• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ueventd.h"
18 
19 #include <ctype.h>
20 #include <fcntl.h>
21 #include <signal.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/wait.h>
26 
27 #include <set>
28 #include <thread>
29 
30 #include <android-base/chrono_utils.h>
31 #include <android-base/logging.h>
32 #include <android-base/properties.h>
33 #include <selinux/android.h>
34 #include <selinux/selinux.h>
35 
36 #include "devices.h"
37 #include "firmware_handler.h"
38 #include "log.h"
39 #include "uevent_listener.h"
40 #include "ueventd_parser.h"
41 #include "util.h"
42 
43 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
44 // socket.  When ueventd receives such a message it handles it by taking appropriate actions,
45 // which can typically be creating a device node in /dev, setting file permissions, setting selinux
46 // labels, etc.
47 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
48 // and character devices.
49 
50 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing
51 // /sys and writing 'add' to each 'uevent' file that it finds.  This causes the kernel to generate
52 // and resend uevent messages for all of the currently registered devices.  This is done, because
53 // ueventd would not have been running when these devices were registered and therefore was unable
54 // to receive their uevent messages and handle them appropriately.  This process is known as
55 // 'cold boot'.
56 
57 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues
58 // its boot process.  For this reason, cold boot should be as quick as possible.  One way to achieve
59 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
60 // time during cold boot.
61 
62 // Handling of uevent messages has two unique properties:
63 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
64 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
65 //    that no file system operations are done while the uevent process has an abnormal egid or
66 //    fscreatecon or this handling must happen in a separate process.
67 // Given the above two properties, it is best to fork() subprocesses to handle the uevents.  This
68 // reduces the overhead and complexity that would be required in a solution with threads and locks.
69 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so
70 // there is no reason to deal with the complexity of the former.
71 
72 // One other important caveat during the boot process is the handling of SELinux restorecon.
73 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each
74 // device when its uevent is handled, results in multiple restorecon operations being done on a
75 // given file.  It is more efficient to simply do restorecon recursively on /sys during cold boot,
76 // than to do restorecon on each device as its uevent is handled.  This only applies to cold boot;
77 // once that has completed, restorecon is done for each device as its uevent is handled.
78 
79 // With all of the above considered, the cold boot process has the below steps:
80 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
81 //    the generated uevents.  It writes these uevents into a queue represented by a vector.
82 //
83 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
84 //    uevents in the queue based on a starting offset (their process number) and a stride (the total
85 //    number of processes).  Note that no IPC happens at this point and only const functions from
86 //    DeviceHandler should be called from this context.
87 //
88 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
89 //    selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
90 //
91 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
92 //    subprocess handlers to complete and exit.  Once this happens, it marks coldboot as having
93 //    completed.
94 //
95 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
96 
97 // Lastly, it should be noted that uevents that occur during the coldboot process are handled
98 // without issue after the coldboot process completes.  This is because the uevent listener is
99 // paused while the uevent handler and restorecon actions take place.  Once coldboot completes,
100 // the uevent listener resumes in polling mode and will handle the uevents that occurred during
101 // coldboot.
102 
103 namespace android {
104 namespace init {
105 
106 class ColdBoot {
107   public:
ColdBoot(UeventListener & uevent_listener,DeviceHandler & device_handler)108     ColdBoot(UeventListener& uevent_listener, DeviceHandler& device_handler)
109         : uevent_listener_(uevent_listener),
110           device_handler_(device_handler),
111           num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4) {}
112 
113     void Run();
114 
115   private:
116     void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
117     void RegenerateUevents();
118     void ForkSubProcesses();
119     void DoRestoreCon();
120     void WaitForSubProcesses();
121 
122     UeventListener& uevent_listener_;
123     DeviceHandler& device_handler_;
124 
125     unsigned int num_handler_subprocesses_;
126     std::vector<Uevent> uevent_queue_;
127 
128     std::set<pid_t> subprocess_pids_;
129 };
130 
UeventHandlerMain(unsigned int process_num,unsigned int total_processes)131 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
132     for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
133         auto& uevent = uevent_queue_[i];
134         device_handler_.HandleDeviceEvent(uevent);
135     }
136     _exit(EXIT_SUCCESS);
137 }
138 
RegenerateUevents()139 void ColdBoot::RegenerateUevents() {
140     uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
141         HandleFirmwareEvent(uevent);
142 
143         uevent_queue_.emplace_back(std::move(uevent));
144         return ListenerAction::kContinue;
145     });
146 }
147 
ForkSubProcesses()148 void ColdBoot::ForkSubProcesses() {
149     for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
150         auto pid = fork();
151         if (pid < 0) {
152             PLOG(FATAL) << "fork() failed!";
153         }
154 
155         if (pid == 0) {
156             UeventHandlerMain(i, num_handler_subprocesses_);
157         }
158 
159         subprocess_pids_.emplace(pid);
160     }
161 }
162 
DoRestoreCon()163 void ColdBoot::DoRestoreCon() {
164     selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
165     device_handler_.set_skip_restorecon(false);
166 }
167 
WaitForSubProcesses()168 void ColdBoot::WaitForSubProcesses() {
169     // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
170     // stuck.
171     //
172     // When a subprocess crashes, we fatally abort from ueventd.  init will restart ueventd when
173     // init reaps it, and the cold boot process will start again.  If this continues to fail, then
174     // since ueventd is marked as a critical service, init will reboot to recovery.
175     //
176     // When a subprocess gets stuck, keep ueventd spinning waiting for it.  init has a timeout for
177     // cold boot and will reboot to the bootloader if ueventd does not complete in time.
178     while (!subprocess_pids_.empty()) {
179         int status;
180         pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
181         if (pid == -1) {
182             PLOG(ERROR) << "waitpid() failed";
183             continue;
184         }
185 
186         auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
187         if (it == subprocess_pids_.end()) continue;
188 
189         if (WIFEXITED(status)) {
190             if (WEXITSTATUS(status) == EXIT_SUCCESS) {
191                 subprocess_pids_.erase(it);
192             } else {
193                 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
194             }
195         } else if (WIFSIGNALED(status)) {
196             LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
197         }
198     }
199 }
200 
Run()201 void ColdBoot::Run() {
202     android::base::Timer cold_boot_timer;
203 
204     RegenerateUevents();
205 
206     ForkSubProcesses();
207 
208     DoRestoreCon();
209 
210     WaitForSubProcesses();
211 
212     close(open(COLDBOOT_DONE, O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
213     LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds";
214 }
215 
CreateDeviceHandler()216 DeviceHandler CreateDeviceHandler() {
217     Parser parser;
218 
219     std::vector<Subsystem> subsystems;
220     parser.AddSectionParser("subsystem", std::make_unique<SubsystemParser>(&subsystems));
221 
222     using namespace std::placeholders;
223     std::vector<SysfsPermissions> sysfs_permissions;
224     std::vector<Permissions> dev_permissions;
225     parser.AddSingleLineParser(
226         "/sys/", std::bind(ParsePermissionsLine, _1, _2, &sysfs_permissions, nullptr));
227     parser.AddSingleLineParser("/dev/",
228                                std::bind(ParsePermissionsLine, _1, _2, nullptr, &dev_permissions));
229 
230     parser.ParseConfig("/ueventd.rc");
231     parser.ParseConfig("/vendor/ueventd.rc");
232     parser.ParseConfig("/odm/ueventd.rc");
233 
234     /*
235      * keep the current product name base configuration so
236      * we remain backwards compatible and allow it to override
237      * everything
238      * TODO: cleanup platform ueventd.rc to remove vendor specific
239      * device node entries (b/34968103)
240      */
241     std::string hardware = android::base::GetProperty("ro.hardware", "");
242     parser.ParseConfig("/ueventd." + hardware + ".rc");
243 
244     return DeviceHandler(std::move(dev_permissions), std::move(sysfs_permissions),
245                          std::move(subsystems), true);
246 }
247 
ueventd_main(int argc,char ** argv)248 int ueventd_main(int argc, char** argv) {
249     /*
250      * init sets the umask to 077 for forked processes. We need to
251      * create files with exact permissions, without modification by
252      * the umask.
253      */
254     umask(000);
255 
256     InitKernelLogging(argv);
257 
258     LOG(INFO) << "ueventd started!";
259 
260     selinux_callback cb;
261     cb.func_log = selinux_klog_callback;
262     selinux_set_callback(SELINUX_CB_LOG, cb);
263 
264     DeviceHandler device_handler = CreateDeviceHandler();
265     UeventListener uevent_listener;
266 
267     if (access(COLDBOOT_DONE, F_OK) != 0) {
268         ColdBoot cold_boot(uevent_listener, device_handler);
269         cold_boot.Run();
270     }
271 
272     // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now.
273     signal(SIGCHLD, SIG_IGN);
274     // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN
275     // for SIGCHLD above.
276     while (waitpid(-1, nullptr, WNOHANG) > 0) {
277     }
278 
279     uevent_listener.Poll([&device_handler](const Uevent& uevent) {
280         HandleFirmwareEvent(uevent);
281         device_handler.HandleDeviceEvent(uevent);
282         return ListenerAction::kContinue;
283     });
284 
285     return 0;
286 }
287 
288 }  // namespace init
289 }  // namespace android
290