• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef FIO_STAT_H
2 #define FIO_STAT_H
3 
4 #include "iolog.h"
5 #include "lib/output_buffer.h"
6 
7 struct group_run_stats {
8 	uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
9 	uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
10 	uint64_t iobytes[DDIR_RWDIR_CNT];
11 	uint64_t agg[DDIR_RWDIR_CNT];
12 	uint32_t kb_base;
13 	uint32_t unit_base;
14 	uint32_t groupid;
15 	uint32_t unified_rw_rep;
16 } __attribute__((packed));
17 
18 /*
19  * How many depth levels to log
20  */
21 #define FIO_IO_U_MAP_NR	7
22 #define FIO_IO_U_LAT_U_NR 10
23 #define FIO_IO_U_LAT_M_NR 12
24 
25 /*
26  * Aggregate clat samples to report percentile(s) of them.
27  *
28  * EXECUTIVE SUMMARY
29  *
30  * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
31  * value of resulting percentiles. The error will be approximately
32  * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
33  *
34  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
35  * range being tracked for latency samples. The maximum value tracked
36  * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
37  *
38  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
39  * requirement of storing those aggregate counts. The memory used will
40  * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
41  * bytes.
42  *
43  * FIO_IO_U_PLAT_NR is the total number of buckets.
44  *
45  * DETAILS
46  *
47  * Suppose the clat varies from 0 to 999 (usec), the straightforward
48  * method is to keep an array of (999 + 1) buckets, in which a counter
49  * keeps the count of samples which fall in the bucket, e.g.,
50  * {[0],[1],...,[999]}. However this consumes a huge amount of space,
51  * and can be avoided if an approximation is acceptable.
52  *
53  * One such method is to let the range of the bucket to be greater
54  * than one. This method has low accuracy when the value is small. For
55  * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
56  * the represented value of each bucket be the mean of the range. Then
57  * a value 0 has an round-off error of 49.5. To improve on this, we
58  * use buckets with non-uniform ranges, while bounding the error of
59  * each bucket within a ratio of the sample value. A simple example
60  * would be when error_bound = 0.005, buckets are {
61  * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
62  * {[900,909],[910,919]...}  }. The total range is partitioned into
63  * groups with different ranges, then buckets with uniform ranges. An
64  * upper bound of the error is (range_of_bucket/2)/value_of_bucket
65  *
66  * For better efficiency, we implement this using base two. We group
67  * samples by their Most Significant Bit (MSB), extract the next M bit
68  * of them as an index within the group, and discard the rest of the
69  * bits.
70  *
71  * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
72  * and use M bit for indexing
73  *
74  *        | n |    M bits   | bit (n-M-1) ... bit 0 |
75  *
76  * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
77  * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
78  * error
79  *
80  *           2^(n-M)-1    2^(n-M)    1
81  *      e <= --------- <= ------- = ---
82  *             2^n          2^n     2^M
83  *
84  * Furthermore, we use "mean" of the range to represent the bucket,
85  * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
86  * as the index, each group must contains 2^M buckets.
87  *
88  * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
89  *      Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
90  *
91  *	Group	MSB	#discarded	range of		#buckets
92  *			error_bits	value
93  *	----------------------------------------------------------------
94  *	0*	0~5	0		[0,63]			64
95  *	1*	6	0		[64,127]		64
96  *	2	7	1		[128,255]		64
97  *	3	8	2		[256,511]		64
98  *	4	9	3		[512,1023]		64
99  *	...	...	...		[...,...]		...
100  *	18	23	17		[8838608,+inf]**	64
101  *
102  *  * Special cases: when n < (M-1) or when n == (M-1), in both cases,
103  *    the value cannot be rounded off. Use all bits of the sample as
104  *    index.
105  *
106  *  ** If a sample's MSB is greater than 23, it will be counted as 23.
107  */
108 
109 #define FIO_IO_U_PLAT_BITS 6
110 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
111 #define FIO_IO_U_PLAT_GROUP_NR 19
112 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
113 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
114 					list of percentiles */
115 
116 /*
117  * Trim cycle count measurements
118  */
119 #define MAX_NR_BLOCK_INFOS	8192
120 #define BLOCK_INFO_STATE_SHIFT	29
121 #define BLOCK_INFO_TRIMS(block_info)	\
122 	((block_info) & ((1 << BLOCK_INFO_STATE_SHIFT) - 1))
123 #define BLOCK_INFO_STATE(block_info)		\
124 	((block_info) >> BLOCK_INFO_STATE_SHIFT)
125 #define BLOCK_INFO(state, trim_cycles)	\
126 	((trim_cycles) | ((unsigned int) (state) << BLOCK_INFO_STATE_SHIFT))
127 #define BLOCK_INFO_SET_STATE(block_info, state)	\
128 	BLOCK_INFO(state, BLOCK_INFO_TRIMS(block_info))
129 enum block_info_state {
130 	BLOCK_STATE_UNINIT,
131 	BLOCK_STATE_TRIMMED,
132 	BLOCK_STATE_WRITTEN,
133 	BLOCK_STATE_TRIM_FAILURE,
134 	BLOCK_STATE_WRITE_FAILURE,
135 	BLOCK_STATE_COUNT,
136 };
137 
138 #define MAX_PATTERN_SIZE	512
139 #define FIO_JOBNAME_SIZE	128
140 #define FIO_JOBDESC_SIZE	256
141 #define FIO_VERROR_SIZE		128
142 
143 struct thread_stat {
144 	char name[FIO_JOBNAME_SIZE];
145 	char verror[FIO_VERROR_SIZE];
146 	uint32_t error;
147 	uint32_t thread_number;
148 	uint32_t groupid;
149 	uint32_t pid;
150 	char description[FIO_JOBDESC_SIZE];
151 	uint32_t members;
152 	uint32_t unified_rw_rep;
153 
154 	/*
155 	 * bandwidth and latency stats
156 	 */
157 	struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
158 	struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
159 	struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
160 	struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
161 	struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
162 
163 	/*
164 	 * fio system usage accounting
165 	 */
166 	uint64_t usr_time;
167 	uint64_t sys_time;
168 	uint64_t ctx;
169 	uint64_t minf, majf;
170 
171 	/*
172 	 * IO depth and latency stats
173 	 */
174 	uint64_t clat_percentiles;
175 	uint64_t percentile_precision;
176 	fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
177 
178 	uint32_t io_u_map[FIO_IO_U_MAP_NR];
179 	uint32_t io_u_submit[FIO_IO_U_MAP_NR];
180 	uint32_t io_u_complete[FIO_IO_U_MAP_NR];
181 	uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
182 	uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
183 	uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
184 	uint32_t pad;
185 
186 	uint64_t total_io_u[DDIR_RWDIR_CNT];
187 	uint64_t short_io_u[DDIR_RWDIR_CNT];
188 	uint64_t drop_io_u[DDIR_RWDIR_CNT];
189 	uint64_t total_submit;
190 	uint64_t total_complete;
191 
192 	uint64_t io_bytes[DDIR_RWDIR_CNT];
193 	uint64_t runtime[DDIR_RWDIR_CNT];
194 	uint64_t total_run_time;
195 
196 	/*
197 	 * IO Error related stats
198 	 */
199 	union {
200 		uint16_t continue_on_error;
201 		uint32_t pad2;
202 	};
203 	uint32_t first_error;
204 	uint64_t total_err_count;
205 
206 	uint64_t nr_block_infos;
207 	uint32_t block_infos[MAX_NR_BLOCK_INFOS];
208 
209 	uint32_t kb_base;
210 	uint32_t unit_base;
211 
212 	uint32_t latency_depth;
213 	uint32_t pad3;
214 	uint64_t latency_target;
215 	fio_fp64_t latency_percentile;
216 	uint64_t latency_window;
217 
218 	uint64_t ss_dur;
219 	uint32_t ss_state;
220 	uint32_t ss_head;
221 
222 	fio_fp64_t ss_limit;
223 	fio_fp64_t ss_slope;
224 	fio_fp64_t ss_deviation;
225 	fio_fp64_t ss_criterion;
226 
227 	union {
228 		uint64_t *ss_iops_data;
229 		uint64_t pad4;
230 	};
231 
232 	union {
233 		uint64_t *ss_bw_data;
234 		uint64_t pad5;
235 	};
236 } __attribute__((packed));
237 
238 struct jobs_eta {
239 	uint32_t nr_running;
240 	uint32_t nr_ramp;
241 
242 	uint32_t nr_pending;
243 	uint32_t nr_setting_up;
244 
245 	uint32_t files_open;
246 
247 	uint64_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT];
248 	uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT];
249 	uint64_t rate[DDIR_RWDIR_CNT];
250 	uint32_t iops[DDIR_RWDIR_CNT];
251 	uint64_t elapsed_sec;
252 	uint64_t eta_sec;
253 	uint32_t is_pow2;
254 	uint32_t unit_base;
255 
256 	/*
257 	 * Network 'copy' of run_str[]
258 	 */
259 	uint32_t nr_threads;
260 	uint8_t run_str[];
261 } __attribute__((packed));
262 
263 struct io_u_plat_entry {
264 	struct flist_head list;
265 	unsigned int io_u_plat[FIO_IO_U_PLAT_NR];
266 };
267 
268 extern struct fio_mutex *stat_mutex;
269 
270 extern struct jobs_eta *get_jobs_eta(bool force, size_t *size);
271 
272 extern void stat_init(void);
273 extern void stat_exit(void);
274 
275 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs, struct flist_head *, struct buf_output *);
276 extern void show_group_stats(struct group_run_stats *rs, struct buf_output *);
277 extern bool calc_thread_status(struct jobs_eta *je, int force);
278 extern void display_thread_status(struct jobs_eta *je);
279 extern void show_run_stats(void);
280 extern void __show_run_stats(void);
281 extern void __show_running_run_stats(void);
282 extern void show_running_run_stats(void);
283 extern void check_for_running_stats(void);
284 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, bool first);
285 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
286 extern void init_thread_stat(struct thread_stat *ts);
287 extern void init_group_run_stat(struct group_run_stats *gs);
288 extern void eta_to_str(char *str, unsigned long eta_sec);
289 extern bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
290 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
291 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
292 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
293 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
294 extern void reset_io_stats(struct thread_data *);
295 extern void update_rusage_stat(struct thread_data *);
296 extern void clear_rusage_stat(struct thread_data *);
297 
298 extern void add_lat_sample(struct thread_data *, enum fio_ddir, unsigned long,
299 				unsigned int, uint64_t);
300 extern void add_clat_sample(struct thread_data *, enum fio_ddir, unsigned long,
301 				unsigned int, uint64_t);
302 extern void add_slat_sample(struct thread_data *, enum fio_ddir, unsigned long,
303 				unsigned int, uint64_t);
304 extern void add_agg_sample(union io_sample_data, enum fio_ddir, unsigned int);
305 extern void add_iops_sample(struct thread_data *, struct io_u *,
306 				unsigned int);
307 extern void add_bw_sample(struct thread_data *, struct io_u *,
308 				unsigned int, unsigned long);
309 extern int calc_log_samples(void);
310 
311 extern struct io_log *agg_io_log[DDIR_RWDIR_CNT];
312 extern int write_bw_log;
313 
usec_to_msec(unsigned long * min,unsigned long * max,double * mean,double * dev)314 static inline bool usec_to_msec(unsigned long *min, unsigned long *max,
315 				double *mean, double *dev)
316 {
317 	if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
318 		*min /= 1000;
319 		*max /= 1000;
320 		*mean /= 1000.0;
321 		*dev /= 1000.0;
322 		return true;
323 	}
324 
325 	return false;
326 }
327 /*
328  * Worst level condensing would be 1:5, so allow enough room for that
329  */
330 #define __THREAD_RUNSTR_SZ(nr)	((nr) * 5)
331 #define THREAD_RUNSTR_SZ	__THREAD_RUNSTR_SZ(thread_number)
332 
333 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u);
334 
335 #endif
336