSION;
241     return ssl_open_record_error;
242   }
243 
244   /* Check the ciphertext length. */
245   if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
246     OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
247     *out_alert = SSL_AD_RECORD_OVERFLOW;
248     return ssl_open_record_error;
249   }
250 
251   /* Extract the body. */
252   CBS body;
253   if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) {
254     *out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len;
255     return ssl_open_record_partial;
256   }
257 
258   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, in,
259                       SSL3_RT_HEADER_LENGTH);
260 
261   *out_consumed = in_len - CBS_len(&cbs);
262 
263   /* Skip early data received when expecting a second ClientHello if we rejected
264    * 0RTT. */
265   if (ssl->s3->skip_early_data &&
266       ssl->s3->aead_read_ctx == NULL &&
267       type == SSL3_RT_APPLICATION_DATA) {
268     goto skipped_data;
269   }
270 
271   /* Decrypt the body in-place. */
272   if (!SSL_AEAD_CTX_open(ssl->s3->aead_read_ctx, out, type, version,
273                          ssl->s3->read_sequence, (uint8_t *)CBS_data(&body),
274                          CBS_len(&body))) {
275     if (ssl->s3->skip_early_data &&
276         ssl->s3->aead_read_ctx != NULL) {
277       ERR_clear_error();
278       goto skipped_data;
279     }
280 
281     OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
282     *out_alert = SSL_AD_BAD_RECORD_MAC;
283     return ssl_open_record_error;
284   }
285 
286   ssl->s3->skip_early_data = 0;
287 
288   if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) {
289     *out_alert = SSL_AD_INTERNAL_ERROR;
290     return ssl_open_record_error;
291   }
292 
293   /* TLS 1.3 hides the record type inside the encrypted data. */
294   if (ssl->s3->aead_read_ctx != NULL &&
295       ssl->s3->aead_read_ctx->version >= TLS1_3_VERSION) {
296     /* The outer record type is always application_data. */
297     if (type != SSL3_RT_APPLICATION_DATA) {
298       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE);
299       *out_alert = SSL_AD_DECODE_ERROR;
300       return ssl_open_record_error;
301     }
302 
303     do {
304       if (!CBS_get_last_u8(out, &type)) {
305         OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
306         *out_alert = SSL_AD_DECRYPT_ERROR;
307         return ssl_open_record_error;
308       }
309     } while (type == 0);
310   }
311 
312   /* Check the plaintext length. */
313   if (CBS_len(out) > SSL3_RT_MAX_PLAIN_LENGTH) {
314     OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
315     *out_alert = SSL_AD_RECORD_OVERFLOW;
316     return ssl_open_record_error;
317   }
318 
319   /* Limit the number of consecutive empty records. */
320   if (CBS_len(out) == 0) {
321     ssl->s3->empty_record_count++;
322     if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
323       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
324       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
325       return ssl_open_record_error;
326     }
327     /* Apart from the limit, empty records are returned up to the caller. This
328      * allows the caller to reject records of the wrong type. */
329   } else {
330     ssl->s3->empty_record_count = 0;
331   }
332 
333   if (type == SSL3_RT_ALERT) {
334     /* Return end_of_early_data alerts as-is for the caller to process. */
335     if (CBS_len(out) == 2 &&
336         CBS_data(out)[0] == SSL3_AL_WARNING &&
337         CBS_data(out)[1] == TLS1_AD_END_OF_EARLY_DATA) {
338       *out_type = type;
339       return ssl_open_record_success;
340     }
341 
342     return ssl_process_alert(ssl, out_alert, CBS_data(out), CBS_len(out));
343   }
344 
345   ssl->s3->warning_alert_count = 0;
346 
347   *out_type = type;
348   return ssl_open_record_success;
349 
350 skipped_data:
351   ssl->s3->early_data_skipped += *out_consumed;
352   if (ssl->s3->early_data_skipped < *out_consumed) {
353     ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1;
354   }
355 
356   if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) {
357     OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA);
358     *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
359     return ssl_open_record_error;
360   }
361 
362   return ssl_open_record_discard;
363 }
364 
do_seal_record(SSL * ssl,uint8_t * out_prefix,uint8_t * out,uint8_t * out_suffix,size_t * out_suffix_len,const size_t max_out_suffix_len,uint8_t type,const uint8_t * in,const size_t in_len)365 static int do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
366                           uint8_t *out_suffix, size_t *out_suffix_len,
367                           const size_t max_out_suffix_len, uint8_t type,
368                           const uint8_t *in, const size_t in_len) {
369   assert(in == out || !buffers_alias(in, in_len, out, in_len));
370   assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl)));
371   assert(!buffers_alias(in, in_len, out_suffix, max_out_suffix_len));
372 
373   /* TLS 1.3 hides the actual record type inside the encrypted data. */
374   uint8_t *extra_in = NULL;
375   size_t extra_in_len = 0;
376   if (ssl->s3->aead_write_ctx != NULL &&
377       ssl->s3->aead_write_ctx->version >= TLS1_3_VERSION) {
378     extra_in = &type;
379     extra_in_len = 1;
380     out_prefix[0] = SSL3_RT_APPLICATION_DATA;
381   } else {
382     out_prefix[0] = type;
383   }
384 
385   /* The TLS record-layer version number is meaningless and, starting in
386    * TLS 1.3, is frozen at TLS 1.0. But for historical reasons, SSL 3.0
387    * ClientHellos should use SSL 3.0 and pre-TLS-1.3 expects the version
388    * to change after version negotiation. */
389   uint16_t wire_version = TLS1_VERSION;
390   if (ssl->s3->hs != NULL && ssl->s3->hs->max_version == SSL3_VERSION) {
391     wire_version = SSL3_VERSION;
392   }
393   if (ssl->s3->have_version && ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
394     wire_version = ssl->version;
395   }
396   out_prefix[1] = wire_version >> 8;
397   out_prefix[2] = wire_version & 0xff;
398 
399   /* Write the ciphertext, leaving two bytes for the length. */
400   if (!SSL_AEAD_CTX_seal_scatter(
401           ssl->s3->aead_write_ctx, out_prefix + SSL3_RT_HEADER_LENGTH, out,
402           out_suffix, out_suffix_len, max_out_suffix_len, type, wire_version,
403           ssl->s3->write_sequence, in, in_len, extra_in, extra_in_len) ||
404       !ssl_record_sequence_update(ssl->s3->write_sequence, 8)) {
405     return 0;
406   }
407 
408   /* Fill in the length. */
409   const size_t ciphertext_len =
410       SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_write_ctx) + in_len +
411       *out_suffix_len;
412   if (ciphertext_len >= 1 << 15) {
413     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
414     return 0;
415   }
416   out_prefix[3] = ciphertext_len >> 8;
417   out_prefix[4] = ciphertext_len & 0xff;
418 
419   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, out_prefix,
420                       SSL3_RT_HEADER_LENGTH);
421   return 1;
422 }
423 
tls_seal_scatter_prefix_len(const SSL * ssl,uint8_t type,size_t in_len)424 static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type,
425                                           size_t in_len) {
426   size_t ret = SSL3_RT_HEADER_LENGTH;
427   if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
428       ssl_needs_record_splitting(ssl)) {
429     /* In the case of record splitting, the 1-byte record (of the 1/n-1 split)
430      * will be placed in the prefix, as will four of the five bytes of the
431      * record header for the main record. The final byte will replace the first
432      * byte of the plaintext that was used in the small record. */
433     ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher);
434     ret += SSL3_RT_HEADER_LENGTH - 1;
435   } else {
436     ret += SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_write_ctx);
437   }
438   return ret;
439 }
440 
441 /* tls_seal_scatter_record seals a new record of type |type| and body |in| and
442  * splits it between |out_prefix|, |out|, and |out_suffix|. Exactly
443  * |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len|
444  * bytes to |out|, and up to 1 + |SSL_AEAD_CTX_max_overhead| bytes to
445  * |out_suffix|. |*out_suffix_len| is set to the actual number of bytes written
446  * to |out_suffix|. It returns one on success and zero on error. If enabled,
447  * |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and
448  * may write two records concatenated. */
tls_seal_scatter_record(SSL * ssl,uint8_t * out_prefix,uint8_t * out,uint8_t * out_suffix,size_t * out_suffix_len,size_t max_out_suffix_len,uint8_t type,const uint8_t * in,size_t in_len)449 static int tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
450                                    uint8_t *out_suffix, size_t *out_suffix_len,
451                                    size_t max_out_suffix_len, uint8_t type,
452                                    const uint8_t *in, size_t in_len) {
453   if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
454       ssl_needs_record_splitting(ssl)) {
455     assert(SSL_AEAD_CTX_explicit_nonce_len(ssl->s3->aead_write_ctx) == 0);
456     const size_t prefix_len = SSL3_RT_HEADER_LENGTH;
457 
458     /* Write the 1-byte fragment into |out_prefix|. */
459     uint8_t *split_body = out_prefix + prefix_len;
460     uint8_t *split_suffix = split_body + 1;
461 
462     /* TODO(martinkr): Make AEAD code not complain if max_suffix_len is lower
463      * than |EVP_AEAD_max_overhead| but still sufficiently large. */
464     size_t split_max_suffix_len =
465         SSL_AEAD_CTX_max_suffix_len(ssl->s3->aead_write_ctx, 0);
466     size_t split_suffix_len = 0;
467     if (!do_seal_record(ssl, out_prefix, split_body, split_suffix,
468                         &split_suffix_len, split_max_suffix_len, type, in, 1)) {
469       return 0;
470     }
471 
472     size_t split_record_len = prefix_len + 1 + split_suffix_len;
473 
474     assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len(
475                                        ssl->s3->aead_write_ctx->cipher) ==
476            split_record_len);
477 
478     /* Write the n-1-byte fragment. The header gets split between |out_prefix|
479      * (header[:-1]) and |out| (header[-1:]). */
480     uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH];
481     if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, out_suffix_len,
482                         max_out_suffix_len, type, in + 1, in_len - 1)) {
483       return 0;
484     }
485     assert(tls_seal_scatter_prefix_len(ssl, type, in_len) ==
486            split_record_len + SSL3_RT_HEADER_LENGTH - 1);
487     OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix,
488                    SSL3_RT_HEADER_LENGTH - 1);
489     OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1);
490     return 1;
491   }
492 
493   return do_seal_record(ssl, out_prefix, out, out_suffix, out_suffix_len,
494                         max_out_suffix_len, type, in, in_len);
495 }
496 
tls_seal_record(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out_len,uint8_t type,const uint8_t * in,size_t in_len)497 int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
498                     uint8_t type, const uint8_t *in, size_t in_len) {
499   if (buffers_alias(in, in_len, out, max_out_len)) {
500     OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
501     return 0;
502   }
503 
504   const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len);
505 
506   if (in_len + prefix_len < in_len) {
507     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
508     return 0;
509   }
510   if (max_out_len < in_len + prefix_len) {
511     OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
512     return 0;
513   }
514 
515   uint8_t *prefix = out;
516   uint8_t *body = out + prefix_len;
517   uint8_t *suffix = body + in_len;
518   size_t max_suffix_len = max_out_len - prefix_len - in_len;
519   size_t suffix_len = 0;
520 
521   if (!tls_seal_scatter_record(ssl, prefix, body, suffix, &suffix_len,
522                                max_suffix_len, type, in, in_len)) {
523     return 0;
524   }
525 
526   if (prefix_len + in_len + suffix_len < prefix_len + in_len) {
527     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
528     return 0;
529   }
530 
531   *out_len = prefix_len + in_len + suffix_len;
532   return 1;
533 }
534 
ssl_process_alert(SSL * ssl,uint8_t * out_alert,const uint8_t * in,size_t in_len)535 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
536                                          const uint8_t *in, size_t in_len) {
537   /* Alerts records may not contain fragmented or multiple alerts. */
538   if (in_len != 2) {
539     *out_alert = SSL_AD_DECODE_ERROR;
540     OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
541     return ssl_open_record_error;
542   }
543 
544   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in, in_len);
545 
546   const uint8_t alert_level = in[0];
547   const uint8_t alert_descr = in[1];
548 
549   uint16_t alert = (alert_level << 8) | alert_descr;
550   ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert);
551 
552   if (alert_level == SSL3_AL_WARNING) {
553     if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
554       ssl->s3->recv_shutdown = ssl_shutdown_close_notify;
555       return ssl_open_record_close_notify;
556     }
557 
558     /* Warning alerts do not exist in TLS 1.3. */
559     if (ssl->s3->have_version &&
560         ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
561       *out_alert = SSL_AD_DECODE_ERROR;
562       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
563       return ssl_open_record_error;
564     }
565 
566     ssl->s3->warning_alert_count++;
567     if (ssl->s3->warning_alert_count > kMaxWarningAlerts) {
568       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
569       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS);
570       return ssl_open_record_error;
571     }
572     return ssl_open_record_discard;
573   }
574 
575   if (alert_level == SSL3_AL_FATAL) {
576     ssl->s3->recv_shutdown = ssl_shutdown_fatal_alert;
577 
578     char tmp[16];
579     OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr);
580     BIO_snprintf(tmp, sizeof(tmp), "%d", alert_descr);
581     ERR_add_error_data(2, "SSL alert number ", tmp);
582     return ssl_open_record_fatal_alert;
583   }
584 
585   *out_alert = SSL_AD_ILLEGAL_PARAMETER;
586   OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE);
587   return ssl_open_record_error;
588 }
589