1 /*
2 * Copyright 2011-2014 Intel Corporation - All Rights Reserved
3 */
4
5 #include <codepage.h>
6 #include <core.h>
7 #include <fs.h>
8 #include <com32.h>
9 #include <syslinux/memscan.h>
10 #include <syslinux/firmware.h>
11 #include <syslinux/linux.h>
12 #include <sys/ansi.h>
13 #include <setjmp.h>
14
15 #include "efi.h"
16 #include "fio.h"
17 #include "version.h"
18
19 __export uint16_t PXERetry;
20 __export char copyright_str[] = "Copyright (C) 2011-" YEAR_STR "\n";
21 uint8_t SerialNotice = 1;
22 __export char syslinux_banner[] = "Syslinux " VERSION_STR " (EFI; " DATE_STR ")\n";
23 char CurrentDirName[CURRENTDIR_MAX];
24 struct com32_sys_args __com32;
25
26 uint32_t _IdleTimer = 0;
27 char __lowmem_heap[32];
28 uint32_t BIOS_timer_next;
29 uint32_t timer_irq;
30 __export uint8_t KbdMap[256];
31 char aux_seg[256];
32
33 static jmp_buf load_error_buf;
34
35 static inline EFI_STATUS
efi_close_protocol(EFI_HANDLE handle,EFI_GUID * guid,EFI_HANDLE agent,EFI_HANDLE controller)36 efi_close_protocol(EFI_HANDLE handle, EFI_GUID *guid, EFI_HANDLE agent,
37 EFI_HANDLE controller)
38 {
39 return uefi_call_wrapper(BS->CloseProtocol, 4, handle,
40 guid, agent, controller);
41 }
42
efi_create_binding(EFI_GUID * bguid,EFI_GUID * pguid)43 struct efi_binding *efi_create_binding(EFI_GUID *bguid, EFI_GUID *pguid)
44 {
45 EFI_SERVICE_BINDING *sbp;
46 struct efi_binding *b;
47 EFI_STATUS status;
48 EFI_HANDLE protocol, child, *handles = NULL;
49 UINTN i, nr_handles = 0;
50
51 b = malloc(sizeof(*b));
52 if (!b)
53 return NULL;
54
55 status = LibLocateHandle(ByProtocol, bguid, NULL, &nr_handles, &handles);
56 if (status != EFI_SUCCESS)
57 goto free_binding;
58
59 for (i = 0; i < nr_handles; i++) {
60 status = uefi_call_wrapper(BS->OpenProtocol, 6, handles[i],
61 bguid, (void **)&sbp,
62 image_handle, handles[i],
63 EFI_OPEN_PROTOCOL_GET_PROTOCOL);
64 if (status == EFI_SUCCESS)
65 break;
66
67 uefi_call_wrapper(BS->CloseProtocol, 4, handles[i], bguid,
68 image_handle, handles[i]);
69 }
70
71 if (i == nr_handles)
72 goto free_binding;
73
74 child = NULL;
75
76 status = uefi_call_wrapper(sbp->CreateChild, 2, sbp, (EFI_HANDLE *)&child);
77 if (status != EFI_SUCCESS)
78 goto close_protocol;
79
80 status = uefi_call_wrapper(BS->OpenProtocol, 6, child,
81 pguid, (void **)&protocol,
82 image_handle, sbp,
83 EFI_OPEN_PROTOCOL_GET_PROTOCOL);
84 if (status != EFI_SUCCESS)
85 goto destroy_child;
86
87 b->parent = handles[i];
88 b->binding = sbp;
89 b->child = child;
90 b->this = protocol;
91
92 return b;
93
94 destroy_child:
95 uefi_call_wrapper(sbp->DestroyChild, 2, sbp, child);
96
97 close_protocol:
98 uefi_call_wrapper(BS->CloseProtocol, 4, handles[i], bguid,
99 image_handle, handles[i]);
100
101 free_binding:
102 free(b);
103 return NULL;
104 }
105
efi_destroy_binding(struct efi_binding * b,EFI_GUID * guid)106 void efi_destroy_binding(struct efi_binding *b, EFI_GUID *guid)
107 {
108 efi_close_protocol(b->child, guid, image_handle, b->binding);
109 uefi_call_wrapper(b->binding->DestroyChild, 2, b->binding, b->child);
110 efi_close_protocol(b->parent, guid, image_handle, b->parent);
111
112 free(b);
113 }
114
115 #undef kaboom
kaboom(void)116 void kaboom(void)
117 {
118 }
119
printf_init(void)120 void printf_init(void)
121 {
122 }
123
local_boot(uint16_t ax)124 __export void local_boot(uint16_t ax)
125 {
126 /*
127 * Inform the firmware that we failed to execute correctly, which
128 * will trigger the next entry in the EFI Boot Manager list.
129 */
130 longjmp(load_error_buf, 1);
131 }
132
bios_timer_cleanup(void)133 void bios_timer_cleanup(void)
134 {
135 }
136
137 char trackbuf[4096];
138
core_farcall(uint32_t c,const com32sys_t * a,com32sys_t * b)139 void __cdecl core_farcall(uint32_t c, const com32sys_t *a, com32sys_t *b)
140 {
141 }
142
143 __export struct firmware *firmware = NULL;
144 __export void *__syslinux_adv_ptr;
145 __export size_t __syslinux_adv_size;
146 char core_xfer_buf[65536];
147 struct iso_boot_info {
148 uint32_t pvd; /* LBA of primary volume descriptor */
149 uint32_t file; /* LBA of boot file */
150 uint32_t length; /* Length of boot file */
151 uint32_t csum; /* Checksum of boot file */
152 uint32_t reserved[10]; /* Currently unused */
153 } iso_boot_info;
154
155 uint8_t DHCPMagic;
156 uint32_t RebootTime;
157
pxenv(void)158 void pxenv(void)
159 {
160 }
161
162 uint16_t BIOS_fbm = 1;
163 far_ptr_t InitStack;
164 far_ptr_t PXEEntry;
165
gpxe_unload(void)166 void gpxe_unload(void)
167 {
168 }
169
do_idle(void)170 void do_idle(void)
171 {
172 }
173
pxe_int1a(void)174 void pxe_int1a(void)
175 {
176 }
177
178 uint8_t KeepPXE;
179
180 struct semaphore;
sem_down(struct semaphore * sem,mstime_t time)181 mstime_t sem_down(struct semaphore *sem, mstime_t time)
182 {
183 /* EFI is single threaded */
184 return 0;
185 }
186
sem_up(struct semaphore * sem)187 void sem_up(struct semaphore *sem)
188 {
189 /* EFI is single threaded */
190 }
191
192 __export volatile uint32_t __ms_timer = 0;
193 volatile uint32_t __jiffies = 0;
194
efi_write_char(uint8_t ch,uint8_t attribute)195 void efi_write_char(uint8_t ch, uint8_t attribute)
196 {
197 SIMPLE_TEXT_OUTPUT_INTERFACE *out = ST->ConOut;
198 uint16_t c[2];
199
200 uefi_call_wrapper(out->SetAttribute, 2, out, attribute);
201
202 /* Lookup primary Unicode encoding in the system codepage */
203 c[0] = codepage.uni[0][ch];
204 c[1] = '\0';
205
206 uefi_call_wrapper(out->OutputString, 2, out, c);
207 }
208
efi_showcursor(const struct term_state * st)209 static void efi_showcursor(const struct term_state *st)
210 {
211 SIMPLE_TEXT_OUTPUT_INTERFACE *out = ST->ConOut;
212 bool cursor = st->cursor ? true : false;
213
214 uefi_call_wrapper(out->EnableCursor, 2, out, cursor);
215 }
216
efi_set_cursor(int x,int y,bool visible)217 static void efi_set_cursor(int x, int y, bool visible)
218 {
219 SIMPLE_TEXT_OUTPUT_INTERFACE *out = ST->ConOut;
220
221 uefi_call_wrapper(out->SetCursorPosition, 3, out, x, y);
222 }
223
efi_scroll_up(uint8_t cols,uint8_t rows,uint8_t attribute)224 static void efi_scroll_up(uint8_t cols, uint8_t rows, uint8_t attribute)
225 {
226 efi_write_char('\n', 0);
227 efi_write_char('\r', 0);
228 }
229
efi_get_mode(int * cols,int * rows)230 static void efi_get_mode(int *cols, int *rows)
231 {
232 SIMPLE_TEXT_OUTPUT_INTERFACE *out = ST->ConOut;
233 UINTN c, r;
234
235 uefi_call_wrapper(out->QueryMode, 4, out, out->Mode->Mode, &c, &r);
236 *rows = r;
237 *cols = c;
238 }
239
efi_erase(int x0,int y0,int x1,int y1,uint8_t attribute)240 static void efi_erase(int x0, int y0, int x1, int y1, uint8_t attribute)
241 {
242 SIMPLE_TEXT_OUTPUT_INTERFACE *out = ST->ConOut;
243 int cols, rows;
244
245 efi_get_mode(&cols, &rows);
246
247 /*
248 * The BIOS version of this function has the ability to erase
249 * parts or all of the screen - the UEFI console doesn't
250 * support this so we just set the cursor position unless
251 * we're clearing the whole screen.
252 */
253 if (!x0 && y0 == (cols - 1)) {
254 /* Really clear the screen */
255 uefi_call_wrapper(out->ClearScreen, 1, out);
256 } else {
257 uefi_call_wrapper(out->SetCursorPosition, 3, out, y1, x1);
258 }
259 }
260
efi_text_mode(void)261 static void efi_text_mode(void)
262 {
263 }
264
efi_get_cursor(uint8_t * x,uint8_t * y)265 static void efi_get_cursor(uint8_t *x, uint8_t *y)
266 {
267 SIMPLE_TEXT_OUTPUT_INTERFACE *out = ST->ConOut;
268 *x = out->Mode->CursorColumn;
269 *y = out->Mode->CursorRow;
270 }
271
272 struct output_ops efi_ops = {
273 .erase = efi_erase,
274 .write_char = efi_write_char,
275 .showcursor = efi_showcursor,
276 .set_cursor = efi_set_cursor,
277 .scroll_up = efi_scroll_up,
278 .get_mode = efi_get_mode,
279 .text_mode = efi_text_mode,
280 .get_cursor = efi_get_cursor,
281 };
282
283 char SubvolName[2];
284 static inline EFI_MEMORY_DESCRIPTOR *
get_memory_map(UINTN * nr_entries,UINTN * key,UINTN * desc_sz,uint32_t * desc_ver)285 get_memory_map(UINTN *nr_entries, UINTN *key, UINTN *desc_sz,
286 uint32_t *desc_ver)
287 {
288 return LibMemoryMap(nr_entries, key, desc_sz, desc_ver);
289 }
290
291
efi_scan_memory(scan_memory_callback_t callback,void * data)292 int efi_scan_memory(scan_memory_callback_t callback, void *data)
293 {
294 UINTN i, nr_entries, key, desc_sz;
295 UINTN buf, bufpos;
296 UINT32 desc_ver;
297 int rv = 0;
298
299 buf = (UINTN)get_memory_map(&nr_entries, &key, &desc_sz, &desc_ver);
300 if (!buf)
301 return -1;
302 bufpos = buf;
303
304 for (i = 0; i < nr_entries; bufpos += desc_sz, i++) {
305 EFI_MEMORY_DESCRIPTOR *m;
306 UINT64 region_sz;
307 enum syslinux_memmap_types type;
308
309 m = (EFI_MEMORY_DESCRIPTOR *)bufpos;
310 region_sz = m->NumberOfPages * EFI_PAGE_SIZE;
311
312 switch (m->Type) {
313 case EfiConventionalMemory:
314 type = SMT_FREE;
315 break;
316 default:
317 type = SMT_RESERVED;
318 break;
319 }
320
321 rv = callback(data, m->PhysicalStart, region_sz, type);
322 if (rv)
323 break;
324 }
325
326 FreePool((void *)buf);
327 return rv;
328 }
329
330 static struct syslinux_memscan efi_memscan = {
331 .func = efi_scan_memory,
332 };
333
334 extern uint16_t *bios_free_mem;
efi_init(void)335 void efi_init(void)
336 {
337 /* XXX timer */
338 *bios_free_mem = 0;
339 syslinux_memscan_add(&efi_memscan);
340 mem_init();
341 }
342
efi_getchar(char * hi)343 char efi_getchar(char *hi)
344 {
345 SIMPLE_INPUT_INTERFACE *in = ST->ConIn;
346 EFI_INPUT_KEY key;
347 EFI_STATUS status;
348
349 do {
350 status = uefi_call_wrapper(in->ReadKeyStroke, 2, in, &key);
351 } while (status == EFI_NOT_READY);
352
353 if (!key.ScanCode)
354 return (char)key.UnicodeChar;
355
356 /*
357 * We currently only handle scan codes that fit in 8 bits.
358 */
359 *hi = (char)key.ScanCode;
360 return 0;
361 }
362
efi_pollchar(void)363 int efi_pollchar(void)
364 {
365 SIMPLE_INPUT_INTERFACE *in = ST->ConIn;
366 EFI_STATUS status;
367
368 status = WaitForSingleEvent(in->WaitForKey, 1);
369 return status != EFI_TIMEOUT;
370 }
371
372 struct input_ops efi_iops = {
373 .getchar = efi_getchar,
374 .pollchar = efi_pollchar,
375 };
376
377 extern void efi_adv_init(void);
378 extern int efi_adv_write(void);
379
380 struct adv_ops efi_adv_ops = {
381 .init = efi_adv_init,
382 .write = efi_adv_write,
383 };
384
385 struct efi_info {
386 uint32_t load_signature;
387 uint32_t systab;
388 uint32_t desc_size;
389 uint32_t desc_version;
390 uint32_t memmap;
391 uint32_t memmap_size;
392 uint32_t systab_hi;
393 uint32_t memmap_hi;
394 };
395
396 #define E820MAX 128
397 #define E820_RAM 1
398 #define E820_RESERVED 2
399 #define E820_ACPI 3
400 #define E820_NVS 4
401 #define E820_UNUSABLE 5
402
403 #define BOOT_SIGNATURE 0xaa55
404 #define SYSLINUX_EFILDR 0x30 /* Is this published value? */
405 #define DEFAULT_TIMER_TICK_DURATION 500000 /* 500000 == 500000 * 100 * 10^-9 == 50 msec */
406 #define DEFAULT_MSTIMER_INC 0x32 /* 50 msec */
407 struct e820_entry {
408 uint64_t start;
409 uint64_t len;
410 uint32_t type;
411 } __packed;
412
413 struct boot_params {
414 struct screen_info screen_info;
415 uint8_t _pad[0x1c0 - sizeof(struct screen_info)];
416 struct efi_info efi;
417 uint8_t _pad2[8];
418 uint8_t e820_entries;
419 uint8_t _pad3[0x2d0 - 0x1e8 - sizeof(uint8_t)];
420 struct e820_entry e820_map[E820MAX];
421 } __packed;
422
423 /* Allocate boot parameter block aligned to page */
424 #define BOOT_PARAM_BLKSIZE EFI_SIZE_TO_PAGES(sizeof(struct boot_params)) * EFI_PAGE_SIZE
425
426 /* Routines in support of efi boot loader were obtained from
427 * http://git.kernel.org/?p=boot/efilinux/efilinux.git:
428 * kernel_jump(), handover_jump(),
429 * emalloc()/efree, alloc_pages/free_pages
430 * allocate_pool()/free_pool()
431 * memory_map()
432 */
433 extern void kernel_jump(EFI_PHYSICAL_ADDRESS kernel_start,
434 struct boot_params *boot_params);
435 #if __SIZEOF_POINTER__ == 4
436 #define EFI_LOAD_SIG "EL32"
437 #elif __SIZEOF_POINTER__ == 8
438 #define EFI_LOAD_SIG "EL64"
439 #else
440 #error "unsupported architecture"
441 #endif
442
443 struct dt_desc {
444 uint16_t limit;
445 uint64_t *base;
446 } __packed;
447
448 struct dt_desc gdt = { 0x800, (uint64_t *)0 };
449 struct dt_desc idt = { 0, 0 };
450
451 static inline EFI_MEMORY_DESCRIPTOR *
get_mem_desc(unsigned long memmap,UINTN desc_sz,int i)452 get_mem_desc(unsigned long memmap, UINTN desc_sz, int i)
453 {
454 return (EFI_MEMORY_DESCRIPTOR *)(memmap + (i * desc_sz));
455 }
456
457 EFI_HANDLE image_handle;
458
round_up(UINT64 x,UINT64 y)459 static inline UINT64 round_up(UINT64 x, UINT64 y)
460 {
461 return (((x - 1) | (y - 1)) + 1);
462 }
463
round_down(UINT64 x,UINT64 y)464 static inline UINT64 round_down(UINT64 x, UINT64 y)
465 {
466 return (x & ~(y - 1));
467 }
468
find_addr(EFI_PHYSICAL_ADDRESS * first,EFI_PHYSICAL_ADDRESS * last,EFI_PHYSICAL_ADDRESS min,EFI_PHYSICAL_ADDRESS max,size_t size,size_t align)469 static void find_addr(EFI_PHYSICAL_ADDRESS *first,
470 EFI_PHYSICAL_ADDRESS *last,
471 EFI_PHYSICAL_ADDRESS min,
472 EFI_PHYSICAL_ADDRESS max,
473 size_t size, size_t align)
474 {
475 EFI_MEMORY_DESCRIPTOR *map;
476 UINT32 desc_ver;
477 UINTN i, nr_entries, key, desc_sz;
478
479 map = get_memory_map(&nr_entries, &key, &desc_sz, &desc_ver);
480 if (!map)
481 return;
482
483 for (i = 0; i < nr_entries; i++) {
484 EFI_MEMORY_DESCRIPTOR *m;
485 EFI_PHYSICAL_ADDRESS best;
486 UINT64 start, end;
487
488 m = get_mem_desc((unsigned long)map, desc_sz, i);
489 if (m->Type != EfiConventionalMemory)
490 continue;
491
492 if (m->NumberOfPages < EFI_SIZE_TO_PAGES(size))
493 continue;
494
495 start = m->PhysicalStart;
496 end = m->PhysicalStart + (m->NumberOfPages << EFI_PAGE_SHIFT);
497 if (first) {
498 if (end < min)
499 continue;
500
501 /* What's the best address? */
502 if (start < min && min < end)
503 best = min;
504 else
505 best = m->PhysicalStart;
506
507 start = round_up(best, align);
508 if (start > max)
509 continue;
510
511 /* Have we run out of space in this region? */
512 if (end < start || (start + size) > end)
513 continue;
514
515 if (start < *first)
516 *first = start;
517 }
518
519 if (last) {
520 if (start > max)
521 continue;
522
523 /* What's the best address? */
524 if (start < max && max < end)
525 best = max - size;
526 else
527 best = end - size;
528
529 start = round_down(best, align);
530 if (start < min || start < m->PhysicalStart)
531 continue;
532
533 if (start > *last)
534 *last = start;
535 }
536 }
537
538 FreePool(map);
539 }
540
541 /**
542 * allocate_pages - Allocate memory pages from the system
543 * @atype: type of allocation to perform
544 * @mtype: type of memory to allocate
545 * @num_pages: number of contiguous 4KB pages to allocate
546 * @memory: used to return the address of allocated pages
547 *
548 * Allocate @num_pages physically contiguous pages from the system
549 * memory and return a pointer to the base of the allocation in
550 * @memory if the allocation succeeds. On success, the firmware memory
551 * map is updated accordingly.
552 *
553 * If @atype is AllocateAddress then, on input, @memory specifies the
554 * address at which to attempt to allocate the memory pages.
555 */
556 static inline EFI_STATUS
allocate_pages(EFI_ALLOCATE_TYPE atype,EFI_MEMORY_TYPE mtype,UINTN num_pages,EFI_PHYSICAL_ADDRESS * memory)557 allocate_pages(EFI_ALLOCATE_TYPE atype, EFI_MEMORY_TYPE mtype,
558 UINTN num_pages, EFI_PHYSICAL_ADDRESS *memory)
559 {
560 return uefi_call_wrapper(BS->AllocatePages, 4, atype,
561 mtype, num_pages, memory);
562 }
563 /**
564 * free_pages - Return memory allocated by allocate_pages() to the firmware
565 * @memory: physical base address of the page range to be freed
566 * @num_pages: number of contiguous 4KB pages to free
567 *
568 * On success, the firmware memory map is updated accordingly.
569 */
570 static inline EFI_STATUS
free_pages(EFI_PHYSICAL_ADDRESS memory,UINTN num_pages)571 free_pages(EFI_PHYSICAL_ADDRESS memory, UINTN num_pages)
572 {
573 return uefi_call_wrapper(BS->FreePages, 2, memory, num_pages);
574 }
575
allocate_addr(EFI_PHYSICAL_ADDRESS * addr,size_t size)576 static EFI_STATUS allocate_addr(EFI_PHYSICAL_ADDRESS *addr, size_t size)
577 {
578 UINTN npages = EFI_SIZE_TO_PAGES(size);
579
580 return uefi_call_wrapper(BS->AllocatePages, 4,
581 AllocateAddress,
582 EfiLoaderData, npages,
583 addr);
584 }
585 /**
586 * allocate_pool - Allocate pool memory
587 * @type: the type of pool to allocate
588 * @size: number of bytes to allocate from pool of @type
589 * @buffer: used to return the address of allocated memory
590 *
591 * Allocate memory from pool of @type. If the pool needs more memory
592 * pages are allocated from EfiConventionalMemory in order to grow the
593 * pool.
594 *
595 * All allocations are eight-byte aligned.
596 */
597 static inline EFI_STATUS
allocate_pool(EFI_MEMORY_TYPE type,UINTN size,void ** buffer)598 allocate_pool(EFI_MEMORY_TYPE type, UINTN size, void **buffer)
599 {
600 return uefi_call_wrapper(BS->AllocatePool, 3, type, size, buffer);
601 }
602
603 /**
604 * free_pool - Return pool memory to the system
605 * @buffer: the buffer to free
606 *
607 * Return @buffer to the system. The returned memory is marked as
608 * EfiConventionalMemory.
609 */
free_pool(void * buffer)610 static inline EFI_STATUS free_pool(void *buffer)
611 {
612 return uefi_call_wrapper(BS->FreePool, 1, buffer);
613 }
614
free_addr(EFI_PHYSICAL_ADDRESS addr,size_t size)615 static void free_addr(EFI_PHYSICAL_ADDRESS addr, size_t size)
616 {
617 UINTN npages = EFI_SIZE_TO_PAGES(size);
618
619 uefi_call_wrapper(BS->FreePages, 2, addr, npages);
620 }
621
622 /* cancel the established timer */
cancel_timer(EFI_EVENT ev)623 static EFI_STATUS cancel_timer(EFI_EVENT ev)
624 {
625 return uefi_call_wrapper(BS->SetTimer, 3, ev, TimerCancel, 0);
626 }
627
628 /* Check if timer went off and update default timer counter */
timer_handler(EFI_EVENT ev,VOID * ctx)629 void timer_handler(EFI_EVENT ev, VOID *ctx)
630 {
631 __ms_timer += DEFAULT_MSTIMER_INC;
632 ++__jiffies;
633 }
634
635 /* Setup a default periodic timer */
setup_default_timer(EFI_EVENT * ev)636 static EFI_STATUS setup_default_timer(EFI_EVENT *ev)
637 {
638 EFI_STATUS efi_status;
639
640 *ev = NULL;
641 efi_status = uefi_call_wrapper( BS->CreateEvent, 5, EVT_TIMER|EVT_NOTIFY_SIGNAL, TPL_NOTIFY, (EFI_EVENT_NOTIFY)timer_handler, NULL, ev);
642 if (efi_status == EFI_SUCCESS) {
643 efi_status = uefi_call_wrapper(BS->SetTimer, 3, *ev, TimerPeriodic, DEFAULT_TIMER_TICK_DURATION);
644 }
645 return efi_status;
646 }
647
648 /**
649 * emalloc - Allocate memory with a strict alignment requirement
650 * @size: size in bytes of the requested allocation
651 * @align: the required alignment of the allocation
652 * @addr: a pointer to the allocated address on success
653 *
654 * If we cannot satisfy @align we return 0.
655 */
emalloc(UINTN size,UINTN align,EFI_PHYSICAL_ADDRESS * addr)656 EFI_STATUS emalloc(UINTN size, UINTN align, EFI_PHYSICAL_ADDRESS *addr)
657 {
658 UINTN i, nr_entries, map_key, desc_size;
659 EFI_MEMORY_DESCRIPTOR *map_buf;
660 UINTN d;
661 UINT32 desc_version;
662 EFI_STATUS err;
663 UINTN nr_pages = EFI_SIZE_TO_PAGES(size);
664
665 map_buf = get_memory_map(&nr_entries, &map_key,
666 &desc_size, &desc_version);
667 if (!map_buf)
668 goto fail;
669
670 d = (UINTN)map_buf;
671
672 for (i = 0; i < nr_entries; i++, d += desc_size) {
673 EFI_MEMORY_DESCRIPTOR *desc;
674 EFI_PHYSICAL_ADDRESS start, end, aligned;
675
676 desc = (EFI_MEMORY_DESCRIPTOR *)d;
677 if (desc->Type != EfiConventionalMemory)
678 continue;
679
680 if (desc->NumberOfPages < nr_pages)
681 continue;
682
683 start = desc->PhysicalStart;
684 end = start + (desc->NumberOfPages << EFI_PAGE_SHIFT);
685
686 /* Low-memory is super-precious! */
687 if (end <= 1 << 20)
688 continue;
689 if (start < 1 << 20)
690 start = (1 << 20);
691
692 aligned = (start + align -1) & ~(align -1);
693
694 if ((aligned + size) <= end) {
695 err = allocate_pages(AllocateAddress, EfiLoaderData,
696 nr_pages, &aligned);
697 if (err == EFI_SUCCESS) {
698 *addr = aligned;
699 break;
700 }
701 }
702 }
703
704 if (i == nr_entries)
705 err = EFI_OUT_OF_RESOURCES;
706
707 free_pool(map_buf);
708 fail:
709 return err;
710 }
711 /**
712 * efree - Return memory allocated with emalloc
713 * @memory: the address of the emalloc() allocation
714 * @size: the size of the allocation
715 */
efree(EFI_PHYSICAL_ADDRESS memory,UINTN size)716 void efree(EFI_PHYSICAL_ADDRESS memory, UINTN size)
717 {
718 UINTN nr_pages = EFI_SIZE_TO_PAGES(size);
719
720 free_pages(memory, nr_pages);
721 }
722
723 /*
724 * Check whether 'buf' contains a PE/COFF header and that the PE/COFF
725 * file can be executed by this architecture.
726 */
valid_pecoff_image(char * buf)727 static bool valid_pecoff_image(char *buf)
728 {
729 struct pe_header {
730 uint16_t signature;
731 uint8_t _pad[0x3a];
732 uint32_t offset;
733 } *pehdr = (struct pe_header *)buf;
734 struct coff_header {
735 uint32_t signature;
736 uint16_t machine;
737 } *chdr;
738
739 if (pehdr->signature != 0x5a4d) {
740 dprintf("Invalid MS-DOS header signature\n");
741 return false;
742 }
743
744 if (!pehdr->offset || pehdr->offset > 512) {
745 dprintf("Invalid PE header offset\n");
746 return false;
747 }
748
749 chdr = (struct coff_header *)&buf[pehdr->offset];
750 if (chdr->signature != 0x4550) {
751 dprintf("Invalid PE header signature\n");
752 return false;
753 }
754
755 #if defined(__x86_64__)
756 if (chdr->machine != 0x8664) {
757 dprintf("Invalid PE machine field\n");
758 return false;
759 }
760 #else
761 if (chdr->machine != 0x14c) {
762 dprintf("Invalid PE machine field\n");
763 return false;
764 }
765 #endif
766
767 return true;
768 }
769
770 /*
771 * Boot a Linux kernel using the EFI boot stub handover protocol.
772 *
773 * This function will not return to its caller if booting the kernel
774 * image succeeds. If booting the kernel image fails, a legacy boot
775 * method should be attempted.
776 */
handover_boot(struct linux_header * hdr,struct boot_params * bp)777 static void handover_boot(struct linux_header *hdr, struct boot_params *bp)
778 {
779 unsigned long address = hdr->code32_start + hdr->handover_offset;
780 handover_func_t *func = efi_handover;
781
782 dprintf("Booting kernel using handover protocol\n");
783
784 /*
785 * Ensure that the kernel is a valid PE32(+) file and that the
786 * architecture of the file matches this version of Syslinux - we
787 * can't mix firmware and kernel bitness (e.g. 32-bit kernel on
788 * 64-bit EFI firmware) using the handover protocol.
789 */
790 if (!valid_pecoff_image((char *)hdr))
791 return;
792
793 if (hdr->version >= 0x20c) {
794 if (hdr->xloadflags & XLF_EFI_HANDOVER_32)
795 func = efi_handover_32;
796
797 if (hdr->xloadflags & XLF_EFI_HANDOVER_64)
798 func = efi_handover_64;
799 }
800
801 efi_console_restore();
802 func(image_handle, ST, bp, address);
803 }
804
check_linux_header(struct linux_header * hdr)805 static int check_linux_header(struct linux_header *hdr)
806 {
807 if (hdr->version < 0x205)
808 hdr->relocatable_kernel = 0;
809
810 /* FIXME: check boot sector signature */
811 if (hdr->boot_flag != BOOT_SIGNATURE) {
812 printf("Invalid Boot signature 0x%x, bailing out\n", hdr->boot_flag);
813 return -1;
814 }
815
816 return 0;
817 }
818
build_cmdline(char * str)819 static char *build_cmdline(char *str)
820 {
821 EFI_PHYSICAL_ADDRESS addr;
822 EFI_STATUS status;
823 char *cmdline = NULL; /* internal, in efi_physical below 0x3FFFFFFF */
824
825 /*
826 * The kernel expects cmdline to be allocated pretty low,
827 * Documentation/x86/boot.txt says,
828 *
829 * "The kernel command line can be located anywhere
830 * between the end of the setup heap and 0xA0000"
831 */
832 addr = 0xA0000;
833 status = allocate_pages(AllocateMaxAddress, EfiLoaderData,
834 EFI_SIZE_TO_PAGES(strlen(str) + 1),
835 &addr);
836 if (status != EFI_SUCCESS) {
837 printf("Failed to allocate memory for kernel command line, bailing out\n");
838 return NULL;
839 }
840 cmdline = (char *)(UINTN)addr;
841 memcpy(cmdline, str, strlen(str) + 1);
842 return cmdline;
843 }
844
build_gdt(void)845 static int build_gdt(void)
846 {
847 EFI_STATUS status;
848
849 /* Allocate gdt consistent with the alignment for architecture */
850 status = emalloc(gdt.limit, __SIZEOF_POINTER__ , (EFI_PHYSICAL_ADDRESS *)&gdt.base);
851 if (status != EFI_SUCCESS) {
852 printf("Failed to allocate memory for GDT, bailing out\n");
853 return -1;
854 }
855 memset(gdt.base, 0x0, gdt.limit);
856
857 /*
858 * 4Gb - (0x100000*0x1000 = 4Gb)
859 * base address=0
860 * code read/exec
861 * granularity=4096, 386 (+5th nibble of limit)
862 */
863 gdt.base[2] = 0x00cf9a000000ffff;
864
865 /*
866 * 4Gb - (0x100000*0x1000 = 4Gb)
867 * base address=0
868 * data read/write
869 * granularity=4096, 386 (+5th nibble of limit)
870 */
871 gdt.base[3] = 0x00cf92000000ffff;
872
873 /* Task segment value */
874 gdt.base[4] = 0x0080890000000000;
875
876 return 0;
877 }
878
879 /*
880 * Callers use ->ramdisk_size to check whether any memory was
881 * allocated (and therefore needs free'ing). The return value indicates
882 * hard error conditions, such as failing to alloc memory for the
883 * ramdisk image. Having no initramfs is not an error.
884 */
handle_ramdisks(struct linux_header * hdr,struct initramfs * initramfs)885 static int handle_ramdisks(struct linux_header *hdr,
886 struct initramfs *initramfs)
887 {
888 EFI_PHYSICAL_ADDRESS last;
889 struct initramfs *ip;
890 EFI_STATUS status;
891 addr_t irf_size;
892 addr_t next_addr, len, pad;
893
894 hdr->ramdisk_image = 0;
895 hdr->ramdisk_size = 0;
896
897 /*
898 * Figure out the size of the initramfs, and where to put it.
899 * We should put it at the highest possible address which is
900 * <= hdr->initrd_addr_max, which fits the entire initramfs.
901 */
902 irf_size = initramfs_size(initramfs); /* Handles initramfs == NULL */
903 if (!irf_size)
904 return 0;
905
906 last = 0;
907 find_addr(NULL, &last, 0x1000, hdr->initrd_addr_max,
908 irf_size, INITRAMFS_MAX_ALIGN);
909 if (last)
910 status = allocate_addr(&last, irf_size);
911
912 if (!last || status != EFI_SUCCESS) {
913 printf("Failed to allocate initramfs memory, bailing out\n");
914 return -1;
915 }
916
917 hdr->ramdisk_image = (uint32_t)last;
918 hdr->ramdisk_size = irf_size;
919
920 /* Copy initramfs into allocated memory */
921 for (ip = initramfs->next; ip->len; ip = ip->next) {
922 len = ip->len;
923 next_addr = last + len;
924
925 /*
926 * If this isn't the last entry, extend the
927 * zero-pad region to enforce the alignment of
928 * the next chunk.
929 */
930 if (ip->next->len) {
931 pad = -next_addr & (ip->next->align - 1);
932 len += pad;
933 next_addr += pad;
934 }
935
936 if (ip->data_len)
937 memcpy((void *)(UINTN)last, ip->data, ip->data_len);
938
939 if (len > ip->data_len)
940 memset((void *)(UINTN)(last + ip->data_len), 0,
941 len - ip->data_len);
942
943 last = next_addr;
944 }
945 return 0;
946 }
947
exit_boot(struct boot_params * bp)948 static int exit_boot(struct boot_params *bp)
949 {
950 struct e820_entry *e820buf, *e;
951 EFI_MEMORY_DESCRIPTOR *map;
952 EFI_STATUS status;
953 uint32_t e820_type;
954 UINTN i, nr_entries, key, desc_sz;
955 UINT32 desc_ver;
956
957 /* Build efi memory map */
958 map = get_memory_map(&nr_entries, &key, &desc_sz, &desc_ver);
959 if (!map)
960 return -1;
961
962 bp->efi.memmap = (uint32_t)(unsigned long)map;
963 bp->efi.memmap_size = nr_entries * desc_sz;
964 bp->efi.systab = (uint32_t)(unsigned long)ST;
965 bp->efi.desc_size = desc_sz;
966 bp->efi.desc_version = desc_ver;
967 #if defined(__x86_64__)
968 bp->efi.systab_hi = ((unsigned long)ST) >> 32;
969 bp->efi.memmap_hi = ((unsigned long)map) >> 32;
970 #endif
971
972
973 /*
974 * Even though 'memmap' contains the memory map we provided
975 * previously in efi_scan_memory(), we should recalculate the
976 * e820 map because it will most likely have changed in the
977 * interim.
978 */
979 e = e820buf = bp->e820_map;
980 for (i = 0; i < nr_entries && i < E820MAX; i++) {
981 struct e820_entry *prev = NULL;
982
983 if (e > e820buf)
984 prev = e - 1;
985
986 map = get_mem_desc(bp->efi.memmap, desc_sz, i);
987 e->start = map->PhysicalStart;
988 e->len = map->NumberOfPages << EFI_PAGE_SHIFT;
989
990 switch (map->Type) {
991 case EfiReservedMemoryType:
992 case EfiRuntimeServicesCode:
993 case EfiRuntimeServicesData:
994 case EfiMemoryMappedIO:
995 case EfiMemoryMappedIOPortSpace:
996 case EfiPalCode:
997 e820_type = E820_RESERVED;
998 break;
999
1000 case EfiUnusableMemory:
1001 e820_type = E820_UNUSABLE;
1002 break;
1003
1004 case EfiACPIReclaimMemory:
1005 e820_type = E820_ACPI;
1006 break;
1007
1008 case EfiLoaderCode:
1009 case EfiLoaderData:
1010 case EfiBootServicesCode:
1011 case EfiBootServicesData:
1012 case EfiConventionalMemory:
1013 e820_type = E820_RAM;
1014 break;
1015
1016 case EfiACPIMemoryNVS:
1017 e820_type = E820_NVS;
1018 break;
1019 default:
1020 continue;
1021 }
1022
1023 e->type = e820_type;
1024
1025 /* Check for adjacent entries we can merge. */
1026 if (prev && (prev->start + prev->len) == e->start &&
1027 prev->type == e->type)
1028 prev->len += e->len;
1029 else
1030 e++;
1031 }
1032
1033 bp->e820_entries = e - e820buf;
1034
1035 status = uefi_call_wrapper(BS->ExitBootServices, 2, image_handle, key);
1036 if (status != EFI_SUCCESS) {
1037 printf("Failed to exit boot services: 0x%016lx\n", status);
1038 FreePool(map);
1039 return -1;
1040 }
1041
1042 return 0;
1043 }
1044
1045 /* efi_boot_linux:
1046 * Boots the linux kernel using the image and parameters to boot with.
1047 * The EFI boot loader is reworked taking the cue from
1048 * http://git.kernel.org/?p=boot/efilinux/efilinux.git on the need to
1049 * cap key kernel data structures at * 0x3FFFFFFF.
1050 * The kernel image, kernel command line and boot parameter block are copied
1051 * into allocated memory areas that honor the address capping requirement
1052 * prior to kernel handoff.
1053 *
1054 * FIXME
1055 * Can we move this allocation requirement to com32 linux loader in order
1056 * to avoid double copying kernel image?
1057 */
efi_boot_linux(void * kernel_buf,size_t kernel_size,struct initramfs * initramfs,struct setup_data * setup_data,char * cmdline)1058 int efi_boot_linux(void *kernel_buf, size_t kernel_size,
1059 struct initramfs *initramfs,
1060 struct setup_data *setup_data,
1061 char *cmdline)
1062 {
1063 struct linux_header *hdr;
1064 struct boot_params *bp;
1065 EFI_STATUS status;
1066 EFI_PHYSICAL_ADDRESS addr, pref_address, kernel_start = 0;
1067 UINT64 setup_sz, init_size = 0;
1068 char *_cmdline;
1069
1070 if (check_linux_header(kernel_buf))
1071 goto bail;
1072
1073 /* allocate for boot parameter block */
1074 addr = 0x3FFFFFFF;
1075 status = allocate_pages(AllocateMaxAddress, EfiLoaderData,
1076 BOOT_PARAM_BLKSIZE, &addr);
1077 if (status != EFI_SUCCESS) {
1078 printf("Failed to allocate memory for kernel boot parameter block, bailing out\n");
1079 goto bail;
1080 }
1081
1082 bp = (struct boot_params *)(UINTN)addr;
1083
1084 memset((void *)bp, 0x0, BOOT_PARAM_BLKSIZE);
1085 /* Copy the first two sectors to boot_params */
1086 memcpy((char *)bp, kernel_buf, 2 * 512);
1087 hdr = (struct linux_header *)bp;
1088
1089 setup_sz = (hdr->setup_sects + 1) * 512;
1090 if (hdr->version >= 0x20a) {
1091 pref_address = hdr->pref_address;
1092 init_size = hdr->init_size;
1093 } else {
1094 pref_address = 0x100000;
1095
1096 /*
1097 * We need to account for the fact that the kernel
1098 * needs room for decompression, otherwise we could
1099 * end up trashing other chunks of allocated memory.
1100 */
1101 init_size = (kernel_size - setup_sz) * 3;
1102 }
1103 hdr->type_of_loader = SYSLINUX_EFILDR; /* SYSLINUX boot loader module */
1104 _cmdline = build_cmdline(cmdline);
1105 if (!_cmdline)
1106 goto bail;
1107
1108 hdr->cmd_line_ptr = (UINT32)(UINTN)_cmdline;
1109
1110 addr = pref_address;
1111 status = allocate_pages(AllocateAddress, EfiLoaderData,
1112 EFI_SIZE_TO_PAGES(init_size), &addr);
1113 if (status != EFI_SUCCESS) {
1114 /*
1115 * We failed to allocate the preferred address, so
1116 * just allocate some memory and hope for the best.
1117 */
1118 if (!hdr->relocatable_kernel) {
1119 printf("Cannot relocate kernel, bailing out\n");
1120 goto bail;
1121 }
1122
1123 status = emalloc(init_size, hdr->kernel_alignment, &addr);
1124 if (status != EFI_SUCCESS) {
1125 printf("Failed to allocate memory for kernel image, bailing out\n");
1126 goto free_map;
1127 }
1128 }
1129 kernel_start = addr;
1130 /* FIXME: we copy the kernel into the physical memory allocated here
1131 * The syslinux kernel image load elsewhere could allocate the EFI memory from here
1132 * prior to copying kernel and save an extra copy
1133 */
1134 memcpy((void *)(UINTN)kernel_start, kernel_buf+setup_sz, kernel_size-setup_sz);
1135
1136 hdr->code32_start = (UINT32)((UINT64)kernel_start);
1137
1138 dprintf("efi_boot_linux: kernel_start 0x%x kernel_size 0x%x initramfs 0x%x setup_data 0x%x cmdline 0x%x\n",
1139 kernel_start, kernel_size, initramfs, setup_data, _cmdline);
1140
1141 if (handle_ramdisks(hdr, initramfs))
1142 goto free_map;
1143
1144 /* Attempt to use the handover protocol if available */
1145 if (hdr->version >= 0x20b && hdr->handover_offset)
1146 handover_boot(hdr, bp);
1147
1148 setup_screen(&bp->screen_info);
1149
1150 if (build_gdt())
1151 goto free_map;
1152
1153 dprintf("efi_boot_linux: setup_sects %d kernel_size %d\n", hdr->setup_sects, kernel_size);
1154
1155 efi_console_restore();
1156
1157 if (exit_boot(bp))
1158 goto free_map;
1159
1160 memcpy(&bp->efi.load_signature, EFI_LOAD_SIG, sizeof(uint32_t));
1161
1162 asm volatile ("lidt %0" :: "m" (idt));
1163 asm volatile ("lgdt %0" :: "m" (gdt));
1164
1165 kernel_jump(kernel_start, bp);
1166
1167 /* NOTREACHED */
1168
1169 free_map:
1170 if (_cmdline)
1171 efree((EFI_PHYSICAL_ADDRESS)(unsigned long)_cmdline,
1172 strlen(_cmdline) + 1);
1173
1174 if (bp)
1175 efree((EFI_PHYSICAL_ADDRESS)(unsigned long)bp,
1176 BOOT_PARAM_BLKSIZE);
1177 if (kernel_start) efree(kernel_start, init_size);
1178 if (hdr->ramdisk_size)
1179 free_addr(hdr->ramdisk_image, hdr->ramdisk_size);
1180 bail:
1181 return -1;
1182 }
1183
1184 extern struct disk *efi_disk_init(EFI_HANDLE);
1185 extern void serialcfg(uint16_t *, uint16_t *, uint16_t *);
1186
1187 extern struct vesa_ops efi_vesa_ops;
1188
1189 struct mem_ops efi_mem_ops = {
1190 .malloc = efi_malloc,
1191 .realloc = efi_realloc,
1192 .free = efi_free,
1193 };
1194
1195 struct firmware efi_fw = {
1196 .init = efi_init,
1197 .disk_init = efi_disk_init,
1198 .o_ops = &efi_ops,
1199 .i_ops = &efi_iops,
1200 .get_serial_console_info = serialcfg,
1201 .adv_ops = &efi_adv_ops,
1202 .boot_linux = efi_boot_linux,
1203 .vesa = &efi_vesa_ops,
1204 .mem = &efi_mem_ops,
1205 };
1206
syslinux_register_efi(void)1207 static inline void syslinux_register_efi(void)
1208 {
1209 firmware = &efi_fw;
1210 }
1211
1212 extern void init(void);
1213 extern const struct fs_ops vfat_fs_ops;
1214 extern const struct fs_ops pxe_fs_ops;
1215
1216 char free_high_memory[4096];
1217
1218 extern char __bss_start[];
1219 extern char __bss_end[];
1220
efi_setcwd(CHAR16 * dp)1221 static void efi_setcwd(CHAR16 *dp)
1222 {
1223 CHAR16 *c16;
1224 char *c8;
1225 int i, j;
1226
1227 /* Search for the start of the last path component */
1228 for (i = StrLen(dp) - 1; i >= 0; i--) {
1229 if (dp[i] == '\\' || dp[i] == '/')
1230 break;
1231 }
1232
1233 if (i < 0 || i > CURRENTDIR_MAX) {
1234 dp = L"\\";
1235 i = 1;
1236 }
1237
1238 c8 = CurrentDirName;
1239 c16 = dp;
1240
1241 for (j = 0; j < i; j++) {
1242 if (*c16 == '\\') {
1243 *c8++ = '/';
1244 c16++;
1245 } else
1246 *c8++ = *c16++;
1247 }
1248
1249 *c8 = '\0';
1250 }
1251
efi_main(EFI_HANDLE image,EFI_SYSTEM_TABLE * table)1252 EFI_STATUS efi_main(EFI_HANDLE image, EFI_SYSTEM_TABLE *table)
1253 {
1254 EFI_PXE_BASE_CODE *pxe;
1255 EFI_LOADED_IMAGE *info;
1256 EFI_STATUS status = EFI_SUCCESS;
1257 const struct fs_ops *ops[] = { NULL, NULL };
1258 unsigned long len = (unsigned long)__bss_end - (unsigned long)__bss_start;
1259 static struct efi_disk_private priv;
1260 SIMPLE_INPUT_INTERFACE *in;
1261 EFI_INPUT_KEY key;
1262 EFI_EVENT timer_ev;
1263
1264 memset(__bss_start, 0, len);
1265 InitializeLib(image, table);
1266
1267 image_handle = image;
1268 syslinux_register_efi();
1269
1270 efi_console_save();
1271 init();
1272
1273 status = uefi_call_wrapper(BS->HandleProtocol, 3, image,
1274 &LoadedImageProtocol, (void **)&info);
1275 if (status != EFI_SUCCESS) {
1276 Print(L"Failed to lookup LoadedImageProtocol\n");
1277 goto out;
1278 }
1279
1280 status = uefi_call_wrapper(BS->HandleProtocol, 3, info->DeviceHandle,
1281 &PxeBaseCodeProtocol, (void **)&pxe);
1282 if (status != EFI_SUCCESS) {
1283 /*
1284 * Use device handle to set up the volume root to
1285 * proceed with ADV init.
1286 */
1287 if (EFI_ERROR(efi_set_volroot(info->DeviceHandle))) {
1288 Print(L"Failed to locate root device to prep for ");
1289 Print(L"file operations & ADV initialization\n");
1290 goto out;
1291 }
1292
1293 efi_derivative(SYSLINUX_FS_SYSLINUX);
1294 ops[0] = &vfat_fs_ops;
1295 } else {
1296 efi_derivative(SYSLINUX_FS_PXELINUX);
1297 ops[0] = &pxe_fs_ops;
1298 }
1299
1300 /* setup timer for boot menu system support */
1301 status = setup_default_timer(&timer_ev);
1302 if (status != EFI_SUCCESS) {
1303 Print(L"Failed to set up EFI timer support, bailing out\n");
1304 goto out;
1305 }
1306
1307 /* TODO: once all errors are captured in efi_errno, bail out if necessary */
1308
1309 priv.dev_handle = info->DeviceHandle;
1310
1311 /*
1312 * Set the current working directory, which should be the
1313 * directory that syslinux.efi resides in.
1314 */
1315 efi_setcwd(DevicePathToStr(info->FilePath));
1316
1317 fs_init(ops, (void *)&priv);
1318
1319 /*
1320 * There may be pending user input that wasn't processed by
1321 * whatever application invoked us. Consume and discard that
1322 * data now.
1323 */
1324 in = ST->ConIn;
1325 do {
1326 status = uefi_call_wrapper(in->ReadKeyStroke, 2, in, &key);
1327 } while (status != EFI_NOT_READY);
1328
1329 if (!setjmp(load_error_buf))
1330 load_env32(NULL);
1331
1332 /* load_env32() failed.. cancel timer and bailout */
1333 status = cancel_timer(timer_ev);
1334 if (status != EFI_SUCCESS)
1335 Print(L"Failed to cancel EFI timer: %x\n", status);
1336
1337 /*
1338 * Tell the firmware that Syslinux failed to load.
1339 */
1340 status = EFI_LOAD_ERROR;
1341 out:
1342 efi_console_restore();
1343 return status;
1344 }
1345