• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mutex.h"
18 
19 #include <errno.h>
20 #include <sys/time.h>
21 
22 #include "android-base/stringprintf.h"
23 
24 #include "atomic.h"
25 #include "base/logging.h"
26 #include "base/time_utils.h"
27 #include "base/systrace.h"
28 #include "base/value_object.h"
29 #include "mutex-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31 #include "thread-inl.h"
32 
33 namespace art {
34 
35 using android::base::StringPrintf;
36 
37 static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
38 
39 Mutex* Locks::abort_lock_ = nullptr;
40 Mutex* Locks::alloc_tracker_lock_ = nullptr;
41 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
42 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
43 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
44 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
45 Mutex* Locks::deoptimization_lock_ = nullptr;
46 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
47 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
48 Mutex* Locks::intern_table_lock_ = nullptr;
49 Mutex* Locks::jni_function_table_lock_ = nullptr;
50 Mutex* Locks::jni_libraries_lock_ = nullptr;
51 Mutex* Locks::logging_lock_ = nullptr;
52 Mutex* Locks::modify_ldt_lock_ = nullptr;
53 MutatorMutex* Locks::mutator_lock_ = nullptr;
54 Mutex* Locks::profiler_lock_ = nullptr;
55 ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
56 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
57 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
58 Mutex* Locks::reference_processor_lock_ = nullptr;
59 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
60 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
61 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
62 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
63 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
64 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
65 Mutex* Locks::cha_lock_ = nullptr;
66 Mutex* Locks::thread_list_lock_ = nullptr;
67 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
68 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
69 Mutex* Locks::trace_lock_ = nullptr;
70 Mutex* Locks::unexpected_signal_lock_ = nullptr;
71 Mutex* Locks::user_code_suspension_lock_ = nullptr;
72 Uninterruptible Roles::uninterruptible_;
73 ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
74 Mutex* Locks::jni_weak_globals_lock_ = nullptr;
75 ReaderWriterMutex* Locks::dex_lock_ = nullptr;
76 std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
77 Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
78 
79 struct AllMutexData {
80   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
81   Atomic<const BaseMutex*> all_mutexes_guard;
82   // All created mutexes guarded by all_mutexes_guard_.
83   std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData84   AllMutexData() : all_mutexes(nullptr) {}
85 };
86 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
87 
88 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)89 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
90   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
91   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
92   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
93   if (result_ts->tv_nsec < 0) {
94     result_ts->tv_sec--;
95     result_ts->tv_nsec += one_sec;
96   } else if (result_ts->tv_nsec > one_sec) {
97     result_ts->tv_sec++;
98     result_ts->tv_nsec -= one_sec;
99   }
100   return result_ts->tv_sec < 0;
101 }
102 #endif
103 
104 class ScopedAllMutexesLock FINAL {
105  public:
ScopedAllMutexesLock(const BaseMutex * mutex)106   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
107     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
108       NanoSleep(100);
109     }
110   }
111 
~ScopedAllMutexesLock()112   ~ScopedAllMutexesLock() {
113     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
114       NanoSleep(100);
115     }
116   }
117 
118  private:
119   const BaseMutex* const mutex_;
120 };
121 
122 class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
123  public:
ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex * mutex)124   explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
125     while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakAcquire(0,
126                                                                                          mutex)) {
127       NanoSleep(100);
128     }
129   }
130 
~ScopedExpectedMutexesOnWeakRefAccessLock()131   ~ScopedExpectedMutexesOnWeakRefAccessLock() {
132     while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakRelease(mutex_,
133                                                                                          0)) {
134       NanoSleep(100);
135     }
136   }
137 
138  private:
139   const BaseMutex* const mutex_;
140 };
141 
142 // Scoped class that generates events at the beginning and end of lock contention.
143 class ScopedContentionRecorder FINAL : public ValueObject {
144  public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)145   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
146       : mutex_(kLogLockContentions ? mutex : nullptr),
147         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
148         owner_tid_(kLogLockContentions ? owner_tid : 0),
149         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
150     if (ATRACE_ENABLED()) {
151       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
152                                      mutex->GetName(), owner_tid);
153       ATRACE_BEGIN(msg.c_str());
154     }
155   }
156 
~ScopedContentionRecorder()157   ~ScopedContentionRecorder() {
158     ATRACE_END();
159     if (kLogLockContentions) {
160       uint64_t end_nano_time = NanoTime();
161       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
162     }
163   }
164 
165  private:
166   BaseMutex* const mutex_;
167   const uint64_t blocked_tid_;
168   const uint64_t owner_tid_;
169   const uint64_t start_nano_time_;
170 };
171 
BaseMutex(const char * name,LockLevel level)172 BaseMutex::BaseMutex(const char* name, LockLevel level)
173     : level_(level),
174       name_(name),
175       should_respond_to_empty_checkpoint_request_(false) {
176   if (kLogLockContentions) {
177     ScopedAllMutexesLock mu(this);
178     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
179     if (*all_mutexes_ptr == nullptr) {
180       // We leak the global set of all mutexes to avoid ordering issues in global variable
181       // construction/destruction.
182       *all_mutexes_ptr = new std::set<BaseMutex*>();
183     }
184     (*all_mutexes_ptr)->insert(this);
185   }
186 }
187 
~BaseMutex()188 BaseMutex::~BaseMutex() {
189   if (kLogLockContentions) {
190     ScopedAllMutexesLock mu(this);
191     gAllMutexData->all_mutexes->erase(this);
192   }
193 }
194 
DumpAll(std::ostream & os)195 void BaseMutex::DumpAll(std::ostream& os) {
196   if (kLogLockContentions) {
197     os << "Mutex logging:\n";
198     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
199     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
200     if (all_mutexes == nullptr) {
201       // No mutexes have been created yet during at startup.
202       return;
203     }
204     typedef std::set<BaseMutex*>::const_iterator It;
205     os << "(Contended)\n";
206     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
207       BaseMutex* mutex = *it;
208       if (mutex->HasEverContended()) {
209         mutex->Dump(os);
210         os << "\n";
211       }
212     }
213     os << "(Never contented)\n";
214     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
215       BaseMutex* mutex = *it;
216       if (!mutex->HasEverContended()) {
217         mutex->Dump(os);
218         os << "\n";
219       }
220     }
221   }
222 }
223 
CheckSafeToWait(Thread * self)224 void BaseMutex::CheckSafeToWait(Thread* self) {
225   if (self == nullptr) {
226     CheckUnattachedThread(level_);
227     return;
228   }
229   if (kDebugLocking) {
230     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
231         << "Waiting on unacquired mutex: " << name_;
232     bool bad_mutexes_held = false;
233     for (int i = kLockLevelCount - 1; i >= 0; --i) {
234       if (i != level_) {
235         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
236         // We allow the thread to wait even if the user_code_suspension_lock_ is held so long as we
237         // are some thread's resume_cond_ (level_ == kThreadSuspendCountLock). This just means that
238         // gc or some other internal process is suspending the thread while it is trying to suspend
239         // some other thread. So long as the current thread is not being suspended by a
240         // SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear) this is
241         // fine.
242         if (held_mutex == Locks::user_code_suspension_lock_ && level_ == kThreadSuspendCountLock) {
243           // No thread safety analysis is fine since we have both the user_code_suspension_lock_
244           // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
245           // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
246           auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
247             return self->GetUserCodeSuspendCount() != 0;
248           };
249           if (is_suspending_for_user_code()) {
250             LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
251                       << "(level " << LockLevel(i) << ") while performing wait on "
252                       << "\"" << name_ << "\" (level " << level_ << ") "
253                       << "with SuspendReason::kForUserCode pending suspensions";
254             bad_mutexes_held = true;
255           }
256         } else if (held_mutex != nullptr) {
257           LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
258                      << "(level " << LockLevel(i) << ") while performing wait on "
259                      << "\"" << name_ << "\" (level " << level_ << ")";
260           bad_mutexes_held = true;
261         }
262       }
263     }
264     if (gAborting == 0) {  // Avoid recursive aborts.
265       CHECK(!bad_mutexes_held) << this;
266     }
267   }
268 }
269 
AddToWaitTime(uint64_t value)270 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
271   if (kLogLockContentions) {
272     // Atomically add value to wait_time.
273     wait_time.FetchAndAddSequentiallyConsistent(value);
274   }
275 }
276 
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)277 void BaseMutex::RecordContention(uint64_t blocked_tid,
278                                  uint64_t owner_tid,
279                                  uint64_t nano_time_blocked) {
280   if (kLogLockContentions) {
281     ContentionLogData* data = contention_log_data_;
282     ++(data->contention_count);
283     data->AddToWaitTime(nano_time_blocked);
284     ContentionLogEntry* log = data->contention_log;
285     // This code is intentionally racy as it is only used for diagnostics.
286     uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
287     if (log[slot].blocked_tid == blocked_tid &&
288         log[slot].owner_tid == blocked_tid) {
289       ++log[slot].count;
290     } else {
291       uint32_t new_slot;
292       do {
293         slot = data->cur_content_log_entry.LoadRelaxed();
294         new_slot = (slot + 1) % kContentionLogSize;
295       } while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
296       log[new_slot].blocked_tid = blocked_tid;
297       log[new_slot].owner_tid = owner_tid;
298       log[new_slot].count.StoreRelaxed(1);
299     }
300   }
301 }
302 
DumpContention(std::ostream & os) const303 void BaseMutex::DumpContention(std::ostream& os) const {
304   if (kLogLockContentions) {
305     const ContentionLogData* data = contention_log_data_;
306     const ContentionLogEntry* log = data->contention_log;
307     uint64_t wait_time = data->wait_time.LoadRelaxed();
308     uint32_t contention_count = data->contention_count.LoadRelaxed();
309     if (contention_count == 0) {
310       os << "never contended";
311     } else {
312       os << "contended " << contention_count
313          << " total wait of contender " << PrettyDuration(wait_time)
314          << " average " << PrettyDuration(wait_time / contention_count);
315       SafeMap<uint64_t, size_t> most_common_blocker;
316       SafeMap<uint64_t, size_t> most_common_blocked;
317       for (size_t i = 0; i < kContentionLogSize; ++i) {
318         uint64_t blocked_tid = log[i].blocked_tid;
319         uint64_t owner_tid = log[i].owner_tid;
320         uint32_t count = log[i].count.LoadRelaxed();
321         if (count > 0) {
322           auto it = most_common_blocked.find(blocked_tid);
323           if (it != most_common_blocked.end()) {
324             most_common_blocked.Overwrite(blocked_tid, it->second + count);
325           } else {
326             most_common_blocked.Put(blocked_tid, count);
327           }
328           it = most_common_blocker.find(owner_tid);
329           if (it != most_common_blocker.end()) {
330             most_common_blocker.Overwrite(owner_tid, it->second + count);
331           } else {
332             most_common_blocker.Put(owner_tid, count);
333           }
334         }
335       }
336       uint64_t max_tid = 0;
337       size_t max_tid_count = 0;
338       for (const auto& pair : most_common_blocked) {
339         if (pair.second > max_tid_count) {
340           max_tid = pair.first;
341           max_tid_count = pair.second;
342         }
343       }
344       if (max_tid != 0) {
345         os << " sample shows most blocked tid=" << max_tid;
346       }
347       max_tid = 0;
348       max_tid_count = 0;
349       for (const auto& pair : most_common_blocker) {
350         if (pair.second > max_tid_count) {
351           max_tid = pair.first;
352           max_tid_count = pair.second;
353         }
354       }
355       if (max_tid != 0) {
356         os << " sample shows tid=" << max_tid << " owning during this time";
357       }
358     }
359   }
360 }
361 
362 
Mutex(const char * name,LockLevel level,bool recursive)363 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
364     : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
365 #if ART_USE_FUTEXES
366   DCHECK_EQ(0, state_.LoadRelaxed());
367   DCHECK_EQ(0, num_contenders_.LoadRelaxed());
368 #else
369   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
370 #endif
371   exclusive_owner_ = 0;
372 }
373 
374 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()375 static bool IsSafeToCallAbortSafe() {
376   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
377   return Locks::IsSafeToCallAbortRacy();
378 }
379 
~Mutex()380 Mutex::~Mutex() {
381   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
382 #if ART_USE_FUTEXES
383   if (state_.LoadRelaxed() != 0) {
384     LOG(safe_to_call_abort ? FATAL : WARNING)
385         << "destroying mutex with owner: " << exclusive_owner_;
386   } else {
387     if (exclusive_owner_ != 0) {
388       LOG(safe_to_call_abort ? FATAL : WARNING)
389           << "unexpectedly found an owner on unlocked mutex " << name_;
390     }
391     if (num_contenders_.LoadSequentiallyConsistent() != 0) {
392       LOG(safe_to_call_abort ? FATAL : WARNING)
393           << "unexpectedly found a contender on mutex " << name_;
394     }
395   }
396 #else
397   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
398   // may still be using locks.
399   int rc = pthread_mutex_destroy(&mutex_);
400   if (rc != 0) {
401     errno = rc;
402     PLOG(safe_to_call_abort ? FATAL : WARNING)
403         << "pthread_mutex_destroy failed for " << name_;
404   }
405 #endif
406 }
407 
ExclusiveLock(Thread * self)408 void Mutex::ExclusiveLock(Thread* self) {
409   DCHECK(self == nullptr || self == Thread::Current());
410   if (kDebugLocking && !recursive_) {
411     AssertNotHeld(self);
412   }
413   if (!recursive_ || !IsExclusiveHeld(self)) {
414 #if ART_USE_FUTEXES
415     bool done = false;
416     do {
417       int32_t cur_state = state_.LoadRelaxed();
418       if (LIKELY(cur_state == 0)) {
419         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
420         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
421       } else {
422         // Failed to acquire, hang up.
423         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
424         num_contenders_++;
425         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
426           self->CheckEmptyCheckpointFromMutex();
427         }
428         if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
429           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
430           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
431           if ((errno != EAGAIN) && (errno != EINTR)) {
432             PLOG(FATAL) << "futex wait failed for " << name_;
433           }
434         }
435         num_contenders_--;
436       }
437     } while (!done);
438     DCHECK_EQ(state_.LoadRelaxed(), 1);
439 #else
440     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
441 #endif
442     DCHECK_EQ(exclusive_owner_, 0U);
443     exclusive_owner_ = SafeGetTid(self);
444     RegisterAsLocked(self);
445   }
446   recursion_count_++;
447   if (kDebugLocking) {
448     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
449         << name_ << " " << recursion_count_;
450     AssertHeld(self);
451   }
452 }
453 
ExclusiveTryLock(Thread * self)454 bool Mutex::ExclusiveTryLock(Thread* self) {
455   DCHECK(self == nullptr || self == Thread::Current());
456   if (kDebugLocking && !recursive_) {
457     AssertNotHeld(self);
458   }
459   if (!recursive_ || !IsExclusiveHeld(self)) {
460 #if ART_USE_FUTEXES
461     bool done = false;
462     do {
463       int32_t cur_state = state_.LoadRelaxed();
464       if (cur_state == 0) {
465         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
466         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
467       } else {
468         return false;
469       }
470     } while (!done);
471     DCHECK_EQ(state_.LoadRelaxed(), 1);
472 #else
473     int result = pthread_mutex_trylock(&mutex_);
474     if (result == EBUSY) {
475       return false;
476     }
477     if (result != 0) {
478       errno = result;
479       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
480     }
481 #endif
482     DCHECK_EQ(exclusive_owner_, 0U);
483     exclusive_owner_ = SafeGetTid(self);
484     RegisterAsLocked(self);
485   }
486   recursion_count_++;
487   if (kDebugLocking) {
488     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
489         << name_ << " " << recursion_count_;
490     AssertHeld(self);
491   }
492   return true;
493 }
494 
ExclusiveUnlock(Thread * self)495 void Mutex::ExclusiveUnlock(Thread* self) {
496   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
497     std::string name1 = "<null>";
498     std::string name2 = "<null>";
499     if (self != nullptr) {
500       self->GetThreadName(name1);
501     }
502     if (Thread::Current() != nullptr) {
503       Thread::Current()->GetThreadName(name2);
504     }
505     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
506                << " Thread::Current()=" << name2;
507   }
508   AssertHeld(self);
509   DCHECK_NE(exclusive_owner_, 0U);
510   recursion_count_--;
511   if (!recursive_ || recursion_count_ == 0) {
512     if (kDebugLocking) {
513       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
514           << name_ << " " << recursion_count_;
515     }
516     RegisterAsUnlocked(self);
517 #if ART_USE_FUTEXES
518     bool done = false;
519     do {
520       int32_t cur_state = state_.LoadRelaxed();
521       if (LIKELY(cur_state == 1)) {
522         // We're no longer the owner.
523         exclusive_owner_ = 0;
524         // Change state to 0 and impose load/store ordering appropriate for lock release.
525         // Note, the relaxed loads below musn't reorder before the CompareExchange.
526         // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
527         // a status bit into the state on contention.
528         done =  state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
529         if (LIKELY(done)) {  // Spurious fail?
530           // Wake a contender.
531           if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
532             futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
533           }
534         }
535       } else {
536         // Logging acquires the logging lock, avoid infinite recursion in that case.
537         if (this != Locks::logging_lock_) {
538           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
539         } else {
540           LogHelper::LogLineLowStack(__FILE__,
541                                      __LINE__,
542                                      ::android::base::FATAL_WITHOUT_ABORT,
543                                      StringPrintf("Unexpected state_ %d in unlock for %s",
544                                                   cur_state, name_).c_str());
545           _exit(1);
546         }
547       }
548     } while (!done);
549 #else
550     exclusive_owner_ = 0;
551     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
552 #endif
553   }
554 }
555 
Dump(std::ostream & os) const556 void Mutex::Dump(std::ostream& os) const {
557   os << (recursive_ ? "recursive " : "non-recursive ")
558       << name_
559       << " level=" << static_cast<int>(level_)
560       << " rec=" << recursion_count_
561       << " owner=" << GetExclusiveOwnerTid() << " ";
562   DumpContention(os);
563 }
564 
operator <<(std::ostream & os,const Mutex & mu)565 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
566   mu.Dump(os);
567   return os;
568 }
569 
WakeupToRespondToEmptyCheckpoint()570 void Mutex::WakeupToRespondToEmptyCheckpoint() {
571 #if ART_USE_FUTEXES
572   // Wake up all the waiters so they will respond to the emtpy checkpoint.
573   DCHECK(should_respond_to_empty_checkpoint_request_);
574   if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
575     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
576   }
577 #else
578   LOG(FATAL) << "Non futex case isn't supported.";
579 #endif
580 }
581 
ReaderWriterMutex(const char * name,LockLevel level)582 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
583     : BaseMutex(name, level)
584 #if ART_USE_FUTEXES
585     , state_(0), num_pending_readers_(0), num_pending_writers_(0)
586 #endif
587 {  // NOLINT(whitespace/braces)
588 #if !ART_USE_FUTEXES
589   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
590 #endif
591   exclusive_owner_ = 0;
592 }
593 
~ReaderWriterMutex()594 ReaderWriterMutex::~ReaderWriterMutex() {
595 #if ART_USE_FUTEXES
596   CHECK_EQ(state_.LoadRelaxed(), 0);
597   CHECK_EQ(exclusive_owner_, 0U);
598   CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
599   CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
600 #else
601   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
602   // may still be using locks.
603   int rc = pthread_rwlock_destroy(&rwlock_);
604   if (rc != 0) {
605     errno = rc;
606     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
607     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
608   }
609 #endif
610 }
611 
ExclusiveLock(Thread * self)612 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
613   DCHECK(self == nullptr || self == Thread::Current());
614   AssertNotExclusiveHeld(self);
615 #if ART_USE_FUTEXES
616   bool done = false;
617   do {
618     int32_t cur_state = state_.LoadRelaxed();
619     if (LIKELY(cur_state == 0)) {
620       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
621       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
622     } else {
623       // Failed to acquire, hang up.
624       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
625       ++num_pending_writers_;
626       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
627         self->CheckEmptyCheckpointFromMutex();
628       }
629       if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
630         // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
631         // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
632         if ((errno != EAGAIN) && (errno != EINTR)) {
633           PLOG(FATAL) << "futex wait failed for " << name_;
634         }
635       }
636       --num_pending_writers_;
637     }
638   } while (!done);
639   DCHECK_EQ(state_.LoadRelaxed(), -1);
640 #else
641   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
642 #endif
643   DCHECK_EQ(exclusive_owner_, 0U);
644   exclusive_owner_ = SafeGetTid(self);
645   RegisterAsLocked(self);
646   AssertExclusiveHeld(self);
647 }
648 
ExclusiveUnlock(Thread * self)649 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
650   DCHECK(self == nullptr || self == Thread::Current());
651   AssertExclusiveHeld(self);
652   RegisterAsUnlocked(self);
653   DCHECK_NE(exclusive_owner_, 0U);
654 #if ART_USE_FUTEXES
655   bool done = false;
656   do {
657     int32_t cur_state = state_.LoadRelaxed();
658     if (LIKELY(cur_state == -1)) {
659       // We're no longer the owner.
660       exclusive_owner_ = 0;
661       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
662       // Note, the relaxed loads below musn't reorder before the CompareExchange.
663       // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
664       // a status bit into the state on contention.
665       done =  state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
666       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
667         // Wake any waiters.
668         if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
669                      num_pending_writers_.LoadRelaxed() > 0)) {
670           futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
671         }
672       }
673     } else {
674       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
675     }
676   } while (!done);
677 #else
678   exclusive_owner_ = 0;
679   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
680 #endif
681 }
682 
683 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)684 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
685   DCHECK(self == nullptr || self == Thread::Current());
686 #if ART_USE_FUTEXES
687   bool done = false;
688   timespec end_abs_ts;
689   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
690   do {
691     int32_t cur_state = state_.LoadRelaxed();
692     if (cur_state == 0) {
693       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
694       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
695     } else {
696       // Failed to acquire, hang up.
697       timespec now_abs_ts;
698       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
699       timespec rel_ts;
700       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
701         return false;  // Timed out.
702       }
703       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
704       ++num_pending_writers_;
705       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
706         self->CheckEmptyCheckpointFromMutex();
707       }
708       if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
709         if (errno == ETIMEDOUT) {
710           --num_pending_writers_;
711           return false;  // Timed out.
712         } else if ((errno != EAGAIN) && (errno != EINTR)) {
713           // EAGAIN and EINTR both indicate a spurious failure,
714           // recompute the relative time out from now and try again.
715           // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
716           PLOG(FATAL) << "timed futex wait failed for " << name_;
717         }
718       }
719       --num_pending_writers_;
720     }
721   } while (!done);
722 #else
723   timespec ts;
724   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
725   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
726   if (result == ETIMEDOUT) {
727     return false;
728   }
729   if (result != 0) {
730     errno = result;
731     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
732   }
733 #endif
734   exclusive_owner_ = SafeGetTid(self);
735   RegisterAsLocked(self);
736   AssertSharedHeld(self);
737   return true;
738 }
739 #endif
740 
741 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)742 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
743   // Owner holds it exclusively, hang up.
744   ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
745   ++num_pending_readers_;
746   if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
747     self->CheckEmptyCheckpointFromMutex();
748   }
749   if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
750     if (errno != EAGAIN && errno != EINTR) {
751       PLOG(FATAL) << "futex wait failed for " << name_;
752     }
753   }
754   --num_pending_readers_;
755 }
756 #endif
757 
SharedTryLock(Thread * self)758 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
759   DCHECK(self == nullptr || self == Thread::Current());
760 #if ART_USE_FUTEXES
761   bool done = false;
762   do {
763     int32_t cur_state = state_.LoadRelaxed();
764     if (cur_state >= 0) {
765       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
766       done =  state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
767     } else {
768       // Owner holds it exclusively.
769       return false;
770     }
771   } while (!done);
772 #else
773   int result = pthread_rwlock_tryrdlock(&rwlock_);
774   if (result == EBUSY) {
775     return false;
776   }
777   if (result != 0) {
778     errno = result;
779     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
780   }
781 #endif
782   RegisterAsLocked(self);
783   AssertSharedHeld(self);
784   return true;
785 }
786 
IsSharedHeld(const Thread * self) const787 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
788   DCHECK(self == nullptr || self == Thread::Current());
789   bool result;
790   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
791     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
792   } else {
793     result = (self->GetHeldMutex(level_) == this);
794   }
795   return result;
796 }
797 
Dump(std::ostream & os) const798 void ReaderWriterMutex::Dump(std::ostream& os) const {
799   os << name_
800       << " level=" << static_cast<int>(level_)
801       << " owner=" << GetExclusiveOwnerTid()
802 #if ART_USE_FUTEXES
803       << " state=" << state_.LoadSequentiallyConsistent()
804       << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
805       << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
806 #endif
807       << " ";
808   DumpContention(os);
809 }
810 
operator <<(std::ostream & os,const ReaderWriterMutex & mu)811 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
812   mu.Dump(os);
813   return os;
814 }
815 
operator <<(std::ostream & os,const MutatorMutex & mu)816 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
817   mu.Dump(os);
818   return os;
819 }
820 
WakeupToRespondToEmptyCheckpoint()821 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
822 #if ART_USE_FUTEXES
823   // Wake up all the waiters so they will respond to the emtpy checkpoint.
824   DCHECK(should_respond_to_empty_checkpoint_request_);
825   if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
826                num_pending_writers_.LoadRelaxed() > 0)) {
827     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
828   }
829 #else
830   LOG(FATAL) << "Non futex case isn't supported.";
831 #endif
832 }
833 
ConditionVariable(const char * name,Mutex & guard)834 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
835     : name_(name), guard_(guard) {
836 #if ART_USE_FUTEXES
837   DCHECK_EQ(0, sequence_.LoadRelaxed());
838   num_waiters_ = 0;
839 #else
840   pthread_condattr_t cond_attrs;
841   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
842 #if !defined(__APPLE__)
843   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
844   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
845 #endif
846   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
847 #endif
848 }
849 
~ConditionVariable()850 ConditionVariable::~ConditionVariable() {
851 #if ART_USE_FUTEXES
852   if (num_waiters_!= 0) {
853     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
854     LOG(is_safe_to_call_abort ? FATAL : WARNING)
855         << "ConditionVariable::~ConditionVariable for " << name_
856         << " called with " << num_waiters_ << " waiters.";
857   }
858 #else
859   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
860   // may still be using condition variables.
861   int rc = pthread_cond_destroy(&cond_);
862   if (rc != 0) {
863     errno = rc;
864     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
865     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
866   }
867 #endif
868 }
869 
Broadcast(Thread * self)870 void ConditionVariable::Broadcast(Thread* self) {
871   DCHECK(self == nullptr || self == Thread::Current());
872   // TODO: enable below, there's a race in thread creation that causes false failures currently.
873   // guard_.AssertExclusiveHeld(self);
874   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
875 #if ART_USE_FUTEXES
876   if (num_waiters_ > 0) {
877     sequence_++;  // Indicate the broadcast occurred.
878     bool done = false;
879     do {
880       int32_t cur_sequence = sequence_.LoadRelaxed();
881       // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
882       // mutex unlocks will awaken the requeued waiter thread.
883       done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
884                    reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
885                    guard_.state_.Address(), cur_sequence) != -1;
886       if (!done) {
887         if (errno != EAGAIN && errno != EINTR) {
888           PLOG(FATAL) << "futex cmp requeue failed for " << name_;
889         }
890       }
891     } while (!done);
892   }
893 #else
894   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
895 #endif
896 }
897 
Signal(Thread * self)898 void ConditionVariable::Signal(Thread* self) {
899   DCHECK(self == nullptr || self == Thread::Current());
900   guard_.AssertExclusiveHeld(self);
901 #if ART_USE_FUTEXES
902   if (num_waiters_ > 0) {
903     sequence_++;  // Indicate a signal occurred.
904     // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
905     // to avoid this, however, requeueing can only move all waiters.
906     int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
907     // Check something was woken or else we changed sequence_ before they had chance to wait.
908     CHECK((num_woken == 0) || (num_woken == 1));
909   }
910 #else
911   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
912 #endif
913 }
914 
Wait(Thread * self)915 void ConditionVariable::Wait(Thread* self) {
916   guard_.CheckSafeToWait(self);
917   WaitHoldingLocks(self);
918 }
919 
WaitHoldingLocks(Thread * self)920 void ConditionVariable::WaitHoldingLocks(Thread* self) {
921   DCHECK(self == nullptr || self == Thread::Current());
922   guard_.AssertExclusiveHeld(self);
923   unsigned int old_recursion_count = guard_.recursion_count_;
924 #if ART_USE_FUTEXES
925   num_waiters_++;
926   // Ensure the Mutex is contended so that requeued threads are awoken.
927   guard_.num_contenders_++;
928   guard_.recursion_count_ = 1;
929   int32_t cur_sequence = sequence_.LoadRelaxed();
930   guard_.ExclusiveUnlock(self);
931   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
932     // Futex failed, check it is an expected error.
933     // EAGAIN == EWOULDBLK, so we let the caller try again.
934     // EINTR implies a signal was sent to this thread.
935     if ((errno != EINTR) && (errno != EAGAIN)) {
936       PLOG(FATAL) << "futex wait failed for " << name_;
937     }
938   }
939   if (self != nullptr) {
940     JNIEnvExt* const env = self->GetJniEnv();
941     if (UNLIKELY(env != nullptr && env->runtime_deleted)) {
942       CHECK(self->IsDaemon());
943       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
944       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
945       // --host and --gdb.
946       // After we wake up, the runtime may have been shutdown, which means that this condition may
947       // have been deleted. It is not safe to retry the wait.
948       SleepForever();
949     }
950   }
951   guard_.ExclusiveLock(self);
952   CHECK_GE(num_waiters_, 0);
953   num_waiters_--;
954   // We awoke and so no longer require awakes from the guard_'s unlock.
955   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
956   guard_.num_contenders_--;
957 #else
958   uint64_t old_owner = guard_.exclusive_owner_;
959   guard_.exclusive_owner_ = 0;
960   guard_.recursion_count_ = 0;
961   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
962   guard_.exclusive_owner_ = old_owner;
963 #endif
964   guard_.recursion_count_ = old_recursion_count;
965 }
966 
TimedWait(Thread * self,int64_t ms,int32_t ns)967 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
968   DCHECK(self == nullptr || self == Thread::Current());
969   bool timed_out = false;
970   guard_.AssertExclusiveHeld(self);
971   guard_.CheckSafeToWait(self);
972   unsigned int old_recursion_count = guard_.recursion_count_;
973 #if ART_USE_FUTEXES
974   timespec rel_ts;
975   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
976   num_waiters_++;
977   // Ensure the Mutex is contended so that requeued threads are awoken.
978   guard_.num_contenders_++;
979   guard_.recursion_count_ = 1;
980   int32_t cur_sequence = sequence_.LoadRelaxed();
981   guard_.ExclusiveUnlock(self);
982   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
983     if (errno == ETIMEDOUT) {
984       // Timed out we're done.
985       timed_out = true;
986     } else if ((errno == EAGAIN) || (errno == EINTR)) {
987       // A signal or ConditionVariable::Signal/Broadcast has come in.
988     } else {
989       PLOG(FATAL) << "timed futex wait failed for " << name_;
990     }
991   }
992   guard_.ExclusiveLock(self);
993   CHECK_GE(num_waiters_, 0);
994   num_waiters_--;
995   // We awoke and so no longer require awakes from the guard_'s unlock.
996   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
997   guard_.num_contenders_--;
998 #else
999 #if !defined(__APPLE__)
1000   int clock = CLOCK_MONOTONIC;
1001 #else
1002   int clock = CLOCK_REALTIME;
1003 #endif
1004   uint64_t old_owner = guard_.exclusive_owner_;
1005   guard_.exclusive_owner_ = 0;
1006   guard_.recursion_count_ = 0;
1007   timespec ts;
1008   InitTimeSpec(true, clock, ms, ns, &ts);
1009   int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
1010   if (rc == ETIMEDOUT) {
1011     timed_out = true;
1012   } else if (rc != 0) {
1013     errno = rc;
1014     PLOG(FATAL) << "TimedWait failed for " << name_;
1015   }
1016   guard_.exclusive_owner_ = old_owner;
1017 #endif
1018   guard_.recursion_count_ = old_recursion_count;
1019   return timed_out;
1020 }
1021 
Init()1022 void Locks::Init() {
1023   if (logging_lock_ != nullptr) {
1024     // Already initialized.
1025     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
1026       DCHECK(modify_ldt_lock_ != nullptr);
1027     } else {
1028       DCHECK(modify_ldt_lock_ == nullptr);
1029     }
1030     DCHECK(abort_lock_ != nullptr);
1031     DCHECK(alloc_tracker_lock_ != nullptr);
1032     DCHECK(allocated_monitor_ids_lock_ != nullptr);
1033     DCHECK(allocated_thread_ids_lock_ != nullptr);
1034     DCHECK(breakpoint_lock_ != nullptr);
1035     DCHECK(classlinker_classes_lock_ != nullptr);
1036     DCHECK(deoptimization_lock_ != nullptr);
1037     DCHECK(heap_bitmap_lock_ != nullptr);
1038     DCHECK(oat_file_manager_lock_ != nullptr);
1039     DCHECK(verifier_deps_lock_ != nullptr);
1040     DCHECK(host_dlopen_handles_lock_ != nullptr);
1041     DCHECK(intern_table_lock_ != nullptr);
1042     DCHECK(jni_function_table_lock_ != nullptr);
1043     DCHECK(jni_libraries_lock_ != nullptr);
1044     DCHECK(logging_lock_ != nullptr);
1045     DCHECK(mutator_lock_ != nullptr);
1046     DCHECK(profiler_lock_ != nullptr);
1047     DCHECK(cha_lock_ != nullptr);
1048     DCHECK(thread_list_lock_ != nullptr);
1049     DCHECK(thread_suspend_count_lock_ != nullptr);
1050     DCHECK(trace_lock_ != nullptr);
1051     DCHECK(unexpected_signal_lock_ != nullptr);
1052     DCHECK(user_code_suspension_lock_ != nullptr);
1053     DCHECK(dex_lock_ != nullptr);
1054   } else {
1055     // Create global locks in level order from highest lock level to lowest.
1056     LockLevel current_lock_level = kInstrumentEntrypointsLock;
1057     DCHECK(instrument_entrypoints_lock_ == nullptr);
1058     instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
1059 
1060     #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
1061       if ((new_level) >= current_lock_level) { \
1062         /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
1063         fprintf(stderr, "New local level %d is not less than current level %d\n", \
1064                 new_level, current_lock_level); \
1065         exit(1); \
1066       } \
1067       current_lock_level = new_level;
1068 
1069     UPDATE_CURRENT_LOCK_LEVEL(kUserCodeSuspensionLock);
1070     DCHECK(user_code_suspension_lock_ == nullptr);
1071     user_code_suspension_lock_ = new Mutex("user code suspension lock", current_lock_level);
1072 
1073     UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
1074     DCHECK(mutator_lock_ == nullptr);
1075     mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
1076 
1077     UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
1078     DCHECK(heap_bitmap_lock_ == nullptr);
1079     heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
1080 
1081     UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
1082     DCHECK(trace_lock_ == nullptr);
1083     trace_lock_ = new Mutex("trace lock", current_lock_level);
1084 
1085     UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
1086     DCHECK(runtime_shutdown_lock_ == nullptr);
1087     runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
1088 
1089     UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
1090     DCHECK(profiler_lock_ == nullptr);
1091     profiler_lock_ = new Mutex("profiler lock", current_lock_level);
1092 
1093     UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
1094     DCHECK(deoptimization_lock_ == nullptr);
1095     deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
1096 
1097     UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
1098     DCHECK(alloc_tracker_lock_ == nullptr);
1099     alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
1100 
1101     UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
1102     DCHECK(thread_list_lock_ == nullptr);
1103     thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
1104 
1105     UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
1106     DCHECK(jni_libraries_lock_ == nullptr);
1107     jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
1108 
1109     UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
1110     DCHECK(breakpoint_lock_ == nullptr);
1111     breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
1112 
1113     UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
1114     DCHECK(cha_lock_ == nullptr);
1115     cha_lock_ = new Mutex("CHA lock", current_lock_level);
1116 
1117     UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
1118     DCHECK(classlinker_classes_lock_ == nullptr);
1119     classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
1120                                                       current_lock_level);
1121 
1122     UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
1123     DCHECK(allocated_monitor_ids_lock_ == nullptr);
1124     allocated_monitor_ids_lock_ =  new Mutex("allocated monitor ids lock", current_lock_level);
1125 
1126     UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
1127     DCHECK(allocated_thread_ids_lock_ == nullptr);
1128     allocated_thread_ids_lock_ =  new Mutex("allocated thread ids lock", current_lock_level);
1129 
1130     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
1131       UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
1132       DCHECK(modify_ldt_lock_ == nullptr);
1133       modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
1134     }
1135 
1136     UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
1137     DCHECK(dex_lock_ == nullptr);
1138     dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
1139 
1140     UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
1141     DCHECK(oat_file_manager_lock_ == nullptr);
1142     oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
1143 
1144     UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
1145     DCHECK(verifier_deps_lock_ == nullptr);
1146     verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
1147 
1148     UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
1149     DCHECK(host_dlopen_handles_lock_ == nullptr);
1150     host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
1151 
1152     UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
1153     DCHECK(intern_table_lock_ == nullptr);
1154     intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
1155 
1156     UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
1157     DCHECK(reference_processor_lock_ == nullptr);
1158     reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
1159 
1160     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
1161     DCHECK(reference_queue_cleared_references_lock_ == nullptr);
1162     reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1163 
1164     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
1165     DCHECK(reference_queue_weak_references_lock_ == nullptr);
1166     reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1167 
1168     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
1169     DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
1170     reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
1171 
1172     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
1173     DCHECK(reference_queue_phantom_references_lock_ == nullptr);
1174     reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
1175 
1176     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
1177     DCHECK(reference_queue_soft_references_lock_ == nullptr);
1178     reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
1179 
1180     UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
1181     DCHECK(jni_globals_lock_ == nullptr);
1182     jni_globals_lock_ =
1183         new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
1184 
1185     UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
1186     DCHECK(jni_weak_globals_lock_ == nullptr);
1187     jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
1188 
1189     UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
1190     DCHECK(jni_function_table_lock_ == nullptr);
1191     jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
1192 
1193     UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
1194     DCHECK(abort_lock_ == nullptr);
1195     abort_lock_ = new Mutex("abort lock", current_lock_level, true);
1196 
1197     UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
1198     DCHECK(thread_suspend_count_lock_ == nullptr);
1199     thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
1200 
1201     UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
1202     DCHECK(unexpected_signal_lock_ == nullptr);
1203     unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
1204 
1205     UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
1206     DCHECK(logging_lock_ == nullptr);
1207     logging_lock_ = new Mutex("logging lock", current_lock_level, true);
1208 
1209     #undef UPDATE_CURRENT_LOCK_LEVEL
1210 
1211     // List of mutexes that we may hold when accessing a weak ref.
1212     AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
1213     AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
1214     AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
1215 
1216     InitConditions();
1217   }
1218 }
1219 
InitConditions()1220 void Locks::InitConditions() {
1221   thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
1222 }
1223 
SetClientCallback(ClientCallback * safe_to_call_abort_cb)1224 void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
1225   safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
1226 }
1227 
1228 // Helper to allow checking shutdown while ignoring locking requirements.
IsSafeToCallAbortRacy()1229 bool Locks::IsSafeToCallAbortRacy() {
1230   Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
1231   return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
1232 }
1233 
AddToExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1234 void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1235   if (need_lock) {
1236     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1237     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1238     expected_mutexes_on_weak_ref_access_.push_back(mutex);
1239   } else {
1240     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1241     expected_mutexes_on_weak_ref_access_.push_back(mutex);
1242   }
1243 }
1244 
RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1245 void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1246   if (need_lock) {
1247     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1248     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1249     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1250     auto it = std::find(list.begin(), list.end(), mutex);
1251     DCHECK(it != list.end());
1252     list.erase(it);
1253   } else {
1254     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1255     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1256     auto it = std::find(list.begin(), list.end(), mutex);
1257     DCHECK(it != list.end());
1258     list.erase(it);
1259   }
1260 }
1261 
IsExpectedOnWeakRefAccess(BaseMutex * mutex)1262 bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
1263   ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1264   std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1265   return std::find(list.begin(), list.end(), mutex) != list.end();
1266 }
1267 
1268 }  // namespace art
1269