• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jidctflt.c
3  *
4  * Copyright (C) 1994-1998, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  *
7  * The authors make NO WARRANTY or representation, either express or implied,
8  * with respect to this software, its quality, accuracy, merchantability, or
9  * fitness for a particular purpose.  This software is provided "AS IS", and you,
10  * its user, assume the entire risk as to its quality and accuracy.
11  *
12  * This software is copyright (C) 1991-1998, Thomas G. Lane.
13  * All Rights Reserved except as specified below.
14  *
15  * Permission is hereby granted to use, copy, modify, and distribute this
16  * software (or portions thereof) for any purpose, without fee, subject to these
17  * conditions:
18  * (1) If any part of the source code for this software is distributed, then this
19  * README file must be included, with this copyright and no-warranty notice
20  * unaltered; and any additions, deletions, or changes to the original files
21  * must be clearly indicated in accompanying documentation.
22  * (2) If only executable code is distributed, then the accompanying
23  * documentation must state that "this software is based in part on the work of
24  * the Independent JPEG Group".
25  * (3) Permission for use of this software is granted only if the user accepts
26  * full responsibility for any undesirable consequences; the authors accept
27  * NO LIABILITY for damages of any kind.
28  *
29  * These conditions apply to any software derived from or based on the IJG code,
30  * not just to the unmodified library.  If you use our work, you ought to
31  * acknowledge us.
32  *
33  * Permission is NOT granted for the use of any IJG author's name or company name
34  * in advertising or publicity relating to this software or products derived from
35  * it.  This software may be referred to only as "the Independent JPEG Group's
36  * software".
37  *
38  * We specifically permit and encourage the use of this software as the basis of
39  * commercial products, provided that all warranty or liability claims are
40  * assumed by the product vendor.
41  *
42  *
43  * This file contains a floating-point implementation of the
44  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
45  * must also perform dequantization of the input coefficients.
46  *
47  * This implementation should be more accurate than either of the integer
48  * IDCT implementations.  However, it may not give the same results on all
49  * machines because of differences in roundoff behavior.  Speed will depend
50  * on the hardware's floating point capacity.
51  *
52  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
53  * on each row (or vice versa, but it's more convenient to emit a row at
54  * a time).  Direct algorithms are also available, but they are much more
55  * complex and seem not to be any faster when reduced to code.
56  *
57  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
58  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
59  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
60  * JPEG textbook (see REFERENCES section in file README).  The following code
61  * is based directly on figure 4-8 in P&M.
62  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
63  * possible to arrange the computation so that many of the multiplies are
64  * simple scalings of the final outputs.  These multiplies can then be
65  * folded into the multiplications or divisions by the JPEG quantization
66  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
67  * to be done in the DCT itself.
68  * The primary disadvantage of this method is that with a fixed-point
69  * implementation, accuracy is lost due to imprecise representation of the
70  * scaled quantization values.  However, that problem does not arise if
71  * we use floating point arithmetic.
72  */
73 
74 #include <stdint.h>
75 #include "tinyjpeg-internal.h"
76 
77 #define FAST_FLOAT float
78 #define DCTSIZE	   8
79 #define DCTSIZE2   (DCTSIZE*DCTSIZE)
80 
81 #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
82 
83 #if 1 && defined(__GNUC__) && (defined(__i686__) || defined(__x86_64__))
84 
descale_and_clamp(int x,int shift)85 static inline unsigned char descale_and_clamp(int x, int shift)
86 {
87   __asm__ (
88       "add %3,%1\n"
89       "\tsar %2,%1\n"
90       "\tsub $-128,%1\n"
91       "\tcmovl %5,%1\n"	/* Use the sub to compare to 0 */
92       "\tcmpl %4,%1\n"
93       "\tcmovg %4,%1\n"
94       : "=r"(x)
95       : "0"(x), "Ir"(shift), "ir"(1UL<<(shift-1)), "r" (0xff), "r" (0)
96       );
97   return x;
98 }
99 
100 #else
descale_and_clamp(int x,int shift)101 static inline unsigned char descale_and_clamp(int x, int shift)
102 {
103   x += (1UL<<(shift-1));
104   if (x<0)
105     x = (x >> shift) | ((~(0UL)) << (32-(shift)));
106   else
107     x >>= shift;
108   x += 128;
109   if (x>255)
110     return 255;
111   else if (x<0)
112     return 0;
113   else
114     return x;
115 }
116 #endif
117 
118 /*
119  * Perform dequantization and inverse DCT on one block of coefficients.
120  */
121 
122 void
tinyjpeg_idct_float(struct component * compptr,uint8_t * output_buf,int stride)123 tinyjpeg_idct_float (struct component *compptr, uint8_t *output_buf, int stride)
124 {
125   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
126   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
127   FAST_FLOAT z5, z10, z11, z12, z13;
128   int16_t *inptr;
129   FAST_FLOAT *quantptr;
130   FAST_FLOAT *wsptr;
131   uint8_t *outptr;
132   int ctr;
133   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
134 
135   /* Pass 1: process columns from input, store into work array. */
136 
137   inptr = compptr->DCT;
138   quantptr = compptr->Q_table;
139   wsptr = workspace;
140   for (ctr = DCTSIZE; ctr > 0; ctr--) {
141     /* Due to quantization, we will usually find that many of the input
142      * coefficients are zero, especially the AC terms.  We can exploit this
143      * by short-circuiting the IDCT calculation for any column in which all
144      * the AC terms are zero.  In that case each output is equal to the
145      * DC coefficient (with scale factor as needed).
146      * With typical images and quantization tables, half or more of the
147      * column DCT calculations can be simplified this way.
148      */
149 
150     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
151 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
152 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
153 	inptr[DCTSIZE*7] == 0) {
154       /* AC terms all zero */
155       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
156 
157       wsptr[DCTSIZE*0] = dcval;
158       wsptr[DCTSIZE*1] = dcval;
159       wsptr[DCTSIZE*2] = dcval;
160       wsptr[DCTSIZE*3] = dcval;
161       wsptr[DCTSIZE*4] = dcval;
162       wsptr[DCTSIZE*5] = dcval;
163       wsptr[DCTSIZE*6] = dcval;
164       wsptr[DCTSIZE*7] = dcval;
165 
166       inptr++;			/* advance pointers to next column */
167       quantptr++;
168       wsptr++;
169       continue;
170     }
171 
172     /* Even part */
173 
174     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
175     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
176     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
177     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
178 
179     tmp10 = tmp0 + tmp2;	/* phase 3 */
180     tmp11 = tmp0 - tmp2;
181 
182     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
183     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
184 
185     tmp0 = tmp10 + tmp13;	/* phase 2 */
186     tmp3 = tmp10 - tmp13;
187     tmp1 = tmp11 + tmp12;
188     tmp2 = tmp11 - tmp12;
189 
190     /* Odd part */
191 
192     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
193     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
194     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
195     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
196 
197     z13 = tmp6 + tmp5;		/* phase 6 */
198     z10 = tmp6 - tmp5;
199     z11 = tmp4 + tmp7;
200     z12 = tmp4 - tmp7;
201 
202     tmp7 = z11 + z13;		/* phase 5 */
203     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
204 
205     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
206     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
207     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
208 
209     tmp6 = tmp12 - tmp7;	/* phase 2 */
210     tmp5 = tmp11 - tmp6;
211     tmp4 = tmp10 + tmp5;
212 
213     wsptr[DCTSIZE*0] = tmp0 + tmp7;
214     wsptr[DCTSIZE*7] = tmp0 - tmp7;
215     wsptr[DCTSIZE*1] = tmp1 + tmp6;
216     wsptr[DCTSIZE*6] = tmp1 - tmp6;
217     wsptr[DCTSIZE*2] = tmp2 + tmp5;
218     wsptr[DCTSIZE*5] = tmp2 - tmp5;
219     wsptr[DCTSIZE*4] = tmp3 + tmp4;
220     wsptr[DCTSIZE*3] = tmp3 - tmp4;
221 
222     inptr++;			/* advance pointers to next column */
223     quantptr++;
224     wsptr++;
225   }
226 
227   /* Pass 2: process rows from work array, store into output array. */
228   /* Note that we must descale the results by a factor of 8 == 2**3. */
229 
230   wsptr = workspace;
231   outptr = output_buf;
232   for (ctr = 0; ctr < DCTSIZE; ctr++) {
233     /* Rows of zeroes can be exploited in the same way as we did with columns.
234      * However, the column calculation has created many nonzero AC terms, so
235      * the simplification applies less often (typically 5% to 10% of the time).
236      * And testing floats for zero is relatively expensive, so we don't bother.
237      */
238 
239     /* Even part */
240 
241     tmp10 = wsptr[0] + wsptr[4];
242     tmp11 = wsptr[0] - wsptr[4];
243 
244     tmp13 = wsptr[2] + wsptr[6];
245     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
246 
247     tmp0 = tmp10 + tmp13;
248     tmp3 = tmp10 - tmp13;
249     tmp1 = tmp11 + tmp12;
250     tmp2 = tmp11 - tmp12;
251 
252     /* Odd part */
253 
254     z13 = wsptr[5] + wsptr[3];
255     z10 = wsptr[5] - wsptr[3];
256     z11 = wsptr[1] + wsptr[7];
257     z12 = wsptr[1] - wsptr[7];
258 
259     tmp7 = z11 + z13;
260     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
261 
262     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
263     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
264     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
265 
266     tmp6 = tmp12 - tmp7;
267     tmp5 = tmp11 - tmp6;
268     tmp4 = tmp10 + tmp5;
269 
270     /* Final output stage: scale down by a factor of 8 and range-limit */
271 
272     outptr[0] = descale_and_clamp((int)(tmp0 + tmp7), 3);
273     outptr[7] = descale_and_clamp((int)(tmp0 - tmp7), 3);
274     outptr[1] = descale_and_clamp((int)(tmp1 + tmp6), 3);
275     outptr[6] = descale_and_clamp((int)(tmp1 - tmp6), 3);
276     outptr[2] = descale_and_clamp((int)(tmp2 + tmp5), 3);
277     outptr[5] = descale_and_clamp((int)(tmp2 - tmp5), 3);
278     outptr[4] = descale_and_clamp((int)(tmp3 + tmp4), 3);
279     outptr[3] = descale_and_clamp((int)(tmp3 - tmp4), 3);
280 
281 
282     wsptr += DCTSIZE;		/* advance pointer to next row */
283     outptr += stride;
284   }
285 }
286