1 /******************************************************************************
2 *
3 * Copyright (C) 2014 Google, Inc.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #define LOG_TAG "bt_osi_thread"
20
21 #include "osi/include/thread.h"
22
23 #include <atomic>
24
25 #include <base/logging.h>
26 #include <errno.h>
27 #include <malloc.h>
28 #include <pthread.h>
29 #include <string.h>
30 #include <sys/prctl.h>
31 #include <sys/resource.h>
32 #include <sys/types.h>
33 #include <unistd.h>
34
35 #include "osi/include/allocator.h"
36 #include "osi/include/compat.h"
37 #include "osi/include/fixed_queue.h"
38 #include "osi/include/log.h"
39 #include "osi/include/reactor.h"
40 #include "osi/include/semaphore.h"
41
42 struct thread_t {
43 std::atomic_bool is_joined{false};
44 pthread_t pthread;
45 pid_t tid;
46 char name[THREAD_NAME_MAX + 1];
47 reactor_t* reactor;
48 fixed_queue_t* work_queue;
49 };
50
51 struct start_arg {
52 thread_t* thread;
53 semaphore_t* start_sem;
54 int error;
55 };
56
57 typedef struct {
58 thread_fn func;
59 void* context;
60 } work_item_t;
61
62 static void* run_thread(void* start_arg);
63 static void work_queue_read_cb(void* context);
64
65 static const size_t DEFAULT_WORK_QUEUE_CAPACITY = 128;
66
thread_new_sized(const char * name,size_t work_queue_capacity)67 thread_t* thread_new_sized(const char* name, size_t work_queue_capacity) {
68 CHECK(name != NULL);
69 CHECK(work_queue_capacity != 0);
70
71 thread_t* ret = static_cast<thread_t*>(osi_calloc(sizeof(thread_t)));
72
73 ret->reactor = reactor_new();
74 if (!ret->reactor) goto error;
75
76 ret->work_queue = fixed_queue_new(work_queue_capacity);
77 if (!ret->work_queue) goto error;
78
79 // Start is on the stack, but we use a semaphore, so it's safe
80 struct start_arg start;
81 start.start_sem = semaphore_new(0);
82 if (!start.start_sem) goto error;
83
84 strncpy(ret->name, name, THREAD_NAME_MAX);
85 start.thread = ret;
86 start.error = 0;
87 pthread_create(&ret->pthread, NULL, run_thread, &start);
88 semaphore_wait(start.start_sem);
89 semaphore_free(start.start_sem);
90
91 if (start.error) goto error;
92
93 return ret;
94
95 error:;
96 if (ret) {
97 fixed_queue_free(ret->work_queue, osi_free);
98 reactor_free(ret->reactor);
99 }
100 osi_free(ret);
101 return NULL;
102 }
103
thread_new(const char * name)104 thread_t* thread_new(const char* name) {
105 return thread_new_sized(name, DEFAULT_WORK_QUEUE_CAPACITY);
106 }
107
thread_free(thread_t * thread)108 void thread_free(thread_t* thread) {
109 if (!thread) return;
110
111 thread_stop(thread);
112 thread_join(thread);
113
114 fixed_queue_free(thread->work_queue, osi_free);
115 reactor_free(thread->reactor);
116 osi_free(thread);
117 }
118
thread_join(thread_t * thread)119 void thread_join(thread_t* thread) {
120 CHECK(thread != NULL);
121
122 if (!std::atomic_exchange(&thread->is_joined, true))
123 pthread_join(thread->pthread, NULL);
124 }
125
thread_post(thread_t * thread,thread_fn func,void * context)126 bool thread_post(thread_t* thread, thread_fn func, void* context) {
127 CHECK(thread != NULL);
128 CHECK(func != NULL);
129
130 // TODO(sharvil): if the current thread == |thread| and we've run out
131 // of queue space, we should abort this operation, otherwise we'll
132 // deadlock.
133
134 // Queue item is freed either when the queue itself is destroyed
135 // or when the item is removed from the queue for dispatch.
136 work_item_t* item = (work_item_t*)osi_malloc(sizeof(work_item_t));
137 item->func = func;
138 item->context = context;
139 fixed_queue_enqueue(thread->work_queue, item);
140 return true;
141 }
142
thread_stop(thread_t * thread)143 void thread_stop(thread_t* thread) {
144 CHECK(thread != NULL);
145 reactor_stop(thread->reactor);
146 }
147
thread_set_priority(thread_t * thread,int priority)148 bool thread_set_priority(thread_t* thread, int priority) {
149 if (!thread) return false;
150
151 const int rc = setpriority(PRIO_PROCESS, thread->tid, priority);
152 if (rc < 0) {
153 LOG_ERROR(LOG_TAG,
154 "%s unable to set thread priority %d for tid %d, error %d",
155 __func__, priority, thread->tid, rc);
156 return false;
157 }
158
159 return true;
160 }
161
thread_set_rt_priority(thread_t * thread,int priority)162 bool thread_set_rt_priority(thread_t* thread, int priority) {
163 if (!thread) return false;
164
165 struct sched_param rt_params;
166 rt_params.sched_priority = priority;
167
168 const int rc = sched_setscheduler(thread->tid, SCHED_FIFO, &rt_params);
169 if (rc != 0) {
170 LOG_ERROR(LOG_TAG,
171 "%s unable to set SCHED_FIFO priority %d for tid %d, error %s",
172 __func__, priority, thread->tid, strerror(errno));
173 return false;
174 }
175
176 return true;
177 }
178
thread_is_self(const thread_t * thread)179 bool thread_is_self(const thread_t* thread) {
180 CHECK(thread != NULL);
181 return !!pthread_equal(pthread_self(), thread->pthread);
182 }
183
thread_get_reactor(const thread_t * thread)184 reactor_t* thread_get_reactor(const thread_t* thread) {
185 CHECK(thread != NULL);
186 return thread->reactor;
187 }
188
thread_name(const thread_t * thread)189 const char* thread_name(const thread_t* thread) {
190 CHECK(thread != NULL);
191 return thread->name;
192 }
193
run_thread(void * start_arg)194 static void* run_thread(void* start_arg) {
195 CHECK(start_arg != NULL);
196
197 struct start_arg* start = static_cast<struct start_arg*>(start_arg);
198 thread_t* thread = start->thread;
199
200 CHECK(thread != NULL);
201
202 if (prctl(PR_SET_NAME, (unsigned long)thread->name) == -1) {
203 LOG_ERROR(LOG_TAG, "%s unable to set thread name: %s", __func__,
204 strerror(errno));
205 start->error = errno;
206 semaphore_post(start->start_sem);
207 return NULL;
208 }
209 thread->tid = gettid();
210
211 LOG_INFO(LOG_TAG, "%s: thread id %d, thread name %s started", __func__,
212 thread->tid, thread->name);
213
214 semaphore_post(start->start_sem);
215
216 int fd = fixed_queue_get_dequeue_fd(thread->work_queue);
217 void* context = thread->work_queue;
218
219 reactor_object_t* work_queue_object =
220 reactor_register(thread->reactor, fd, context, work_queue_read_cb, NULL);
221 reactor_start(thread->reactor);
222 reactor_unregister(work_queue_object);
223
224 // Make sure we dispatch all queued work items before exiting the thread.
225 // This allows a caller to safely tear down by enqueuing a teardown
226 // work item and then joining the thread.
227 size_t count = 0;
228 work_item_t* item =
229 static_cast<work_item_t*>(fixed_queue_try_dequeue(thread->work_queue));
230 while (item && count <= fixed_queue_capacity(thread->work_queue)) {
231 item->func(item->context);
232 osi_free(item);
233 item =
234 static_cast<work_item_t*>(fixed_queue_try_dequeue(thread->work_queue));
235 ++count;
236 }
237
238 if (count > fixed_queue_capacity(thread->work_queue))
239 LOG_DEBUG(LOG_TAG, "%s growing event queue on shutdown.", __func__);
240
241 LOG_WARN(LOG_TAG, "%s: thread id %d, thread name %s exited", __func__,
242 thread->tid, thread->name);
243 return NULL;
244 }
245
work_queue_read_cb(void * context)246 static void work_queue_read_cb(void* context) {
247 CHECK(context != NULL);
248
249 fixed_queue_t* queue = (fixed_queue_t*)context;
250 work_item_t* item = static_cast<work_item_t*>(fixed_queue_dequeue(queue));
251 item->func(item->context);
252 osi_free(item);
253 }
254