1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_LLT_H
11 #define EIGEN_LLT_H
12
13 namespace Eigen {
14
15 namespace internal{
16 template<typename MatrixType, int UpLo> struct LLT_Traits;
17 }
18
19 /** \ingroup Cholesky_Module
20 *
21 * \class LLT
22 *
23 * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
24 *
25 * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
26 * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
27 * The other triangular part won't be read.
28 *
29 * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
30 * matrix A such that A = LL^* = U^*U, where L is lower triangular.
31 *
32 * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
33 * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
34 * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
35 * situations like generalised eigen problems with hermitian matrices.
36 *
37 * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
38 * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
39 * has a solution.
40 *
41 * Example: \include LLT_example.cpp
42 * Output: \verbinclude LLT_example.out
43 *
44 * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
45 *
46 * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
47 */
48 /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
49 * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
50 * the strict lower part does not have to store correct values.
51 */
52 template<typename _MatrixType, int _UpLo> class LLT
53 {
54 public:
55 typedef _MatrixType MatrixType;
56 enum {
57 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
58 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
59 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
60 };
61 typedef typename MatrixType::Scalar Scalar;
62 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
63 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
64 typedef typename MatrixType::StorageIndex StorageIndex;
65
66 enum {
67 PacketSize = internal::packet_traits<Scalar>::size,
68 AlignmentMask = int(PacketSize)-1,
69 UpLo = _UpLo
70 };
71
72 typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
73
74 /**
75 * \brief Default Constructor.
76 *
77 * The default constructor is useful in cases in which the user intends to
78 * perform decompositions via LLT::compute(const MatrixType&).
79 */
LLT()80 LLT() : m_matrix(), m_isInitialized(false) {}
81
82 /** \brief Default Constructor with memory preallocation
83 *
84 * Like the default constructor but with preallocation of the internal data
85 * according to the specified problem \a size.
86 * \sa LLT()
87 */
LLT(Index size)88 explicit LLT(Index size) : m_matrix(size, size),
89 m_isInitialized(false) {}
90
91 template<typename InputType>
LLT(const EigenBase<InputType> & matrix)92 explicit LLT(const EigenBase<InputType>& matrix)
93 : m_matrix(matrix.rows(), matrix.cols()),
94 m_isInitialized(false)
95 {
96 compute(matrix.derived());
97 }
98
99 /** \brief Constructs a LDLT factorization from a given matrix
100 *
101 * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
102 * \c MatrixType is a Eigen::Ref.
103 *
104 * \sa LLT(const EigenBase&)
105 */
106 template<typename InputType>
LLT(EigenBase<InputType> & matrix)107 explicit LLT(EigenBase<InputType>& matrix)
108 : m_matrix(matrix.derived()),
109 m_isInitialized(false)
110 {
111 compute(matrix.derived());
112 }
113
114 /** \returns a view of the upper triangular matrix U */
matrixU()115 inline typename Traits::MatrixU matrixU() const
116 {
117 eigen_assert(m_isInitialized && "LLT is not initialized.");
118 return Traits::getU(m_matrix);
119 }
120
121 /** \returns a view of the lower triangular matrix L */
matrixL()122 inline typename Traits::MatrixL matrixL() const
123 {
124 eigen_assert(m_isInitialized && "LLT is not initialized.");
125 return Traits::getL(m_matrix);
126 }
127
128 /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
129 *
130 * Since this LLT class assumes anyway that the matrix A is invertible, the solution
131 * theoretically exists and is unique regardless of b.
132 *
133 * Example: \include LLT_solve.cpp
134 * Output: \verbinclude LLT_solve.out
135 *
136 * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
137 */
138 template<typename Rhs>
139 inline const Solve<LLT, Rhs>
solve(const MatrixBase<Rhs> & b)140 solve(const MatrixBase<Rhs>& b) const
141 {
142 eigen_assert(m_isInitialized && "LLT is not initialized.");
143 eigen_assert(m_matrix.rows()==b.rows()
144 && "LLT::solve(): invalid number of rows of the right hand side matrix b");
145 return Solve<LLT, Rhs>(*this, b.derived());
146 }
147
148 template<typename Derived>
149 void solveInPlace(MatrixBase<Derived> &bAndX) const;
150
151 template<typename InputType>
152 LLT& compute(const EigenBase<InputType>& matrix);
153
154 /** \returns an estimate of the reciprocal condition number of the matrix of
155 * which \c *this is the Cholesky decomposition.
156 */
rcond()157 RealScalar rcond() const
158 {
159 eigen_assert(m_isInitialized && "LLT is not initialized.");
160 eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
161 return internal::rcond_estimate_helper(m_l1_norm, *this);
162 }
163
164 /** \returns the LLT decomposition matrix
165 *
166 * TODO: document the storage layout
167 */
matrixLLT()168 inline const MatrixType& matrixLLT() const
169 {
170 eigen_assert(m_isInitialized && "LLT is not initialized.");
171 return m_matrix;
172 }
173
174 MatrixType reconstructedMatrix() const;
175
176
177 /** \brief Reports whether previous computation was successful.
178 *
179 * \returns \c Success if computation was succesful,
180 * \c NumericalIssue if the matrix.appears to be negative.
181 */
info()182 ComputationInfo info() const
183 {
184 eigen_assert(m_isInitialized && "LLT is not initialized.");
185 return m_info;
186 }
187
188 /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
189 *
190 * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
191 * \code x = decomposition.adjoint().solve(b) \endcode
192 */
adjoint()193 const LLT& adjoint() const { return *this; };
194
rows()195 inline Index rows() const { return m_matrix.rows(); }
cols()196 inline Index cols() const { return m_matrix.cols(); }
197
198 template<typename VectorType>
199 LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
200
201 #ifndef EIGEN_PARSED_BY_DOXYGEN
202 template<typename RhsType, typename DstType>
203 EIGEN_DEVICE_FUNC
204 void _solve_impl(const RhsType &rhs, DstType &dst) const;
205 #endif
206
207 protected:
208
check_template_parameters()209 static void check_template_parameters()
210 {
211 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
212 }
213
214 /** \internal
215 * Used to compute and store L
216 * The strict upper part is not used and even not initialized.
217 */
218 MatrixType m_matrix;
219 RealScalar m_l1_norm;
220 bool m_isInitialized;
221 ComputationInfo m_info;
222 };
223
224 namespace internal {
225
226 template<typename Scalar, int UpLo> struct llt_inplace;
227
228 template<typename MatrixType, typename VectorType>
llt_rank_update_lower(MatrixType & mat,const VectorType & vec,const typename MatrixType::RealScalar & sigma)229 static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
230 {
231 using std::sqrt;
232 typedef typename MatrixType::Scalar Scalar;
233 typedef typename MatrixType::RealScalar RealScalar;
234 typedef typename MatrixType::ColXpr ColXpr;
235 typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
236 typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
237 typedef Matrix<Scalar,Dynamic,1> TempVectorType;
238 typedef typename TempVectorType::SegmentReturnType TempVecSegment;
239
240 Index n = mat.cols();
241 eigen_assert(mat.rows()==n && vec.size()==n);
242
243 TempVectorType temp;
244
245 if(sigma>0)
246 {
247 // This version is based on Givens rotations.
248 // It is faster than the other one below, but only works for updates,
249 // i.e., for sigma > 0
250 temp = sqrt(sigma) * vec;
251
252 for(Index i=0; i<n; ++i)
253 {
254 JacobiRotation<Scalar> g;
255 g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
256
257 Index rs = n-i-1;
258 if(rs>0)
259 {
260 ColXprSegment x(mat.col(i).tail(rs));
261 TempVecSegment y(temp.tail(rs));
262 apply_rotation_in_the_plane(x, y, g);
263 }
264 }
265 }
266 else
267 {
268 temp = vec;
269 RealScalar beta = 1;
270 for(Index j=0; j<n; ++j)
271 {
272 RealScalar Ljj = numext::real(mat.coeff(j,j));
273 RealScalar dj = numext::abs2(Ljj);
274 Scalar wj = temp.coeff(j);
275 RealScalar swj2 = sigma*numext::abs2(wj);
276 RealScalar gamma = dj*beta + swj2;
277
278 RealScalar x = dj + swj2/beta;
279 if (x<=RealScalar(0))
280 return j;
281 RealScalar nLjj = sqrt(x);
282 mat.coeffRef(j,j) = nLjj;
283 beta += swj2/dj;
284
285 // Update the terms of L
286 Index rs = n-j-1;
287 if(rs)
288 {
289 temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
290 if(gamma != 0)
291 mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
292 }
293 }
294 }
295 return -1;
296 }
297
298 template<typename Scalar> struct llt_inplace<Scalar, Lower>
299 {
300 typedef typename NumTraits<Scalar>::Real RealScalar;
301 template<typename MatrixType>
302 static Index unblocked(MatrixType& mat)
303 {
304 using std::sqrt;
305
306 eigen_assert(mat.rows()==mat.cols());
307 const Index size = mat.rows();
308 for(Index k = 0; k < size; ++k)
309 {
310 Index rs = size-k-1; // remaining size
311
312 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
313 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
314 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
315
316 RealScalar x = numext::real(mat.coeff(k,k));
317 if (k>0) x -= A10.squaredNorm();
318 if (x<=RealScalar(0))
319 return k;
320 mat.coeffRef(k,k) = x = sqrt(x);
321 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
322 if (rs>0) A21 /= x;
323 }
324 return -1;
325 }
326
327 template<typename MatrixType>
328 static Index blocked(MatrixType& m)
329 {
330 eigen_assert(m.rows()==m.cols());
331 Index size = m.rows();
332 if(size<32)
333 return unblocked(m);
334
335 Index blockSize = size/8;
336 blockSize = (blockSize/16)*16;
337 blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
338
339 for (Index k=0; k<size; k+=blockSize)
340 {
341 // partition the matrix:
342 // A00 | - | -
343 // lu = A10 | A11 | -
344 // A20 | A21 | A22
345 Index bs = (std::min)(blockSize, size-k);
346 Index rs = size - k - bs;
347 Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
348 Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
349 Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
350
351 Index ret;
352 if((ret=unblocked(A11))>=0) return k+ret;
353 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
354 if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
355 }
356 return -1;
357 }
358
359 template<typename MatrixType, typename VectorType>
360 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
361 {
362 return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
363 }
364 };
365
366 template<typename Scalar> struct llt_inplace<Scalar, Upper>
367 {
368 typedef typename NumTraits<Scalar>::Real RealScalar;
369
370 template<typename MatrixType>
371 static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
372 {
373 Transpose<MatrixType> matt(mat);
374 return llt_inplace<Scalar, Lower>::unblocked(matt);
375 }
376 template<typename MatrixType>
377 static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
378 {
379 Transpose<MatrixType> matt(mat);
380 return llt_inplace<Scalar, Lower>::blocked(matt);
381 }
382 template<typename MatrixType, typename VectorType>
383 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
384 {
385 Transpose<MatrixType> matt(mat);
386 return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
387 }
388 };
389
390 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
391 {
392 typedef const TriangularView<const MatrixType, Lower> MatrixL;
393 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
394 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
395 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
396 static bool inplace_decomposition(MatrixType& m)
397 { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
398 };
399
400 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
401 {
402 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
403 typedef const TriangularView<const MatrixType, Upper> MatrixU;
404 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
405 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
406 static bool inplace_decomposition(MatrixType& m)
407 { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
408 };
409
410 } // end namespace internal
411
412 /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
413 *
414 * \returns a reference to *this
415 *
416 * Example: \include TutorialLinAlgComputeTwice.cpp
417 * Output: \verbinclude TutorialLinAlgComputeTwice.out
418 */
419 template<typename MatrixType, int _UpLo>
420 template<typename InputType>
421 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
422 {
423 check_template_parameters();
424
425 eigen_assert(a.rows()==a.cols());
426 const Index size = a.rows();
427 m_matrix.resize(size, size);
428 m_matrix = a.derived();
429
430 // Compute matrix L1 norm = max abs column sum.
431 m_l1_norm = RealScalar(0);
432 // TODO move this code to SelfAdjointView
433 for (Index col = 0; col < size; ++col) {
434 RealScalar abs_col_sum;
435 if (_UpLo == Lower)
436 abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
437 else
438 abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
439 if (abs_col_sum > m_l1_norm)
440 m_l1_norm = abs_col_sum;
441 }
442
443 m_isInitialized = true;
444 bool ok = Traits::inplace_decomposition(m_matrix);
445 m_info = ok ? Success : NumericalIssue;
446
447 return *this;
448 }
449
450 /** Performs a rank one update (or dowdate) of the current decomposition.
451 * If A = LL^* before the rank one update,
452 * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
453 * of same dimension.
454 */
455 template<typename _MatrixType, int _UpLo>
456 template<typename VectorType>
457 LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
458 {
459 EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
460 eigen_assert(v.size()==m_matrix.cols());
461 eigen_assert(m_isInitialized);
462 if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
463 m_info = NumericalIssue;
464 else
465 m_info = Success;
466
467 return *this;
468 }
469
470 #ifndef EIGEN_PARSED_BY_DOXYGEN
471 template<typename _MatrixType,int _UpLo>
472 template<typename RhsType, typename DstType>
473 void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
474 {
475 dst = rhs;
476 solveInPlace(dst);
477 }
478 #endif
479
480 /** \internal use x = llt_object.solve(x);
481 *
482 * This is the \em in-place version of solve().
483 *
484 * \param bAndX represents both the right-hand side matrix b and result x.
485 *
486 * This version avoids a copy when the right hand side matrix b is not needed anymore.
487 *
488 * \sa LLT::solve(), MatrixBase::llt()
489 */
490 template<typename MatrixType, int _UpLo>
491 template<typename Derived>
492 void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
493 {
494 eigen_assert(m_isInitialized && "LLT is not initialized.");
495 eigen_assert(m_matrix.rows()==bAndX.rows());
496 matrixL().solveInPlace(bAndX);
497 matrixU().solveInPlace(bAndX);
498 }
499
500 /** \returns the matrix represented by the decomposition,
501 * i.e., it returns the product: L L^*.
502 * This function is provided for debug purpose. */
503 template<typename MatrixType, int _UpLo>
504 MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
505 {
506 eigen_assert(m_isInitialized && "LLT is not initialized.");
507 return matrixL() * matrixL().adjoint().toDenseMatrix();
508 }
509
510 /** \cholesky_module
511 * \returns the LLT decomposition of \c *this
512 * \sa SelfAdjointView::llt()
513 */
514 template<typename Derived>
515 inline const LLT<typename MatrixBase<Derived>::PlainObject>
516 MatrixBase<Derived>::llt() const
517 {
518 return LLT<PlainObject>(derived());
519 }
520
521 /** \cholesky_module
522 * \returns the LLT decomposition of \c *this
523 * \sa SelfAdjointView::llt()
524 */
525 template<typename MatrixType, unsigned int UpLo>
526 inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
527 SelfAdjointView<MatrixType, UpLo>::llt() const
528 {
529 return LLT<PlainObject,UpLo>(m_matrix);
530 }
531
532 } // end namespace Eigen
533
534 #endif // EIGEN_LLT_H
535