• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_cfg.h"
29 #include "brw_fs_live_variables.h"
30 
31 using namespace brw;
32 
33 #define MAX_INSTRUCTION (1 << 30)
34 
35 /** @file brw_fs_live_variables.cpp
36  *
37  * Support for calculating liveness information about virtual GRFs.
38  *
39  * This produces a live interval for each whole virtual GRF.  We could
40  * choose to expose per-component live intervals for VGRFs of size > 1,
41  * but we currently do not.  It is easier for the consumers of this
42  * information to work with whole VGRFs.
43  *
44  * However, we internally track use/def information at the per-GRF level for
45  * greater accuracy.  Large VGRFs may be accessed piecemeal over many
46  * (possibly non-adjacent) instructions.  In this case, examining a single
47  * instruction is insufficient to decide whether a whole VGRF is ultimately
48  * used or defined.  Tracking individual components allows us to easily
49  * assemble this information.
50  *
51  * See Muchnick's Advanced Compiler Design and Implementation, section
52  * 14.1 (p444).
53  */
54 
55 void
setup_one_read(struct block_data * bd,fs_inst * inst,int ip,const fs_reg & reg)56 fs_live_variables::setup_one_read(struct block_data *bd, fs_inst *inst,
57                                   int ip, const fs_reg &reg)
58 {
59    int var = var_from_reg(reg);
60    assert(var < num_vars);
61 
62    start[var] = MIN2(start[var], ip);
63    end[var] = MAX2(end[var], ip);
64 
65    /* The use[] bitset marks when the block makes use of a variable (VGRF
66     * channel) without having completely defined that variable within the
67     * block.
68     */
69    if (!BITSET_TEST(bd->def, var))
70       BITSET_SET(bd->use, var);
71 }
72 
73 void
setup_one_write(struct block_data * bd,fs_inst * inst,int ip,const fs_reg & reg)74 fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
75                                    int ip, const fs_reg &reg)
76 {
77    int var = var_from_reg(reg);
78    assert(var < num_vars);
79 
80    start[var] = MIN2(start[var], ip);
81    end[var] = MAX2(end[var], ip);
82 
83    /* The def[] bitset marks when an initialization in a block completely
84     * screens off previous updates of that variable (VGRF channel).
85     */
86    if (inst->dst.file == VGRF && !inst->is_partial_write()) {
87       if (!BITSET_TEST(bd->use, var))
88          BITSET_SET(bd->def, var);
89    }
90 }
91 
92 /**
93  * Sets up the use[] and def[] bitsets.
94  *
95  * The basic-block-level live variable analysis needs to know which
96  * variables get used before they're completely defined, and which
97  * variables are completely defined before they're used.
98  *
99  * These are tracked at the per-component level, rather than whole VGRFs.
100  */
101 void
setup_def_use()102 fs_live_variables::setup_def_use()
103 {
104    int ip = 0;
105 
106    foreach_block (block, cfg) {
107       assert(ip == block->start_ip);
108       if (block->num > 0)
109 	 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
110 
111       struct block_data *bd = &block_data[block->num];
112 
113       foreach_inst_in_block(fs_inst, inst, block) {
114 	 /* Set use[] for this instruction */
115 	 for (unsigned int i = 0; i < inst->sources; i++) {
116             fs_reg reg = inst->src[i];
117 
118             if (reg.file != VGRF)
119                continue;
120 
121             for (unsigned j = 0; j < regs_read(inst, i); j++) {
122                setup_one_read(bd, inst, ip, reg);
123                reg.offset += REG_SIZE;
124             }
125 	 }
126 
127          bd->flag_use[0] |= inst->flags_read(v->devinfo) & ~bd->flag_def[0];
128 
129          /* Set def[] for this instruction */
130          if (inst->dst.file == VGRF) {
131             fs_reg reg = inst->dst;
132             for (unsigned j = 0; j < regs_written(inst); j++) {
133                setup_one_write(bd, inst, ip, reg);
134                reg.offset += REG_SIZE;
135             }
136 	 }
137 
138          if (!inst->predicate && inst->exec_size >= 8)
139             bd->flag_def[0] |= inst->flags_written() & ~bd->flag_use[0];
140 
141 	 ip++;
142       }
143    }
144 }
145 
146 /**
147  * The algorithm incrementally sets bits in liveout and livein,
148  * propagating it through control flow.  It will eventually terminate
149  * because it only ever adds bits, and stops when no bits are added in
150  * a pass.
151  */
152 void
compute_live_variables()153 fs_live_variables::compute_live_variables()
154 {
155    bool cont = true;
156 
157    while (cont) {
158       cont = false;
159 
160       foreach_block_reverse (block, cfg) {
161          struct block_data *bd = &block_data[block->num];
162 
163 	 /* Update liveout */
164 	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
165             struct block_data *child_bd = &block_data[child_link->block->num];
166 
167 	    for (int i = 0; i < bitset_words; i++) {
168                BITSET_WORD new_liveout = (child_bd->livein[i] &
169                                           ~bd->liveout[i]);
170                if (new_liveout) {
171                   bd->liveout[i] |= new_liveout;
172                   cont = true;
173                }
174 	    }
175             BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
176                                        ~bd->flag_liveout[0]);
177             if (new_liveout) {
178                bd->flag_liveout[0] |= new_liveout;
179                cont = true;
180             }
181 	 }
182 
183          /* Update livein */
184          for (int i = 0; i < bitset_words; i++) {
185             BITSET_WORD new_livein = (bd->use[i] |
186                                       (bd->liveout[i] &
187                                        ~bd->def[i]));
188             if (new_livein & ~bd->livein[i]) {
189                bd->livein[i] |= new_livein;
190                cont = true;
191             }
192          }
193          BITSET_WORD new_livein = (bd->flag_use[0] |
194                                    (bd->flag_liveout[0] &
195                                     ~bd->flag_def[0]));
196          if (new_livein & ~bd->flag_livein[0]) {
197             bd->flag_livein[0] |= new_livein;
198             cont = true;
199          }
200       }
201    }
202 }
203 
204 /**
205  * Extend the start/end ranges for each variable to account for the
206  * new information calculated from control flow.
207  */
208 void
compute_start_end()209 fs_live_variables::compute_start_end()
210 {
211    foreach_block (block, cfg) {
212       struct block_data *bd = &block_data[block->num];
213 
214       for (int i = 0; i < num_vars; i++) {
215          if (BITSET_TEST(bd->livein, i)) {
216             start[i] = MIN2(start[i], block->start_ip);
217             end[i] = MAX2(end[i], block->start_ip);
218          }
219 
220          if (BITSET_TEST(bd->liveout, i)) {
221             start[i] = MIN2(start[i], block->end_ip);
222             end[i] = MAX2(end[i], block->end_ip);
223          }
224       }
225    }
226 }
227 
fs_live_variables(fs_visitor * v,const cfg_t * cfg)228 fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
229    : v(v), cfg(cfg)
230 {
231    mem_ctx = ralloc_context(NULL);
232 
233    num_vgrfs = v->alloc.count;
234    num_vars = 0;
235    var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
236    for (int i = 0; i < num_vgrfs; i++) {
237       var_from_vgrf[i] = num_vars;
238       num_vars += v->alloc.sizes[i];
239    }
240 
241    vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
242    for (int i = 0; i < num_vgrfs; i++) {
243       for (unsigned j = 0; j < v->alloc.sizes[i]; j++) {
244          vgrf_from_var[var_from_vgrf[i] + j] = i;
245       }
246    }
247 
248    start = ralloc_array(mem_ctx, int, num_vars);
249    end = rzalloc_array(mem_ctx, int, num_vars);
250    for (int i = 0; i < num_vars; i++) {
251       start[i] = MAX_INSTRUCTION;
252       end[i] = -1;
253    }
254 
255    block_data= rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
256 
257    bitset_words = BITSET_WORDS(num_vars);
258    for (int i = 0; i < cfg->num_blocks; i++) {
259       block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
260       block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
261       block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
262       block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
263 
264       block_data[i].flag_def[0] = 0;
265       block_data[i].flag_use[0] = 0;
266       block_data[i].flag_livein[0] = 0;
267       block_data[i].flag_liveout[0] = 0;
268    }
269 
270    setup_def_use();
271    compute_live_variables();
272    compute_start_end();
273 }
274 
~fs_live_variables()275 fs_live_variables::~fs_live_variables()
276 {
277    ralloc_free(mem_ctx);
278 }
279 
280 void
invalidate_live_intervals()281 fs_visitor::invalidate_live_intervals()
282 {
283    ralloc_free(live_intervals);
284    live_intervals = NULL;
285 }
286 
287 /**
288  * Compute the live intervals for each virtual GRF.
289  *
290  * This uses the per-component use/def data, but combines it to produce
291  * information about whole VGRFs.
292  */
293 void
calculate_live_intervals()294 fs_visitor::calculate_live_intervals()
295 {
296    if (this->live_intervals)
297       return;
298 
299    int num_vgrfs = this->alloc.count;
300    ralloc_free(this->virtual_grf_start);
301    ralloc_free(this->virtual_grf_end);
302    virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
303    virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
304 
305    for (int i = 0; i < num_vgrfs; i++) {
306       virtual_grf_start[i] = MAX_INSTRUCTION;
307       virtual_grf_end[i] = -1;
308    }
309 
310    this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
311 
312    /* Merge the per-component live ranges to whole VGRF live ranges. */
313    for (int i = 0; i < live_intervals->num_vars; i++) {
314       int vgrf = live_intervals->vgrf_from_var[i];
315       virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
316                                      live_intervals->start[i]);
317       virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
318                                    live_intervals->end[i]);
319    }
320 }
321 
322 bool
vars_interfere(int a,int b)323 fs_live_variables::vars_interfere(int a, int b)
324 {
325    return !(end[b] <= start[a] ||
326             end[a] <= start[b]);
327 }
328 
329 bool
virtual_grf_interferes(int a,int b)330 fs_visitor::virtual_grf_interferes(int a, int b)
331 {
332    return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
333             virtual_grf_end[b] <= virtual_grf_start[a]);
334 }
335