1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
13 //
14 // Practical Dependence Testing
15 // Goff, Kennedy, Tseng
16 // PLDI 1991
17 //
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
21 //
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
26 //
27 // The implementation depends on the GEP instruction to differentiate
28 // subscripts. Since Clang linearizes some array subscripts, the dependence
29 // analysis is using SCEV->delinearize to recover the representation of multiple
30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
31 // delinearization is controlled by the flag -da-delinearize.
32 //
33 // We should pay some careful attention to the possibility of integer overflow
34 // in the implementation of the various tests. This could happen with Add,
35 // Subtract, or Multiply, with both APInt's and SCEV's.
36 //
37 // Some non-linear subscript pairs can be handled by the GCD test
38 // (and perhaps other tests).
39 // Should explore how often these things occur.
40 //
41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
42 // simplification, especially in the handling of sign and zero extensions.
43 // It could be useful to spend time exploring these.
44 //
45 // Please note that this is work in progress and the interface is subject to
46 // change.
47 //
48 //===----------------------------------------------------------------------===//
49 // //
50 // In memory of Ken Kennedy, 1945 - 2007 //
51 // //
52 //===----------------------------------------------------------------------===//
53
54 #include "llvm/Analysis/DependenceAnalysis.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/AliasAnalysis.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/InstIterator.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69
70 using namespace llvm;
71
72 #define DEBUG_TYPE "da"
73
74 //===----------------------------------------------------------------------===//
75 // statistics
76
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109
110 static cl::opt<bool>
111 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
112 cl::desc("Try to delinearize array references."));
113
114 //===----------------------------------------------------------------------===//
115 // basics
116
117 DependenceAnalysis::Result
run(Function & F,FunctionAnalysisManager & FAM)118 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
119 auto &AA = FAM.getResult<AAManager>(F);
120 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
121 auto &LI = FAM.getResult<LoopAnalysis>(F);
122 return DependenceInfo(&F, &AA, &SE, &LI);
123 }
124
125 char DependenceAnalysis::PassID;
126
127 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
128 "Dependence Analysis", true, true)
129 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
132 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
133 true, true)
134
135 char DependenceAnalysisWrapperPass::ID = 0;
136
createDependenceAnalysisWrapperPass()137 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
138 return new DependenceAnalysisWrapperPass();
139 }
140
runOnFunction(Function & F)141 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
142 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
143 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
144 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
145 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
146 return false;
147 }
148
getDI() const149 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
150
releaseMemory()151 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
152
getAnalysisUsage(AnalysisUsage & AU) const153 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
154 AU.setPreservesAll();
155 AU.addRequiredTransitive<AAResultsWrapperPass>();
156 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
157 AU.addRequiredTransitive<LoopInfoWrapperPass>();
158 }
159
160
161 // Used to test the dependence analyzer.
162 // Looks through the function, noting loads and stores.
163 // Calls depends() on every possible pair and prints out the result.
164 // Ignores all other instructions.
dumpExampleDependence(raw_ostream & OS,DependenceInfo * DA)165 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
166 auto *F = DA->getFunction();
167 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
168 ++SrcI) {
169 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
170 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
171 DstI != DstE; ++DstI) {
172 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
173 OS << "da analyze - ";
174 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
175 D->dump(OS);
176 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
177 if (D->isSplitable(Level)) {
178 OS << "da analyze - split level = " << Level;
179 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
180 OS << "!\n";
181 }
182 }
183 }
184 else
185 OS << "none!\n";
186 }
187 }
188 }
189 }
190 }
191
print(raw_ostream & OS,const Module *) const192 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
193 const Module *) const {
194 dumpExampleDependence(OS, info.get());
195 }
196
197 //===----------------------------------------------------------------------===//
198 // Dependence methods
199
200 // Returns true if this is an input dependence.
isInput() const201 bool Dependence::isInput() const {
202 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
203 }
204
205
206 // Returns true if this is an output dependence.
isOutput() const207 bool Dependence::isOutput() const {
208 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
209 }
210
211
212 // Returns true if this is an flow (aka true) dependence.
isFlow() const213 bool Dependence::isFlow() const {
214 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
215 }
216
217
218 // Returns true if this is an anti dependence.
isAnti() const219 bool Dependence::isAnti() const {
220 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
221 }
222
223
224 // Returns true if a particular level is scalar; that is,
225 // if no subscript in the source or destination mention the induction
226 // variable associated with the loop at this level.
227 // Leave this out of line, so it will serve as a virtual method anchor
isScalar(unsigned level) const228 bool Dependence::isScalar(unsigned level) const {
229 return false;
230 }
231
232
233 //===----------------------------------------------------------------------===//
234 // FullDependence methods
235
FullDependence(Instruction * Source,Instruction * Destination,bool PossiblyLoopIndependent,unsigned CommonLevels)236 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
237 bool PossiblyLoopIndependent,
238 unsigned CommonLevels)
239 : Dependence(Source, Destination), Levels(CommonLevels),
240 LoopIndependent(PossiblyLoopIndependent) {
241 Consistent = true;
242 if (CommonLevels)
243 DV = make_unique<DVEntry[]>(CommonLevels);
244 }
245
246 // The rest are simple getters that hide the implementation.
247
248 // getDirection - Returns the direction associated with a particular level.
getDirection(unsigned Level) const249 unsigned FullDependence::getDirection(unsigned Level) const {
250 assert(0 < Level && Level <= Levels && "Level out of range");
251 return DV[Level - 1].Direction;
252 }
253
254
255 // Returns the distance (or NULL) associated with a particular level.
getDistance(unsigned Level) const256 const SCEV *FullDependence::getDistance(unsigned Level) const {
257 assert(0 < Level && Level <= Levels && "Level out of range");
258 return DV[Level - 1].Distance;
259 }
260
261
262 // Returns true if a particular level is scalar; that is,
263 // if no subscript in the source or destination mention the induction
264 // variable associated with the loop at this level.
isScalar(unsigned Level) const265 bool FullDependence::isScalar(unsigned Level) const {
266 assert(0 < Level && Level <= Levels && "Level out of range");
267 return DV[Level - 1].Scalar;
268 }
269
270
271 // Returns true if peeling the first iteration from this loop
272 // will break this dependence.
isPeelFirst(unsigned Level) const273 bool FullDependence::isPeelFirst(unsigned Level) const {
274 assert(0 < Level && Level <= Levels && "Level out of range");
275 return DV[Level - 1].PeelFirst;
276 }
277
278
279 // Returns true if peeling the last iteration from this loop
280 // will break this dependence.
isPeelLast(unsigned Level) const281 bool FullDependence::isPeelLast(unsigned Level) const {
282 assert(0 < Level && Level <= Levels && "Level out of range");
283 return DV[Level - 1].PeelLast;
284 }
285
286
287 // Returns true if splitting this loop will break the dependence.
isSplitable(unsigned Level) const288 bool FullDependence::isSplitable(unsigned Level) const {
289 assert(0 < Level && Level <= Levels && "Level out of range");
290 return DV[Level - 1].Splitable;
291 }
292
293
294 //===----------------------------------------------------------------------===//
295 // DependenceInfo::Constraint methods
296
297 // If constraint is a point <X, Y>, returns X.
298 // Otherwise assert.
getX() const299 const SCEV *DependenceInfo::Constraint::getX() const {
300 assert(Kind == Point && "Kind should be Point");
301 return A;
302 }
303
304
305 // If constraint is a point <X, Y>, returns Y.
306 // Otherwise assert.
getY() const307 const SCEV *DependenceInfo::Constraint::getY() const {
308 assert(Kind == Point && "Kind should be Point");
309 return B;
310 }
311
312
313 // If constraint is a line AX + BY = C, returns A.
314 // Otherwise assert.
getA() const315 const SCEV *DependenceInfo::Constraint::getA() const {
316 assert((Kind == Line || Kind == Distance) &&
317 "Kind should be Line (or Distance)");
318 return A;
319 }
320
321
322 // If constraint is a line AX + BY = C, returns B.
323 // Otherwise assert.
getB() const324 const SCEV *DependenceInfo::Constraint::getB() const {
325 assert((Kind == Line || Kind == Distance) &&
326 "Kind should be Line (or Distance)");
327 return B;
328 }
329
330
331 // If constraint is a line AX + BY = C, returns C.
332 // Otherwise assert.
getC() const333 const SCEV *DependenceInfo::Constraint::getC() const {
334 assert((Kind == Line || Kind == Distance) &&
335 "Kind should be Line (or Distance)");
336 return C;
337 }
338
339
340 // If constraint is a distance, returns D.
341 // Otherwise assert.
getD() const342 const SCEV *DependenceInfo::Constraint::getD() const {
343 assert(Kind == Distance && "Kind should be Distance");
344 return SE->getNegativeSCEV(C);
345 }
346
347
348 // Returns the loop associated with this constraint.
getAssociatedLoop() const349 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
350 assert((Kind == Distance || Kind == Line || Kind == Point) &&
351 "Kind should be Distance, Line, or Point");
352 return AssociatedLoop;
353 }
354
setPoint(const SCEV * X,const SCEV * Y,const Loop * CurLoop)355 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
356 const Loop *CurLoop) {
357 Kind = Point;
358 A = X;
359 B = Y;
360 AssociatedLoop = CurLoop;
361 }
362
setLine(const SCEV * AA,const SCEV * BB,const SCEV * CC,const Loop * CurLoop)363 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
364 const SCEV *CC, const Loop *CurLoop) {
365 Kind = Line;
366 A = AA;
367 B = BB;
368 C = CC;
369 AssociatedLoop = CurLoop;
370 }
371
setDistance(const SCEV * D,const Loop * CurLoop)372 void DependenceInfo::Constraint::setDistance(const SCEV *D,
373 const Loop *CurLoop) {
374 Kind = Distance;
375 A = SE->getOne(D->getType());
376 B = SE->getNegativeSCEV(A);
377 C = SE->getNegativeSCEV(D);
378 AssociatedLoop = CurLoop;
379 }
380
setEmpty()381 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
382
setAny(ScalarEvolution * NewSE)383 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
384 SE = NewSE;
385 Kind = Any;
386 }
387
388
389 // For debugging purposes. Dumps the constraint out to OS.
dump(raw_ostream & OS) const390 void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
391 if (isEmpty())
392 OS << " Empty\n";
393 else if (isAny())
394 OS << " Any\n";
395 else if (isPoint())
396 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
397 else if (isDistance())
398 OS << " Distance is " << *getD() <<
399 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
400 else if (isLine())
401 OS << " Line is " << *getA() << "*X + " <<
402 *getB() << "*Y = " << *getC() << "\n";
403 else
404 llvm_unreachable("unknown constraint type in Constraint::dump");
405 }
406
407
408 // Updates X with the intersection
409 // of the Constraints X and Y. Returns true if X has changed.
410 // Corresponds to Figure 4 from the paper
411 //
412 // Practical Dependence Testing
413 // Goff, Kennedy, Tseng
414 // PLDI 1991
intersectConstraints(Constraint * X,const Constraint * Y)415 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
416 ++DeltaApplications;
417 DEBUG(dbgs() << "\tintersect constraints\n");
418 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
419 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
420 assert(!Y->isPoint() && "Y must not be a Point");
421 if (X->isAny()) {
422 if (Y->isAny())
423 return false;
424 *X = *Y;
425 return true;
426 }
427 if (X->isEmpty())
428 return false;
429 if (Y->isEmpty()) {
430 X->setEmpty();
431 return true;
432 }
433
434 if (X->isDistance() && Y->isDistance()) {
435 DEBUG(dbgs() << "\t intersect 2 distances\n");
436 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
437 return false;
438 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
439 X->setEmpty();
440 ++DeltaSuccesses;
441 return true;
442 }
443 // Hmmm, interesting situation.
444 // I guess if either is constant, keep it and ignore the other.
445 if (isa<SCEVConstant>(Y->getD())) {
446 *X = *Y;
447 return true;
448 }
449 return false;
450 }
451
452 // At this point, the pseudo-code in Figure 4 of the paper
453 // checks if (X->isPoint() && Y->isPoint()).
454 // This case can't occur in our implementation,
455 // since a Point can only arise as the result of intersecting
456 // two Line constraints, and the right-hand value, Y, is never
457 // the result of an intersection.
458 assert(!(X->isPoint() && Y->isPoint()) &&
459 "We shouldn't ever see X->isPoint() && Y->isPoint()");
460
461 if (X->isLine() && Y->isLine()) {
462 DEBUG(dbgs() << "\t intersect 2 lines\n");
463 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
464 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
465 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
466 // slopes are equal, so lines are parallel
467 DEBUG(dbgs() << "\t\tsame slope\n");
468 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
469 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
470 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
471 return false;
472 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
473 X->setEmpty();
474 ++DeltaSuccesses;
475 return true;
476 }
477 return false;
478 }
479 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
480 // slopes differ, so lines intersect
481 DEBUG(dbgs() << "\t\tdifferent slopes\n");
482 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
483 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
484 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
485 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
486 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
487 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
488 const SCEVConstant *C1A2_C2A1 =
489 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
490 const SCEVConstant *C1B2_C2B1 =
491 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
492 const SCEVConstant *A1B2_A2B1 =
493 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
494 const SCEVConstant *A2B1_A1B2 =
495 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
496 if (!C1B2_C2B1 || !C1A2_C2A1 ||
497 !A1B2_A2B1 || !A2B1_A1B2)
498 return false;
499 APInt Xtop = C1B2_C2B1->getAPInt();
500 APInt Xbot = A1B2_A2B1->getAPInt();
501 APInt Ytop = C1A2_C2A1->getAPInt();
502 APInt Ybot = A2B1_A1B2->getAPInt();
503 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
504 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
505 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
506 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
507 APInt Xq = Xtop; // these need to be initialized, even
508 APInt Xr = Xtop; // though they're just going to be overwritten
509 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
510 APInt Yq = Ytop;
511 APInt Yr = Ytop;
512 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
513 if (Xr != 0 || Yr != 0) {
514 X->setEmpty();
515 ++DeltaSuccesses;
516 return true;
517 }
518 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
519 if (Xq.slt(0) || Yq.slt(0)) {
520 X->setEmpty();
521 ++DeltaSuccesses;
522 return true;
523 }
524 if (const SCEVConstant *CUB =
525 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
526 const APInt &UpperBound = CUB->getAPInt();
527 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
528 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
529 X->setEmpty();
530 ++DeltaSuccesses;
531 return true;
532 }
533 }
534 X->setPoint(SE->getConstant(Xq),
535 SE->getConstant(Yq),
536 X->getAssociatedLoop());
537 ++DeltaSuccesses;
538 return true;
539 }
540 return false;
541 }
542
543 // if (X->isLine() && Y->isPoint()) This case can't occur.
544 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
545
546 if (X->isPoint() && Y->isLine()) {
547 DEBUG(dbgs() << "\t intersect Point and Line\n");
548 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
549 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
550 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
551 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
552 return false;
553 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
554 X->setEmpty();
555 ++DeltaSuccesses;
556 return true;
557 }
558 return false;
559 }
560
561 llvm_unreachable("shouldn't reach the end of Constraint intersection");
562 return false;
563 }
564
565
566 //===----------------------------------------------------------------------===//
567 // DependenceInfo methods
568
569 // For debugging purposes. Dumps a dependence to OS.
dump(raw_ostream & OS) const570 void Dependence::dump(raw_ostream &OS) const {
571 bool Splitable = false;
572 if (isConfused())
573 OS << "confused";
574 else {
575 if (isConsistent())
576 OS << "consistent ";
577 if (isFlow())
578 OS << "flow";
579 else if (isOutput())
580 OS << "output";
581 else if (isAnti())
582 OS << "anti";
583 else if (isInput())
584 OS << "input";
585 unsigned Levels = getLevels();
586 OS << " [";
587 for (unsigned II = 1; II <= Levels; ++II) {
588 if (isSplitable(II))
589 Splitable = true;
590 if (isPeelFirst(II))
591 OS << 'p';
592 const SCEV *Distance = getDistance(II);
593 if (Distance)
594 OS << *Distance;
595 else if (isScalar(II))
596 OS << "S";
597 else {
598 unsigned Direction = getDirection(II);
599 if (Direction == DVEntry::ALL)
600 OS << "*";
601 else {
602 if (Direction & DVEntry::LT)
603 OS << "<";
604 if (Direction & DVEntry::EQ)
605 OS << "=";
606 if (Direction & DVEntry::GT)
607 OS << ">";
608 }
609 }
610 if (isPeelLast(II))
611 OS << 'p';
612 if (II < Levels)
613 OS << " ";
614 }
615 if (isLoopIndependent())
616 OS << "|<";
617 OS << "]";
618 if (Splitable)
619 OS << " splitable";
620 }
621 OS << "!\n";
622 }
623
underlyingObjectsAlias(AliasAnalysis * AA,const DataLayout & DL,const Value * A,const Value * B)624 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
625 const DataLayout &DL, const Value *A,
626 const Value *B) {
627 const Value *AObj = GetUnderlyingObject(A, DL);
628 const Value *BObj = GetUnderlyingObject(B, DL);
629 return AA->alias(AObj, DL.getTypeStoreSize(AObj->getType()),
630 BObj, DL.getTypeStoreSize(BObj->getType()));
631 }
632
633
634 // Returns true if the load or store can be analyzed. Atomic and volatile
635 // operations have properties which this analysis does not understand.
636 static
isLoadOrStore(const Instruction * I)637 bool isLoadOrStore(const Instruction *I) {
638 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
639 return LI->isUnordered();
640 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
641 return SI->isUnordered();
642 return false;
643 }
644
645
646 static
getPointerOperand(Instruction * I)647 Value *getPointerOperand(Instruction *I) {
648 if (LoadInst *LI = dyn_cast<LoadInst>(I))
649 return LI->getPointerOperand();
650 if (StoreInst *SI = dyn_cast<StoreInst>(I))
651 return SI->getPointerOperand();
652 llvm_unreachable("Value is not load or store instruction");
653 return nullptr;
654 }
655
656
657 // Examines the loop nesting of the Src and Dst
658 // instructions and establishes their shared loops. Sets the variables
659 // CommonLevels, SrcLevels, and MaxLevels.
660 // The source and destination instructions needn't be contained in the same
661 // loop. The routine establishNestingLevels finds the level of most deeply
662 // nested loop that contains them both, CommonLevels. An instruction that's
663 // not contained in a loop is at level = 0. MaxLevels is equal to the level
664 // of the source plus the level of the destination, minus CommonLevels.
665 // This lets us allocate vectors MaxLevels in length, with room for every
666 // distinct loop referenced in both the source and destination subscripts.
667 // The variable SrcLevels is the nesting depth of the source instruction.
668 // It's used to help calculate distinct loops referenced by the destination.
669 // Here's the map from loops to levels:
670 // 0 - unused
671 // 1 - outermost common loop
672 // ... - other common loops
673 // CommonLevels - innermost common loop
674 // ... - loops containing Src but not Dst
675 // SrcLevels - innermost loop containing Src but not Dst
676 // ... - loops containing Dst but not Src
677 // MaxLevels - innermost loops containing Dst but not Src
678 // Consider the follow code fragment:
679 // for (a = ...) {
680 // for (b = ...) {
681 // for (c = ...) {
682 // for (d = ...) {
683 // A[] = ...;
684 // }
685 // }
686 // for (e = ...) {
687 // for (f = ...) {
688 // for (g = ...) {
689 // ... = A[];
690 // }
691 // }
692 // }
693 // }
694 // }
695 // If we're looking at the possibility of a dependence between the store
696 // to A (the Src) and the load from A (the Dst), we'll note that they
697 // have 2 loops in common, so CommonLevels will equal 2 and the direction
698 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
699 // A map from loop names to loop numbers would look like
700 // a - 1
701 // b - 2 = CommonLevels
702 // c - 3
703 // d - 4 = SrcLevels
704 // e - 5
705 // f - 6
706 // g - 7 = MaxLevels
establishNestingLevels(const Instruction * Src,const Instruction * Dst)707 void DependenceInfo::establishNestingLevels(const Instruction *Src,
708 const Instruction *Dst) {
709 const BasicBlock *SrcBlock = Src->getParent();
710 const BasicBlock *DstBlock = Dst->getParent();
711 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
712 unsigned DstLevel = LI->getLoopDepth(DstBlock);
713 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
714 const Loop *DstLoop = LI->getLoopFor(DstBlock);
715 SrcLevels = SrcLevel;
716 MaxLevels = SrcLevel + DstLevel;
717 while (SrcLevel > DstLevel) {
718 SrcLoop = SrcLoop->getParentLoop();
719 SrcLevel--;
720 }
721 while (DstLevel > SrcLevel) {
722 DstLoop = DstLoop->getParentLoop();
723 DstLevel--;
724 }
725 while (SrcLoop != DstLoop) {
726 SrcLoop = SrcLoop->getParentLoop();
727 DstLoop = DstLoop->getParentLoop();
728 SrcLevel--;
729 }
730 CommonLevels = SrcLevel;
731 MaxLevels -= CommonLevels;
732 }
733
734
735 // Given one of the loops containing the source, return
736 // its level index in our numbering scheme.
mapSrcLoop(const Loop * SrcLoop) const737 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
738 return SrcLoop->getLoopDepth();
739 }
740
741
742 // Given one of the loops containing the destination,
743 // return its level index in our numbering scheme.
mapDstLoop(const Loop * DstLoop) const744 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
745 unsigned D = DstLoop->getLoopDepth();
746 if (D > CommonLevels)
747 return D - CommonLevels + SrcLevels;
748 else
749 return D;
750 }
751
752
753 // Returns true if Expression is loop invariant in LoopNest.
isLoopInvariant(const SCEV * Expression,const Loop * LoopNest) const754 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
755 const Loop *LoopNest) const {
756 if (!LoopNest)
757 return true;
758 return SE->isLoopInvariant(Expression, LoopNest) &&
759 isLoopInvariant(Expression, LoopNest->getParentLoop());
760 }
761
762
763
764 // Finds the set of loops from the LoopNest that
765 // have a level <= CommonLevels and are referred to by the SCEV Expression.
collectCommonLoops(const SCEV * Expression,const Loop * LoopNest,SmallBitVector & Loops) const766 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
767 const Loop *LoopNest,
768 SmallBitVector &Loops) const {
769 while (LoopNest) {
770 unsigned Level = LoopNest->getLoopDepth();
771 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
772 Loops.set(Level);
773 LoopNest = LoopNest->getParentLoop();
774 }
775 }
776
unifySubscriptType(ArrayRef<Subscript * > Pairs)777 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
778
779 unsigned widestWidthSeen = 0;
780 Type *widestType;
781
782 // Go through each pair and find the widest bit to which we need
783 // to extend all of them.
784 for (Subscript *Pair : Pairs) {
785 const SCEV *Src = Pair->Src;
786 const SCEV *Dst = Pair->Dst;
787 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
788 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
789 if (SrcTy == nullptr || DstTy == nullptr) {
790 assert(SrcTy == DstTy && "This function only unify integer types and "
791 "expect Src and Dst share the same type "
792 "otherwise.");
793 continue;
794 }
795 if (SrcTy->getBitWidth() > widestWidthSeen) {
796 widestWidthSeen = SrcTy->getBitWidth();
797 widestType = SrcTy;
798 }
799 if (DstTy->getBitWidth() > widestWidthSeen) {
800 widestWidthSeen = DstTy->getBitWidth();
801 widestType = DstTy;
802 }
803 }
804
805
806 assert(widestWidthSeen > 0);
807
808 // Now extend each pair to the widest seen.
809 for (Subscript *Pair : Pairs) {
810 const SCEV *Src = Pair->Src;
811 const SCEV *Dst = Pair->Dst;
812 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
813 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
814 if (SrcTy == nullptr || DstTy == nullptr) {
815 assert(SrcTy == DstTy && "This function only unify integer types and "
816 "expect Src and Dst share the same type "
817 "otherwise.");
818 continue;
819 }
820 if (SrcTy->getBitWidth() < widestWidthSeen)
821 // Sign-extend Src to widestType
822 Pair->Src = SE->getSignExtendExpr(Src, widestType);
823 if (DstTy->getBitWidth() < widestWidthSeen) {
824 // Sign-extend Dst to widestType
825 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
826 }
827 }
828 }
829
830 // removeMatchingExtensions - Examines a subscript pair.
831 // If the source and destination are identically sign (or zero)
832 // extended, it strips off the extension in an effect to simplify
833 // the actual analysis.
removeMatchingExtensions(Subscript * Pair)834 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
835 const SCEV *Src = Pair->Src;
836 const SCEV *Dst = Pair->Dst;
837 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
838 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
839 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
840 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
841 const SCEV *SrcCastOp = SrcCast->getOperand();
842 const SCEV *DstCastOp = DstCast->getOperand();
843 if (SrcCastOp->getType() == DstCastOp->getType()) {
844 Pair->Src = SrcCastOp;
845 Pair->Dst = DstCastOp;
846 }
847 }
848 }
849
850
851 // Examine the scev and return true iff it's linear.
852 // Collect any loops mentioned in the set of "Loops".
checkSrcSubscript(const SCEV * Src,const Loop * LoopNest,SmallBitVector & Loops)853 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
854 SmallBitVector &Loops) {
855 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
856 if (!AddRec)
857 return isLoopInvariant(Src, LoopNest);
858 const SCEV *Start = AddRec->getStart();
859 const SCEV *Step = AddRec->getStepRecurrence(*SE);
860 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
861 if (!isa<SCEVCouldNotCompute>(UB)) {
862 if (SE->getTypeSizeInBits(Start->getType()) <
863 SE->getTypeSizeInBits(UB->getType())) {
864 if (!AddRec->getNoWrapFlags())
865 return false;
866 }
867 }
868 if (!isLoopInvariant(Step, LoopNest))
869 return false;
870 Loops.set(mapSrcLoop(AddRec->getLoop()));
871 return checkSrcSubscript(Start, LoopNest, Loops);
872 }
873
874
875
876 // Examine the scev and return true iff it's linear.
877 // Collect any loops mentioned in the set of "Loops".
checkDstSubscript(const SCEV * Dst,const Loop * LoopNest,SmallBitVector & Loops)878 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
879 SmallBitVector &Loops) {
880 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
881 if (!AddRec)
882 return isLoopInvariant(Dst, LoopNest);
883 const SCEV *Start = AddRec->getStart();
884 const SCEV *Step = AddRec->getStepRecurrence(*SE);
885 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
886 if (!isa<SCEVCouldNotCompute>(UB)) {
887 if (SE->getTypeSizeInBits(Start->getType()) <
888 SE->getTypeSizeInBits(UB->getType())) {
889 if (!AddRec->getNoWrapFlags())
890 return false;
891 }
892 }
893 if (!isLoopInvariant(Step, LoopNest))
894 return false;
895 Loops.set(mapDstLoop(AddRec->getLoop()));
896 return checkDstSubscript(Start, LoopNest, Loops);
897 }
898
899
900 // Examines the subscript pair (the Src and Dst SCEVs)
901 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
902 // Collects the associated loops in a set.
903 DependenceInfo::Subscript::ClassificationKind
classifyPair(const SCEV * Src,const Loop * SrcLoopNest,const SCEV * Dst,const Loop * DstLoopNest,SmallBitVector & Loops)904 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
905 const SCEV *Dst, const Loop *DstLoopNest,
906 SmallBitVector &Loops) {
907 SmallBitVector SrcLoops(MaxLevels + 1);
908 SmallBitVector DstLoops(MaxLevels + 1);
909 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
910 return Subscript::NonLinear;
911 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
912 return Subscript::NonLinear;
913 Loops = SrcLoops;
914 Loops |= DstLoops;
915 unsigned N = Loops.count();
916 if (N == 0)
917 return Subscript::ZIV;
918 if (N == 1)
919 return Subscript::SIV;
920 if (N == 2 && (SrcLoops.count() == 0 ||
921 DstLoops.count() == 0 ||
922 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
923 return Subscript::RDIV;
924 return Subscript::MIV;
925 }
926
927
928 // A wrapper around SCEV::isKnownPredicate.
929 // Looks for cases where we're interested in comparing for equality.
930 // If both X and Y have been identically sign or zero extended,
931 // it strips off the (confusing) extensions before invoking
932 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
933 // will be similarly updated.
934 //
935 // If SCEV::isKnownPredicate can't prove the predicate,
936 // we try simple subtraction, which seems to help in some cases
937 // involving symbolics.
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * X,const SCEV * Y) const938 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
939 const SCEV *Y) const {
940 if (Pred == CmpInst::ICMP_EQ ||
941 Pred == CmpInst::ICMP_NE) {
942 if ((isa<SCEVSignExtendExpr>(X) &&
943 isa<SCEVSignExtendExpr>(Y)) ||
944 (isa<SCEVZeroExtendExpr>(X) &&
945 isa<SCEVZeroExtendExpr>(Y))) {
946 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
947 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
948 const SCEV *Xop = CX->getOperand();
949 const SCEV *Yop = CY->getOperand();
950 if (Xop->getType() == Yop->getType()) {
951 X = Xop;
952 Y = Yop;
953 }
954 }
955 }
956 if (SE->isKnownPredicate(Pred, X, Y))
957 return true;
958 // If SE->isKnownPredicate can't prove the condition,
959 // we try the brute-force approach of subtracting
960 // and testing the difference.
961 // By testing with SE->isKnownPredicate first, we avoid
962 // the possibility of overflow when the arguments are constants.
963 const SCEV *Delta = SE->getMinusSCEV(X, Y);
964 switch (Pred) {
965 case CmpInst::ICMP_EQ:
966 return Delta->isZero();
967 case CmpInst::ICMP_NE:
968 return SE->isKnownNonZero(Delta);
969 case CmpInst::ICMP_SGE:
970 return SE->isKnownNonNegative(Delta);
971 case CmpInst::ICMP_SLE:
972 return SE->isKnownNonPositive(Delta);
973 case CmpInst::ICMP_SGT:
974 return SE->isKnownPositive(Delta);
975 case CmpInst::ICMP_SLT:
976 return SE->isKnownNegative(Delta);
977 default:
978 llvm_unreachable("unexpected predicate in isKnownPredicate");
979 }
980 }
981
982
983 // All subscripts are all the same type.
984 // Loop bound may be smaller (e.g., a char).
985 // Should zero extend loop bound, since it's always >= 0.
986 // This routine collects upper bound and extends or truncates if needed.
987 // Truncating is safe when subscripts are known not to wrap. Cases without
988 // nowrap flags should have been rejected earlier.
989 // Return null if no bound available.
collectUpperBound(const Loop * L,Type * T) const990 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
991 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
992 const SCEV *UB = SE->getBackedgeTakenCount(L);
993 return SE->getTruncateOrZeroExtend(UB, T);
994 }
995 return nullptr;
996 }
997
998
999 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1000 // If the cast fails, returns NULL.
collectConstantUpperBound(const Loop * L,Type * T) const1001 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1002 Type *T) const {
1003 if (const SCEV *UB = collectUpperBound(L, T))
1004 return dyn_cast<SCEVConstant>(UB);
1005 return nullptr;
1006 }
1007
1008
1009 // testZIV -
1010 // When we have a pair of subscripts of the form [c1] and [c2],
1011 // where c1 and c2 are both loop invariant, we attack it using
1012 // the ZIV test. Basically, we test by comparing the two values,
1013 // but there are actually three possible results:
1014 // 1) the values are equal, so there's a dependence
1015 // 2) the values are different, so there's no dependence
1016 // 3) the values might be equal, so we have to assume a dependence.
1017 //
1018 // Return true if dependence disproved.
testZIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const1019 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1020 FullDependence &Result) const {
1021 DEBUG(dbgs() << " src = " << *Src << "\n");
1022 DEBUG(dbgs() << " dst = " << *Dst << "\n");
1023 ++ZIVapplications;
1024 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1025 DEBUG(dbgs() << " provably dependent\n");
1026 return false; // provably dependent
1027 }
1028 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1029 DEBUG(dbgs() << " provably independent\n");
1030 ++ZIVindependence;
1031 return true; // provably independent
1032 }
1033 DEBUG(dbgs() << " possibly dependent\n");
1034 Result.Consistent = false;
1035 return false; // possibly dependent
1036 }
1037
1038
1039 // strongSIVtest -
1040 // From the paper, Practical Dependence Testing, Section 4.2.1
1041 //
1042 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1043 // where i is an induction variable, c1 and c2 are loop invariant,
1044 // and a is a constant, we can solve it exactly using the Strong SIV test.
1045 //
1046 // Can prove independence. Failing that, can compute distance (and direction).
1047 // In the presence of symbolic terms, we can sometimes make progress.
1048 //
1049 // If there's a dependence,
1050 //
1051 // c1 + a*i = c2 + a*i'
1052 //
1053 // The dependence distance is
1054 //
1055 // d = i' - i = (c1 - c2)/a
1056 //
1057 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1058 // loop's upper bound. If a dependence exists, the dependence direction is
1059 // defined as
1060 //
1061 // { < if d > 0
1062 // direction = { = if d = 0
1063 // { > if d < 0
1064 //
1065 // Return true if dependence disproved.
strongSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1066 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1067 const SCEV *DstConst, const Loop *CurLoop,
1068 unsigned Level, FullDependence &Result,
1069 Constraint &NewConstraint) const {
1070 DEBUG(dbgs() << "\tStrong SIV test\n");
1071 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1072 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1073 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1074 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1075 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1076 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1077 ++StrongSIVapplications;
1078 assert(0 < Level && Level <= CommonLevels && "level out of range");
1079 Level--;
1080
1081 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1082 DEBUG(dbgs() << "\t Delta = " << *Delta);
1083 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1084
1085 // check that |Delta| < iteration count
1086 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1087 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1088 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1089 const SCEV *AbsDelta =
1090 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1091 const SCEV *AbsCoeff =
1092 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1093 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1094 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1095 // Distance greater than trip count - no dependence
1096 ++StrongSIVindependence;
1097 ++StrongSIVsuccesses;
1098 return true;
1099 }
1100 }
1101
1102 // Can we compute distance?
1103 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1104 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1105 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1106 APInt Distance = ConstDelta; // these need to be initialized
1107 APInt Remainder = ConstDelta;
1108 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1109 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1110 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1111 // Make sure Coeff divides Delta exactly
1112 if (Remainder != 0) {
1113 // Coeff doesn't divide Distance, no dependence
1114 ++StrongSIVindependence;
1115 ++StrongSIVsuccesses;
1116 return true;
1117 }
1118 Result.DV[Level].Distance = SE->getConstant(Distance);
1119 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1120 if (Distance.sgt(0))
1121 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1122 else if (Distance.slt(0))
1123 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1124 else
1125 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1126 ++StrongSIVsuccesses;
1127 }
1128 else if (Delta->isZero()) {
1129 // since 0/X == 0
1130 Result.DV[Level].Distance = Delta;
1131 NewConstraint.setDistance(Delta, CurLoop);
1132 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1133 ++StrongSIVsuccesses;
1134 }
1135 else {
1136 if (Coeff->isOne()) {
1137 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1138 Result.DV[Level].Distance = Delta; // since X/1 == X
1139 NewConstraint.setDistance(Delta, CurLoop);
1140 }
1141 else {
1142 Result.Consistent = false;
1143 NewConstraint.setLine(Coeff,
1144 SE->getNegativeSCEV(Coeff),
1145 SE->getNegativeSCEV(Delta), CurLoop);
1146 }
1147
1148 // maybe we can get a useful direction
1149 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1150 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1151 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1152 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1153 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1154 // The double negatives above are confusing.
1155 // It helps to read !SE->isKnownNonZero(Delta)
1156 // as "Delta might be Zero"
1157 unsigned NewDirection = Dependence::DVEntry::NONE;
1158 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1159 (DeltaMaybeNegative && CoeffMaybeNegative))
1160 NewDirection = Dependence::DVEntry::LT;
1161 if (DeltaMaybeZero)
1162 NewDirection |= Dependence::DVEntry::EQ;
1163 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1164 (DeltaMaybePositive && CoeffMaybeNegative))
1165 NewDirection |= Dependence::DVEntry::GT;
1166 if (NewDirection < Result.DV[Level].Direction)
1167 ++StrongSIVsuccesses;
1168 Result.DV[Level].Direction &= NewDirection;
1169 }
1170 return false;
1171 }
1172
1173
1174 // weakCrossingSIVtest -
1175 // From the paper, Practical Dependence Testing, Section 4.2.2
1176 //
1177 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1178 // where i is an induction variable, c1 and c2 are loop invariant,
1179 // and a is a constant, we can solve it exactly using the
1180 // Weak-Crossing SIV test.
1181 //
1182 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1183 // the two lines, where i = i', yielding
1184 //
1185 // c1 + a*i = c2 - a*i
1186 // 2a*i = c2 - c1
1187 // i = (c2 - c1)/2a
1188 //
1189 // If i < 0, there is no dependence.
1190 // If i > upperbound, there is no dependence.
1191 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1192 // If i = upperbound, there's a dependence with distance = 0.
1193 // If i is integral, there's a dependence (all directions).
1194 // If the non-integer part = 1/2, there's a dependence (<> directions).
1195 // Otherwise, there's no dependence.
1196 //
1197 // Can prove independence. Failing that,
1198 // can sometimes refine the directions.
1199 // Can determine iteration for splitting.
1200 //
1201 // Return true if dependence disproved.
weakCrossingSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const1202 bool DependenceInfo::weakCrossingSIVtest(
1203 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1204 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1205 Constraint &NewConstraint, const SCEV *&SplitIter) const {
1206 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1207 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1208 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1209 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1210 ++WeakCrossingSIVapplications;
1211 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1212 Level--;
1213 Result.Consistent = false;
1214 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1215 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1216 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1217 if (Delta->isZero()) {
1218 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1219 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1220 ++WeakCrossingSIVsuccesses;
1221 if (!Result.DV[Level].Direction) {
1222 ++WeakCrossingSIVindependence;
1223 return true;
1224 }
1225 Result.DV[Level].Distance = Delta; // = 0
1226 return false;
1227 }
1228 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1229 if (!ConstCoeff)
1230 return false;
1231
1232 Result.DV[Level].Splitable = true;
1233 if (SE->isKnownNegative(ConstCoeff)) {
1234 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1235 assert(ConstCoeff &&
1236 "dynamic cast of negative of ConstCoeff should yield constant");
1237 Delta = SE->getNegativeSCEV(Delta);
1238 }
1239 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1240
1241 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1242 SplitIter = SE->getUDivExpr(
1243 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1244 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1245 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1246
1247 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1248 if (!ConstDelta)
1249 return false;
1250
1251 // We're certain that ConstCoeff > 0; therefore,
1252 // if Delta < 0, then no dependence.
1253 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1254 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1255 if (SE->isKnownNegative(Delta)) {
1256 // No dependence, Delta < 0
1257 ++WeakCrossingSIVindependence;
1258 ++WeakCrossingSIVsuccesses;
1259 return true;
1260 }
1261
1262 // We're certain that Delta > 0 and ConstCoeff > 0.
1263 // Check Delta/(2*ConstCoeff) against upper loop bound
1264 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1265 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1266 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1267 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1268 ConstantTwo);
1269 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1270 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1271 // Delta too big, no dependence
1272 ++WeakCrossingSIVindependence;
1273 ++WeakCrossingSIVsuccesses;
1274 return true;
1275 }
1276 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1277 // i = i' = UB
1278 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1279 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1280 ++WeakCrossingSIVsuccesses;
1281 if (!Result.DV[Level].Direction) {
1282 ++WeakCrossingSIVindependence;
1283 return true;
1284 }
1285 Result.DV[Level].Splitable = false;
1286 Result.DV[Level].Distance = SE->getZero(Delta->getType());
1287 return false;
1288 }
1289 }
1290
1291 // check that Coeff divides Delta
1292 APInt APDelta = ConstDelta->getAPInt();
1293 APInt APCoeff = ConstCoeff->getAPInt();
1294 APInt Distance = APDelta; // these need to be initialzed
1295 APInt Remainder = APDelta;
1296 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1297 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1298 if (Remainder != 0) {
1299 // Coeff doesn't divide Delta, no dependence
1300 ++WeakCrossingSIVindependence;
1301 ++WeakCrossingSIVsuccesses;
1302 return true;
1303 }
1304 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1305
1306 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1307 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1308 Remainder = Distance.srem(Two);
1309 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1310 if (Remainder != 0) {
1311 // Equal direction isn't possible
1312 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1313 ++WeakCrossingSIVsuccesses;
1314 }
1315 return false;
1316 }
1317
1318
1319 // Kirch's algorithm, from
1320 //
1321 // Optimizing Supercompilers for Supercomputers
1322 // Michael Wolfe
1323 // MIT Press, 1989
1324 //
1325 // Program 2.1, page 29.
1326 // Computes the GCD of AM and BM.
1327 // Also finds a solution to the equation ax - by = gcd(a, b).
1328 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
findGCD(unsigned Bits,const APInt & AM,const APInt & BM,const APInt & Delta,APInt & G,APInt & X,APInt & Y)1329 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1330 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1331 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1332 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1333 APInt G0 = AM.abs();
1334 APInt G1 = BM.abs();
1335 APInt Q = G0; // these need to be initialized
1336 APInt R = G0;
1337 APInt::sdivrem(G0, G1, Q, R);
1338 while (R != 0) {
1339 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1340 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1341 G0 = G1; G1 = R;
1342 APInt::sdivrem(G0, G1, Q, R);
1343 }
1344 G = G1;
1345 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1346 X = AM.slt(0) ? -A1 : A1;
1347 Y = BM.slt(0) ? B1 : -B1;
1348
1349 // make sure gcd divides Delta
1350 R = Delta.srem(G);
1351 if (R != 0)
1352 return true; // gcd doesn't divide Delta, no dependence
1353 Q = Delta.sdiv(G);
1354 X *= Q;
1355 Y *= Q;
1356 return false;
1357 }
1358
floorOfQuotient(const APInt & A,const APInt & B)1359 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1360 APInt Q = A; // these need to be initialized
1361 APInt R = A;
1362 APInt::sdivrem(A, B, Q, R);
1363 if (R == 0)
1364 return Q;
1365 if ((A.sgt(0) && B.sgt(0)) ||
1366 (A.slt(0) && B.slt(0)))
1367 return Q;
1368 else
1369 return Q - 1;
1370 }
1371
ceilingOfQuotient(const APInt & A,const APInt & B)1372 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1373 APInt Q = A; // these need to be initialized
1374 APInt R = A;
1375 APInt::sdivrem(A, B, Q, R);
1376 if (R == 0)
1377 return Q;
1378 if ((A.sgt(0) && B.sgt(0)) ||
1379 (A.slt(0) && B.slt(0)))
1380 return Q + 1;
1381 else
1382 return Q;
1383 }
1384
1385
1386 static
maxAPInt(APInt A,APInt B)1387 APInt maxAPInt(APInt A, APInt B) {
1388 return A.sgt(B) ? A : B;
1389 }
1390
1391
1392 static
minAPInt(APInt A,APInt B)1393 APInt minAPInt(APInt A, APInt B) {
1394 return A.slt(B) ? A : B;
1395 }
1396
1397
1398 // exactSIVtest -
1399 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1400 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1401 // and a2 are constant, we can solve it exactly using an algorithm developed
1402 // by Banerjee and Wolfe. See Section 2.5.3 in
1403 //
1404 // Optimizing Supercompilers for Supercomputers
1405 // Michael Wolfe
1406 // MIT Press, 1989
1407 //
1408 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1409 // so use them if possible. They're also a bit better with symbolics and,
1410 // in the case of the strong SIV test, can compute Distances.
1411 //
1412 // Return true if dependence disproved.
exactSIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1413 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1414 const SCEV *SrcConst, const SCEV *DstConst,
1415 const Loop *CurLoop, unsigned Level,
1416 FullDependence &Result,
1417 Constraint &NewConstraint) const {
1418 DEBUG(dbgs() << "\tExact SIV test\n");
1419 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1420 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1421 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1422 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1423 ++ExactSIVapplications;
1424 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1425 Level--;
1426 Result.Consistent = false;
1427 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1428 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1429 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1430 Delta, CurLoop);
1431 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1432 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1433 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1434 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1435 return false;
1436
1437 // find gcd
1438 APInt G, X, Y;
1439 APInt AM = ConstSrcCoeff->getAPInt();
1440 APInt BM = ConstDstCoeff->getAPInt();
1441 unsigned Bits = AM.getBitWidth();
1442 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1443 // gcd doesn't divide Delta, no dependence
1444 ++ExactSIVindependence;
1445 ++ExactSIVsuccesses;
1446 return true;
1447 }
1448
1449 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1450
1451 // since SCEV construction normalizes, LM = 0
1452 APInt UM(Bits, 1, true);
1453 bool UMvalid = false;
1454 // UM is perhaps unavailable, let's check
1455 if (const SCEVConstant *CUB =
1456 collectConstantUpperBound(CurLoop, Delta->getType())) {
1457 UM = CUB->getAPInt();
1458 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1459 UMvalid = true;
1460 }
1461
1462 APInt TU(APInt::getSignedMaxValue(Bits));
1463 APInt TL(APInt::getSignedMinValue(Bits));
1464
1465 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1466 APInt TMUL = BM.sdiv(G);
1467 if (TMUL.sgt(0)) {
1468 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1469 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1470 if (UMvalid) {
1471 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1472 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1473 }
1474 }
1475 else {
1476 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1477 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1478 if (UMvalid) {
1479 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1480 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1481 }
1482 }
1483
1484 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1485 TMUL = AM.sdiv(G);
1486 if (TMUL.sgt(0)) {
1487 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1488 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1489 if (UMvalid) {
1490 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1491 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1492 }
1493 }
1494 else {
1495 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1496 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1497 if (UMvalid) {
1498 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1499 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1500 }
1501 }
1502 if (TL.sgt(TU)) {
1503 ++ExactSIVindependence;
1504 ++ExactSIVsuccesses;
1505 return true;
1506 }
1507
1508 // explore directions
1509 unsigned NewDirection = Dependence::DVEntry::NONE;
1510
1511 // less than
1512 APInt SaveTU(TU); // save these
1513 APInt SaveTL(TL);
1514 DEBUG(dbgs() << "\t exploring LT direction\n");
1515 TMUL = AM - BM;
1516 if (TMUL.sgt(0)) {
1517 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1518 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1519 }
1520 else {
1521 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1522 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1523 }
1524 if (TL.sle(TU)) {
1525 NewDirection |= Dependence::DVEntry::LT;
1526 ++ExactSIVsuccesses;
1527 }
1528
1529 // equal
1530 TU = SaveTU; // restore
1531 TL = SaveTL;
1532 DEBUG(dbgs() << "\t exploring EQ direction\n");
1533 if (TMUL.sgt(0)) {
1534 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1535 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1536 }
1537 else {
1538 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1539 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1540 }
1541 TMUL = BM - AM;
1542 if (TMUL.sgt(0)) {
1543 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1544 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1545 }
1546 else {
1547 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1548 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1549 }
1550 if (TL.sle(TU)) {
1551 NewDirection |= Dependence::DVEntry::EQ;
1552 ++ExactSIVsuccesses;
1553 }
1554
1555 // greater than
1556 TU = SaveTU; // restore
1557 TL = SaveTL;
1558 DEBUG(dbgs() << "\t exploring GT direction\n");
1559 if (TMUL.sgt(0)) {
1560 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1561 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1562 }
1563 else {
1564 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1565 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1566 }
1567 if (TL.sle(TU)) {
1568 NewDirection |= Dependence::DVEntry::GT;
1569 ++ExactSIVsuccesses;
1570 }
1571
1572 // finished
1573 Result.DV[Level].Direction &= NewDirection;
1574 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1575 ++ExactSIVindependence;
1576 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1577 }
1578
1579
1580
1581 // Return true if the divisor evenly divides the dividend.
1582 static
isRemainderZero(const SCEVConstant * Dividend,const SCEVConstant * Divisor)1583 bool isRemainderZero(const SCEVConstant *Dividend,
1584 const SCEVConstant *Divisor) {
1585 const APInt &ConstDividend = Dividend->getAPInt();
1586 const APInt &ConstDivisor = Divisor->getAPInt();
1587 return ConstDividend.srem(ConstDivisor) == 0;
1588 }
1589
1590
1591 // weakZeroSrcSIVtest -
1592 // From the paper, Practical Dependence Testing, Section 4.2.2
1593 //
1594 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1595 // where i is an induction variable, c1 and c2 are loop invariant,
1596 // and a is a constant, we can solve it exactly using the
1597 // Weak-Zero SIV test.
1598 //
1599 // Given
1600 //
1601 // c1 = c2 + a*i
1602 //
1603 // we get
1604 //
1605 // (c1 - c2)/a = i
1606 //
1607 // If i is not an integer, there's no dependence.
1608 // If i < 0 or > UB, there's no dependence.
1609 // If i = 0, the direction is <= and peeling the
1610 // 1st iteration will break the dependence.
1611 // If i = UB, the direction is >= and peeling the
1612 // last iteration will break the dependence.
1613 // Otherwise, the direction is *.
1614 //
1615 // Can prove independence. Failing that, we can sometimes refine
1616 // the directions. Can sometimes show that first or last
1617 // iteration carries all the dependences (so worth peeling).
1618 //
1619 // (see also weakZeroDstSIVtest)
1620 //
1621 // Return true if dependence disproved.
weakZeroSrcSIVtest(const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1622 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1623 const SCEV *SrcConst,
1624 const SCEV *DstConst,
1625 const Loop *CurLoop, unsigned Level,
1626 FullDependence &Result,
1627 Constraint &NewConstraint) const {
1628 // For the WeakSIV test, it's possible the loop isn't common to
1629 // the Src and Dst loops. If it isn't, then there's no need to
1630 // record a direction.
1631 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1632 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1633 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1634 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1635 ++WeakZeroSIVapplications;
1636 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1637 Level--;
1638 Result.Consistent = false;
1639 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1640 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1641 CurLoop);
1642 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1643 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1644 if (Level < CommonLevels) {
1645 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1646 Result.DV[Level].PeelFirst = true;
1647 ++WeakZeroSIVsuccesses;
1648 }
1649 return false; // dependences caused by first iteration
1650 }
1651 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1652 if (!ConstCoeff)
1653 return false;
1654 const SCEV *AbsCoeff =
1655 SE->isKnownNegative(ConstCoeff) ?
1656 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1657 const SCEV *NewDelta =
1658 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1659
1660 // check that Delta/SrcCoeff < iteration count
1661 // really check NewDelta < count*AbsCoeff
1662 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1663 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1664 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1665 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1666 ++WeakZeroSIVindependence;
1667 ++WeakZeroSIVsuccesses;
1668 return true;
1669 }
1670 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1671 // dependences caused by last iteration
1672 if (Level < CommonLevels) {
1673 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1674 Result.DV[Level].PeelLast = true;
1675 ++WeakZeroSIVsuccesses;
1676 }
1677 return false;
1678 }
1679 }
1680
1681 // check that Delta/SrcCoeff >= 0
1682 // really check that NewDelta >= 0
1683 if (SE->isKnownNegative(NewDelta)) {
1684 // No dependence, newDelta < 0
1685 ++WeakZeroSIVindependence;
1686 ++WeakZeroSIVsuccesses;
1687 return true;
1688 }
1689
1690 // if SrcCoeff doesn't divide Delta, then no dependence
1691 if (isa<SCEVConstant>(Delta) &&
1692 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1693 ++WeakZeroSIVindependence;
1694 ++WeakZeroSIVsuccesses;
1695 return true;
1696 }
1697 return false;
1698 }
1699
1700
1701 // weakZeroDstSIVtest -
1702 // From the paper, Practical Dependence Testing, Section 4.2.2
1703 //
1704 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1705 // where i is an induction variable, c1 and c2 are loop invariant,
1706 // and a is a constant, we can solve it exactly using the
1707 // Weak-Zero SIV test.
1708 //
1709 // Given
1710 //
1711 // c1 + a*i = c2
1712 //
1713 // we get
1714 //
1715 // i = (c2 - c1)/a
1716 //
1717 // If i is not an integer, there's no dependence.
1718 // If i < 0 or > UB, there's no dependence.
1719 // If i = 0, the direction is <= and peeling the
1720 // 1st iteration will break the dependence.
1721 // If i = UB, the direction is >= and peeling the
1722 // last iteration will break the dependence.
1723 // Otherwise, the direction is *.
1724 //
1725 // Can prove independence. Failing that, we can sometimes refine
1726 // the directions. Can sometimes show that first or last
1727 // iteration carries all the dependences (so worth peeling).
1728 //
1729 // (see also weakZeroSrcSIVtest)
1730 //
1731 // Return true if dependence disproved.
weakZeroDstSIVtest(const SCEV * SrcCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1732 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1733 const SCEV *SrcConst,
1734 const SCEV *DstConst,
1735 const Loop *CurLoop, unsigned Level,
1736 FullDependence &Result,
1737 Constraint &NewConstraint) const {
1738 // For the WeakSIV test, it's possible the loop isn't common to the
1739 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1740 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1741 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1742 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1743 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1744 ++WeakZeroSIVapplications;
1745 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1746 Level--;
1747 Result.Consistent = false;
1748 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1749 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1750 CurLoop);
1751 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1752 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1753 if (Level < CommonLevels) {
1754 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1755 Result.DV[Level].PeelFirst = true;
1756 ++WeakZeroSIVsuccesses;
1757 }
1758 return false; // dependences caused by first iteration
1759 }
1760 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1761 if (!ConstCoeff)
1762 return false;
1763 const SCEV *AbsCoeff =
1764 SE->isKnownNegative(ConstCoeff) ?
1765 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1766 const SCEV *NewDelta =
1767 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1768
1769 // check that Delta/SrcCoeff < iteration count
1770 // really check NewDelta < count*AbsCoeff
1771 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1772 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1773 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1774 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1775 ++WeakZeroSIVindependence;
1776 ++WeakZeroSIVsuccesses;
1777 return true;
1778 }
1779 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1780 // dependences caused by last iteration
1781 if (Level < CommonLevels) {
1782 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1783 Result.DV[Level].PeelLast = true;
1784 ++WeakZeroSIVsuccesses;
1785 }
1786 return false;
1787 }
1788 }
1789
1790 // check that Delta/SrcCoeff >= 0
1791 // really check that NewDelta >= 0
1792 if (SE->isKnownNegative(NewDelta)) {
1793 // No dependence, newDelta < 0
1794 ++WeakZeroSIVindependence;
1795 ++WeakZeroSIVsuccesses;
1796 return true;
1797 }
1798
1799 // if SrcCoeff doesn't divide Delta, then no dependence
1800 if (isa<SCEVConstant>(Delta) &&
1801 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1802 ++WeakZeroSIVindependence;
1803 ++WeakZeroSIVsuccesses;
1804 return true;
1805 }
1806 return false;
1807 }
1808
1809
1810 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1811 // Things of the form [c1 + a*i] and [c2 + b*j],
1812 // where i and j are induction variable, c1 and c2 are loop invariant,
1813 // and a and b are constants.
1814 // Returns true if any possible dependence is disproved.
1815 // Marks the result as inconsistent.
1816 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
exactRDIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * SrcLoop,const Loop * DstLoop,FullDependence & Result) const1817 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1818 const SCEV *SrcConst, const SCEV *DstConst,
1819 const Loop *SrcLoop, const Loop *DstLoop,
1820 FullDependence &Result) const {
1821 DEBUG(dbgs() << "\tExact RDIV test\n");
1822 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1823 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1824 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1825 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1826 ++ExactRDIVapplications;
1827 Result.Consistent = false;
1828 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1829 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1830 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1831 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1832 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1833 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1834 return false;
1835
1836 // find gcd
1837 APInt G, X, Y;
1838 APInt AM = ConstSrcCoeff->getAPInt();
1839 APInt BM = ConstDstCoeff->getAPInt();
1840 unsigned Bits = AM.getBitWidth();
1841 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1842 // gcd doesn't divide Delta, no dependence
1843 ++ExactRDIVindependence;
1844 return true;
1845 }
1846
1847 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1848
1849 // since SCEV construction seems to normalize, LM = 0
1850 APInt SrcUM(Bits, 1, true);
1851 bool SrcUMvalid = false;
1852 // SrcUM is perhaps unavailable, let's check
1853 if (const SCEVConstant *UpperBound =
1854 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1855 SrcUM = UpperBound->getAPInt();
1856 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1857 SrcUMvalid = true;
1858 }
1859
1860 APInt DstUM(Bits, 1, true);
1861 bool DstUMvalid = false;
1862 // UM is perhaps unavailable, let's check
1863 if (const SCEVConstant *UpperBound =
1864 collectConstantUpperBound(DstLoop, Delta->getType())) {
1865 DstUM = UpperBound->getAPInt();
1866 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1867 DstUMvalid = true;
1868 }
1869
1870 APInt TU(APInt::getSignedMaxValue(Bits));
1871 APInt TL(APInt::getSignedMinValue(Bits));
1872
1873 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1874 APInt TMUL = BM.sdiv(G);
1875 if (TMUL.sgt(0)) {
1876 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1877 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1878 if (SrcUMvalid) {
1879 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1880 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1881 }
1882 }
1883 else {
1884 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1885 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1886 if (SrcUMvalid) {
1887 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1888 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1889 }
1890 }
1891
1892 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1893 TMUL = AM.sdiv(G);
1894 if (TMUL.sgt(0)) {
1895 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1896 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1897 if (DstUMvalid) {
1898 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1899 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1900 }
1901 }
1902 else {
1903 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1904 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1905 if (DstUMvalid) {
1906 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1907 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1908 }
1909 }
1910 if (TL.sgt(TU))
1911 ++ExactRDIVindependence;
1912 return TL.sgt(TU);
1913 }
1914
1915
1916 // symbolicRDIVtest -
1917 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1918 // introduce a special case of Banerjee's Inequalities (also called the
1919 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1920 // particularly cases with symbolics. Since it's only able to disprove
1921 // dependence (not compute distances or directions), we'll use it as a
1922 // fall back for the other tests.
1923 //
1924 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1925 // where i and j are induction variables and c1 and c2 are loop invariants,
1926 // we can use the symbolic tests to disprove some dependences, serving as a
1927 // backup for the RDIV test. Note that i and j can be the same variable,
1928 // letting this test serve as a backup for the various SIV tests.
1929 //
1930 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1931 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1932 // loop bounds for the i and j loops, respectively. So, ...
1933 //
1934 // c1 + a1*i = c2 + a2*j
1935 // a1*i - a2*j = c2 - c1
1936 //
1937 // To test for a dependence, we compute c2 - c1 and make sure it's in the
1938 // range of the maximum and minimum possible values of a1*i - a2*j.
1939 // Considering the signs of a1 and a2, we have 4 possible cases:
1940 //
1941 // 1) If a1 >= 0 and a2 >= 0, then
1942 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1943 // -a2*N2 <= c2 - c1 <= a1*N1
1944 //
1945 // 2) If a1 >= 0 and a2 <= 0, then
1946 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1947 // 0 <= c2 - c1 <= a1*N1 - a2*N2
1948 //
1949 // 3) If a1 <= 0 and a2 >= 0, then
1950 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1951 // a1*N1 - a2*N2 <= c2 - c1 <= 0
1952 //
1953 // 4) If a1 <= 0 and a2 <= 0, then
1954 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1955 // a1*N1 <= c2 - c1 <= -a2*N2
1956 //
1957 // return true if dependence disproved
symbolicRDIVtest(const SCEV * A1,const SCEV * A2,const SCEV * C1,const SCEV * C2,const Loop * Loop1,const Loop * Loop2) const1958 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
1959 const SCEV *C1, const SCEV *C2,
1960 const Loop *Loop1,
1961 const Loop *Loop2) const {
1962 ++SymbolicRDIVapplications;
1963 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1964 DEBUG(dbgs() << "\t A1 = " << *A1);
1965 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1966 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1967 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1968 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1969 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1970 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1971 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1972 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1973 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1974 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1975 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1976 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1977 if (SE->isKnownNonNegative(A1)) {
1978 if (SE->isKnownNonNegative(A2)) {
1979 // A1 >= 0 && A2 >= 0
1980 if (N1) {
1981 // make sure that c2 - c1 <= a1*N1
1982 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1983 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1984 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1985 ++SymbolicRDIVindependence;
1986 return true;
1987 }
1988 }
1989 if (N2) {
1990 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1991 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1992 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1993 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1994 ++SymbolicRDIVindependence;
1995 return true;
1996 }
1997 }
1998 }
1999 else if (SE->isKnownNonPositive(A2)) {
2000 // a1 >= 0 && a2 <= 0
2001 if (N1 && N2) {
2002 // make sure that c2 - c1 <= a1*N1 - a2*N2
2003 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2004 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2005 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2006 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2007 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2008 ++SymbolicRDIVindependence;
2009 return true;
2010 }
2011 }
2012 // make sure that 0 <= c2 - c1
2013 if (SE->isKnownNegative(C2_C1)) {
2014 ++SymbolicRDIVindependence;
2015 return true;
2016 }
2017 }
2018 }
2019 else if (SE->isKnownNonPositive(A1)) {
2020 if (SE->isKnownNonNegative(A2)) {
2021 // a1 <= 0 && a2 >= 0
2022 if (N1 && N2) {
2023 // make sure that a1*N1 - a2*N2 <= c2 - c1
2024 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2025 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2026 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2027 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2028 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2029 ++SymbolicRDIVindependence;
2030 return true;
2031 }
2032 }
2033 // make sure that c2 - c1 <= 0
2034 if (SE->isKnownPositive(C2_C1)) {
2035 ++SymbolicRDIVindependence;
2036 return true;
2037 }
2038 }
2039 else if (SE->isKnownNonPositive(A2)) {
2040 // a1 <= 0 && a2 <= 0
2041 if (N1) {
2042 // make sure that a1*N1 <= c2 - c1
2043 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2044 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2045 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2046 ++SymbolicRDIVindependence;
2047 return true;
2048 }
2049 }
2050 if (N2) {
2051 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2052 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2053 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2054 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2055 ++SymbolicRDIVindependence;
2056 return true;
2057 }
2058 }
2059 }
2060 }
2061 return false;
2062 }
2063
2064
2065 // testSIV -
2066 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2067 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2068 // a2 are constant, we attack it with an SIV test. While they can all be
2069 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2070 // they apply; they're cheaper and sometimes more precise.
2071 //
2072 // Return true if dependence disproved.
testSIV(const SCEV * Src,const SCEV * Dst,unsigned & Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const2073 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2074 FullDependence &Result, Constraint &NewConstraint,
2075 const SCEV *&SplitIter) const {
2076 DEBUG(dbgs() << " src = " << *Src << "\n");
2077 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2078 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2079 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2080 if (SrcAddRec && DstAddRec) {
2081 const SCEV *SrcConst = SrcAddRec->getStart();
2082 const SCEV *DstConst = DstAddRec->getStart();
2083 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2084 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2085 const Loop *CurLoop = SrcAddRec->getLoop();
2086 assert(CurLoop == DstAddRec->getLoop() &&
2087 "both loops in SIV should be same");
2088 Level = mapSrcLoop(CurLoop);
2089 bool disproven;
2090 if (SrcCoeff == DstCoeff)
2091 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2092 Level, Result, NewConstraint);
2093 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2094 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2095 Level, Result, NewConstraint, SplitIter);
2096 else
2097 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2098 Level, Result, NewConstraint);
2099 return disproven ||
2100 gcdMIVtest(Src, Dst, Result) ||
2101 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2102 }
2103 if (SrcAddRec) {
2104 const SCEV *SrcConst = SrcAddRec->getStart();
2105 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2106 const SCEV *DstConst = Dst;
2107 const Loop *CurLoop = SrcAddRec->getLoop();
2108 Level = mapSrcLoop(CurLoop);
2109 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2110 Level, Result, NewConstraint) ||
2111 gcdMIVtest(Src, Dst, Result);
2112 }
2113 if (DstAddRec) {
2114 const SCEV *DstConst = DstAddRec->getStart();
2115 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2116 const SCEV *SrcConst = Src;
2117 const Loop *CurLoop = DstAddRec->getLoop();
2118 Level = mapDstLoop(CurLoop);
2119 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2120 CurLoop, Level, Result, NewConstraint) ||
2121 gcdMIVtest(Src, Dst, Result);
2122 }
2123 llvm_unreachable("SIV test expected at least one AddRec");
2124 return false;
2125 }
2126
2127
2128 // testRDIV -
2129 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2130 // where i and j are induction variables, c1 and c2 are loop invariant,
2131 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2132 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2133 // It doesn't make sense to talk about distance or direction in this case,
2134 // so there's no point in making special versions of the Strong SIV test or
2135 // the Weak-crossing SIV test.
2136 //
2137 // With minor algebra, this test can also be used for things like
2138 // [c1 + a1*i + a2*j][c2].
2139 //
2140 // Return true if dependence disproved.
testRDIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2141 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2142 FullDependence &Result) const {
2143 // we have 3 possible situations here:
2144 // 1) [a*i + b] and [c*j + d]
2145 // 2) [a*i + c*j + b] and [d]
2146 // 3) [b] and [a*i + c*j + d]
2147 // We need to find what we've got and get organized
2148
2149 const SCEV *SrcConst, *DstConst;
2150 const SCEV *SrcCoeff, *DstCoeff;
2151 const Loop *SrcLoop, *DstLoop;
2152
2153 DEBUG(dbgs() << " src = " << *Src << "\n");
2154 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2155 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2156 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2157 if (SrcAddRec && DstAddRec) {
2158 SrcConst = SrcAddRec->getStart();
2159 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2160 SrcLoop = SrcAddRec->getLoop();
2161 DstConst = DstAddRec->getStart();
2162 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2163 DstLoop = DstAddRec->getLoop();
2164 }
2165 else if (SrcAddRec) {
2166 if (const SCEVAddRecExpr *tmpAddRec =
2167 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2168 SrcConst = tmpAddRec->getStart();
2169 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2170 SrcLoop = tmpAddRec->getLoop();
2171 DstConst = Dst;
2172 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2173 DstLoop = SrcAddRec->getLoop();
2174 }
2175 else
2176 llvm_unreachable("RDIV reached by surprising SCEVs");
2177 }
2178 else if (DstAddRec) {
2179 if (const SCEVAddRecExpr *tmpAddRec =
2180 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2181 DstConst = tmpAddRec->getStart();
2182 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2183 DstLoop = tmpAddRec->getLoop();
2184 SrcConst = Src;
2185 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2186 SrcLoop = DstAddRec->getLoop();
2187 }
2188 else
2189 llvm_unreachable("RDIV reached by surprising SCEVs");
2190 }
2191 else
2192 llvm_unreachable("RDIV expected at least one AddRec");
2193 return exactRDIVtest(SrcCoeff, DstCoeff,
2194 SrcConst, DstConst,
2195 SrcLoop, DstLoop,
2196 Result) ||
2197 gcdMIVtest(Src, Dst, Result) ||
2198 symbolicRDIVtest(SrcCoeff, DstCoeff,
2199 SrcConst, DstConst,
2200 SrcLoop, DstLoop);
2201 }
2202
2203
2204 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2205 // Return true if dependence disproved.
2206 // Can sometimes refine direction vectors.
testMIV(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2207 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2208 const SmallBitVector &Loops,
2209 FullDependence &Result) const {
2210 DEBUG(dbgs() << " src = " << *Src << "\n");
2211 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2212 Result.Consistent = false;
2213 return gcdMIVtest(Src, Dst, Result) ||
2214 banerjeeMIVtest(Src, Dst, Loops, Result);
2215 }
2216
2217
2218 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2219 // in this case 10. If there is no constant part, returns NULL.
2220 static
getConstantPart(const SCEV * Expr)2221 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2222 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2223 return Constant;
2224 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2225 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2226 return Constant;
2227 return nullptr;
2228 }
2229
2230
2231 //===----------------------------------------------------------------------===//
2232 // gcdMIVtest -
2233 // Tests an MIV subscript pair for dependence.
2234 // Returns true if any possible dependence is disproved.
2235 // Marks the result as inconsistent.
2236 // Can sometimes disprove the equal direction for 1 or more loops,
2237 // as discussed in Michael Wolfe's book,
2238 // High Performance Compilers for Parallel Computing, page 235.
2239 //
2240 // We spend some effort (code!) to handle cases like
2241 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2242 // but M and N are just loop-invariant variables.
2243 // This should help us handle linearized subscripts;
2244 // also makes this test a useful backup to the various SIV tests.
2245 //
2246 // It occurs to me that the presence of loop-invariant variables
2247 // changes the nature of the test from "greatest common divisor"
2248 // to "a common divisor".
gcdMIVtest(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2249 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2250 FullDependence &Result) const {
2251 DEBUG(dbgs() << "starting gcd\n");
2252 ++GCDapplications;
2253 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2254 APInt RunningGCD = APInt::getNullValue(BitWidth);
2255
2256 // Examine Src coefficients.
2257 // Compute running GCD and record source constant.
2258 // Because we're looking for the constant at the end of the chain,
2259 // we can't quit the loop just because the GCD == 1.
2260 const SCEV *Coefficients = Src;
2261 while (const SCEVAddRecExpr *AddRec =
2262 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2263 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2264 // If the coefficient is the product of a constant and other stuff,
2265 // we can use the constant in the GCD computation.
2266 const auto *Constant = getConstantPart(Coeff);
2267 if (!Constant)
2268 return false;
2269 APInt ConstCoeff = Constant->getAPInt();
2270 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2271 Coefficients = AddRec->getStart();
2272 }
2273 const SCEV *SrcConst = Coefficients;
2274
2275 // Examine Dst coefficients.
2276 // Compute running GCD and record destination constant.
2277 // Because we're looking for the constant at the end of the chain,
2278 // we can't quit the loop just because the GCD == 1.
2279 Coefficients = Dst;
2280 while (const SCEVAddRecExpr *AddRec =
2281 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2282 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2283 // If the coefficient is the product of a constant and other stuff,
2284 // we can use the constant in the GCD computation.
2285 const auto *Constant = getConstantPart(Coeff);
2286 if (!Constant)
2287 return false;
2288 APInt ConstCoeff = Constant->getAPInt();
2289 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2290 Coefficients = AddRec->getStart();
2291 }
2292 const SCEV *DstConst = Coefficients;
2293
2294 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2295 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2296 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2297 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2298 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2299 // If Delta is a sum of products, we may be able to make further progress.
2300 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2301 const SCEV *Operand = Sum->getOperand(Op);
2302 if (isa<SCEVConstant>(Operand)) {
2303 assert(!Constant && "Surprised to find multiple constants");
2304 Constant = cast<SCEVConstant>(Operand);
2305 }
2306 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2307 // Search for constant operand to participate in GCD;
2308 // If none found; return false.
2309 const SCEVConstant *ConstOp = getConstantPart(Product);
2310 if (!ConstOp)
2311 return false;
2312 APInt ConstOpValue = ConstOp->getAPInt();
2313 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2314 ConstOpValue.abs());
2315 }
2316 else
2317 return false;
2318 }
2319 }
2320 if (!Constant)
2321 return false;
2322 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2323 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2324 if (ConstDelta == 0)
2325 return false;
2326 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2327 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2328 APInt Remainder = ConstDelta.srem(RunningGCD);
2329 if (Remainder != 0) {
2330 ++GCDindependence;
2331 return true;
2332 }
2333
2334 // Try to disprove equal directions.
2335 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2336 // the code above can't disprove the dependence because the GCD = 1.
2337 // So we consider what happen if i = i' and what happens if j = j'.
2338 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2339 // which is infeasible, so we can disallow the = direction for the i level.
2340 // Setting j = j' doesn't help matters, so we end up with a direction vector
2341 // of [<>, *]
2342 //
2343 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2344 // we need to remember that the constant part is 5 and the RunningGCD should
2345 // be initialized to ExtraGCD = 30.
2346 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2347
2348 bool Improved = false;
2349 Coefficients = Src;
2350 while (const SCEVAddRecExpr *AddRec =
2351 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2352 Coefficients = AddRec->getStart();
2353 const Loop *CurLoop = AddRec->getLoop();
2354 RunningGCD = ExtraGCD;
2355 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2356 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2357 const SCEV *Inner = Src;
2358 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2359 AddRec = cast<SCEVAddRecExpr>(Inner);
2360 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2361 if (CurLoop == AddRec->getLoop())
2362 ; // SrcCoeff == Coeff
2363 else {
2364 // If the coefficient is the product of a constant and other stuff,
2365 // we can use the constant in the GCD computation.
2366 Constant = getConstantPart(Coeff);
2367 if (!Constant)
2368 return false;
2369 APInt ConstCoeff = Constant->getAPInt();
2370 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2371 }
2372 Inner = AddRec->getStart();
2373 }
2374 Inner = Dst;
2375 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2376 AddRec = cast<SCEVAddRecExpr>(Inner);
2377 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2378 if (CurLoop == AddRec->getLoop())
2379 DstCoeff = Coeff;
2380 else {
2381 // If the coefficient is the product of a constant and other stuff,
2382 // we can use the constant in the GCD computation.
2383 Constant = getConstantPart(Coeff);
2384 if (!Constant)
2385 return false;
2386 APInt ConstCoeff = Constant->getAPInt();
2387 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2388 }
2389 Inner = AddRec->getStart();
2390 }
2391 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2392 // If the coefficient is the product of a constant and other stuff,
2393 // we can use the constant in the GCD computation.
2394 Constant = getConstantPart(Delta);
2395 if (!Constant)
2396 // The difference of the two coefficients might not be a product
2397 // or constant, in which case we give up on this direction.
2398 continue;
2399 APInt ConstCoeff = Constant->getAPInt();
2400 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2401 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2402 if (RunningGCD != 0) {
2403 Remainder = ConstDelta.srem(RunningGCD);
2404 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2405 if (Remainder != 0) {
2406 unsigned Level = mapSrcLoop(CurLoop);
2407 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2408 Improved = true;
2409 }
2410 }
2411 }
2412 if (Improved)
2413 ++GCDsuccesses;
2414 DEBUG(dbgs() << "all done\n");
2415 return false;
2416 }
2417
2418
2419 //===----------------------------------------------------------------------===//
2420 // banerjeeMIVtest -
2421 // Use Banerjee's Inequalities to test an MIV subscript pair.
2422 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2423 // Generally follows the discussion in Section 2.5.2 of
2424 //
2425 // Optimizing Supercompilers for Supercomputers
2426 // Michael Wolfe
2427 //
2428 // The inequalities given on page 25 are simplified in that loops are
2429 // normalized so that the lower bound is always 0 and the stride is always 1.
2430 // For example, Wolfe gives
2431 //
2432 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2433 //
2434 // where A_k is the coefficient of the kth index in the source subscript,
2435 // B_k is the coefficient of the kth index in the destination subscript,
2436 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2437 // index, and N_k is the stride of the kth index. Since all loops are normalized
2438 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2439 // equation to
2440 //
2441 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2442 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2443 //
2444 // Similar simplifications are possible for the other equations.
2445 //
2446 // When we can't determine the number of iterations for a loop,
2447 // we use NULL as an indicator for the worst case, infinity.
2448 // When computing the upper bound, NULL denotes +inf;
2449 // for the lower bound, NULL denotes -inf.
2450 //
2451 // Return true if dependence disproved.
banerjeeMIVtest(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2452 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2453 const SmallBitVector &Loops,
2454 FullDependence &Result) const {
2455 DEBUG(dbgs() << "starting Banerjee\n");
2456 ++BanerjeeApplications;
2457 DEBUG(dbgs() << " Src = " << *Src << '\n');
2458 const SCEV *A0;
2459 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2460 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2461 const SCEV *B0;
2462 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2463 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2464 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2465 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2466
2467 // Compute bounds for all the * directions.
2468 DEBUG(dbgs() << "\tBounds[*]\n");
2469 for (unsigned K = 1; K <= MaxLevels; ++K) {
2470 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2471 Bound[K].Direction = Dependence::DVEntry::ALL;
2472 Bound[K].DirSet = Dependence::DVEntry::NONE;
2473 findBoundsALL(A, B, Bound, K);
2474 #ifndef NDEBUG
2475 DEBUG(dbgs() << "\t " << K << '\t');
2476 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2477 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2478 else
2479 DEBUG(dbgs() << "-inf\t");
2480 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2481 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2482 else
2483 DEBUG(dbgs() << "+inf\n");
2484 #endif
2485 }
2486
2487 // Test the *, *, *, ... case.
2488 bool Disproved = false;
2489 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2490 // Explore the direction vector hierarchy.
2491 unsigned DepthExpanded = 0;
2492 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2493 Loops, DepthExpanded, Delta);
2494 if (NewDeps > 0) {
2495 bool Improved = false;
2496 for (unsigned K = 1; K <= CommonLevels; ++K) {
2497 if (Loops[K]) {
2498 unsigned Old = Result.DV[K - 1].Direction;
2499 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2500 Improved |= Old != Result.DV[K - 1].Direction;
2501 if (!Result.DV[K - 1].Direction) {
2502 Improved = false;
2503 Disproved = true;
2504 break;
2505 }
2506 }
2507 }
2508 if (Improved)
2509 ++BanerjeeSuccesses;
2510 }
2511 else {
2512 ++BanerjeeIndependence;
2513 Disproved = true;
2514 }
2515 }
2516 else {
2517 ++BanerjeeIndependence;
2518 Disproved = true;
2519 }
2520 delete [] Bound;
2521 delete [] A;
2522 delete [] B;
2523 return Disproved;
2524 }
2525
2526
2527 // Hierarchically expands the direction vector
2528 // search space, combining the directions of discovered dependences
2529 // in the DirSet field of Bound. Returns the number of distinct
2530 // dependences discovered. If the dependence is disproved,
2531 // it will return 0.
exploreDirections(unsigned Level,CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,const SmallBitVector & Loops,unsigned & DepthExpanded,const SCEV * Delta) const2532 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2533 CoefficientInfo *B, BoundInfo *Bound,
2534 const SmallBitVector &Loops,
2535 unsigned &DepthExpanded,
2536 const SCEV *Delta) const {
2537 if (Level > CommonLevels) {
2538 // record result
2539 DEBUG(dbgs() << "\t[");
2540 for (unsigned K = 1; K <= CommonLevels; ++K) {
2541 if (Loops[K]) {
2542 Bound[K].DirSet |= Bound[K].Direction;
2543 #ifndef NDEBUG
2544 switch (Bound[K].Direction) {
2545 case Dependence::DVEntry::LT:
2546 DEBUG(dbgs() << " <");
2547 break;
2548 case Dependence::DVEntry::EQ:
2549 DEBUG(dbgs() << " =");
2550 break;
2551 case Dependence::DVEntry::GT:
2552 DEBUG(dbgs() << " >");
2553 break;
2554 case Dependence::DVEntry::ALL:
2555 DEBUG(dbgs() << " *");
2556 break;
2557 default:
2558 llvm_unreachable("unexpected Bound[K].Direction");
2559 }
2560 #endif
2561 }
2562 }
2563 DEBUG(dbgs() << " ]\n");
2564 return 1;
2565 }
2566 if (Loops[Level]) {
2567 if (Level > DepthExpanded) {
2568 DepthExpanded = Level;
2569 // compute bounds for <, =, > at current level
2570 findBoundsLT(A, B, Bound, Level);
2571 findBoundsGT(A, B, Bound, Level);
2572 findBoundsEQ(A, B, Bound, Level);
2573 #ifndef NDEBUG
2574 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2575 DEBUG(dbgs() << "\t <\t");
2576 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2577 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2578 else
2579 DEBUG(dbgs() << "-inf\t");
2580 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2581 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2582 else
2583 DEBUG(dbgs() << "+inf\n");
2584 DEBUG(dbgs() << "\t =\t");
2585 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2586 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2587 else
2588 DEBUG(dbgs() << "-inf\t");
2589 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2590 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2591 else
2592 DEBUG(dbgs() << "+inf\n");
2593 DEBUG(dbgs() << "\t >\t");
2594 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2595 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2596 else
2597 DEBUG(dbgs() << "-inf\t");
2598 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2599 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2600 else
2601 DEBUG(dbgs() << "+inf\n");
2602 #endif
2603 }
2604
2605 unsigned NewDeps = 0;
2606
2607 // test bounds for <, *, *, ...
2608 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2609 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2610 Loops, DepthExpanded, Delta);
2611
2612 // Test bounds for =, *, *, ...
2613 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2614 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2615 Loops, DepthExpanded, Delta);
2616
2617 // test bounds for >, *, *, ...
2618 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2619 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2620 Loops, DepthExpanded, Delta);
2621
2622 Bound[Level].Direction = Dependence::DVEntry::ALL;
2623 return NewDeps;
2624 }
2625 else
2626 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2627 }
2628
2629
2630 // Returns true iff the current bounds are plausible.
testBounds(unsigned char DirKind,unsigned Level,BoundInfo * Bound,const SCEV * Delta) const2631 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2632 BoundInfo *Bound, const SCEV *Delta) const {
2633 Bound[Level].Direction = DirKind;
2634 if (const SCEV *LowerBound = getLowerBound(Bound))
2635 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2636 return false;
2637 if (const SCEV *UpperBound = getUpperBound(Bound))
2638 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2639 return false;
2640 return true;
2641 }
2642
2643
2644 // Computes the upper and lower bounds for level K
2645 // using the * direction. Records them in Bound.
2646 // Wolfe gives the equations
2647 //
2648 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2649 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2650 //
2651 // Since we normalize loops, we can simplify these equations to
2652 //
2653 // LB^*_k = (A^-_k - B^+_k)U_k
2654 // UB^*_k = (A^+_k - B^-_k)U_k
2655 //
2656 // We must be careful to handle the case where the upper bound is unknown.
2657 // Note that the lower bound is always <= 0
2658 // and the upper bound is always >= 0.
findBoundsALL(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2659 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2660 BoundInfo *Bound, unsigned K) const {
2661 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2662 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2663 if (Bound[K].Iterations) {
2664 Bound[K].Lower[Dependence::DVEntry::ALL] =
2665 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2666 Bound[K].Iterations);
2667 Bound[K].Upper[Dependence::DVEntry::ALL] =
2668 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2669 Bound[K].Iterations);
2670 }
2671 else {
2672 // If the difference is 0, we won't need to know the number of iterations.
2673 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2674 Bound[K].Lower[Dependence::DVEntry::ALL] =
2675 SE->getZero(A[K].Coeff->getType());
2676 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2677 Bound[K].Upper[Dependence::DVEntry::ALL] =
2678 SE->getZero(A[K].Coeff->getType());
2679 }
2680 }
2681
2682
2683 // Computes the upper and lower bounds for level K
2684 // using the = direction. Records them in Bound.
2685 // Wolfe gives the equations
2686 //
2687 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2688 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2689 //
2690 // Since we normalize loops, we can simplify these equations to
2691 //
2692 // LB^=_k = (A_k - B_k)^- U_k
2693 // UB^=_k = (A_k - B_k)^+ U_k
2694 //
2695 // We must be careful to handle the case where the upper bound is unknown.
2696 // Note that the lower bound is always <= 0
2697 // and the upper bound is always >= 0.
findBoundsEQ(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2698 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2699 BoundInfo *Bound, unsigned K) const {
2700 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2701 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2702 if (Bound[K].Iterations) {
2703 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2704 const SCEV *NegativePart = getNegativePart(Delta);
2705 Bound[K].Lower[Dependence::DVEntry::EQ] =
2706 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2707 const SCEV *PositivePart = getPositivePart(Delta);
2708 Bound[K].Upper[Dependence::DVEntry::EQ] =
2709 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2710 }
2711 else {
2712 // If the positive/negative part of the difference is 0,
2713 // we won't need to know the number of iterations.
2714 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2715 const SCEV *NegativePart = getNegativePart(Delta);
2716 if (NegativePart->isZero())
2717 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2718 const SCEV *PositivePart = getPositivePart(Delta);
2719 if (PositivePart->isZero())
2720 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2721 }
2722 }
2723
2724
2725 // Computes the upper and lower bounds for level K
2726 // using the < direction. Records them in Bound.
2727 // Wolfe gives the equations
2728 //
2729 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2730 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2731 //
2732 // Since we normalize loops, we can simplify these equations to
2733 //
2734 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2735 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2736 //
2737 // We must be careful to handle the case where the upper bound is unknown.
findBoundsLT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2738 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2739 BoundInfo *Bound, unsigned K) const {
2740 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2741 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2742 if (Bound[K].Iterations) {
2743 const SCEV *Iter_1 = SE->getMinusSCEV(
2744 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2745 const SCEV *NegPart =
2746 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2747 Bound[K].Lower[Dependence::DVEntry::LT] =
2748 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2749 const SCEV *PosPart =
2750 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2751 Bound[K].Upper[Dependence::DVEntry::LT] =
2752 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2753 }
2754 else {
2755 // If the positive/negative part of the difference is 0,
2756 // we won't need to know the number of iterations.
2757 const SCEV *NegPart =
2758 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2759 if (NegPart->isZero())
2760 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2761 const SCEV *PosPart =
2762 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2763 if (PosPart->isZero())
2764 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2765 }
2766 }
2767
2768
2769 // Computes the upper and lower bounds for level K
2770 // using the > direction. Records them in Bound.
2771 // Wolfe gives the equations
2772 //
2773 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2774 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2775 //
2776 // Since we normalize loops, we can simplify these equations to
2777 //
2778 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2779 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2780 //
2781 // We must be careful to handle the case where the upper bound is unknown.
findBoundsGT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2782 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2783 BoundInfo *Bound, unsigned K) const {
2784 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2785 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2786 if (Bound[K].Iterations) {
2787 const SCEV *Iter_1 = SE->getMinusSCEV(
2788 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2789 const SCEV *NegPart =
2790 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2791 Bound[K].Lower[Dependence::DVEntry::GT] =
2792 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2793 const SCEV *PosPart =
2794 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2795 Bound[K].Upper[Dependence::DVEntry::GT] =
2796 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2797 }
2798 else {
2799 // If the positive/negative part of the difference is 0,
2800 // we won't need to know the number of iterations.
2801 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2802 if (NegPart->isZero())
2803 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2804 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2805 if (PosPart->isZero())
2806 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2807 }
2808 }
2809
2810
2811 // X^+ = max(X, 0)
getPositivePart(const SCEV * X) const2812 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2813 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2814 }
2815
2816
2817 // X^- = min(X, 0)
getNegativePart(const SCEV * X) const2818 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2819 return SE->getSMinExpr(X, SE->getZero(X->getType()));
2820 }
2821
2822
2823 // Walks through the subscript,
2824 // collecting each coefficient, the associated loop bounds,
2825 // and recording its positive and negative parts for later use.
2826 DependenceInfo::CoefficientInfo *
collectCoeffInfo(const SCEV * Subscript,bool SrcFlag,const SCEV * & Constant) const2827 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2828 const SCEV *&Constant) const {
2829 const SCEV *Zero = SE->getZero(Subscript->getType());
2830 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2831 for (unsigned K = 1; K <= MaxLevels; ++K) {
2832 CI[K].Coeff = Zero;
2833 CI[K].PosPart = Zero;
2834 CI[K].NegPart = Zero;
2835 CI[K].Iterations = nullptr;
2836 }
2837 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2838 const Loop *L = AddRec->getLoop();
2839 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2840 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2841 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2842 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2843 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2844 Subscript = AddRec->getStart();
2845 }
2846 Constant = Subscript;
2847 #ifndef NDEBUG
2848 DEBUG(dbgs() << "\tCoefficient Info\n");
2849 for (unsigned K = 1; K <= MaxLevels; ++K) {
2850 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2851 DEBUG(dbgs() << "\tPos Part = ");
2852 DEBUG(dbgs() << *CI[K].PosPart);
2853 DEBUG(dbgs() << "\tNeg Part = ");
2854 DEBUG(dbgs() << *CI[K].NegPart);
2855 DEBUG(dbgs() << "\tUpper Bound = ");
2856 if (CI[K].Iterations)
2857 DEBUG(dbgs() << *CI[K].Iterations);
2858 else
2859 DEBUG(dbgs() << "+inf");
2860 DEBUG(dbgs() << '\n');
2861 }
2862 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2863 #endif
2864 return CI;
2865 }
2866
2867
2868 // Looks through all the bounds info and
2869 // computes the lower bound given the current direction settings
2870 // at each level. If the lower bound for any level is -inf,
2871 // the result is -inf.
getLowerBound(BoundInfo * Bound) const2872 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2873 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2874 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2875 if (Bound[K].Lower[Bound[K].Direction])
2876 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2877 else
2878 Sum = nullptr;
2879 }
2880 return Sum;
2881 }
2882
2883
2884 // Looks through all the bounds info and
2885 // computes the upper bound given the current direction settings
2886 // at each level. If the upper bound at any level is +inf,
2887 // the result is +inf.
getUpperBound(BoundInfo * Bound) const2888 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2889 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2890 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2891 if (Bound[K].Upper[Bound[K].Direction])
2892 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2893 else
2894 Sum = nullptr;
2895 }
2896 return Sum;
2897 }
2898
2899
2900 //===----------------------------------------------------------------------===//
2901 // Constraint manipulation for Delta test.
2902
2903 // Given a linear SCEV,
2904 // return the coefficient (the step)
2905 // corresponding to the specified loop.
2906 // If there isn't one, return 0.
2907 // For example, given a*i + b*j + c*k, finding the coefficient
2908 // corresponding to the j loop would yield b.
findCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2909 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2910 const Loop *TargetLoop) const {
2911 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2912 if (!AddRec)
2913 return SE->getZero(Expr->getType());
2914 if (AddRec->getLoop() == TargetLoop)
2915 return AddRec->getStepRecurrence(*SE);
2916 return findCoefficient(AddRec->getStart(), TargetLoop);
2917 }
2918
2919
2920 // Given a linear SCEV,
2921 // return the SCEV given by zeroing out the coefficient
2922 // corresponding to the specified loop.
2923 // For example, given a*i + b*j + c*k, zeroing the coefficient
2924 // corresponding to the j loop would yield a*i + c*k.
zeroCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2925 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2926 const Loop *TargetLoop) const {
2927 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2928 if (!AddRec)
2929 return Expr; // ignore
2930 if (AddRec->getLoop() == TargetLoop)
2931 return AddRec->getStart();
2932 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2933 AddRec->getStepRecurrence(*SE),
2934 AddRec->getLoop(),
2935 AddRec->getNoWrapFlags());
2936 }
2937
2938
2939 // Given a linear SCEV Expr,
2940 // return the SCEV given by adding some Value to the
2941 // coefficient corresponding to the specified TargetLoop.
2942 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
2943 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
addToCoefficient(const SCEV * Expr,const Loop * TargetLoop,const SCEV * Value) const2944 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
2945 const Loop *TargetLoop,
2946 const SCEV *Value) const {
2947 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2948 if (!AddRec) // create a new addRec
2949 return SE->getAddRecExpr(Expr,
2950 Value,
2951 TargetLoop,
2952 SCEV::FlagAnyWrap); // Worst case, with no info.
2953 if (AddRec->getLoop() == TargetLoop) {
2954 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2955 if (Sum->isZero())
2956 return AddRec->getStart();
2957 return SE->getAddRecExpr(AddRec->getStart(),
2958 Sum,
2959 AddRec->getLoop(),
2960 AddRec->getNoWrapFlags());
2961 }
2962 if (SE->isLoopInvariant(AddRec, TargetLoop))
2963 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
2964 return SE->getAddRecExpr(
2965 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
2966 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
2967 AddRec->getNoWrapFlags());
2968 }
2969
2970
2971 // Review the constraints, looking for opportunities
2972 // to simplify a subscript pair (Src and Dst).
2973 // Return true if some simplification occurs.
2974 // If the simplification isn't exact (that is, if it is conservative
2975 // in terms of dependence), set consistent to false.
2976 // Corresponds to Figure 5 from the paper
2977 //
2978 // Practical Dependence Testing
2979 // Goff, Kennedy, Tseng
2980 // PLDI 1991
propagate(const SCEV * & Src,const SCEV * & Dst,SmallBitVector & Loops,SmallVectorImpl<Constraint> & Constraints,bool & Consistent)2981 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
2982 SmallBitVector &Loops,
2983 SmallVectorImpl<Constraint> &Constraints,
2984 bool &Consistent) {
2985 bool Result = false;
2986 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2987 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
2988 DEBUG(Constraints[LI].dump(dbgs()));
2989 if (Constraints[LI].isDistance())
2990 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2991 else if (Constraints[LI].isLine())
2992 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2993 else if (Constraints[LI].isPoint())
2994 Result |= propagatePoint(Src, Dst, Constraints[LI]);
2995 }
2996 return Result;
2997 }
2998
2999
3000 // Attempt to propagate a distance
3001 // constraint into a subscript pair (Src and Dst).
3002 // Return true if some simplification occurs.
3003 // If the simplification isn't exact (that is, if it is conservative
3004 // in terms of dependence), set consistent to false.
propagateDistance(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3005 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3006 Constraint &CurConstraint,
3007 bool &Consistent) {
3008 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3009 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3010 const SCEV *A_K = findCoefficient(Src, CurLoop);
3011 if (A_K->isZero())
3012 return false;
3013 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3014 Src = SE->getMinusSCEV(Src, DA_K);
3015 Src = zeroCoefficient(Src, CurLoop);
3016 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3017 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3018 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3019 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3020 if (!findCoefficient(Dst, CurLoop)->isZero())
3021 Consistent = false;
3022 return true;
3023 }
3024
3025
3026 // Attempt to propagate a line
3027 // constraint into a subscript pair (Src and Dst).
3028 // Return true if some simplification occurs.
3029 // If the simplification isn't exact (that is, if it is conservative
3030 // in terms of dependence), set consistent to false.
propagateLine(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3031 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3032 Constraint &CurConstraint,
3033 bool &Consistent) {
3034 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3035 const SCEV *A = CurConstraint.getA();
3036 const SCEV *B = CurConstraint.getB();
3037 const SCEV *C = CurConstraint.getC();
3038 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3039 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3040 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3041 if (A->isZero()) {
3042 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3043 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3044 if (!Bconst || !Cconst) return false;
3045 APInt Beta = Bconst->getAPInt();
3046 APInt Charlie = Cconst->getAPInt();
3047 APInt CdivB = Charlie.sdiv(Beta);
3048 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3049 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3050 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3051 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3052 Dst = zeroCoefficient(Dst, CurLoop);
3053 if (!findCoefficient(Src, CurLoop)->isZero())
3054 Consistent = false;
3055 }
3056 else if (B->isZero()) {
3057 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3058 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3059 if (!Aconst || !Cconst) return false;
3060 APInt Alpha = Aconst->getAPInt();
3061 APInt Charlie = Cconst->getAPInt();
3062 APInt CdivA = Charlie.sdiv(Alpha);
3063 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3064 const SCEV *A_K = findCoefficient(Src, CurLoop);
3065 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3066 Src = zeroCoefficient(Src, CurLoop);
3067 if (!findCoefficient(Dst, CurLoop)->isZero())
3068 Consistent = false;
3069 }
3070 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3071 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3072 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3073 if (!Aconst || !Cconst) return false;
3074 APInt Alpha = Aconst->getAPInt();
3075 APInt Charlie = Cconst->getAPInt();
3076 APInt CdivA = Charlie.sdiv(Alpha);
3077 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3078 const SCEV *A_K = findCoefficient(Src, CurLoop);
3079 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3080 Src = zeroCoefficient(Src, CurLoop);
3081 Dst = addToCoefficient(Dst, CurLoop, A_K);
3082 if (!findCoefficient(Dst, CurLoop)->isZero())
3083 Consistent = false;
3084 }
3085 else {
3086 // paper is incorrect here, or perhaps just misleading
3087 const SCEV *A_K = findCoefficient(Src, CurLoop);
3088 Src = SE->getMulExpr(Src, A);
3089 Dst = SE->getMulExpr(Dst, A);
3090 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3091 Src = zeroCoefficient(Src, CurLoop);
3092 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3093 if (!findCoefficient(Dst, CurLoop)->isZero())
3094 Consistent = false;
3095 }
3096 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3097 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3098 return true;
3099 }
3100
3101
3102 // Attempt to propagate a point
3103 // constraint into a subscript pair (Src and Dst).
3104 // Return true if some simplification occurs.
propagatePoint(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint)3105 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3106 Constraint &CurConstraint) {
3107 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3108 const SCEV *A_K = findCoefficient(Src, CurLoop);
3109 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3110 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3111 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3112 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3113 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3114 Src = zeroCoefficient(Src, CurLoop);
3115 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3116 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3117 Dst = zeroCoefficient(Dst, CurLoop);
3118 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3119 return true;
3120 }
3121
3122
3123 // Update direction vector entry based on the current constraint.
updateDirection(Dependence::DVEntry & Level,const Constraint & CurConstraint) const3124 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3125 const Constraint &CurConstraint) const {
3126 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3127 DEBUG(CurConstraint.dump(dbgs()));
3128 if (CurConstraint.isAny())
3129 ; // use defaults
3130 else if (CurConstraint.isDistance()) {
3131 // this one is consistent, the others aren't
3132 Level.Scalar = false;
3133 Level.Distance = CurConstraint.getD();
3134 unsigned NewDirection = Dependence::DVEntry::NONE;
3135 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3136 NewDirection = Dependence::DVEntry::EQ;
3137 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3138 NewDirection |= Dependence::DVEntry::LT;
3139 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3140 NewDirection |= Dependence::DVEntry::GT;
3141 Level.Direction &= NewDirection;
3142 }
3143 else if (CurConstraint.isLine()) {
3144 Level.Scalar = false;
3145 Level.Distance = nullptr;
3146 // direction should be accurate
3147 }
3148 else if (CurConstraint.isPoint()) {
3149 Level.Scalar = false;
3150 Level.Distance = nullptr;
3151 unsigned NewDirection = Dependence::DVEntry::NONE;
3152 if (!isKnownPredicate(CmpInst::ICMP_NE,
3153 CurConstraint.getY(),
3154 CurConstraint.getX()))
3155 // if X may be = Y
3156 NewDirection |= Dependence::DVEntry::EQ;
3157 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3158 CurConstraint.getY(),
3159 CurConstraint.getX()))
3160 // if Y may be > X
3161 NewDirection |= Dependence::DVEntry::LT;
3162 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3163 CurConstraint.getY(),
3164 CurConstraint.getX()))
3165 // if Y may be < X
3166 NewDirection |= Dependence::DVEntry::GT;
3167 Level.Direction &= NewDirection;
3168 }
3169 else
3170 llvm_unreachable("constraint has unexpected kind");
3171 }
3172
3173 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3174 /// source and destination array references are recurrences on a nested loop,
3175 /// this function flattens the nested recurrences into separate recurrences
3176 /// for each loop level.
tryDelinearize(Instruction * Src,Instruction * Dst,SmallVectorImpl<Subscript> & Pair)3177 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3178 SmallVectorImpl<Subscript> &Pair) {
3179 Value *SrcPtr = getPointerOperand(Src);
3180 Value *DstPtr = getPointerOperand(Dst);
3181
3182 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3183 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3184
3185 // Below code mimics the code in Delinearization.cpp
3186 const SCEV *SrcAccessFn =
3187 SE->getSCEVAtScope(SrcPtr, SrcLoop);
3188 const SCEV *DstAccessFn =
3189 SE->getSCEVAtScope(DstPtr, DstLoop);
3190
3191 const SCEVUnknown *SrcBase =
3192 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3193 const SCEVUnknown *DstBase =
3194 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3195
3196 if (!SrcBase || !DstBase || SrcBase != DstBase)
3197 return false;
3198
3199 const SCEV *ElementSize = SE->getElementSize(Src);
3200 if (ElementSize != SE->getElementSize(Dst))
3201 return false;
3202
3203 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3204 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3205
3206 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3207 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3208 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3209 return false;
3210
3211 // First step: collect parametric terms in both array references.
3212 SmallVector<const SCEV *, 4> Terms;
3213 SE->collectParametricTerms(SrcAR, Terms);
3214 SE->collectParametricTerms(DstAR, Terms);
3215
3216 // Second step: find subscript sizes.
3217 SmallVector<const SCEV *, 4> Sizes;
3218 SE->findArrayDimensions(Terms, Sizes, ElementSize);
3219
3220 // Third step: compute the access functions for each subscript.
3221 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3222 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3223 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3224
3225 // Fail when there is only a subscript: that's a linearized access function.
3226 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3227 SrcSubscripts.size() != DstSubscripts.size())
3228 return false;
3229
3230 int size = SrcSubscripts.size();
3231
3232 DEBUG({
3233 dbgs() << "\nSrcSubscripts: ";
3234 for (int i = 0; i < size; i++)
3235 dbgs() << *SrcSubscripts[i];
3236 dbgs() << "\nDstSubscripts: ";
3237 for (int i = 0; i < size; i++)
3238 dbgs() << *DstSubscripts[i];
3239 });
3240
3241 // The delinearization transforms a single-subscript MIV dependence test into
3242 // a multi-subscript SIV dependence test that is easier to compute. So we
3243 // resize Pair to contain as many pairs of subscripts as the delinearization
3244 // has found, and then initialize the pairs following the delinearization.
3245 Pair.resize(size);
3246 for (int i = 0; i < size; ++i) {
3247 Pair[i].Src = SrcSubscripts[i];
3248 Pair[i].Dst = DstSubscripts[i];
3249 unifySubscriptType(&Pair[i]);
3250
3251 // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3252 // delinearization has found, and add these constraints to the dependence
3253 // check to avoid memory accesses overflow from one dimension into another.
3254 // This is related to the problem of determining the existence of data
3255 // dependences in array accesses using a different number of subscripts: in
3256 // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
3257 }
3258
3259 return true;
3260 }
3261
3262 //===----------------------------------------------------------------------===//
3263
3264 #ifndef NDEBUG
3265 // For debugging purposes, dump a small bit vector to dbgs().
dumpSmallBitVector(SmallBitVector & BV)3266 static void dumpSmallBitVector(SmallBitVector &BV) {
3267 dbgs() << "{";
3268 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3269 dbgs() << VI;
3270 if (BV.find_next(VI) >= 0)
3271 dbgs() << ' ';
3272 }
3273 dbgs() << "}\n";
3274 }
3275 #endif
3276
3277 // depends -
3278 // Returns NULL if there is no dependence.
3279 // Otherwise, return a Dependence with as many details as possible.
3280 // Corresponds to Section 3.1 in the paper
3281 //
3282 // Practical Dependence Testing
3283 // Goff, Kennedy, Tseng
3284 // PLDI 1991
3285 //
3286 // Care is required to keep the routine below, getSplitIteration(),
3287 // up to date with respect to this routine.
3288 std::unique_ptr<Dependence>
depends(Instruction * Src,Instruction * Dst,bool PossiblyLoopIndependent)3289 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3290 bool PossiblyLoopIndependent) {
3291 if (Src == Dst)
3292 PossiblyLoopIndependent = false;
3293
3294 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3295 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3296 // if both instructions don't reference memory, there's no dependence
3297 return nullptr;
3298
3299 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3300 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3301 DEBUG(dbgs() << "can only handle simple loads and stores\n");
3302 return make_unique<Dependence>(Src, Dst);
3303 }
3304
3305 Value *SrcPtr = getPointerOperand(Src);
3306 Value *DstPtr = getPointerOperand(Dst);
3307
3308 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3309 SrcPtr)) {
3310 case MayAlias:
3311 case PartialAlias:
3312 // cannot analyse objects if we don't understand their aliasing.
3313 DEBUG(dbgs() << "can't analyze may or partial alias\n");
3314 return make_unique<Dependence>(Src, Dst);
3315 case NoAlias:
3316 // If the objects noalias, they are distinct, accesses are independent.
3317 DEBUG(dbgs() << "no alias\n");
3318 return nullptr;
3319 case MustAlias:
3320 break; // The underlying objects alias; test accesses for dependence.
3321 }
3322
3323 // establish loop nesting levels
3324 establishNestingLevels(Src, Dst);
3325 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3326 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3327
3328 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3329 ++TotalArrayPairs;
3330
3331 // See if there are GEPs we can use.
3332 bool UsefulGEP = false;
3333 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3334 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3335 if (SrcGEP && DstGEP &&
3336 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3337 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3338 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3339 DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3340 DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n");
3341
3342 UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3343 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3344 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
3345 }
3346 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3347 SmallVector<Subscript, 4> Pair(Pairs);
3348 if (UsefulGEP) {
3349 DEBUG(dbgs() << " using GEPs\n");
3350 unsigned P = 0;
3351 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3352 SrcEnd = SrcGEP->idx_end(),
3353 DstIdx = DstGEP->idx_begin();
3354 SrcIdx != SrcEnd;
3355 ++SrcIdx, ++DstIdx, ++P) {
3356 Pair[P].Src = SE->getSCEV(*SrcIdx);
3357 Pair[P].Dst = SE->getSCEV(*DstIdx);
3358 unifySubscriptType(&Pair[P]);
3359 }
3360 }
3361 else {
3362 DEBUG(dbgs() << " ignoring GEPs\n");
3363 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3364 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3365 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3366 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3367 Pair[0].Src = SrcSCEV;
3368 Pair[0].Dst = DstSCEV;
3369 }
3370
3371 if (Delinearize && CommonLevels > 1) {
3372 if (tryDelinearize(Src, Dst, Pair)) {
3373 DEBUG(dbgs() << " delinerized GEP\n");
3374 Pairs = Pair.size();
3375 }
3376 }
3377
3378 for (unsigned P = 0; P < Pairs; ++P) {
3379 Pair[P].Loops.resize(MaxLevels + 1);
3380 Pair[P].GroupLoops.resize(MaxLevels + 1);
3381 Pair[P].Group.resize(Pairs);
3382 removeMatchingExtensions(&Pair[P]);
3383 Pair[P].Classification =
3384 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3385 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3386 Pair[P].Loops);
3387 Pair[P].GroupLoops = Pair[P].Loops;
3388 Pair[P].Group.set(P);
3389 DEBUG(dbgs() << " subscript " << P << "\n");
3390 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3391 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3392 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3393 DEBUG(dbgs() << "\tloops = ");
3394 DEBUG(dumpSmallBitVector(Pair[P].Loops));
3395 }
3396
3397 SmallBitVector Separable(Pairs);
3398 SmallBitVector Coupled(Pairs);
3399
3400 // Partition subscripts into separable and minimally-coupled groups
3401 // Algorithm in paper is algorithmically better;
3402 // this may be faster in practice. Check someday.
3403 //
3404 // Here's an example of how it works. Consider this code:
3405 //
3406 // for (i = ...) {
3407 // for (j = ...) {
3408 // for (k = ...) {
3409 // for (l = ...) {
3410 // for (m = ...) {
3411 // A[i][j][k][m] = ...;
3412 // ... = A[0][j][l][i + j];
3413 // }
3414 // }
3415 // }
3416 // }
3417 // }
3418 //
3419 // There are 4 subscripts here:
3420 // 0 [i] and [0]
3421 // 1 [j] and [j]
3422 // 2 [k] and [l]
3423 // 3 [m] and [i + j]
3424 //
3425 // We've already classified each subscript pair as ZIV, SIV, etc.,
3426 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3427 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3428 // and set Pair[P].Group = {P}.
3429 //
3430 // Src Dst Classification Loops GroupLoops Group
3431 // 0 [i] [0] SIV {1} {1} {0}
3432 // 1 [j] [j] SIV {2} {2} {1}
3433 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3434 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3435 //
3436 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3437 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3438 //
3439 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3440 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3441 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3442 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3443 // to either Separable or Coupled).
3444 //
3445 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3446 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3447 // so Pair[3].Group = {0, 1, 3} and Done = false.
3448 //
3449 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3450 // Since Done remains true, we add 2 to the set of Separable pairs.
3451 //
3452 // Finally, we consider 3. There's nothing to compare it with,
3453 // so Done remains true and we add it to the Coupled set.
3454 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3455 //
3456 // In the end, we've got 1 separable subscript and 1 coupled group.
3457 for (unsigned SI = 0; SI < Pairs; ++SI) {
3458 if (Pair[SI].Classification == Subscript::NonLinear) {
3459 // ignore these, but collect loops for later
3460 ++NonlinearSubscriptPairs;
3461 collectCommonLoops(Pair[SI].Src,
3462 LI->getLoopFor(Src->getParent()),
3463 Pair[SI].Loops);
3464 collectCommonLoops(Pair[SI].Dst,
3465 LI->getLoopFor(Dst->getParent()),
3466 Pair[SI].Loops);
3467 Result.Consistent = false;
3468 } else if (Pair[SI].Classification == Subscript::ZIV) {
3469 // always separable
3470 Separable.set(SI);
3471 }
3472 else {
3473 // SIV, RDIV, or MIV, so check for coupled group
3474 bool Done = true;
3475 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3476 SmallBitVector Intersection = Pair[SI].GroupLoops;
3477 Intersection &= Pair[SJ].GroupLoops;
3478 if (Intersection.any()) {
3479 // accumulate set of all the loops in group
3480 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3481 // accumulate set of all subscripts in group
3482 Pair[SJ].Group |= Pair[SI].Group;
3483 Done = false;
3484 }
3485 }
3486 if (Done) {
3487 if (Pair[SI].Group.count() == 1) {
3488 Separable.set(SI);
3489 ++SeparableSubscriptPairs;
3490 }
3491 else {
3492 Coupled.set(SI);
3493 ++CoupledSubscriptPairs;
3494 }
3495 }
3496 }
3497 }
3498
3499 DEBUG(dbgs() << " Separable = ");
3500 DEBUG(dumpSmallBitVector(Separable));
3501 DEBUG(dbgs() << " Coupled = ");
3502 DEBUG(dumpSmallBitVector(Coupled));
3503
3504 Constraint NewConstraint;
3505 NewConstraint.setAny(SE);
3506
3507 // test separable subscripts
3508 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3509 DEBUG(dbgs() << "testing subscript " << SI);
3510 switch (Pair[SI].Classification) {
3511 case Subscript::ZIV:
3512 DEBUG(dbgs() << ", ZIV\n");
3513 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3514 return nullptr;
3515 break;
3516 case Subscript::SIV: {
3517 DEBUG(dbgs() << ", SIV\n");
3518 unsigned Level;
3519 const SCEV *SplitIter = nullptr;
3520 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3521 SplitIter))
3522 return nullptr;
3523 break;
3524 }
3525 case Subscript::RDIV:
3526 DEBUG(dbgs() << ", RDIV\n");
3527 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3528 return nullptr;
3529 break;
3530 case Subscript::MIV:
3531 DEBUG(dbgs() << ", MIV\n");
3532 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3533 return nullptr;
3534 break;
3535 default:
3536 llvm_unreachable("subscript has unexpected classification");
3537 }
3538 }
3539
3540 if (Coupled.count()) {
3541 // test coupled subscript groups
3542 DEBUG(dbgs() << "starting on coupled subscripts\n");
3543 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3544 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3545 for (unsigned II = 0; II <= MaxLevels; ++II)
3546 Constraints[II].setAny(SE);
3547 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3548 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3549 SmallBitVector Group(Pair[SI].Group);
3550 SmallBitVector Sivs(Pairs);
3551 SmallBitVector Mivs(Pairs);
3552 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3553 SmallVector<Subscript *, 4> PairsInGroup;
3554 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3555 DEBUG(dbgs() << SJ << " ");
3556 if (Pair[SJ].Classification == Subscript::SIV)
3557 Sivs.set(SJ);
3558 else
3559 Mivs.set(SJ);
3560 PairsInGroup.push_back(&Pair[SJ]);
3561 }
3562 unifySubscriptType(PairsInGroup);
3563 DEBUG(dbgs() << "}\n");
3564 while (Sivs.any()) {
3565 bool Changed = false;
3566 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3567 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3568 // SJ is an SIV subscript that's part of the current coupled group
3569 unsigned Level;
3570 const SCEV *SplitIter = nullptr;
3571 DEBUG(dbgs() << "SIV\n");
3572 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3573 SplitIter))
3574 return nullptr;
3575 ConstrainedLevels.set(Level);
3576 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3577 if (Constraints[Level].isEmpty()) {
3578 ++DeltaIndependence;
3579 return nullptr;
3580 }
3581 Changed = true;
3582 }
3583 Sivs.reset(SJ);
3584 }
3585 if (Changed) {
3586 // propagate, possibly creating new SIVs and ZIVs
3587 DEBUG(dbgs() << " propagating\n");
3588 DEBUG(dbgs() << "\tMivs = ");
3589 DEBUG(dumpSmallBitVector(Mivs));
3590 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3591 // SJ is an MIV subscript that's part of the current coupled group
3592 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3593 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3594 Constraints, Result.Consistent)) {
3595 DEBUG(dbgs() << "\t Changed\n");
3596 ++DeltaPropagations;
3597 Pair[SJ].Classification =
3598 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3599 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3600 Pair[SJ].Loops);
3601 switch (Pair[SJ].Classification) {
3602 case Subscript::ZIV:
3603 DEBUG(dbgs() << "ZIV\n");
3604 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3605 return nullptr;
3606 Mivs.reset(SJ);
3607 break;
3608 case Subscript::SIV:
3609 Sivs.set(SJ);
3610 Mivs.reset(SJ);
3611 break;
3612 case Subscript::RDIV:
3613 case Subscript::MIV:
3614 break;
3615 default:
3616 llvm_unreachable("bad subscript classification");
3617 }
3618 }
3619 }
3620 }
3621 }
3622
3623 // test & propagate remaining RDIVs
3624 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3625 if (Pair[SJ].Classification == Subscript::RDIV) {
3626 DEBUG(dbgs() << "RDIV test\n");
3627 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3628 return nullptr;
3629 // I don't yet understand how to propagate RDIV results
3630 Mivs.reset(SJ);
3631 }
3632 }
3633
3634 // test remaining MIVs
3635 // This code is temporary.
3636 // Better to somehow test all remaining subscripts simultaneously.
3637 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3638 if (Pair[SJ].Classification == Subscript::MIV) {
3639 DEBUG(dbgs() << "MIV test\n");
3640 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3641 return nullptr;
3642 }
3643 else
3644 llvm_unreachable("expected only MIV subscripts at this point");
3645 }
3646
3647 // update Result.DV from constraint vector
3648 DEBUG(dbgs() << " updating\n");
3649 for (int SJ = ConstrainedLevels.find_first(); SJ >= 0;
3650 SJ = ConstrainedLevels.find_next(SJ)) {
3651 if (SJ > (int)CommonLevels)
3652 break;
3653 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3654 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3655 return nullptr;
3656 }
3657 }
3658 }
3659
3660 // Make sure the Scalar flags are set correctly.
3661 SmallBitVector CompleteLoops(MaxLevels + 1);
3662 for (unsigned SI = 0; SI < Pairs; ++SI)
3663 CompleteLoops |= Pair[SI].Loops;
3664 for (unsigned II = 1; II <= CommonLevels; ++II)
3665 if (CompleteLoops[II])
3666 Result.DV[II - 1].Scalar = false;
3667
3668 if (PossiblyLoopIndependent) {
3669 // Make sure the LoopIndependent flag is set correctly.
3670 // All directions must include equal, otherwise no
3671 // loop-independent dependence is possible.
3672 for (unsigned II = 1; II <= CommonLevels; ++II) {
3673 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3674 Result.LoopIndependent = false;
3675 break;
3676 }
3677 }
3678 }
3679 else {
3680 // On the other hand, if all directions are equal and there's no
3681 // loop-independent dependence possible, then no dependence exists.
3682 bool AllEqual = true;
3683 for (unsigned II = 1; II <= CommonLevels; ++II) {
3684 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3685 AllEqual = false;
3686 break;
3687 }
3688 }
3689 if (AllEqual)
3690 return nullptr;
3691 }
3692
3693 return make_unique<FullDependence>(std::move(Result));
3694 }
3695
3696
3697
3698 //===----------------------------------------------------------------------===//
3699 // getSplitIteration -
3700 // Rather than spend rarely-used space recording the splitting iteration
3701 // during the Weak-Crossing SIV test, we re-compute it on demand.
3702 // The re-computation is basically a repeat of the entire dependence test,
3703 // though simplified since we know that the dependence exists.
3704 // It's tedious, since we must go through all propagations, etc.
3705 //
3706 // Care is required to keep this code up to date with respect to the routine
3707 // above, depends().
3708 //
3709 // Generally, the dependence analyzer will be used to build
3710 // a dependence graph for a function (basically a map from instructions
3711 // to dependences). Looking for cycles in the graph shows us loops
3712 // that cannot be trivially vectorized/parallelized.
3713 //
3714 // We can try to improve the situation by examining all the dependences
3715 // that make up the cycle, looking for ones we can break.
3716 // Sometimes, peeling the first or last iteration of a loop will break
3717 // dependences, and we've got flags for those possibilities.
3718 // Sometimes, splitting a loop at some other iteration will do the trick,
3719 // and we've got a flag for that case. Rather than waste the space to
3720 // record the exact iteration (since we rarely know), we provide
3721 // a method that calculates the iteration. It's a drag that it must work
3722 // from scratch, but wonderful in that it's possible.
3723 //
3724 // Here's an example:
3725 //
3726 // for (i = 0; i < 10; i++)
3727 // A[i] = ...
3728 // ... = A[11 - i]
3729 //
3730 // There's a loop-carried flow dependence from the store to the load,
3731 // found by the weak-crossing SIV test. The dependence will have a flag,
3732 // indicating that the dependence can be broken by splitting the loop.
3733 // Calling getSplitIteration will return 5.
3734 // Splitting the loop breaks the dependence, like so:
3735 //
3736 // for (i = 0; i <= 5; i++)
3737 // A[i] = ...
3738 // ... = A[11 - i]
3739 // for (i = 6; i < 10; i++)
3740 // A[i] = ...
3741 // ... = A[11 - i]
3742 //
3743 // breaks the dependence and allows us to vectorize/parallelize
3744 // both loops.
getSplitIteration(const Dependence & Dep,unsigned SplitLevel)3745 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3746 unsigned SplitLevel) {
3747 assert(Dep.isSplitable(SplitLevel) &&
3748 "Dep should be splitable at SplitLevel");
3749 Instruction *Src = Dep.getSrc();
3750 Instruction *Dst = Dep.getDst();
3751 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3752 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3753 assert(isLoadOrStore(Src));
3754 assert(isLoadOrStore(Dst));
3755 Value *SrcPtr = getPointerOperand(Src);
3756 Value *DstPtr = getPointerOperand(Dst);
3757 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3758 SrcPtr) == MustAlias);
3759
3760 // establish loop nesting levels
3761 establishNestingLevels(Src, Dst);
3762
3763 FullDependence Result(Src, Dst, false, CommonLevels);
3764
3765 // See if there are GEPs we can use.
3766 bool UsefulGEP = false;
3767 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3768 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3769 if (SrcGEP && DstGEP &&
3770 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3771 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3772 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3773 UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3774 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3775 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
3776 }
3777 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3778 SmallVector<Subscript, 4> Pair(Pairs);
3779 if (UsefulGEP) {
3780 unsigned P = 0;
3781 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3782 SrcEnd = SrcGEP->idx_end(),
3783 DstIdx = DstGEP->idx_begin();
3784 SrcIdx != SrcEnd;
3785 ++SrcIdx, ++DstIdx, ++P) {
3786 Pair[P].Src = SE->getSCEV(*SrcIdx);
3787 Pair[P].Dst = SE->getSCEV(*DstIdx);
3788 }
3789 }
3790 else {
3791 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3792 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3793 Pair[0].Src = SrcSCEV;
3794 Pair[0].Dst = DstSCEV;
3795 }
3796
3797 if (Delinearize && CommonLevels > 1) {
3798 if (tryDelinearize(Src, Dst, Pair)) {
3799 DEBUG(dbgs() << " delinerized GEP\n");
3800 Pairs = Pair.size();
3801 }
3802 }
3803
3804 for (unsigned P = 0; P < Pairs; ++P) {
3805 Pair[P].Loops.resize(MaxLevels + 1);
3806 Pair[P].GroupLoops.resize(MaxLevels + 1);
3807 Pair[P].Group.resize(Pairs);
3808 removeMatchingExtensions(&Pair[P]);
3809 Pair[P].Classification =
3810 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3811 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3812 Pair[P].Loops);
3813 Pair[P].GroupLoops = Pair[P].Loops;
3814 Pair[P].Group.set(P);
3815 }
3816
3817 SmallBitVector Separable(Pairs);
3818 SmallBitVector Coupled(Pairs);
3819
3820 // partition subscripts into separable and minimally-coupled groups
3821 for (unsigned SI = 0; SI < Pairs; ++SI) {
3822 if (Pair[SI].Classification == Subscript::NonLinear) {
3823 // ignore these, but collect loops for later
3824 collectCommonLoops(Pair[SI].Src,
3825 LI->getLoopFor(Src->getParent()),
3826 Pair[SI].Loops);
3827 collectCommonLoops(Pair[SI].Dst,
3828 LI->getLoopFor(Dst->getParent()),
3829 Pair[SI].Loops);
3830 Result.Consistent = false;
3831 }
3832 else if (Pair[SI].Classification == Subscript::ZIV)
3833 Separable.set(SI);
3834 else {
3835 // SIV, RDIV, or MIV, so check for coupled group
3836 bool Done = true;
3837 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3838 SmallBitVector Intersection = Pair[SI].GroupLoops;
3839 Intersection &= Pair[SJ].GroupLoops;
3840 if (Intersection.any()) {
3841 // accumulate set of all the loops in group
3842 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3843 // accumulate set of all subscripts in group
3844 Pair[SJ].Group |= Pair[SI].Group;
3845 Done = false;
3846 }
3847 }
3848 if (Done) {
3849 if (Pair[SI].Group.count() == 1)
3850 Separable.set(SI);
3851 else
3852 Coupled.set(SI);
3853 }
3854 }
3855 }
3856
3857 Constraint NewConstraint;
3858 NewConstraint.setAny(SE);
3859
3860 // test separable subscripts
3861 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3862 switch (Pair[SI].Classification) {
3863 case Subscript::SIV: {
3864 unsigned Level;
3865 const SCEV *SplitIter = nullptr;
3866 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3867 Result, NewConstraint, SplitIter);
3868 if (Level == SplitLevel) {
3869 assert(SplitIter != nullptr);
3870 return SplitIter;
3871 }
3872 break;
3873 }
3874 case Subscript::ZIV:
3875 case Subscript::RDIV:
3876 case Subscript::MIV:
3877 break;
3878 default:
3879 llvm_unreachable("subscript has unexpected classification");
3880 }
3881 }
3882
3883 if (Coupled.count()) {
3884 // test coupled subscript groups
3885 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3886 for (unsigned II = 0; II <= MaxLevels; ++II)
3887 Constraints[II].setAny(SE);
3888 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3889 SmallBitVector Group(Pair[SI].Group);
3890 SmallBitVector Sivs(Pairs);
3891 SmallBitVector Mivs(Pairs);
3892 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3893 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3894 if (Pair[SJ].Classification == Subscript::SIV)
3895 Sivs.set(SJ);
3896 else
3897 Mivs.set(SJ);
3898 }
3899 while (Sivs.any()) {
3900 bool Changed = false;
3901 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3902 // SJ is an SIV subscript that's part of the current coupled group
3903 unsigned Level;
3904 const SCEV *SplitIter = nullptr;
3905 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3906 Result, NewConstraint, SplitIter);
3907 if (Level == SplitLevel && SplitIter)
3908 return SplitIter;
3909 ConstrainedLevels.set(Level);
3910 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3911 Changed = true;
3912 Sivs.reset(SJ);
3913 }
3914 if (Changed) {
3915 // propagate, possibly creating new SIVs and ZIVs
3916 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3917 // SJ is an MIV subscript that's part of the current coupled group
3918 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3919 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3920 Pair[SJ].Classification =
3921 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3922 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3923 Pair[SJ].Loops);
3924 switch (Pair[SJ].Classification) {
3925 case Subscript::ZIV:
3926 Mivs.reset(SJ);
3927 break;
3928 case Subscript::SIV:
3929 Sivs.set(SJ);
3930 Mivs.reset(SJ);
3931 break;
3932 case Subscript::RDIV:
3933 case Subscript::MIV:
3934 break;
3935 default:
3936 llvm_unreachable("bad subscript classification");
3937 }
3938 }
3939 }
3940 }
3941 }
3942 }
3943 }
3944 llvm_unreachable("somehow reached end of routine");
3945 return nullptr;
3946 }
3947