1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/time/time.h"
6
7 #include <cmath>
8 #include <ios>
9 #include <limits>
10 #include <ostream>
11 #include <sstream>
12
13 #include "base/lazy_instance.h"
14 #include "base/logging.h"
15 #include "base/macros.h"
16 #include "base/strings/stringprintf.h"
17 #include "base/third_party/nspr/prtime.h"
18 #include "build/build_config.h"
19
20 namespace base {
21
22 // TimeDelta ------------------------------------------------------------------
23
24 // static
Max()25 TimeDelta TimeDelta::Max() {
26 return TimeDelta(std::numeric_limits<int64_t>::max());
27 }
28
InDays() const29 int TimeDelta::InDays() const {
30 if (is_max()) {
31 // Preserve max to prevent overflow.
32 return std::numeric_limits<int>::max();
33 }
34 return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
35 }
36
InHours() const37 int TimeDelta::InHours() const {
38 if (is_max()) {
39 // Preserve max to prevent overflow.
40 return std::numeric_limits<int>::max();
41 }
42 return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
43 }
44
InMinutes() const45 int TimeDelta::InMinutes() const {
46 if (is_max()) {
47 // Preserve max to prevent overflow.
48 return std::numeric_limits<int>::max();
49 }
50 return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
51 }
52
InSecondsF() const53 double TimeDelta::InSecondsF() const {
54 if (is_max()) {
55 // Preserve max to prevent overflow.
56 return std::numeric_limits<double>::infinity();
57 }
58 return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
59 }
60
InSeconds() const61 int64_t TimeDelta::InSeconds() const {
62 if (is_max()) {
63 // Preserve max to prevent overflow.
64 return std::numeric_limits<int64_t>::max();
65 }
66 return delta_ / Time::kMicrosecondsPerSecond;
67 }
68
InMillisecondsF() const69 double TimeDelta::InMillisecondsF() const {
70 if (is_max()) {
71 // Preserve max to prevent overflow.
72 return std::numeric_limits<double>::infinity();
73 }
74 return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
75 }
76
InMilliseconds() const77 int64_t TimeDelta::InMilliseconds() const {
78 if (is_max()) {
79 // Preserve max to prevent overflow.
80 return std::numeric_limits<int64_t>::max();
81 }
82 return delta_ / Time::kMicrosecondsPerMillisecond;
83 }
84
InMillisecondsRoundedUp() const85 int64_t TimeDelta::InMillisecondsRoundedUp() const {
86 if (is_max()) {
87 // Preserve max to prevent overflow.
88 return std::numeric_limits<int64_t>::max();
89 }
90 return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
91 Time::kMicrosecondsPerMillisecond;
92 }
93
InMicroseconds() const94 int64_t TimeDelta::InMicroseconds() const {
95 if (is_max()) {
96 // Preserve max to prevent overflow.
97 return std::numeric_limits<int64_t>::max();
98 }
99 return delta_;
100 }
101
102 namespace time_internal {
103
SaturatedAdd(TimeDelta delta,int64_t value)104 int64_t SaturatedAdd(TimeDelta delta, int64_t value) {
105 CheckedNumeric<int64_t> rv(delta.delta_);
106 rv += value;
107 return FromCheckedNumeric(rv);
108 }
109
SaturatedSub(TimeDelta delta,int64_t value)110 int64_t SaturatedSub(TimeDelta delta, int64_t value) {
111 CheckedNumeric<int64_t> rv(delta.delta_);
112 rv -= value;
113 return FromCheckedNumeric(rv);
114 }
115
FromCheckedNumeric(const CheckedNumeric<int64_t> value)116 int64_t FromCheckedNumeric(const CheckedNumeric<int64_t> value) {
117 if (value.IsValid())
118 return value.ValueUnsafe();
119
120 // We could return max/min but we don't really expose what the maximum delta
121 // is. Instead, return max/(-max), which is something that clients can reason
122 // about.
123 // TODO(rvargas) crbug.com/332611: don't use internal values.
124 int64_t limit = std::numeric_limits<int64_t>::max();
125 if (value.validity() == internal::RANGE_UNDERFLOW)
126 limit = -limit;
127 return value.ValueOrDefault(limit);
128 }
129
130 } // namespace time_internal
131
operator <<(std::ostream & os,TimeDelta time_delta)132 std::ostream& operator<<(std::ostream& os, TimeDelta time_delta) {
133 return os << time_delta.InSecondsF() << "s";
134 }
135
136 // Time -----------------------------------------------------------------------
137
138 // static
FromTimeT(time_t tt)139 Time Time::FromTimeT(time_t tt) {
140 if (tt == 0)
141 return Time(); // Preserve 0 so we can tell it doesn't exist.
142 if (tt == std::numeric_limits<time_t>::max())
143 return Max();
144 return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSeconds(tt);
145 }
146
ToTimeT() const147 time_t Time::ToTimeT() const {
148 if (is_null())
149 return 0; // Preserve 0 so we can tell it doesn't exist.
150 if (is_max()) {
151 // Preserve max without offset to prevent overflow.
152 return std::numeric_limits<time_t>::max();
153 }
154 if (std::numeric_limits<int64_t>::max() - kTimeTToMicrosecondsOffset <= us_) {
155 DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
156 "value " << us_ << " to time_t.";
157 return std::numeric_limits<time_t>::max();
158 }
159 return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
160 }
161
162 // static
FromDoubleT(double dt)163 Time Time::FromDoubleT(double dt) {
164 if (dt == 0 || std::isnan(dt))
165 return Time(); // Preserve 0 so we can tell it doesn't exist.
166 return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSecondsD(dt);
167 }
168
ToDoubleT() const169 double Time::ToDoubleT() const {
170 if (is_null())
171 return 0; // Preserve 0 so we can tell it doesn't exist.
172 if (is_max()) {
173 // Preserve max without offset to prevent overflow.
174 return std::numeric_limits<double>::infinity();
175 }
176 return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
177 static_cast<double>(kMicrosecondsPerSecond));
178 }
179
180 #if defined(OS_POSIX)
181 // static
FromTimeSpec(const timespec & ts)182 Time Time::FromTimeSpec(const timespec& ts) {
183 return FromDoubleT(ts.tv_sec +
184 static_cast<double>(ts.tv_nsec) /
185 base::Time::kNanosecondsPerSecond);
186 }
187 #endif
188
189 // static
FromJsTime(double ms_since_epoch)190 Time Time::FromJsTime(double ms_since_epoch) {
191 // The epoch is a valid time, so this constructor doesn't interpret
192 // 0 as the null time.
193 return Time(kTimeTToMicrosecondsOffset) +
194 TimeDelta::FromMillisecondsD(ms_since_epoch);
195 }
196
ToJsTime() const197 double Time::ToJsTime() const {
198 if (is_null()) {
199 // Preserve 0 so the invalid result doesn't depend on the platform.
200 return 0;
201 }
202 if (is_max()) {
203 // Preserve max without offset to prevent overflow.
204 return std::numeric_limits<double>::infinity();
205 }
206 return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
207 kMicrosecondsPerMillisecond);
208 }
209
ToJavaTime() const210 int64_t Time::ToJavaTime() const {
211 if (is_null()) {
212 // Preserve 0 so the invalid result doesn't depend on the platform.
213 return 0;
214 }
215 if (is_max()) {
216 // Preserve max without offset to prevent overflow.
217 return std::numeric_limits<int64_t>::max();
218 }
219 return ((us_ - kTimeTToMicrosecondsOffset) /
220 kMicrosecondsPerMillisecond);
221 }
222
223 // static
UnixEpoch()224 Time Time::UnixEpoch() {
225 Time time;
226 time.us_ = kTimeTToMicrosecondsOffset;
227 return time;
228 }
229
LocalMidnight() const230 Time Time::LocalMidnight() const {
231 Exploded exploded;
232 LocalExplode(&exploded);
233 exploded.hour = 0;
234 exploded.minute = 0;
235 exploded.second = 0;
236 exploded.millisecond = 0;
237 return FromLocalExploded(exploded);
238 }
239
240 // static
FromStringInternal(const char * time_string,bool is_local,Time * parsed_time)241 bool Time::FromStringInternal(const char* time_string,
242 bool is_local,
243 Time* parsed_time) {
244 DCHECK((time_string != NULL) && (parsed_time != NULL));
245
246 if (time_string[0] == '\0')
247 return false;
248
249 PRTime result_time = 0;
250 PRStatus result = PR_ParseTimeString(time_string,
251 is_local ? PR_FALSE : PR_TRUE,
252 &result_time);
253 if (PR_SUCCESS != result)
254 return false;
255
256 result_time += kTimeTToMicrosecondsOffset;
257 *parsed_time = Time(result_time);
258 return true;
259 }
260
261 // static
ExplodedMostlyEquals(const Exploded & lhs,const Exploded & rhs)262 bool Time::ExplodedMostlyEquals(const Exploded& lhs, const Exploded& rhs) {
263 return lhs.year == rhs.year && lhs.month == rhs.month &&
264 lhs.day_of_month == rhs.day_of_month && lhs.hour == rhs.hour &&
265 lhs.minute == rhs.minute && lhs.second == rhs.second &&
266 lhs.millisecond == rhs.millisecond;
267 }
268
operator <<(std::ostream & os,Time time)269 std::ostream& operator<<(std::ostream& os, Time time) {
270 Time::Exploded exploded;
271 time.UTCExplode(&exploded);
272 // Use StringPrintf because iostreams formatting is painful.
273 return os << StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%03d UTC",
274 exploded.year,
275 exploded.month,
276 exploded.day_of_month,
277 exploded.hour,
278 exploded.minute,
279 exploded.second,
280 exploded.millisecond);
281 }
282
283 // Local helper class to hold the conversion from Time to TickTime at the
284 // time of the Unix epoch.
285 class UnixEpochSingleton {
286 public:
UnixEpochSingleton()287 UnixEpochSingleton()
288 : unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}
289
unix_epoch() const290 TimeTicks unix_epoch() const { return unix_epoch_; }
291
292 private:
293 const TimeTicks unix_epoch_;
294
295 DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton);
296 };
297
298 static LazyInstance<UnixEpochSingleton>::Leaky
299 leaky_unix_epoch_singleton_instance = LAZY_INSTANCE_INITIALIZER;
300
301 // Static
UnixEpoch()302 TimeTicks TimeTicks::UnixEpoch() {
303 return leaky_unix_epoch_singleton_instance.Get().unix_epoch();
304 }
305
SnappedToNextTick(TimeTicks tick_phase,TimeDelta tick_interval) const306 TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
307 TimeDelta tick_interval) const {
308 // |interval_offset| is the offset from |this| to the next multiple of
309 // |tick_interval| after |tick_phase|, possibly negative if in the past.
310 TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
311 // If |this| is exactly on the interval (i.e. offset==0), don't adjust.
312 // Otherwise, if |tick_phase| was in the past, adjust forward to the next
313 // tick after |this|.
314 if (!interval_offset.is_zero() && tick_phase < *this)
315 interval_offset += tick_interval;
316 return *this + interval_offset;
317 }
318
operator <<(std::ostream & os,TimeTicks time_ticks)319 std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks) {
320 // This function formats a TimeTicks object as "bogo-microseconds".
321 // The origin and granularity of the count are platform-specific, and may very
322 // from run to run. Although bogo-microseconds usually roughly correspond to
323 // real microseconds, the only real guarantee is that the number never goes
324 // down during a single run.
325 const TimeDelta as_time_delta = time_ticks - TimeTicks();
326 return os << as_time_delta.InMicroseconds() << " bogo-microseconds";
327 }
328
operator <<(std::ostream & os,ThreadTicks thread_ticks)329 std::ostream& operator<<(std::ostream& os, ThreadTicks thread_ticks) {
330 const TimeDelta as_time_delta = thread_ticks - ThreadTicks();
331 return os << as_time_delta.InMicroseconds() << " bogo-thread-microseconds";
332 }
333
334 // Time::Exploded -------------------------------------------------------------
335
is_in_range(int value,int lo,int hi)336 inline bool is_in_range(int value, int lo, int hi) {
337 return lo <= value && value <= hi;
338 }
339
HasValidValues() const340 bool Time::Exploded::HasValidValues() const {
341 return is_in_range(month, 1, 12) &&
342 is_in_range(day_of_week, 0, 6) &&
343 is_in_range(day_of_month, 1, 31) &&
344 is_in_range(hour, 0, 23) &&
345 is_in_range(minute, 0, 59) &&
346 is_in_range(second, 0, 60) &&
347 is_in_range(millisecond, 0, 999);
348 }
349
350 } // namespace base
351