• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkMatrix44_DEFINED
9 #define SkMatrix44_DEFINED
10 
11 #include "SkMatrix.h"
12 #include "SkScalar.h"
13 
14 #ifdef SK_MSCALAR_IS_DOUBLE
15 #ifdef SK_MSCALAR_IS_FLOAT
16     #error "can't define MSCALAR both as DOUBLE and FLOAT"
17 #endif
18     typedef double SkMScalar;
19 
SkFloatToMScalar(float x)20     static inline double SkFloatToMScalar(float x) {
21         return static_cast<double>(x);
22     }
SkMScalarToFloat(double x)23     static inline float SkMScalarToFloat(double x) {
24         return static_cast<float>(x);
25     }
SkDoubleToMScalar(double x)26     static inline double SkDoubleToMScalar(double x) {
27         return x;
28     }
SkMScalarToDouble(double x)29     static inline double SkMScalarToDouble(double x) {
30         return x;
31     }
SkMScalarAbs(double x)32     static inline double SkMScalarAbs(double x) {
33         return fabs(x);
34     }
35     static const SkMScalar SK_MScalarPI = 3.141592653589793;
36 
37     #define SkMScalarFloor(x)           sk_double_floor(x)
38     #define SkMScalarCeil(x)            sk_double_ceil(x)
39     #define SkMScalarRound(x)           sk_double_round(x)
40 
41     #define SkMScalarFloorToInt(x)      sk_double_floor2int(x)
42     #define SkMScalarCeilToInt(x)       sk_double_ceil2int(x)
43     #define SkMScalarRoundToInt(x)      sk_double_round2int(x)
44 
45 
46 #elif defined SK_MSCALAR_IS_FLOAT
47 #ifdef SK_MSCALAR_IS_DOUBLE
48     #error "can't define MSCALAR both as DOUBLE and FLOAT"
49 #endif
50     typedef float SkMScalar;
51 
SkFloatToMScalar(float x)52     static inline float SkFloatToMScalar(float x) {
53         return x;
54     }
SkMScalarToFloat(float x)55     static inline float SkMScalarToFloat(float x) {
56         return x;
57     }
SkDoubleToMScalar(double x)58     static inline float SkDoubleToMScalar(double x) {
59         return static_cast<float>(x);
60     }
SkMScalarToDouble(float x)61     static inline double SkMScalarToDouble(float x) {
62         return static_cast<double>(x);
63     }
SkMScalarAbs(float x)64     static inline float SkMScalarAbs(float x) {
65         return sk_float_abs(x);
66     }
67     static const SkMScalar SK_MScalarPI = 3.14159265f;
68 
69     #define SkMScalarFloor(x)           sk_float_floor(x)
70     #define SkMScalarCeil(x)            sk_float_ceil(x)
71     #define SkMScalarRound(x)           sk_float_round(x)
72 
73     #define SkMScalarFloorToInt(x)      sk_float_floor2int(x)
74     #define SkMScalarCeilToInt(x)       sk_float_ceil2int(x)
75     #define SkMScalarRoundToInt(x)      sk_float_round2int(x)
76 
77 #endif
78 
79 #define SkIntToMScalar(n)       static_cast<SkMScalar>(n)
80 
81 #define SkMScalarToScalar(x)    SkMScalarToFloat(x)
82 #define SkScalarToMScalar(x)    SkFloatToMScalar(x)
83 
84 static const SkMScalar SK_MScalar1 = 1;
85 
86 ///////////////////////////////////////////////////////////////////////////////
87 
88 struct SkVector4 {
89     SkScalar fData[4];
90 
SkVector4SkVector491     SkVector4() {
92         this->set(0, 0, 0, 1);
93     }
SkVector4SkVector494     SkVector4(const SkVector4& src) {
95         memcpy(fData, src.fData, sizeof(fData));
96     }
97     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
98         fData[0] = x;
99         fData[1] = y;
100         fData[2] = z;
101         fData[3] = w;
102     }
103 
104     SkVector4& operator=(const SkVector4& src) {
105         memcpy(fData, src.fData, sizeof(fData));
106         return *this;
107     }
108 
109     bool operator==(const SkVector4& v) {
110         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
111                fData[2] == v.fData[2] && fData[3] == v.fData[3];
112     }
113     bool operator!=(const SkVector4& v) {
114         return !(*this == v);
115     }
116     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
117         return fData[0] == x && fData[1] == y &&
118                fData[2] == z && fData[3] == w;
119     }
120 
121     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
122         fData[0] = x;
123         fData[1] = y;
124         fData[2] = z;
125         fData[3] = w;
126     }
127 };
128 
129 /** \class SkMatrix44
130 
131     The SkMatrix44 class holds a 4x4 matrix.
132 
133     SkMatrix44 is not thread safe unless you've first called SkMatrix44::getType().
134 */
135 class SK_API SkMatrix44 {
136 public:
137 
138     enum Uninitialized_Constructor {
139         kUninitialized_Constructor
140     };
141     enum Identity_Constructor {
142         kIdentity_Constructor
143     };
144 
SkMatrix44(Uninitialized_Constructor)145     SkMatrix44(Uninitialized_Constructor) {}
146 
SkMatrix44(Identity_Constructor)147     constexpr SkMatrix44(Identity_Constructor)
148         : fMat{{ 1, 0, 0, 0, },
149                { 0, 1, 0, 0, },
150                { 0, 0, 1, 0, },
151                { 0, 0, 0, 1, }}
152         , fTypeMask(kIdentity_Mask)
153     {}
154 
155     SK_ATTR_DEPRECATED("use the constructors that take an enum")
SkMatrix44()156     SkMatrix44() { this->setIdentity(); }
157 
SkMatrix44(const SkMatrix44 & src)158     SkMatrix44(const SkMatrix44& src) {
159         memcpy(fMat, src.fMat, sizeof(fMat));
160         fTypeMask = src.fTypeMask;
161     }
162 
SkMatrix44(const SkMatrix44 & a,const SkMatrix44 & b)163     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
164         this->setConcat(a, b);
165     }
166 
167     SkMatrix44& operator=(const SkMatrix44& src) {
168         if (&src != this) {
169             memcpy(fMat, src.fMat, sizeof(fMat));
170             fTypeMask = src.fTypeMask;
171         }
172         return *this;
173     }
174 
175     bool operator==(const SkMatrix44& other) const;
176     bool operator!=(const SkMatrix44& other) const {
177         return !(other == *this);
178     }
179 
180     /* When converting from SkMatrix44 to SkMatrix, the third row and
181      * column is dropped.  When converting from SkMatrix to SkMatrix44
182      * the third row and column remain as identity:
183      * [ a b c ]      [ a b 0 c ]
184      * [ d e f ]  ->  [ d e 0 f ]
185      * [ g h i ]      [ 0 0 1 0 ]
186      *                [ g h 0 i ]
187      */
188     SkMatrix44(const SkMatrix&);
189     SkMatrix44& operator=(const SkMatrix& src);
190     operator SkMatrix() const;
191 
192     /**
193      *  Return a reference to a const identity matrix
194      */
195     static const SkMatrix44& I();
196 
197     enum TypeMask {
198         kIdentity_Mask      = 0,
199         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
200         kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
201         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
202         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
203     };
204 
205     /**
206      *  Returns a bitfield describing the transformations the matrix may
207      *  perform. The bitfield is computed conservatively, so it may include
208      *  false positives. For example, when kPerspective_Mask is true, all
209      *  other bits may be set to true even in the case of a pure perspective
210      *  transform.
211      */
getType()212     inline TypeMask getType() const {
213         if (fTypeMask & kUnknown_Mask) {
214             fTypeMask = this->computeTypeMask();
215         }
216         SkASSERT(!(fTypeMask & kUnknown_Mask));
217         return (TypeMask)fTypeMask;
218     }
219 
220     /**
221      *  Return true if the matrix is identity.
222      */
isIdentity()223     inline bool isIdentity() const {
224         return kIdentity_Mask == this->getType();
225     }
226 
227     /**
228      *  Return true if the matrix contains translate or is identity.
229      */
isTranslate()230     inline bool isTranslate() const {
231         return !(this->getType() & ~kTranslate_Mask);
232     }
233 
234     /**
235      *  Return true if the matrix only contains scale or translate or is identity.
236      */
isScaleTranslate()237     inline bool isScaleTranslate() const {
238         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
239     }
240 
241     /**
242      *  Returns true if the matrix only contains scale or is identity.
243      */
isScale()244     inline bool isScale() const {
245             return !(this->getType() & ~kScale_Mask);
246     }
247 
hasPerspective()248     inline bool hasPerspective() const {
249         return SkToBool(this->getType() & kPerspective_Mask);
250     }
251 
252     void setIdentity();
reset()253     inline void reset() { this->setIdentity();}
254 
255     /**
256      *  get a value from the matrix. The row,col parameters work as follows:
257      *  (0, 0)  scale-x
258      *  (0, 3)  translate-x
259      *  (3, 0)  perspective-x
260      */
get(int row,int col)261     inline SkMScalar get(int row, int col) const {
262         SkASSERT((unsigned)row <= 3);
263         SkASSERT((unsigned)col <= 3);
264         return fMat[col][row];
265     }
266 
267     /**
268      *  set a value in the matrix. The row,col parameters work as follows:
269      *  (0, 0)  scale-x
270      *  (0, 3)  translate-x
271      *  (3, 0)  perspective-x
272      */
set(int row,int col,SkMScalar value)273     inline void set(int row, int col, SkMScalar value) {
274         SkASSERT((unsigned)row <= 3);
275         SkASSERT((unsigned)col <= 3);
276         fMat[col][row] = value;
277         this->dirtyTypeMask();
278     }
279 
getDouble(int row,int col)280     inline double getDouble(int row, int col) const {
281         return SkMScalarToDouble(this->get(row, col));
282     }
setDouble(int row,int col,double value)283     inline void setDouble(int row, int col, double value) {
284         this->set(row, col, SkDoubleToMScalar(value));
285     }
getFloat(int row,int col)286     inline float getFloat(int row, int col) const {
287         return SkMScalarToFloat(this->get(row, col));
288     }
setFloat(int row,int col,float value)289     inline void setFloat(int row, int col, float value) {
290         this->set(row, col, SkFloatToMScalar(value));
291     }
292 
293     /** These methods allow one to efficiently read matrix entries into an
294      *  array. The given array must have room for exactly 16 entries. Whenever
295      *  possible, they will try to use memcpy rather than an entry-by-entry
296      *  copy.
297      *
298      *  Col major indicates that consecutive elements of columns will be stored
299      *  contiguously in memory.  Row major indicates that consecutive elements
300      *  of rows will be stored contiguously in memory.
301      */
302     void asColMajorf(float[]) const;
303     void asColMajord(double[]) const;
304     void asRowMajorf(float[]) const;
305     void asRowMajord(double[]) const;
306 
307     /** These methods allow one to efficiently set all matrix entries from an
308      *  array. The given array must have room for exactly 16 entries. Whenever
309      *  possible, they will try to use memcpy rather than an entry-by-entry
310      *  copy.
311      *
312      *  Col major indicates that input memory will be treated as if consecutive
313      *  elements of columns are stored contiguously in memory.  Row major
314      *  indicates that input memory will be treated as if consecutive elements
315      *  of rows are stored contiguously in memory.
316      */
317     void setColMajorf(const float[]);
318     void setColMajord(const double[]);
319     void setRowMajorf(const float[]);
320     void setRowMajord(const double[]);
321 
322 #ifdef SK_MSCALAR_IS_FLOAT
setColMajor(const SkMScalar data[])323     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
setRowMajor(const SkMScalar data[])324     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
325 #else
setColMajor(const SkMScalar data[])326     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
setRowMajor(const SkMScalar data[])327     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
328 #endif
329 
330     /* This sets the top-left of the matrix and clears the translation and
331      * perspective components (with [3][3] set to 1).  mXY is interpreted
332      * as the matrix entry at col = X, row = Y. */
333     void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
334                 SkMScalar m10, SkMScalar m11, SkMScalar m12,
335                 SkMScalar m20, SkMScalar m21, SkMScalar m22);
336     void set3x3RowMajorf(const float[]);
337 
338     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
339     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
340     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
341 
342     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
343     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
344     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
345 
setScale(SkMScalar scale)346     inline void setScale(SkMScalar scale) {
347         this->setScale(scale, scale, scale);
348     }
preScale(SkMScalar scale)349     inline void preScale(SkMScalar scale) {
350         this->preScale(scale, scale, scale);
351     }
postScale(SkMScalar scale)352     inline void postScale(SkMScalar scale) {
353         this->postScale(scale, scale, scale);
354     }
355 
setRotateDegreesAbout(SkMScalar x,SkMScalar y,SkMScalar z,SkMScalar degrees)356     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
357                                SkMScalar degrees) {
358         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
359     }
360 
361     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
362         it will be automatically resized.
363      */
364     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
365                         SkMScalar radians);
366     /** Rotate about the vector [x,y,z]. Does not check the length of the
367         vector, assuming it is unit-length.
368      */
369     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
370                             SkMScalar radians);
371 
372     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
preConcat(const SkMatrix44 & m)373     inline void preConcat(const SkMatrix44& m) {
374         this->setConcat(*this, m);
375     }
postConcat(const SkMatrix44 & m)376     inline void postConcat(const SkMatrix44& m) {
377         this->setConcat(m, *this);
378     }
379 
380     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
381         return SkMatrix44(a, b);
382     }
383 
384     /** If this is invertible, return that in inverse and return true. If it is
385         not invertible, return false and leave the inverse parameter in an
386         unspecified state.
387      */
388     bool invert(SkMatrix44* inverse) const;
389 
390     /** Transpose this matrix in place. */
391     void transpose();
392 
393     /** Apply the matrix to the src vector, returning the new vector in dst.
394         It is legal for src and dst to point to the same memory.
395      */
396     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
mapScalars(SkScalar vec[4])397     inline void mapScalars(SkScalar vec[4]) const {
398         this->mapScalars(vec, vec);
399     }
400 
401     SK_ATTR_DEPRECATED("use mapScalars")
map(const SkScalar src[4],SkScalar dst[4])402     void map(const SkScalar src[4], SkScalar dst[4]) const {
403         this->mapScalars(src, dst);
404     }
405 
406     SK_ATTR_DEPRECATED("use mapScalars")
map(SkScalar vec[4])407     void map(SkScalar vec[4]) const {
408         this->mapScalars(vec, vec);
409     }
410 
411 #ifdef SK_MSCALAR_IS_DOUBLE
412     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
413 #elif defined SK_MSCALAR_IS_FLOAT
mapMScalars(const SkMScalar src[4],SkMScalar dst[4])414     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
415         this->mapScalars(src, dst);
416     }
417 #endif
mapMScalars(SkMScalar vec[4])418     inline void mapMScalars(SkMScalar vec[4]) const {
419         this->mapMScalars(vec, vec);
420     }
421 
422     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
423         SkVector4 dst;
424         m.mapScalars(src.fData, dst.fData);
425         return dst;
426     }
427 
428     /**
429      *  map an array of [x, y, 0, 1] through the matrix, returning an array
430      *  of [x', y', z', w'].
431      *
432      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
433      *  @param count    number of [x, y] pairs in src2
434      *  @param dst4     array of [x', y', z', w'] quads as the output.
435      */
436     void map2(const float src2[], int count, float dst4[]) const;
437     void map2(const double src2[], int count, double dst4[]) const;
438 
439     /** Returns true if transformating an axis-aligned square in 2d by this matrix
440         will produce another 2d axis-aligned square; typically means the matrix
441         is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
442         degrees into a perpendicular plane collapses a square to a line, but
443         is still considered to be axis-aligned.
444 
445         By default, tolerates very slight error due to float imprecisions;
446         a 90-degree rotation can still end up with 10^-17 of
447         "non-axis-aligned" result.
448      */
449     bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
450 
451     void dump() const;
452 
453     double determinant() const;
454 
455 private:
456     /* This is indexed by [col][row]. */
457     SkMScalar           fMat[4][4];
458     mutable unsigned    fTypeMask;
459 
460     enum {
461         kUnknown_Mask = 0x80,
462 
463         kAllPublic_Masks = 0xF
464     };
465 
466     void as3x4RowMajorf(float[]) const;
467     void set3x4RowMajorf(const float[]);
468 
transX()469     SkMScalar transX() const { return fMat[3][0]; }
transY()470     SkMScalar transY() const { return fMat[3][1]; }
transZ()471     SkMScalar transZ() const { return fMat[3][2]; }
472 
scaleX()473     SkMScalar scaleX() const { return fMat[0][0]; }
scaleY()474     SkMScalar scaleY() const { return fMat[1][1]; }
scaleZ()475     SkMScalar scaleZ() const { return fMat[2][2]; }
476 
perspX()477     SkMScalar perspX() const { return fMat[0][3]; }
perspY()478     SkMScalar perspY() const { return fMat[1][3]; }
perspZ()479     SkMScalar perspZ() const { return fMat[2][3]; }
480 
481     int computeTypeMask() const;
482 
dirtyTypeMask()483     inline void dirtyTypeMask() {
484         fTypeMask = kUnknown_Mask;
485     }
486 
setTypeMask(int mask)487     inline void setTypeMask(int mask) {
488         SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
489         fTypeMask = mask;
490     }
491 
492     /**
493      *  Does not take the time to 'compute' the typemask. Only returns true if
494      *  we already know that this matrix is identity.
495      */
isTriviallyIdentity()496     inline bool isTriviallyIdentity() const {
497         return 0 == fTypeMask;
498     }
499 
values()500     inline const SkMScalar* values() const { return &fMat[0][0]; }
501 
502     friend class SkColorSpace;
503     friend class SkColorSpace_XYZ;
504 };
505 
506 #endif
507