1 //===- subzero/src/IceAssemblerARM32.cpp - Assembler for ARM32 --*- C++ -*-===//
2 //
3 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
4 // for details. All rights reserved. Use of this source code is governed by a
5 // BSD-style license that can be found in the LICENSE file.
6 //
7 // Modified by the Subzero authors.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // The Subzero Code Generator
12 //
13 // This file is distributed under the University of Illinois Open Source
14 // License. See LICENSE.TXT for details.
15 //
16 //===----------------------------------------------------------------------===//
17 ///
18 /// \file
19 /// \brief Implements the Assembler class for ARM32.
20 ///
21 //===----------------------------------------------------------------------===//
22
23 #include "IceAssemblerARM32.h"
24 #include "IceCfgNode.h"
25 #include "IceUtils.h"
26
27 namespace {
28
29 using namespace Ice;
30 using namespace Ice::ARM32;
31
32 using WordType = uint32_t;
33 static constexpr IValueT kWordSize = sizeof(WordType);
34
35 // The following define individual bits.
36 static constexpr IValueT B0 = 1;
37 static constexpr IValueT B1 = 1 << 1;
38 static constexpr IValueT B2 = 1 << 2;
39 static constexpr IValueT B3 = 1 << 3;
40 static constexpr IValueT B4 = 1 << 4;
41 static constexpr IValueT B5 = 1 << 5;
42 static constexpr IValueT B6 = 1 << 6;
43 static constexpr IValueT B7 = 1 << 7;
44 static constexpr IValueT B8 = 1 << 8;
45 static constexpr IValueT B9 = 1 << 9;
46 static constexpr IValueT B10 = 1 << 10;
47 static constexpr IValueT B11 = 1 << 11;
48 static constexpr IValueT B12 = 1 << 12;
49 static constexpr IValueT B13 = 1 << 13;
50 static constexpr IValueT B14 = 1 << 14;
51 static constexpr IValueT B15 = 1 << 15;
52 static constexpr IValueT B16 = 1 << 16;
53 static constexpr IValueT B17 = 1 << 17;
54 static constexpr IValueT B18 = 1 << 18;
55 static constexpr IValueT B19 = 1 << 19;
56 static constexpr IValueT B20 = 1 << 20;
57 static constexpr IValueT B21 = 1 << 21;
58 static constexpr IValueT B22 = 1 << 22;
59 static constexpr IValueT B23 = 1 << 23;
60 static constexpr IValueT B24 = 1 << 24;
61 static constexpr IValueT B25 = 1 << 25;
62 static constexpr IValueT B26 = 1 << 26;
63 static constexpr IValueT B27 = 1 << 27;
64
65 // Constants used for the decoding or encoding of the individual fields of
66 // instructions. Based on ARM section A5.1.
67 static constexpr IValueT L = 1 << 20; // load (or store)
68 static constexpr IValueT W = 1 << 21; // writeback base register
69 // (or leave unchanged)
70 static constexpr IValueT B = 1 << 22; // unsigned byte (or word)
71 static constexpr IValueT U = 1 << 23; // positive (or negative)
72 // offset/index
73 static constexpr IValueT P = 1 << 24; // offset/pre-indexed
74 // addressing (or
75 // post-indexed addressing)
76
77 static constexpr IValueT kConditionShift = 28;
78 static constexpr IValueT kLinkShift = 24;
79 static constexpr IValueT kOpcodeShift = 21;
80 static constexpr IValueT kRdShift = 12;
81 static constexpr IValueT kRmShift = 0;
82 static constexpr IValueT kRnShift = 16;
83 static constexpr IValueT kRsShift = 8;
84 static constexpr IValueT kSShift = 20;
85 static constexpr IValueT kTypeShift = 25;
86
87 // Immediate instruction fields encoding.
88 static constexpr IValueT kImmed8Bits = 8;
89 static constexpr IValueT kImmed8Shift = 0;
90 static constexpr IValueT kRotateBits = 4;
91 static constexpr IValueT kRotateShift = 8;
92
93 // Shift instruction register fields encodings.
94 static constexpr IValueT kShiftImmShift = 7;
95 static constexpr IValueT kShiftImmBits = 5;
96 static constexpr IValueT kShiftShift = 5;
97 static constexpr IValueT kImmed12Bits = 12;
98 static constexpr IValueT kImm12Shift = 0;
99
100 // Rotation instructions (uxtb etc.).
101 static constexpr IValueT kRotationShift = 10;
102
103 // MemEx instructions.
104 static constexpr IValueT kMemExOpcodeShift = 20;
105
106 // Div instruction register field encodings.
107 static constexpr IValueT kDivRdShift = 16;
108 static constexpr IValueT kDivRmShift = 8;
109 static constexpr IValueT kDivRnShift = 0;
110
111 // Type of instruction encoding (bits 25-27). See ARM section A5.1
112 static constexpr IValueT kInstTypeDataRegister = 0; // i.e. 000
113 static constexpr IValueT kInstTypeDataRegShift = 0; // i.e. 000
114 static constexpr IValueT kInstTypeDataImmediate = 1; // i.e. 001
115 static constexpr IValueT kInstTypeMemImmediate = 2; // i.e. 010
116 static constexpr IValueT kInstTypeRegisterShift = 3; // i.e. 011
117
118 // Limit on number of registers in a vpush/vpop.
119 static constexpr SizeT VpushVpopMaxConsecRegs = 16;
120
121 // Offset modifier to current PC for next instruction. The offset is off by 8
122 // due to the way the ARM CPUs read PC.
123 static constexpr IOffsetT kPCReadOffset = 8;
124
125 // Mask to pull out PC offset from branch (b) instruction.
126 static constexpr int kBranchOffsetBits = 24;
127 static constexpr IOffsetT kBranchOffsetMask = 0x00ffffff;
128
encodeBool(bool B)129 IValueT encodeBool(bool B) { return B ? 1 : 0; }
130
encodeRotation(ARM32::AssemblerARM32::RotationValue Value)131 IValueT encodeRotation(ARM32::AssemblerARM32::RotationValue Value) {
132 return static_cast<IValueT>(Value);
133 }
134
encodeGPRRegister(RegARM32::GPRRegister Rn)135 IValueT encodeGPRRegister(RegARM32::GPRRegister Rn) {
136 return static_cast<IValueT>(Rn);
137 }
138
decodeGPRRegister(IValueT R)139 RegARM32::GPRRegister decodeGPRRegister(IValueT R) {
140 return static_cast<RegARM32::GPRRegister>(R);
141 }
142
encodeCondition(CondARM32::Cond Cond)143 IValueT encodeCondition(CondARM32::Cond Cond) {
144 return static_cast<IValueT>(Cond);
145 }
146
encodeShift(OperandARM32::ShiftKind Shift)147 IValueT encodeShift(OperandARM32::ShiftKind Shift) {
148 // Follows encoding in ARM section A8.4.1 "Constant shifts".
149 switch (Shift) {
150 case OperandARM32::kNoShift:
151 case OperandARM32::LSL:
152 return 0; // 0b00
153 case OperandARM32::LSR:
154 return 1; // 0b01
155 case OperandARM32::ASR:
156 return 2; // 0b10
157 case OperandARM32::ROR:
158 case OperandARM32::RRX:
159 return 3; // 0b11
160 }
161 llvm::report_fatal_error("Unknown Shift value");
162 return 0;
163 }
164
165 // Returns the bits in the corresponding masked value.
mask(IValueT Value,IValueT Shift,IValueT Bits)166 IValueT mask(IValueT Value, IValueT Shift, IValueT Bits) {
167 return (Value >> Shift) & ((1 << Bits) - 1);
168 }
169
170 // Extract out a Bit in Value.
isBitSet(IValueT Bit,IValueT Value)171 bool isBitSet(IValueT Bit, IValueT Value) { return (Value & Bit) == Bit; }
172
173 // Returns the GPR register at given Shift in Value.
getGPRReg(IValueT Shift,IValueT Value)174 RegARM32::GPRRegister getGPRReg(IValueT Shift, IValueT Value) {
175 return decodeGPRRegister((Value >> Shift) & 0xF);
176 }
177
getEncodedGPRegNum(const Variable * Var)178 IValueT getEncodedGPRegNum(const Variable *Var) {
179 assert(Var->hasReg());
180 const auto Reg = Var->getRegNum();
181 return llvm::isa<Variable64On32>(Var) ? RegARM32::getI64PairFirstGPRNum(Reg)
182 : RegARM32::getEncodedGPR(Reg);
183 }
184
getEncodedSRegNum(const Variable * Var)185 IValueT getEncodedSRegNum(const Variable *Var) {
186 assert(Var->hasReg());
187 return RegARM32::getEncodedSReg(Var->getRegNum());
188 }
189
getEncodedDRegNum(const Variable * Var)190 IValueT getEncodedDRegNum(const Variable *Var) {
191 return RegARM32::getEncodedDReg(Var->getRegNum());
192 }
193
getEncodedQRegNum(const Variable * Var)194 IValueT getEncodedQRegNum(const Variable *Var) {
195 return RegARM32::getEncodedQReg(Var->getRegNum());
196 }
197
mapQRegToDReg(IValueT EncodedQReg)198 IValueT mapQRegToDReg(IValueT EncodedQReg) {
199 IValueT DReg = EncodedQReg << 1;
200 assert(DReg < RegARM32::getNumDRegs());
201 return DReg;
202 }
203
mapQRegToSReg(IValueT EncodedQReg)204 IValueT mapQRegToSReg(IValueT EncodedQReg) {
205 IValueT SReg = EncodedQReg << 2;
206 assert(SReg < RegARM32::getNumSRegs());
207 return SReg;
208 }
209
getYInRegXXXXY(IValueT RegXXXXY)210 IValueT getYInRegXXXXY(IValueT RegXXXXY) { return RegXXXXY & 0x1; }
211
getXXXXInRegXXXXY(IValueT RegXXXXY)212 IValueT getXXXXInRegXXXXY(IValueT RegXXXXY) { return RegXXXXY >> 1; }
213
getYInRegYXXXX(IValueT RegYXXXX)214 IValueT getYInRegYXXXX(IValueT RegYXXXX) { return RegYXXXX >> 4; }
215
getXXXXInRegYXXXX(IValueT RegYXXXX)216 IValueT getXXXXInRegYXXXX(IValueT RegYXXXX) { return RegYXXXX & 0x0f; }
217
218 // Figures out Op/Cmode values for given Value. Returns true if able to encode.
encodeAdvSIMDExpandImm(IValueT Value,Type ElmtTy,IValueT & Op,IValueT & Cmode,IValueT & Imm8)219 bool encodeAdvSIMDExpandImm(IValueT Value, Type ElmtTy, IValueT &Op,
220 IValueT &Cmode, IValueT &Imm8) {
221 // TODO(kschimpf): Handle other shifted 8-bit values.
222 constexpr IValueT Imm8Mask = 0xFF;
223 if ((Value & IValueT(~Imm8Mask)) != 0)
224 return false;
225 Imm8 = Value;
226 switch (ElmtTy) {
227 case IceType_i8:
228 Op = 0;
229 Cmode = 14; // 0b1110
230 return true;
231 case IceType_i16:
232 Op = 0;
233 Cmode = 8; // 0b1000
234 return true;
235 case IceType_i32:
236 Op = 0;
237 Cmode = 0; // 0b0000
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 // Defines layouts of an operand representing a (register) memory address,
245 // possibly modified by an immediate value.
246 enum EncodedImmAddress {
247 // Address modified by a rotated immediate 8-bit value.
248 RotatedImm8Address,
249
250 // Alternate encoding for RotatedImm8Address, where the offset is divided by 4
251 // before encoding.
252 RotatedImm8Div4Address,
253
254 // Address modified by an immediate 12-bit value.
255 Imm12Address,
256
257 // Alternate encoding 3, for an address modified by a rotated immediate 8-bit
258 // value.
259 RotatedImm8Enc3Address,
260
261 // Encoding where no immediate offset is used.
262 NoImmOffsetAddress
263 };
264
265 // The way an operand is encoded into a sequence of bits in functions
266 // encodeOperand and encodeAddress below.
267 enum EncodedOperand {
268 // Unable to encode, value left undefined.
269 CantEncode = 0,
270
271 // Value is register found.
272 EncodedAsRegister,
273
274 // Value=rrrriiiiiiii where rrrr is the rotation, and iiiiiiii is the imm8
275 // value.
276 EncodedAsRotatedImm8,
277
278 // EncodedAsImmRegOffset is a memory operand that can take three forms, based
279 // on type EncodedImmAddress:
280 //
281 // ***** RotatedImm8Address *****
282 //
283 // Value=0000000pu0w0nnnn0000iiiiiiiiiiii where nnnn is the base register Rn,
284 // p=1 if pre-indexed addressing, u=1 if offset positive, w=1 if writeback to
285 // Rn should be used, and iiiiiiiiiiii defines the rotated Imm8 value.
286 //
287 // ***** RotatedImm8Div4Address *****
288 //
289 // Value=00000000pu0w0nnnn0000iiii0000jjjj where nnnn=Rn, iiiijjjj=Imm8, p=1
290 // if pre-indexed addressing, u=1 if offset positive, and w=1 if writeback to
291 // Rn.
292 //
293 // ***** Imm12Address *****
294 //
295 // Value=0000000pu0w0nnnn0000iiiiiiiiiiii where nnnn is the base register Rn,
296 // p=1 if pre-indexed addressing, u=1 if offset positive, w=1 if writeback to
297 // Rn should be used, and iiiiiiiiiiii defines the immediate 12-bit value.
298 //
299 // ***** NoImmOffsetAddress *****
300 //
301 // Value=000000001000nnnn0000000000000000 where nnnn=Rn.
302 EncodedAsImmRegOffset,
303
304 // Value=0000000pu0w00nnnnttttiiiiiss0mmmm where nnnn is the base register Rn,
305 // mmmm is the index register Rm, iiiii is the shift amount, ss is the shift
306 // kind, p=1 if pre-indexed addressing, u=1 if offset positive, and w=1 if
307 // writeback to Rn.
308 EncodedAsShiftRotateImm5,
309
310 // Value=000000000000000000000iiiii0000000 where iiii defines the Imm5 value
311 // to shift.
312 EncodedAsShiftImm5,
313
314 // Value=iiiiiss0mmmm where mmmm is the register to rotate, ss is the shift
315 // kind, and iiiii is the shift amount.
316 EncodedAsShiftedRegister,
317
318 // Value=ssss0tt1mmmm where mmmm=Rm, tt is an encoded ShiftKind, and ssss=Rms.
319 EncodedAsRegShiftReg,
320
321 // Value is 32bit integer constant.
322 EncodedAsConstI32
323 };
324
325 // Sets Encoding to a rotated Imm8 encoding of Value, if possible.
encodeRotatedImm8(IValueT RotateAmt,IValueT Immed8)326 IValueT encodeRotatedImm8(IValueT RotateAmt, IValueT Immed8) {
327 assert(RotateAmt < (1 << kRotateBits));
328 assert(Immed8 < (1 << kImmed8Bits));
329 return (RotateAmt << kRotateShift) | (Immed8 << kImmed8Shift);
330 }
331
332 // Encodes iiiiitt0mmmm for data-processing (2nd) operands where iiiii=Imm5,
333 // tt=Shift, and mmmm=Rm.
encodeShiftRotateImm5(IValueT Rm,OperandARM32::ShiftKind Shift,IOffsetT imm5)334 IValueT encodeShiftRotateImm5(IValueT Rm, OperandARM32::ShiftKind Shift,
335 IOffsetT imm5) {
336 (void)kShiftImmBits;
337 assert(imm5 < (1 << kShiftImmBits));
338 return (imm5 << kShiftImmShift) | (encodeShift(Shift) << kShiftShift) | Rm;
339 }
340
341 // Encodes mmmmtt01ssss for data-processing operands where mmmm=Rm, ssss=Rs, and
342 // tt=Shift.
encodeShiftRotateReg(IValueT Rm,OperandARM32::ShiftKind Shift,IValueT Rs)343 IValueT encodeShiftRotateReg(IValueT Rm, OperandARM32::ShiftKind Shift,
344 IValueT Rs) {
345 return (Rs << kRsShift) | (encodeShift(Shift) << kShiftShift) | B4 |
346 (Rm << kRmShift);
347 }
348
349 // Defines the set of registers expected in an operand.
350 enum RegSetWanted { WantGPRegs, WantSRegs, WantDRegs, WantQRegs };
351
encodeOperand(const Operand * Opnd,IValueT & Value,RegSetWanted WantedRegSet)352 EncodedOperand encodeOperand(const Operand *Opnd, IValueT &Value,
353 RegSetWanted WantedRegSet) {
354 Value = 0; // Make sure initialized.
355 if (const auto *Var = llvm::dyn_cast<Variable>(Opnd)) {
356 if (Var->hasReg()) {
357 switch (WantedRegSet) {
358 case WantGPRegs:
359 Value = getEncodedGPRegNum(Var);
360 break;
361 case WantSRegs:
362 Value = getEncodedSRegNum(Var);
363 break;
364 case WantDRegs:
365 Value = getEncodedDRegNum(Var);
366 break;
367 case WantQRegs:
368 Value = getEncodedQRegNum(Var);
369 break;
370 }
371 return EncodedAsRegister;
372 }
373 return CantEncode;
374 }
375 if (const auto *FlexImm = llvm::dyn_cast<OperandARM32FlexImm>(Opnd)) {
376 const IValueT Immed8 = FlexImm->getImm();
377 const IValueT Rotate = FlexImm->getRotateAmt();
378 if (!((Rotate < (1 << kRotateBits)) && (Immed8 < (1 << kImmed8Bits))))
379 return CantEncode;
380 Value = (Rotate << kRotateShift) | (Immed8 << kImmed8Shift);
381 return EncodedAsRotatedImm8;
382 }
383 if (const auto *Const = llvm::dyn_cast<ConstantInteger32>(Opnd)) {
384 Value = Const->getValue();
385 return EncodedAsConstI32;
386 }
387 if (const auto *FlexReg = llvm::dyn_cast<OperandARM32FlexReg>(Opnd)) {
388 Operand *Amt = FlexReg->getShiftAmt();
389 IValueT Rm;
390 if (encodeOperand(FlexReg->getReg(), Rm, WantGPRegs) != EncodedAsRegister)
391 return CantEncode;
392 if (const auto *Var = llvm::dyn_cast<Variable>(Amt)) {
393 IValueT Rs;
394 if (encodeOperand(Var, Rs, WantGPRegs) != EncodedAsRegister)
395 return CantEncode;
396 Value = encodeShiftRotateReg(Rm, FlexReg->getShiftOp(), Rs);
397 return EncodedAsRegShiftReg;
398 }
399 // If reached, the amount is a shifted amount by some 5-bit immediate.
400 uint32_t Imm5;
401 if (const auto *ShAmt = llvm::dyn_cast<OperandARM32ShAmtImm>(Amt)) {
402 Imm5 = ShAmt->getShAmtImm();
403 } else if (const auto *IntConst = llvm::dyn_cast<ConstantInteger32>(Amt)) {
404 int32_t Val = IntConst->getValue();
405 if (Val < 0)
406 return CantEncode;
407 Imm5 = static_cast<uint32_t>(Val);
408 } else
409 return CantEncode;
410 Value = encodeShiftRotateImm5(Rm, FlexReg->getShiftOp(), Imm5);
411 return EncodedAsShiftedRegister;
412 }
413 if (const auto *ShImm = llvm::dyn_cast<OperandARM32ShAmtImm>(Opnd)) {
414 const IValueT Immed5 = ShImm->getShAmtImm();
415 assert(Immed5 < (1 << kShiftImmBits));
416 Value = (Immed5 << kShiftImmShift);
417 return EncodedAsShiftImm5;
418 }
419 return CantEncode;
420 }
421
encodeImmRegOffset(IValueT Reg,IOffsetT Offset,OperandARM32Mem::AddrMode Mode,IOffsetT MaxOffset,IValueT OffsetShift)422 IValueT encodeImmRegOffset(IValueT Reg, IOffsetT Offset,
423 OperandARM32Mem::AddrMode Mode, IOffsetT MaxOffset,
424 IValueT OffsetShift) {
425 IValueT Value = Mode | (Reg << kRnShift);
426 if (Offset < 0) {
427 Offset = -Offset;
428 Value ^= U; // Flip U to adjust sign.
429 }
430 assert(Offset <= MaxOffset);
431 (void)MaxOffset;
432 return Value | (Offset >> OffsetShift);
433 }
434
435 // Encodes immediate register offset using encoding 3.
encodeImmRegOffsetEnc3(IValueT Rn,IOffsetT Imm8,OperandARM32Mem::AddrMode Mode)436 IValueT encodeImmRegOffsetEnc3(IValueT Rn, IOffsetT Imm8,
437 OperandARM32Mem::AddrMode Mode) {
438 IValueT Value = Mode | (Rn << kRnShift);
439 if (Imm8 < 0) {
440 Imm8 = -Imm8;
441 Value = (Value ^ U);
442 }
443 assert(Imm8 < (1 << 8));
444 Value = Value | B22 | ((Imm8 & 0xf0) << 4) | (Imm8 & 0x0f);
445 return Value;
446 }
447
encodeImmRegOffset(EncodedImmAddress ImmEncoding,IValueT Reg,IOffsetT Offset,OperandARM32Mem::AddrMode Mode)448 IValueT encodeImmRegOffset(EncodedImmAddress ImmEncoding, IValueT Reg,
449 IOffsetT Offset, OperandARM32Mem::AddrMode Mode) {
450 switch (ImmEncoding) {
451 case RotatedImm8Address: {
452 constexpr IOffsetT MaxOffset = (1 << 8) - 1;
453 constexpr IValueT NoRightShift = 0;
454 return encodeImmRegOffset(Reg, Offset, Mode, MaxOffset, NoRightShift);
455 }
456 case RotatedImm8Div4Address: {
457 assert((Offset & 0x3) == 0);
458 constexpr IOffsetT MaxOffset = (1 << 8) - 1;
459 constexpr IValueT RightShift2 = 2;
460 return encodeImmRegOffset(Reg, Offset, Mode, MaxOffset, RightShift2);
461 }
462 case Imm12Address: {
463 constexpr IOffsetT MaxOffset = (1 << 12) - 1;
464 constexpr IValueT NoRightShift = 0;
465 return encodeImmRegOffset(Reg, Offset, Mode, MaxOffset, NoRightShift);
466 }
467 case RotatedImm8Enc3Address:
468 return encodeImmRegOffsetEnc3(Reg, Offset, Mode);
469 case NoImmOffsetAddress: {
470 assert(Offset == 0);
471 assert(Mode == OperandARM32Mem::Offset);
472 return Reg << kRnShift;
473 }
474 }
475 llvm_unreachable("(silence g++ warning)");
476 }
477
478 // Encodes memory address Opnd, and encodes that information into Value, based
479 // on how ARM represents the address. Returns how the value was encoded.
encodeAddress(const Operand * Opnd,IValueT & Value,const AssemblerARM32::TargetInfo & TInfo,EncodedImmAddress ImmEncoding)480 EncodedOperand encodeAddress(const Operand *Opnd, IValueT &Value,
481 const AssemblerARM32::TargetInfo &TInfo,
482 EncodedImmAddress ImmEncoding) {
483 Value = 0; // Make sure initialized.
484 if (const auto *Var = llvm::dyn_cast<Variable>(Opnd)) {
485 // Should be a stack variable, with an offset.
486 if (Var->hasReg())
487 return CantEncode;
488 IOffsetT Offset = Var->getStackOffset();
489 if (!Utils::IsAbsoluteUint(12, Offset))
490 return CantEncode;
491 const auto BaseRegNum =
492 Var->hasReg() ? Var->getBaseRegNum() : TInfo.FrameOrStackReg;
493 Value = encodeImmRegOffset(ImmEncoding, BaseRegNum, Offset,
494 OperandARM32Mem::Offset);
495 return EncodedAsImmRegOffset;
496 }
497 if (const auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Opnd)) {
498 Variable *Var = Mem->getBase();
499 if (!Var->hasReg())
500 return CantEncode;
501 IValueT Rn = getEncodedGPRegNum(Var);
502 if (Mem->isRegReg()) {
503 const Variable *Index = Mem->getIndex();
504 if (Var == nullptr)
505 return CantEncode;
506 Value = (Rn << kRnShift) | Mem->getAddrMode() |
507 encodeShiftRotateImm5(getEncodedGPRegNum(Index),
508 Mem->getShiftOp(), Mem->getShiftAmt());
509 return EncodedAsShiftRotateImm5;
510 }
511 // Encoded as immediate register offset.
512 ConstantInteger32 *Offset = Mem->getOffset();
513 Value = encodeImmRegOffset(ImmEncoding, Rn, Offset->getValue(),
514 Mem->getAddrMode());
515 return EncodedAsImmRegOffset;
516 }
517 return CantEncode;
518 }
519
520 // Checks that Offset can fit in imm24 constant of branch (b) instruction.
assertCanEncodeBranchOffset(IOffsetT Offset)521 void assertCanEncodeBranchOffset(IOffsetT Offset) {
522 (void)Offset;
523 (void)kBranchOffsetBits;
524 assert(Utils::IsAligned(Offset, 4) &&
525 Utils::IsInt(kBranchOffsetBits, Offset >> 2));
526 }
527
encodeBranchOffset(IOffsetT Offset,IValueT Inst)528 IValueT encodeBranchOffset(IOffsetT Offset, IValueT Inst) {
529 // Adjust offset to the way ARM CPUs read PC.
530 Offset -= kPCReadOffset;
531
532 assertCanEncodeBranchOffset(Offset);
533
534 // Properly preserve only the bits supported in the instruction.
535 Offset >>= 2;
536 Offset &= kBranchOffsetMask;
537 return (Inst & ~kBranchOffsetMask) | Offset;
538 }
539
encodeRegister(const Operand * OpReg,RegSetWanted WantedRegSet,const char * RegName,const char * InstName)540 IValueT encodeRegister(const Operand *OpReg, RegSetWanted WantedRegSet,
541 const char *RegName, const char *InstName) {
542 IValueT Reg = 0;
543 if (encodeOperand(OpReg, Reg, WantedRegSet) != EncodedAsRegister)
544 llvm::report_fatal_error(std::string(InstName) + ": Can't find register " +
545 RegName);
546 return Reg;
547 }
548
encodeGPRegister(const Operand * OpReg,const char * RegName,const char * InstName)549 IValueT encodeGPRegister(const Operand *OpReg, const char *RegName,
550 const char *InstName) {
551 return encodeRegister(OpReg, WantGPRegs, RegName, InstName);
552 }
553
encodeSRegister(const Operand * OpReg,const char * RegName,const char * InstName)554 IValueT encodeSRegister(const Operand *OpReg, const char *RegName,
555 const char *InstName) {
556 return encodeRegister(OpReg, WantSRegs, RegName, InstName);
557 }
558
encodeDRegister(const Operand * OpReg,const char * RegName,const char * InstName)559 IValueT encodeDRegister(const Operand *OpReg, const char *RegName,
560 const char *InstName) {
561 return encodeRegister(OpReg, WantDRegs, RegName, InstName);
562 }
563
encodeQRegister(const Operand * OpReg,const char * RegName,const char * InstName)564 IValueT encodeQRegister(const Operand *OpReg, const char *RegName,
565 const char *InstName) {
566 return encodeRegister(OpReg, WantQRegs, RegName, InstName);
567 }
568
verifyPOrNotW(IValueT Address,const char * InstName)569 void verifyPOrNotW(IValueT Address, const char *InstName) {
570 if (BuildDefs::minimal())
571 return;
572 if (!isBitSet(P, Address) && isBitSet(W, Address))
573 llvm::report_fatal_error(std::string(InstName) +
574 ": P=0 when W=1 not allowed");
575 }
576
verifyRegsNotEq(IValueT Reg1,const char * Reg1Name,IValueT Reg2,const char * Reg2Name,const char * InstName)577 void verifyRegsNotEq(IValueT Reg1, const char *Reg1Name, IValueT Reg2,
578 const char *Reg2Name, const char *InstName) {
579 if (BuildDefs::minimal())
580 return;
581 if (Reg1 == Reg2)
582 llvm::report_fatal_error(std::string(InstName) + ": " + Reg1Name + "=" +
583 Reg2Name + " not allowed");
584 }
585
verifyRegNotPc(IValueT Reg,const char * RegName,const char * InstName)586 void verifyRegNotPc(IValueT Reg, const char *RegName, const char *InstName) {
587 verifyRegsNotEq(Reg, RegName, RegARM32::Encoded_Reg_pc, "pc", InstName);
588 }
589
verifyAddrRegNotPc(IValueT RegShift,IValueT Address,const char * RegName,const char * InstName)590 void verifyAddrRegNotPc(IValueT RegShift, IValueT Address, const char *RegName,
591 const char *InstName) {
592 if (BuildDefs::minimal())
593 return;
594 if (getGPRReg(RegShift, Address) == RegARM32::Encoded_Reg_pc)
595 llvm::report_fatal_error(std::string(InstName) + ": " + RegName +
596 "=pc not allowed");
597 }
598
verifyRegNotPcWhenSetFlags(IValueT Reg,bool SetFlags,const char * InstName)599 void verifyRegNotPcWhenSetFlags(IValueT Reg, bool SetFlags,
600 const char *InstName) {
601 if (BuildDefs::minimal())
602 return;
603 if (SetFlags && (Reg == RegARM32::Encoded_Reg_pc))
604 llvm::report_fatal_error(std::string(InstName) + ": " +
605 RegARM32::getRegName(RegARM32::Reg_pc) +
606 "=pc not allowed when CC=1");
607 }
608
609 } // end of anonymous namespace
610
611 namespace Ice {
612 namespace ARM32 {
613
emit(GlobalContext * Ctx,const Assembler & Asm) const614 size_t MoveRelocatableFixup::emit(GlobalContext *Ctx,
615 const Assembler &Asm) const {
616 if (!BuildDefs::dump())
617 return InstARM32::InstSize;
618 Ostream &Str = Ctx->getStrEmit();
619 IValueT Inst = Asm.load<IValueT>(position());
620 const bool IsMovw = kind() == llvm::ELF::R_ARM_MOVW_ABS_NC ||
621 kind() == llvm::ELF::R_ARM_MOVW_PREL_NC;
622 const auto Symbol = symbol().toString();
623 const bool NeedsPCRelSuffix =
624 (Asm.fixupIsPCRel(kind()) || Symbol == GlobalOffsetTable);
625 Str << "\t"
626 "mov" << (IsMovw ? "w" : "t") << "\t"
627 << RegARM32::getRegName(RegNumT::fixme((Inst >> kRdShift) & 0xF))
628 << ", #:" << (IsMovw ? "lower" : "upper") << "16:" << Symbol
629 << (NeedsPCRelSuffix ? " - ." : "") << "\t@ .word "
630 // TODO(jpp): This is broken, it also needs to add a magic constant.
631 << llvm::format_hex_no_prefix(Inst, 8) << "\n";
632 return InstARM32::InstSize;
633 }
634
encodeElmtType(Type ElmtTy)635 IValueT AssemblerARM32::encodeElmtType(Type ElmtTy) {
636 switch (ElmtTy) {
637 case IceType_i8:
638 return 0;
639 case IceType_i16:
640 return 1;
641 case IceType_i32:
642 case IceType_f32:
643 return 2;
644 case IceType_i64:
645 return 3;
646 default:
647 llvm::report_fatal_error("SIMD op: Don't understand element type " +
648 typeStdString(ElmtTy));
649 }
650 }
651
652 // This fixup points to an ARM32 instruction with the following format:
emitOffset(Assembler * Asm) const653 void MoveRelocatableFixup::emitOffset(Assembler *Asm) const {
654 // cccc00110T00iiiiddddiiiiiiiiiiii where cccc=Cond, dddd=Rd,
655 // iiiiiiiiiiiiiiii = Imm16, and T=1 for movt.
656
657 const IValueT Inst = Asm->load<IValueT>(position());
658 constexpr IValueT Imm16Mask = 0x000F0FFF;
659 const IValueT Imm16 = offset() & 0xffff;
660 Asm->store(position(),
661 (Inst & ~Imm16Mask) | ((Imm16 >> 12) << 16) | (Imm16 & 0xfff));
662 }
663
createMoveFixup(bool IsMovW,const Constant * Value)664 MoveRelocatableFixup *AssemblerARM32::createMoveFixup(bool IsMovW,
665 const Constant *Value) {
666 MoveRelocatableFixup *F =
667 new (allocate<MoveRelocatableFixup>()) MoveRelocatableFixup();
668 F->set_kind(IsMovW ? (IsNonsfi ? llvm::ELF::R_ARM_MOVW_PREL_NC
669 : llvm::ELF::R_ARM_MOVW_ABS_NC)
670 : (IsNonsfi ? llvm::ELF::R_ARM_MOVT_PREL
671 : llvm::ELF::R_ARM_MOVT_ABS));
672 F->set_value(Value);
673 Buffer.installFixup(F);
674 return F;
675 }
676
emit(GlobalContext * Ctx,const Assembler & Asm) const677 size_t BlRelocatableFixup::emit(GlobalContext *Ctx,
678 const Assembler &Asm) const {
679 if (!BuildDefs::dump())
680 return InstARM32::InstSize;
681 Ostream &Str = Ctx->getStrEmit();
682 IValueT Inst = Asm.load<IValueT>(position());
683 Str << "\t"
684 "bl\t" << symbol() << "\t@ .word "
685 << llvm::format_hex_no_prefix(Inst, 8) << "\n";
686 return InstARM32::InstSize;
687 }
688
emitOffset(Assembler * Asm) const689 void BlRelocatableFixup::emitOffset(Assembler *Asm) const {
690 // cccc101liiiiiiiiiiiiiiiiiiiiiiii where cccc=Cond, l=Link, and
691 // iiiiiiiiiiiiiiiiiiiiiiii=
692 // EncodedBranchOffset(cccc101l000000000000000000000000, Offset);
693 const IValueT Inst = Asm->load<IValueT>(position());
694 constexpr IValueT OffsetMask = 0x00FFFFFF;
695 Asm->store(position(), encodeBranchOffset(offset(), Inst & ~OffsetMask));
696 }
697
padWithNop(intptr_t Padding)698 void AssemblerARM32::padWithNop(intptr_t Padding) {
699 constexpr intptr_t InstWidth = sizeof(IValueT);
700 assert(Padding % InstWidth == 0 &&
701 "Padding not multiple of instruction size");
702 for (intptr_t i = 0; i < Padding; i += InstWidth)
703 nop();
704 }
705
706 BlRelocatableFixup *
createBlFixup(const ConstantRelocatable * BlTarget)707 AssemblerARM32::createBlFixup(const ConstantRelocatable *BlTarget) {
708 BlRelocatableFixup *F =
709 new (allocate<BlRelocatableFixup>()) BlRelocatableFixup();
710 F->set_kind(llvm::ELF::R_ARM_CALL);
711 F->set_value(BlTarget);
712 Buffer.installFixup(F);
713 return F;
714 }
715
bindCfgNodeLabel(const CfgNode * Node)716 void AssemblerARM32::bindCfgNodeLabel(const CfgNode *Node) {
717 if (BuildDefs::dump() && !getFlags().getDisableHybridAssembly()) {
718 // Generate label name so that branches can find it.
719 constexpr SizeT InstSize = 0;
720 emitTextInst(Node->getAsmName() + ":", InstSize);
721 }
722 SizeT NodeNumber = Node->getIndex();
723 assert(!getPreliminary());
724 Label *L = getOrCreateCfgNodeLabel(NodeNumber);
725 this->bind(L);
726 }
727
getOrCreateLabel(SizeT Number,LabelVector & Labels)728 Label *AssemblerARM32::getOrCreateLabel(SizeT Number, LabelVector &Labels) {
729 Label *L = nullptr;
730 if (Number == Labels.size()) {
731 L = new (this->allocate<Label>()) Label();
732 Labels.push_back(L);
733 return L;
734 }
735 if (Number > Labels.size()) {
736 Labels.resize(Number + 1);
737 }
738 L = Labels[Number];
739 if (!L) {
740 L = new (this->allocate<Label>()) Label();
741 Labels[Number] = L;
742 }
743 return L;
744 }
745
746 // Pull out offset from branch Inst.
decodeBranchOffset(IValueT Inst)747 IOffsetT AssemblerARM32::decodeBranchOffset(IValueT Inst) {
748 // Sign-extend, left-shift by 2, and adjust to the way ARM CPUs read PC.
749 const IOffsetT Offset = (Inst & kBranchOffsetMask) << 8;
750 return (Offset >> 6) + kPCReadOffset;
751 }
752
bind(Label * L)753 void AssemblerARM32::bind(Label *L) {
754 IOffsetT BoundPc = Buffer.size();
755 assert(!L->isBound()); // Labels can only be bound once.
756 while (L->isLinked()) {
757 IOffsetT Position = L->getLinkPosition();
758 IOffsetT Dest = BoundPc - Position;
759 IValueT Inst = Buffer.load<IValueT>(Position);
760 Buffer.store<IValueT>(Position, encodeBranchOffset(Dest, Inst));
761 L->setPosition(decodeBranchOffset(Inst));
762 }
763 L->bindTo(BoundPc);
764 }
765
emitTextInst(const std::string & Text,SizeT InstSize)766 void AssemblerARM32::emitTextInst(const std::string &Text, SizeT InstSize) {
767 AssemblerFixup *F = createTextFixup(Text, InstSize);
768 emitFixup(F);
769 for (SizeT I = 0; I < InstSize; ++I) {
770 AssemblerBuffer::EnsureCapacity ensured(&Buffer);
771 Buffer.emit<char>(0);
772 }
773 }
774
emitType01(CondARM32::Cond Cond,IValueT InstType,IValueT Opcode,bool SetFlags,IValueT Rn,IValueT Rd,IValueT Imm12,EmitChecks RuleChecks,const char * InstName)775 void AssemblerARM32::emitType01(CondARM32::Cond Cond, IValueT InstType,
776 IValueT Opcode, bool SetFlags, IValueT Rn,
777 IValueT Rd, IValueT Imm12,
778 EmitChecks RuleChecks, const char *InstName) {
779 switch (RuleChecks) {
780 case NoChecks:
781 break;
782 case RdIsPcAndSetFlags:
783 verifyRegNotPcWhenSetFlags(Rd, SetFlags, InstName);
784 break;
785 }
786 assert(Rd < RegARM32::getNumGPRegs());
787 assert(CondARM32::isDefined(Cond));
788 const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) |
789 (InstType << kTypeShift) | (Opcode << kOpcodeShift) |
790 (encodeBool(SetFlags) << kSShift) |
791 (Rn << kRnShift) | (Rd << kRdShift) | Imm12;
792 emitInst(Encoding);
793 }
794
emitType01(CondARM32::Cond Cond,IValueT Opcode,const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,EmitChecks RuleChecks,const char * InstName)795 void AssemblerARM32::emitType01(CondARM32::Cond Cond, IValueT Opcode,
796 const Operand *OpRd, const Operand *OpRn,
797 const Operand *OpSrc1, bool SetFlags,
798 EmitChecks RuleChecks, const char *InstName) {
799 IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName);
800 IValueT Rn = encodeGPRegister(OpRn, "Rn", InstName);
801 emitType01(Cond, Opcode, Rd, Rn, OpSrc1, SetFlags, RuleChecks, InstName);
802 }
803
emitType01(CondARM32::Cond Cond,IValueT Opcode,IValueT Rd,IValueT Rn,const Operand * OpSrc1,bool SetFlags,EmitChecks RuleChecks,const char * InstName)804 void AssemblerARM32::emitType01(CondARM32::Cond Cond, IValueT Opcode,
805 IValueT Rd, IValueT Rn, const Operand *OpSrc1,
806 bool SetFlags, EmitChecks RuleChecks,
807 const char *InstName) {
808 IValueT Src1Value;
809 // TODO(kschimpf) Other possible decodings of data operations.
810 switch (encodeOperand(OpSrc1, Src1Value, WantGPRegs)) {
811 default:
812 llvm::report_fatal_error(std::string(InstName) +
813 ": Can't encode instruction");
814 return;
815 case EncodedAsRegister: {
816 // XXX (register)
817 // xxx{s}<c> <Rd>, <Rn>, <Rm>{, <shiff>}
818 //
819 // cccc000xxxxsnnnnddddiiiiitt0mmmm where cccc=Cond, xxxx=Opcode, dddd=Rd,
820 // nnnn=Rn, mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags.
821 constexpr IValueT Imm5 = 0;
822 Src1Value = encodeShiftRotateImm5(Src1Value, OperandARM32::kNoShift, Imm5);
823 emitType01(Cond, kInstTypeDataRegister, Opcode, SetFlags, Rn, Rd, Src1Value,
824 RuleChecks, InstName);
825 return;
826 }
827 case EncodedAsShiftedRegister: {
828 // Form is defined in case EncodedAsRegister. (i.e. XXX (register)).
829 emitType01(Cond, kInstTypeDataRegister, Opcode, SetFlags, Rn, Rd, Src1Value,
830 RuleChecks, InstName);
831 return;
832 }
833 case EncodedAsConstI32: {
834 // See if we can convert this to an XXX (immediate).
835 IValueT RotateAmt;
836 IValueT Imm8;
837 if (!OperandARM32FlexImm::canHoldImm(Src1Value, &RotateAmt, &Imm8))
838 llvm::report_fatal_error(std::string(InstName) +
839 ": Immediate rotated constant not valid");
840 Src1Value = encodeRotatedImm8(RotateAmt, Imm8);
841 // Intentionally fall to next case!
842 }
843 case EncodedAsRotatedImm8: {
844 // XXX (Immediate)
845 // xxx{s}<c> <Rd>, <Rn>, #<RotatedImm8>
846 //
847 // cccc001xxxxsnnnnddddiiiiiiiiiiii where cccc=Cond, xxxx=Opcode, dddd=Rd,
848 // nnnn=Rn, s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
849 emitType01(Cond, kInstTypeDataImmediate, Opcode, SetFlags, Rn, Rd,
850 Src1Value, RuleChecks, InstName);
851 return;
852 }
853 case EncodedAsRegShiftReg: {
854 // XXX (register-shifted reg)
855 // xxx{s}<c> <Rd>, <Rn>, <Rm>, <type> <Rs>
856 //
857 // cccc000xxxxfnnnnddddssss0tt1mmmm where cccc=Cond, xxxx=Opcode, dddd=Rd,
858 // nnnn=Rn, ssss=Rs, f=SetFlags, tt is encoding of type, and
859 // Src1Value=ssss01tt1mmmm.
860 emitType01(Cond, kInstTypeDataRegShift, Opcode, SetFlags, Rn, Rd, Src1Value,
861 RuleChecks, InstName);
862 return;
863 }
864 }
865 }
866
emitType05(CondARM32::Cond Cond,IOffsetT Offset,bool Link)867 void AssemblerARM32::emitType05(CondARM32::Cond Cond, IOffsetT Offset,
868 bool Link) {
869 // cccc101liiiiiiiiiiiiiiiiiiiiiiii where cccc=Cond, l=Link, and
870 // iiiiiiiiiiiiiiiiiiiiiiii=
871 // EncodedBranchOffset(cccc101l000000000000000000000000, Offset);
872 assert(CondARM32::isDefined(Cond));
873 IValueT Encoding = static_cast<int32_t>(Cond) << kConditionShift |
874 5 << kTypeShift | (Link ? 1 : 0) << kLinkShift;
875 Encoding = encodeBranchOffset(Offset, Encoding);
876 emitInst(Encoding);
877 }
878
emitBranch(Label * L,CondARM32::Cond Cond,bool Link)879 void AssemblerARM32::emitBranch(Label *L, CondARM32::Cond Cond, bool Link) {
880 // TODO(kschimpf): Handle far jumps.
881 if (L->isBound()) {
882 const int32_t Dest = L->getPosition() - Buffer.size();
883 emitType05(Cond, Dest, Link);
884 return;
885 }
886 const IOffsetT Position = Buffer.size();
887 // Use the offset field of the branch instruction for linking the sites.
888 emitType05(Cond, L->getEncodedPosition(), Link);
889 L->linkTo(*this, Position);
890 }
891
emitCompareOp(CondARM32::Cond Cond,IValueT Opcode,const Operand * OpRn,const Operand * OpSrc1,const char * InstName)892 void AssemblerARM32::emitCompareOp(CondARM32::Cond Cond, IValueT Opcode,
893 const Operand *OpRn, const Operand *OpSrc1,
894 const char *InstName) {
895 // XXX (register)
896 // XXX<c> <Rn>, <Rm>{, <shift>}
897 //
898 // ccccyyyxxxx1nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm, iiiii
899 // defines shift constant, tt=ShiftKind, yyy=kInstTypeDataRegister, and
900 // xxxx=Opcode.
901 //
902 // XXX (immediate)
903 // XXX<c> <Rn>, #<RotatedImm8>
904 //
905 // ccccyyyxxxx1nnnn0000iiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
906 // yyy=kInstTypeDataImmdiate, xxxx=Opcode, and iiiiiiiiiiii=Src1Value
907 // defining RotatedImm8.
908 constexpr bool SetFlags = true;
909 constexpr IValueT Rd = RegARM32::Encoded_Reg_r0;
910 IValueT Rn = encodeGPRegister(OpRn, "Rn", InstName);
911 emitType01(Cond, Opcode, Rd, Rn, OpSrc1, SetFlags, NoChecks, InstName);
912 }
913
emitMemOp(CondARM32::Cond Cond,IValueT InstType,bool IsLoad,bool IsByte,IValueT Rt,IValueT Address)914 void AssemblerARM32::emitMemOp(CondARM32::Cond Cond, IValueT InstType,
915 bool IsLoad, bool IsByte, IValueT Rt,
916 IValueT Address) {
917 assert(Rt < RegARM32::getNumGPRegs());
918 assert(CondARM32::isDefined(Cond));
919 const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) |
920 (InstType << kTypeShift) | (IsLoad ? L : 0) |
921 (IsByte ? B : 0) | (Rt << kRdShift) | Address;
922 emitInst(Encoding);
923 }
924
emitMemOp(CondARM32::Cond Cond,bool IsLoad,bool IsByte,IValueT Rt,const Operand * OpAddress,const TargetInfo & TInfo,const char * InstName)925 void AssemblerARM32::emitMemOp(CondARM32::Cond Cond, bool IsLoad, bool IsByte,
926 IValueT Rt, const Operand *OpAddress,
927 const TargetInfo &TInfo, const char *InstName) {
928 IValueT Address;
929 switch (encodeAddress(OpAddress, Address, TInfo, Imm12Address)) {
930 default:
931 llvm::report_fatal_error(std::string(InstName) +
932 ": Memory address not understood");
933 case EncodedAsImmRegOffset: {
934 // XXX{B} (immediate):
935 // xxx{b}<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0
936 // xxx{b}<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1
937 // xxx{b}<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1
938 //
939 // cccc010pubwlnnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn,
940 // iiiiiiiiiiii=imm12, b=IsByte, pu0w<<21 is a BlockAddr, l=IsLoad, and
941 // pu0w0nnnn0000iiiiiiiiiiii=Address.
942 RegARM32::GPRRegister Rn = getGPRReg(kRnShift, Address);
943
944 // Check if conditions of rules violated.
945 verifyRegNotPc(Rn, "Rn", InstName);
946 verifyPOrNotW(Address, InstName);
947 if (!IsByte && (Rn == RegARM32::Encoded_Reg_sp) && !isBitSet(P, Address) &&
948 isBitSet(U, Address) && !isBitSet(W, Address) &&
949 (mask(Address, kImm12Shift, kImmed12Bits) == 0x8 /* 000000000100 */))
950 llvm::report_fatal_error(std::string(InstName) +
951 ": Use push/pop instead");
952
953 emitMemOp(Cond, kInstTypeMemImmediate, IsLoad, IsByte, Rt, Address);
954 return;
955 }
956 case EncodedAsShiftRotateImm5: {
957 // XXX{B} (register)
958 // xxx{b}<c> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]{!}
959 // xxx{b}<c> <Rt>, [<Rn>], +/-<Rm>{, <shift>}
960 //
961 // cccc011pubwlnnnnttttiiiiiss0mmmm where cccc=Cond, tttt=Rt,
962 // b=IsByte, U=1 if +, pu0b is a BlockAddr, l=IsLoad, and
963 // pu0w0nnnn0000iiiiiss0mmmm=Address.
964 RegARM32::GPRRegister Rn = getGPRReg(kRnShift, Address);
965 RegARM32::GPRRegister Rm = getGPRReg(kRmShift, Address);
966
967 // Check if conditions of rules violated.
968 verifyPOrNotW(Address, InstName);
969 verifyRegNotPc(Rm, "Rm", InstName);
970 if (IsByte)
971 verifyRegNotPc(Rt, "Rt", InstName);
972 if (isBitSet(W, Address)) {
973 verifyRegNotPc(Rn, "Rn", InstName);
974 verifyRegsNotEq(Rn, "Rn", Rt, "Rt", InstName);
975 }
976 emitMemOp(Cond, kInstTypeRegisterShift, IsLoad, IsByte, Rt, Address);
977 return;
978 }
979 }
980 }
981
emitMemOpEnc3(CondARM32::Cond Cond,IValueT Opcode,IValueT Rt,const Operand * OpAddress,const TargetInfo & TInfo,const char * InstName)982 void AssemblerARM32::emitMemOpEnc3(CondARM32::Cond Cond, IValueT Opcode,
983 IValueT Rt, const Operand *OpAddress,
984 const TargetInfo &TInfo,
985 const char *InstName) {
986 IValueT Address;
987 switch (encodeAddress(OpAddress, Address, TInfo, RotatedImm8Enc3Address)) {
988 default:
989 llvm::report_fatal_error(std::string(InstName) +
990 ": Memory address not understood");
991 case EncodedAsImmRegOffset: {
992 // XXXH (immediate)
993 // xxxh<c> <Rt>, [<Rn>{, #+-<Imm8>}]
994 // xxxh<c> <Rt>, [<Rn>, #+/-<Imm8>]
995 // xxxh<c> <Rt>, [<Rn>, #+/-<Imm8>]!
996 //
997 // cccc000pu0wxnnnnttttiiiiyyyyjjjj where cccc=Cond, nnnn=Rn, tttt=Rt,
998 // iiiijjjj=Imm8, pu0w<<21 is a BlockAddr, x000000000000yyyy0000=Opcode,
999 // and pu0w0nnnn0000iiii0000jjjj=Address.
1000 assert(Rt < RegARM32::getNumGPRegs());
1001 assert(CondARM32::isDefined(Cond));
1002 verifyPOrNotW(Address, InstName);
1003 verifyRegNotPc(Rt, "Rt", InstName);
1004 if (isBitSet(W, Address))
1005 verifyRegsNotEq(getGPRReg(kRnShift, Address), "Rn", Rt, "Rt", InstName);
1006 const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) |
1007 Opcode | (Rt << kRdShift) | Address;
1008 emitInst(Encoding);
1009 return;
1010 }
1011 case EncodedAsShiftRotateImm5: {
1012 // XXXH (register)
1013 // xxxh<c> <Rt>, [<Rn>, +/-<Rm>]{!}
1014 // xxxh<c> <Rt>, [<Rn>], +/-<Rm>
1015 //
1016 // cccc000pu0wxnnnntttt00001011mmmm where cccc=Cond, tttt=Rt, nnnn=Rn,
1017 // mmmm=Rm, pu0w<<21 is a BlockAddr, x000000000000yyyy0000=Opcode, and
1018 // pu0w0nnnn000000000000mmmm=Address.
1019 assert(Rt < RegARM32::getNumGPRegs());
1020 assert(CondARM32::isDefined(Cond));
1021 verifyPOrNotW(Address, InstName);
1022 verifyRegNotPc(Rt, "Rt", InstName);
1023 verifyAddrRegNotPc(kRmShift, Address, "Rm", InstName);
1024 const RegARM32::GPRRegister Rn = getGPRReg(kRnShift, Address);
1025 if (isBitSet(W, Address)) {
1026 verifyRegNotPc(Rn, "Rn", InstName);
1027 verifyRegsNotEq(Rn, "Rn", Rt, "Rt", InstName);
1028 }
1029 if (mask(Address, kShiftImmShift, 5) != 0)
1030 // For encoding 3, no shift is allowed.
1031 llvm::report_fatal_error(std::string(InstName) +
1032 ": Shift constant not allowed");
1033 const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) |
1034 Opcode | (Rt << kRdShift) | Address;
1035 emitInst(Encoding);
1036 return;
1037 }
1038 }
1039 }
1040
emitDivOp(CondARM32::Cond Cond,IValueT Opcode,IValueT Rd,IValueT Rn,IValueT Rm)1041 void AssemblerARM32::emitDivOp(CondARM32::Cond Cond, IValueT Opcode, IValueT Rd,
1042 IValueT Rn, IValueT Rm) {
1043 assert(Rd < RegARM32::getNumGPRegs());
1044 assert(Rn < RegARM32::getNumGPRegs());
1045 assert(Rm < RegARM32::getNumGPRegs());
1046 assert(CondARM32::isDefined(Cond));
1047 const IValueT Encoding = Opcode | (encodeCondition(Cond) << kConditionShift) |
1048 (Rn << kDivRnShift) | (Rd << kDivRdShift) | B26 |
1049 B25 | B24 | B20 | B15 | B14 | B13 | B12 | B4 |
1050 (Rm << kDivRmShift);
1051 emitInst(Encoding);
1052 }
1053
emitInsertExtractInt(CondARM32::Cond Cond,const Operand * OpQn,uint32_t Index,const Operand * OpRt,bool IsExtract,const char * InstName)1054 void AssemblerARM32::emitInsertExtractInt(CondARM32::Cond Cond,
1055 const Operand *OpQn, uint32_t Index,
1056 const Operand *OpRt, bool IsExtract,
1057 const char *InstName) {
1058 const IValueT Rt = encodeGPRegister(OpRt, "Rt", InstName);
1059 IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", InstName));
1060 assert(Rt != RegARM32::Encoded_Reg_pc);
1061 assert(Rt != RegARM32::Encoded_Reg_sp);
1062 assert(CondARM32::isDefined(Cond));
1063 const uint32_t BitSize = typeWidthInBytes(OpRt->getType()) * CHAR_BIT;
1064 IValueT Opcode1 = 0;
1065 IValueT Opcode2 = 0;
1066 switch (BitSize) {
1067 default:
1068 llvm::report_fatal_error(std::string(InstName) +
1069 ": Unable to process type " +
1070 typeStdString(OpRt->getType()));
1071 case 8:
1072 assert(Index < 16);
1073 Dn = Dn | mask(Index, 3, 1);
1074 Opcode1 = B1 | mask(Index, 2, 1);
1075 Opcode2 = mask(Index, 0, 2);
1076 break;
1077 case 16:
1078 assert(Index < 8);
1079 Dn = Dn | mask(Index, 2, 1);
1080 Opcode1 = mask(Index, 1, 1);
1081 Opcode2 = (mask(Index, 0, 1) << 1) | B0;
1082 break;
1083 case 32:
1084 assert(Index < 4);
1085 Dn = Dn | mask(Index, 1, 1);
1086 Opcode1 = mask(Index, 0, 1);
1087 break;
1088 }
1089 const IValueT Encoding = B27 | B26 | B25 | B11 | B9 | B8 | B4 |
1090 (encodeCondition(Cond) << kConditionShift) |
1091 (Opcode1 << 21) |
1092 (getXXXXInRegYXXXX(Dn) << kRnShift) | (Rt << 12) |
1093 (encodeBool(IsExtract) << 20) |
1094 (getYInRegYXXXX(Dn) << 7) | (Opcode2 << 5);
1095 emitInst(Encoding);
1096 }
1097
emitMoveSS(CondARM32::Cond Cond,IValueT Sd,IValueT Sm)1098 void AssemblerARM32::emitMoveSS(CondARM32::Cond Cond, IValueT Sd, IValueT Sm) {
1099 // VMOV (register) - ARM section A8.8.340, encoding A2:
1100 // vmov<c>.f32 <Sd>, <Sm>
1101 //
1102 // cccc11101D110000dddd101001M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm.
1103 constexpr IValueT VmovssOpcode = B23 | B21 | B20 | B6;
1104 constexpr IValueT S0 = 0;
1105 emitVFPsss(Cond, VmovssOpcode, Sd, S0, Sm);
1106 }
1107
emitMulOp(CondARM32::Cond Cond,IValueT Opcode,IValueT Rd,IValueT Rn,IValueT Rm,IValueT Rs,bool SetFlags)1108 void AssemblerARM32::emitMulOp(CondARM32::Cond Cond, IValueT Opcode, IValueT Rd,
1109 IValueT Rn, IValueT Rm, IValueT Rs,
1110 bool SetFlags) {
1111 assert(Rd < RegARM32::getNumGPRegs());
1112 assert(Rn < RegARM32::getNumGPRegs());
1113 assert(Rm < RegARM32::getNumGPRegs());
1114 assert(Rs < RegARM32::getNumGPRegs());
1115 assert(CondARM32::isDefined(Cond));
1116 IValueT Encoding = Opcode | (encodeCondition(Cond) << kConditionShift) |
1117 (encodeBool(SetFlags) << kSShift) | (Rn << kRnShift) |
1118 (Rd << kRdShift) | (Rs << kRsShift) | B7 | B4 |
1119 (Rm << kRmShift);
1120 emitInst(Encoding);
1121 }
1122
emitMultiMemOp(CondARM32::Cond Cond,BlockAddressMode AddressMode,bool IsLoad,IValueT BaseReg,IValueT Registers)1123 void AssemblerARM32::emitMultiMemOp(CondARM32::Cond Cond,
1124 BlockAddressMode AddressMode, bool IsLoad,
1125 IValueT BaseReg, IValueT Registers) {
1126 assert(CondARM32::isDefined(Cond));
1127 assert(BaseReg < RegARM32::getNumGPRegs());
1128 assert(Registers < (1 << RegARM32::getNumGPRegs()));
1129 IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B27 |
1130 AddressMode | (IsLoad ? L : 0) | (BaseReg << kRnShift) |
1131 Registers;
1132 emitInst(Encoding);
1133 }
1134
emitSignExtend(CondARM32::Cond Cond,IValueT Opcode,const Operand * OpRd,const Operand * OpSrc0,const char * InstName)1135 void AssemblerARM32::emitSignExtend(CondARM32::Cond Cond, IValueT Opcode,
1136 const Operand *OpRd, const Operand *OpSrc0,
1137 const char *InstName) {
1138 IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName);
1139 IValueT Rm = encodeGPRegister(OpSrc0, "Rm", InstName);
1140 // Note: For the moment, we assume no rotation is specified.
1141 RotationValue Rotation = kRotateNone;
1142 constexpr IValueT Rn = RegARM32::Encoded_Reg_pc;
1143 const Type Ty = OpSrc0->getType();
1144 switch (Ty) {
1145 default:
1146 llvm::report_fatal_error(std::string(InstName) + ": Type " +
1147 typeString(Ty) + " not allowed");
1148 break;
1149 case IceType_i1:
1150 case IceType_i8: {
1151 // SXTB/UXTB - Arm sections A8.8.233 and A8.8.274, encoding A1:
1152 // sxtb<c> <Rd>, <Rm>{, <rotate>}
1153 // uxtb<c> <Rd>, <Rm>{, <rotate>}
1154 //
1155 // ccccxxxxxxxx1111ddddrr000111mmmm where cccc=Cond, xxxxxxxx<<20=Opcode,
1156 // dddd=Rd, mmmm=Rm, and rr defined (RotationValue) rotate.
1157 break;
1158 }
1159 case IceType_i16: {
1160 // SXTH/UXTH - ARM sections A8.8.235 and A8.8.276, encoding A1:
1161 // uxth<c> <Rd>< <Rm>{, <rotate>}
1162 //
1163 // cccc01101111nnnnddddrr000111mmmm where cccc=Cond, dddd=Rd, mmmm=Rm, and
1164 // rr defined (RotationValue) rotate.
1165 Opcode |= B20;
1166 break;
1167 }
1168 }
1169
1170 assert(CondARM32::isDefined(Cond));
1171 IValueT Rot = encodeRotation(Rotation);
1172 if (!Utils::IsUint(2, Rot))
1173 llvm::report_fatal_error(std::string(InstName) +
1174 ": Illegal rotation value");
1175 IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | Opcode |
1176 (Rn << kRnShift) | (Rd << kRdShift) |
1177 (Rot << kRotationShift) | B6 | B5 | B4 | (Rm << kRmShift);
1178 emitInst(Encoding);
1179 }
1180
emitSIMDBase(IValueT Opcode,IValueT Dd,IValueT Dn,IValueT Dm,bool UseQRegs,bool IsFloatTy)1181 void AssemblerARM32::emitSIMDBase(IValueT Opcode, IValueT Dd, IValueT Dn,
1182 IValueT Dm, bool UseQRegs, bool IsFloatTy) {
1183 const IValueT Encoding =
1184 Opcode | B25 | (encodeCondition(CondARM32::kNone) << kConditionShift) |
1185 (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dn) << 16) |
1186 (getXXXXInRegYXXXX(Dd) << 12) | (IsFloatTy ? B10 : 0) |
1187 (getYInRegYXXXX(Dn) << 7) | (encodeBool(UseQRegs) << 6) |
1188 (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm);
1189 emitInst(Encoding);
1190 }
1191
emitSIMD(IValueT Opcode,Type ElmtTy,IValueT Dd,IValueT Dn,IValueT Dm,bool UseQRegs)1192 void AssemblerARM32::emitSIMD(IValueT Opcode, Type ElmtTy, IValueT Dd,
1193 IValueT Dn, IValueT Dm, bool UseQRegs) {
1194 constexpr IValueT ElmtShift = 20;
1195 const IValueT ElmtSize = encodeElmtType(ElmtTy);
1196 assert(Utils::IsUint(2, ElmtSize));
1197 emitSIMDBase(Opcode | (ElmtSize << ElmtShift), Dd, Dn, Dm, UseQRegs,
1198 isFloatingType(ElmtTy));
1199 }
1200
emitSIMDqqqBase(IValueT Opcode,const Operand * OpQd,const Operand * OpQn,const Operand * OpQm,bool IsFloatTy,const char * OpcodeName)1201 void AssemblerARM32::emitSIMDqqqBase(IValueT Opcode, const Operand *OpQd,
1202 const Operand *OpQn, const Operand *OpQm,
1203 bool IsFloatTy, const char *OpcodeName) {
1204 const IValueT Qd = encodeQRegister(OpQd, "Qd", OpcodeName);
1205 const IValueT Qn = encodeQRegister(OpQn, "Qn", OpcodeName);
1206 const IValueT Qm = encodeQRegister(OpQm, "Qm", OpcodeName);
1207 constexpr bool UseQRegs = true;
1208 emitSIMDBase(Opcode, mapQRegToDReg(Qd), mapQRegToDReg(Qn), mapQRegToDReg(Qm),
1209 UseQRegs, IsFloatTy);
1210 }
1211
emitSIMDqqq(IValueT Opcode,Type ElmtTy,const Operand * OpQd,const Operand * OpQn,const Operand * OpQm,const char * OpcodeName)1212 void AssemblerARM32::emitSIMDqqq(IValueT Opcode, Type ElmtTy,
1213 const Operand *OpQd, const Operand *OpQn,
1214 const Operand *OpQm, const char *OpcodeName) {
1215 constexpr IValueT ElmtShift = 20;
1216 const IValueT ElmtSize = encodeElmtType(ElmtTy);
1217 assert(Utils::IsUint(2, ElmtSize));
1218 emitSIMDqqqBase(Opcode | (ElmtSize << ElmtShift), OpQd, OpQn, OpQm,
1219 isFloatingType(ElmtTy), OpcodeName);
1220 }
1221
emitSIMDShiftqqc(IValueT Opcode,const Operand * OpQd,const Operand * OpQm,const IValueT Imm6,const char * OpcodeName)1222 void AssemblerARM32::emitSIMDShiftqqc(IValueT Opcode, const Operand *OpQd,
1223 const Operand *OpQm, const IValueT Imm6,
1224 const char *OpcodeName) {
1225 const IValueT Qd = encodeQRegister(OpQd, "Qd", OpcodeName);
1226 const IValueT Qn = 0;
1227 const IValueT Qm = encodeQRegister(OpQm, "Qm", OpcodeName);
1228 constexpr bool UseQRegs = true;
1229 constexpr bool IsFloatTy = false;
1230 constexpr IValueT ElmtShift = 16;
1231 emitSIMDBase(Opcode | (Imm6 << ElmtShift), mapQRegToDReg(Qd),
1232 mapQRegToDReg(Qn), mapQRegToDReg(Qm), UseQRegs, IsFloatTy);
1233 }
1234
emitSIMDCvtqq(IValueT Opcode,const Operand * OpQd,const Operand * OpQm,const char * OpcodeName)1235 void AssemblerARM32::emitSIMDCvtqq(IValueT Opcode, const Operand *OpQd,
1236 const Operand *OpQm,
1237 const char *OpcodeName) {
1238 const IValueT SIMDOpcode =
1239 B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B9 | Opcode;
1240 constexpr bool UseQRegs = true;
1241 constexpr bool IsFloatTy = false;
1242 const IValueT Qd = encodeQRegister(OpQd, "Qd", OpcodeName);
1243 constexpr IValueT Qn = 0;
1244 const IValueT Qm = encodeQRegister(OpQm, "Qm", OpcodeName);
1245 emitSIMDBase(SIMDOpcode, mapQRegToDReg(Qd), mapQRegToDReg(Qn),
1246 mapQRegToDReg(Qm), UseQRegs, IsFloatTy);
1247 }
1248
emitVFPddd(CondARM32::Cond Cond,IValueT Opcode,IValueT Dd,IValueT Dn,IValueT Dm)1249 void AssemblerARM32::emitVFPddd(CondARM32::Cond Cond, IValueT Opcode,
1250 IValueT Dd, IValueT Dn, IValueT Dm) {
1251 assert(Dd < RegARM32::getNumDRegs());
1252 assert(Dn < RegARM32::getNumDRegs());
1253 assert(Dm < RegARM32::getNumDRegs());
1254 assert(CondARM32::isDefined(Cond));
1255 constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9 | B8;
1256 const IValueT Encoding =
1257 Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) |
1258 (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dn) << 16) |
1259 (getXXXXInRegYXXXX(Dd) << 12) | (getYInRegYXXXX(Dn) << 7) |
1260 (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm);
1261 emitInst(Encoding);
1262 }
1263
emitVFPddd(CondARM32::Cond Cond,IValueT Opcode,const Operand * OpDd,const Operand * OpDn,const Operand * OpDm,const char * InstName)1264 void AssemblerARM32::emitVFPddd(CondARM32::Cond Cond, IValueT Opcode,
1265 const Operand *OpDd, const Operand *OpDn,
1266 const Operand *OpDm, const char *InstName) {
1267 IValueT Dd = encodeDRegister(OpDd, "Dd", InstName);
1268 IValueT Dn = encodeDRegister(OpDn, "Dn", InstName);
1269 IValueT Dm = encodeDRegister(OpDm, "Dm", InstName);
1270 emitVFPddd(Cond, Opcode, Dd, Dn, Dm);
1271 }
1272
emitVFPsss(CondARM32::Cond Cond,IValueT Opcode,IValueT Sd,IValueT Sn,IValueT Sm)1273 void AssemblerARM32::emitVFPsss(CondARM32::Cond Cond, IValueT Opcode,
1274 IValueT Sd, IValueT Sn, IValueT Sm) {
1275 assert(Sd < RegARM32::getNumSRegs());
1276 assert(Sn < RegARM32::getNumSRegs());
1277 assert(Sm < RegARM32::getNumSRegs());
1278 assert(CondARM32::isDefined(Cond));
1279 constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9;
1280 const IValueT Encoding =
1281 Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) |
1282 (getYInRegXXXXY(Sd) << 22) | (getXXXXInRegXXXXY(Sn) << 16) |
1283 (getXXXXInRegXXXXY(Sd) << 12) | (getYInRegXXXXY(Sn) << 7) |
1284 (getYInRegXXXXY(Sm) << 5) | getXXXXInRegXXXXY(Sm);
1285 emitInst(Encoding);
1286 }
1287
emitVFPsss(CondARM32::Cond Cond,IValueT Opcode,const Operand * OpSd,const Operand * OpSn,const Operand * OpSm,const char * InstName)1288 void AssemblerARM32::emitVFPsss(CondARM32::Cond Cond, IValueT Opcode,
1289 const Operand *OpSd, const Operand *OpSn,
1290 const Operand *OpSm, const char *InstName) {
1291 const IValueT Sd = encodeSRegister(OpSd, "Sd", InstName);
1292 const IValueT Sn = encodeSRegister(OpSn, "Sn", InstName);
1293 const IValueT Sm = encodeSRegister(OpSm, "Sm", InstName);
1294 emitVFPsss(Cond, Opcode, Sd, Sn, Sm);
1295 }
1296
adc(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1297 void AssemblerARM32::adc(const Operand *OpRd, const Operand *OpRn,
1298 const Operand *OpSrc1, bool SetFlags,
1299 CondARM32::Cond Cond) {
1300 // ADC (register) - ARM section 18.8.2, encoding A1:
1301 // adc{s}<c> <Rd>, <Rn>, <Rm>{, <shift>}
1302 //
1303 // cccc0000101snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
1304 // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags.
1305 //
1306 // ADC (Immediate) - ARM section A8.8.1, encoding A1:
1307 // adc{s}<c> <Rd>, <Rn>, #<RotatedImm8>
1308 //
1309 // cccc0010101snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1310 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1311 constexpr const char *AdcName = "adc";
1312 constexpr IValueT AdcOpcode = B2 | B0; // 0101
1313 emitType01(Cond, AdcOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
1314 AdcName);
1315 }
1316
add(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1317 void AssemblerARM32::add(const Operand *OpRd, const Operand *OpRn,
1318 const Operand *OpSrc1, bool SetFlags,
1319 CondARM32::Cond Cond) {
1320 // ADD (register) - ARM section A8.8.7, encoding A1:
1321 // add{s}<c> <Rd>, <Rn>, <Rm>{, <shiff>}
1322 // ADD (Sp plus register) - ARM section A8.8.11, encoding A1:
1323 // add{s}<c> sp, <Rn>, <Rm>{, <shiff>}
1324 //
1325 // cccc0000100snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
1326 // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags.
1327 //
1328 // ADD (Immediate) - ARM section A8.8.5, encoding A1:
1329 // add{s}<c> <Rd>, <Rn>, #<RotatedImm8>
1330 // ADD (SP plus immediate) - ARM section A8.8.9, encoding A1.
1331 // add{s}<c> <Rd>, sp, #<RotatedImm8>
1332 //
1333 // cccc0010100snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1334 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1335 constexpr const char *AddName = "add";
1336 constexpr IValueT Add = B2; // 0100
1337 emitType01(Cond, Add, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
1338 AddName);
1339 }
1340
and_(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1341 void AssemblerARM32::and_(const Operand *OpRd, const Operand *OpRn,
1342 const Operand *OpSrc1, bool SetFlags,
1343 CondARM32::Cond Cond) {
1344 // AND (register) - ARM section A8.8.14, encoding A1:
1345 // and{s}<c> <Rd>, <Rn>{, <shift>}
1346 //
1347 // cccc0000000snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
1348 // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags.
1349 //
1350 // AND (Immediate) - ARM section A8.8.13, encoding A1:
1351 // and{s}<c> <Rd>, <Rn>, #<RotatedImm8>
1352 //
1353 // cccc0010100snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1354 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1355 constexpr const char *AndName = "and";
1356 constexpr IValueT And = 0; // 0000
1357 emitType01(Cond, And, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
1358 AndName);
1359 }
1360
b(Label * L,CondARM32::Cond Cond)1361 void AssemblerARM32::b(Label *L, CondARM32::Cond Cond) {
1362 emitBranch(L, Cond, false);
1363 }
1364
bkpt(uint16_t Imm16)1365 void AssemblerARM32::bkpt(uint16_t Imm16) {
1366 // BKPT - ARM section A*.8.24 - encoding A1:
1367 // bkpt #<Imm16>
1368 //
1369 // cccc00010010iiiiiiiiiiii0111iiii where cccc=AL and iiiiiiiiiiiiiiii=Imm16
1370 const IValueT Encoding = (CondARM32::AL << kConditionShift) | B24 | B21 |
1371 ((Imm16 >> 4) << 8) | B6 | B5 | B4 | (Imm16 & 0xf);
1372 emitInst(Encoding);
1373 }
1374
bic(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1375 void AssemblerARM32::bic(const Operand *OpRd, const Operand *OpRn,
1376 const Operand *OpSrc1, bool SetFlags,
1377 CondARM32::Cond Cond) {
1378 // BIC (register) - ARM section A8.8.22, encoding A1:
1379 // bic{s}<c> <Rd>, <Rn>, <Rm>{, <shift>}
1380 //
1381 // cccc0001110snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
1382 // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags.
1383 //
1384 // BIC (immediate) - ARM section A8.8.21, encoding A1:
1385 // bic{s}<c> <Rd>, <Rn>, #<RotatedImm8>
1386 //
1387 // cccc0011110snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rn, nnnn=Rn,
1388 // s=SetFlags, and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1389 constexpr const char *BicName = "bic";
1390 constexpr IValueT BicOpcode = B3 | B2 | B1; // i.e. 1110
1391 emitType01(Cond, BicOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
1392 BicName);
1393 }
1394
bl(const ConstantRelocatable * Target)1395 void AssemblerARM32::bl(const ConstantRelocatable *Target) {
1396 // BL (immediate) - ARM section A8.8.25, encoding A1:
1397 // bl<c> <label>
1398 //
1399 // cccc1011iiiiiiiiiiiiiiiiiiiiiiii where cccc=Cond (not currently allowed)
1400 // and iiiiiiiiiiiiiiiiiiiiiiii is the (encoded) Target to branch to.
1401 emitFixup(createBlFixup(Target));
1402 constexpr CondARM32::Cond Cond = CondARM32::AL;
1403 constexpr IValueT Immed = 0;
1404 constexpr bool Link = true;
1405 emitType05(Cond, Immed, Link);
1406 }
1407
blx(const Operand * Target)1408 void AssemblerARM32::blx(const Operand *Target) {
1409 // BLX (register) - ARM section A8.8.26, encoding A1:
1410 // blx<c> <Rm>
1411 //
1412 // cccc000100101111111111110011mmmm where cccc=Cond (not currently allowed)
1413 // and mmmm=Rm.
1414 constexpr const char *BlxName = "Blx";
1415 IValueT Rm = encodeGPRegister(Target, "Rm", BlxName);
1416 verifyRegNotPc(Rm, "Rm", BlxName);
1417 constexpr CondARM32::Cond Cond = CondARM32::AL;
1418 int32_t Encoding = (encodeCondition(Cond) << kConditionShift) | B24 | B21 |
1419 (0xfff << 8) | B5 | B4 | (Rm << kRmShift);
1420 emitInst(Encoding);
1421 }
1422
bx(RegARM32::GPRRegister Rm,CondARM32::Cond Cond)1423 void AssemblerARM32::bx(RegARM32::GPRRegister Rm, CondARM32::Cond Cond) {
1424 // BX - ARM section A8.8.27, encoding A1:
1425 // bx<c> <Rm>
1426 //
1427 // cccc000100101111111111110001mmmm where mmmm=rm and cccc=Cond.
1428 assert(CondARM32::isDefined(Cond));
1429 const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B24 |
1430 B21 | (0xfff << 8) | B4 |
1431 (encodeGPRRegister(Rm) << kRmShift);
1432 emitInst(Encoding);
1433 }
1434
clz(const Operand * OpRd,const Operand * OpSrc,CondARM32::Cond Cond)1435 void AssemblerARM32::clz(const Operand *OpRd, const Operand *OpSrc,
1436 CondARM32::Cond Cond) {
1437 // CLZ - ARM section A8.8.33, encoding A1:
1438 // clz<c> <Rd> <Rm>
1439 //
1440 // cccc000101101111dddd11110001mmmm where cccc=Cond, dddd=Rd, and mmmm=Rm.
1441 constexpr const char *ClzName = "clz";
1442 constexpr const char *RdName = "Rd";
1443 constexpr const char *RmName = "Rm";
1444 IValueT Rd = encodeGPRegister(OpRd, RdName, ClzName);
1445 assert(Rd < RegARM32::getNumGPRegs());
1446 verifyRegNotPc(Rd, RdName, ClzName);
1447 IValueT Rm = encodeGPRegister(OpSrc, RmName, ClzName);
1448 assert(Rm < RegARM32::getNumGPRegs());
1449 verifyRegNotPc(Rm, RmName, ClzName);
1450 assert(CondARM32::isDefined(Cond));
1451 constexpr IValueT PredefinedBits =
1452 B24 | B22 | B21 | (0xF << 16) | (0xf << 8) | B4;
1453 const IValueT Encoding = PredefinedBits | (Cond << kConditionShift) |
1454 (Rd << kRdShift) | (Rm << kRmShift);
1455 emitInst(Encoding);
1456 }
1457
cmn(const Operand * OpRn,const Operand * OpSrc1,CondARM32::Cond Cond)1458 void AssemblerARM32::cmn(const Operand *OpRn, const Operand *OpSrc1,
1459 CondARM32::Cond Cond) {
1460 // CMN (immediate) - ARM section A8.8.34, encoding A1:
1461 // cmn<c> <Rn>, #<RotatedImm8>
1462 //
1463 // cccc00110111nnnn0000iiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1464 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1465 //
1466 // CMN (register) - ARM section A8.8.35, encodeing A1:
1467 // cmn<c> <Rn>, <Rm>{, <shift>}
1468 //
1469 // cccc00010111nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm,
1470 // iiiii=Shift, and tt=ShiftKind.
1471 constexpr const char *CmnName = "cmn";
1472 constexpr IValueT CmnOpcode = B3 | B1 | B0; // ie. 1011
1473 emitCompareOp(Cond, CmnOpcode, OpRn, OpSrc1, CmnName);
1474 }
1475
cmp(const Operand * OpRn,const Operand * OpSrc1,CondARM32::Cond Cond)1476 void AssemblerARM32::cmp(const Operand *OpRn, const Operand *OpSrc1,
1477 CondARM32::Cond Cond) {
1478 // CMP (register) - ARM section A8.8.38, encoding A1:
1479 // cmp<c> <Rn>, <Rm>{, <shift>}
1480 //
1481 // cccc00010101nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm,
1482 // iiiii=Shift, and tt=ShiftKind.
1483 //
1484 // CMP (immediate) - ARM section A8.8.37
1485 // cmp<c: <Rn>, #<RotatedImm8>
1486 //
1487 // cccc00110101nnnn0000iiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1488 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1489 constexpr const char *CmpName = "cmp";
1490 constexpr IValueT CmpOpcode = B3 | B1; // ie. 1010
1491 emitCompareOp(Cond, CmpOpcode, OpRn, OpSrc1, CmpName);
1492 }
1493
dmb(IValueT Option)1494 void AssemblerARM32::dmb(IValueT Option) {
1495 // DMB - ARM section A8.8.43, encoding A1:
1496 // dmb <option>
1497 //
1498 // 1111010101111111111100000101xxxx where xxxx=Option.
1499 assert(Utils::IsUint(4, Option) && "Bad dmb option");
1500 const IValueT Encoding =
1501 (encodeCondition(CondARM32::kNone) << kConditionShift) | B26 | B24 | B22 |
1502 B21 | B20 | B19 | B18 | B17 | B16 | B15 | B14 | B13 | B12 | B6 | B4 |
1503 Option;
1504 emitInst(Encoding);
1505 }
1506
eor(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1507 void AssemblerARM32::eor(const Operand *OpRd, const Operand *OpRn,
1508 const Operand *OpSrc1, bool SetFlags,
1509 CondARM32::Cond Cond) {
1510 // EOR (register) - ARM section A*.8.47, encoding A1:
1511 // eor{s}<c> <Rd>, <Rn>, <Rm>{, <shift>}
1512 //
1513 // cccc0000001snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
1514 // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags.
1515 //
1516 // EOR (Immediate) - ARM section A8.*.46, encoding A1:
1517 // eor{s}<c> <Rd>, <Rn>, #RotatedImm8
1518 //
1519 // cccc0010001snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1520 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1521 constexpr const char *EorName = "eor";
1522 constexpr IValueT EorOpcode = B0; // 0001
1523 emitType01(Cond, EorOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
1524 EorName);
1525 }
1526
ldr(const Operand * OpRt,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)1527 void AssemblerARM32::ldr(const Operand *OpRt, const Operand *OpAddress,
1528 CondARM32::Cond Cond, const TargetInfo &TInfo) {
1529 constexpr const char *LdrName = "ldr";
1530 constexpr bool IsLoad = true;
1531 IValueT Rt = encodeGPRegister(OpRt, "Rt", LdrName);
1532 const Type Ty = OpRt->getType();
1533 switch (Ty) {
1534 case IceType_i64:
1535 // LDRD is not implemented because target lowering handles i64 and double by
1536 // using two (32-bit) load instructions. Note: Intentionally drop to default
1537 // case.
1538 llvm::report_fatal_error(std::string("ldr : Type ") + typeString(Ty) +
1539 " not implemented");
1540 default:
1541 llvm::report_fatal_error(std::string("ldr : Type ") + typeString(Ty) +
1542 " not allowed");
1543 case IceType_i1:
1544 case IceType_i8: {
1545 // LDRB (immediate) - ARM section A8.8.68, encoding A1:
1546 // ldrb<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0
1547 // ldrb<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1
1548 // ldrb<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1
1549 //
1550 // cccc010pu1w1nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn,
1551 // iiiiiiiiiiii=imm12, u=1 if +, pu0w is a BlockAddr, and
1552 // pu0w0nnnn0000iiiiiiiiiiii=Address.
1553 //
1554 // LDRB (register) - ARM section A8.8.66, encoding A1:
1555 // ldrb<c> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]{!}
1556 // ldrb<c> <Rt>, [<Rn>], +/-<Rm>{, <shift>}
1557 //
1558 // cccc011pu1w1nnnnttttiiiiiss0mmmm where cccc=Cond, tttt=Rt, U=1 if +, pu0b
1559 // is a BlockAddr, and pu0w0nnnn0000iiiiiss0mmmm=Address.
1560 constexpr bool IsByte = true;
1561 emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, LdrName);
1562 return;
1563 }
1564 case IceType_i16: {
1565 // LDRH (immediate) - ARM section A8.8.80, encoding A1:
1566 // ldrh<c> <Rt>, [<Rn>{, #+/-<Imm8>}]
1567 // ldrh<c> <Rt>, [<Rn>], #+/-<Imm8>
1568 // ldrh<c> <Rt>, [<Rn>, #+/-<Imm8>]!
1569 //
1570 // cccc000pu1w1nnnnttttiiii1011iiii where cccc=Cond, tttt=Rt, nnnn=Rn,
1571 // iiiiiiii=Imm8, u=1 if +, pu0w is a BlockAddr, and
1572 // pu0w0nnnn0000iiiiiiiiiiii=Address.
1573 constexpr const char *Ldrh = "ldrh";
1574 emitMemOpEnc3(Cond, L | B7 | B5 | B4, Rt, OpAddress, TInfo, Ldrh);
1575 return;
1576 }
1577 case IceType_i32: {
1578 // LDR (immediate) - ARM section A8.8.63, encoding A1:
1579 // ldr<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0
1580 // ldr<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1
1581 // ldr<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1
1582 //
1583 // cccc010pu0w1nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn,
1584 // iiiiiiiiiiii=imm12, u=1 if +, pu0w is a BlockAddr, and
1585 //
1586 // LDR (register) - ARM section A8.8.70, encoding A1:
1587 // ldrb<c> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]{!}
1588 // ldrb<c> <Rt>, [<Rn>], +-<Rm>{, <shift>}
1589 //
1590 // cccc011pu0w1nnnnttttiiiiiss0mmmm where cccc=Cond, tttt=Rt, U=1 if +, pu0b
1591 // is a BlockAddr, and pu0w0nnnn0000iiiiiss0mmmm=Address.
1592 constexpr bool IsByte = false;
1593 emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, LdrName);
1594 return;
1595 }
1596 }
1597 }
1598
emitMemExOp(CondARM32::Cond Cond,Type Ty,bool IsLoad,const Operand * OpRd,IValueT Rt,const Operand * OpAddress,const TargetInfo & TInfo,const char * InstName)1599 void AssemblerARM32::emitMemExOp(CondARM32::Cond Cond, Type Ty, bool IsLoad,
1600 const Operand *OpRd, IValueT Rt,
1601 const Operand *OpAddress,
1602 const TargetInfo &TInfo,
1603 const char *InstName) {
1604 IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName);
1605 IValueT MemExOpcode = IsLoad ? B0 : 0;
1606 switch (Ty) {
1607 default:
1608 llvm::report_fatal_error(std::string(InstName) + ": Type " +
1609 typeString(Ty) + " not allowed");
1610 case IceType_i1:
1611 case IceType_i8:
1612 MemExOpcode |= B2;
1613 break;
1614 case IceType_i16:
1615 MemExOpcode |= B2 | B1;
1616 break;
1617 case IceType_i32:
1618 break;
1619 case IceType_i64:
1620 MemExOpcode |= B1;
1621 }
1622 IValueT AddressRn;
1623 if (encodeAddress(OpAddress, AddressRn, TInfo, NoImmOffsetAddress) !=
1624 EncodedAsImmRegOffset)
1625 llvm::report_fatal_error(std::string(InstName) +
1626 ": Can't extract Rn from address");
1627 assert(Utils::IsAbsoluteUint(3, MemExOpcode));
1628 assert(Rd < RegARM32::getNumGPRegs());
1629 assert(Rt < RegARM32::getNumGPRegs());
1630 assert(CondARM32::isDefined(Cond));
1631 IValueT Encoding = (Cond << kConditionShift) | B24 | B23 | B11 | B10 | B9 |
1632 B8 | B7 | B4 | (MemExOpcode << kMemExOpcodeShift) |
1633 AddressRn | (Rd << kRdShift) | (Rt << kRmShift);
1634 emitInst(Encoding);
1635 return;
1636 }
1637
ldrex(const Operand * OpRt,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)1638 void AssemblerARM32::ldrex(const Operand *OpRt, const Operand *OpAddress,
1639 CondARM32::Cond Cond, const TargetInfo &TInfo) {
1640 // LDREXB - ARM section A8.8.76, encoding A1:
1641 // ldrexb<c> <Rt>, [<Rn>]
1642 //
1643 // cccc00011101nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn.
1644 //
1645 // LDREXH - ARM section A8.8.78, encoding A1:
1646 // ldrexh<c> <Rt>, [<Rn>]
1647 //
1648 // cccc00011111nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn.
1649 //
1650 // LDREX - ARM section A8.8.75, encoding A1:
1651 // ldrex<c> <Rt>, [<Rn>]
1652 //
1653 // cccc00011001nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn.
1654 //
1655 // LDREXD - ARM section A8.
1656 // ldrexd<c> <Rt>, [<Rn>]
1657 //
1658 // cccc00011001nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn.
1659 constexpr const char *LdrexName = "ldrex";
1660 const Type Ty = OpRt->getType();
1661 constexpr bool IsLoad = true;
1662 constexpr IValueT Rm = RegARM32::Encoded_Reg_pc;
1663 emitMemExOp(Cond, Ty, IsLoad, OpRt, Rm, OpAddress, TInfo, LdrexName);
1664 }
1665
emitShift(const CondARM32::Cond Cond,const OperandARM32::ShiftKind Shift,const Operand * OpRd,const Operand * OpRm,const Operand * OpSrc1,const bool SetFlags,const char * InstName)1666 void AssemblerARM32::emitShift(const CondARM32::Cond Cond,
1667 const OperandARM32::ShiftKind Shift,
1668 const Operand *OpRd, const Operand *OpRm,
1669 const Operand *OpSrc1, const bool SetFlags,
1670 const char *InstName) {
1671 constexpr IValueT ShiftOpcode = B3 | B2 | B0; // 1101
1672 IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName);
1673 IValueT Rm = encodeGPRegister(OpRm, "Rm", InstName);
1674 IValueT Value;
1675 switch (encodeOperand(OpSrc1, Value, WantGPRegs)) {
1676 default:
1677 llvm::report_fatal_error(std::string(InstName) +
1678 ": Last operand not understood");
1679 case EncodedAsShiftImm5: {
1680 // XXX (immediate)
1681 // xxx{s}<c> <Rd>, <Rm>, #imm5
1682 //
1683 // cccc0001101s0000ddddiiiii000mmmm where cccc=Cond, s=SetFlags, dddd=Rd,
1684 // iiiii=imm5, and mmmm=Rm.
1685 constexpr IValueT Rn = 0; // Rn field is not used.
1686 Value = Value | (Rm << kRmShift) | (Shift << kShiftShift);
1687 emitType01(Cond, kInstTypeDataRegShift, ShiftOpcode, SetFlags, Rn, Rd,
1688 Value, RdIsPcAndSetFlags, InstName);
1689 return;
1690 }
1691 case EncodedAsRegister: {
1692 // XXX (register)
1693 // xxx{S}<c> <Rd>, <Rm>, <Rs>
1694 //
1695 // cccc0001101s0000ddddssss0001mmmm where cccc=Cond, s=SetFlags, dddd=Rd,
1696 // mmmm=Rm, and ssss=Rs.
1697 constexpr IValueT Rn = 0; // Rn field is not used.
1698 IValueT Rs = encodeGPRegister(OpSrc1, "Rs", InstName);
1699 verifyRegNotPc(Rd, "Rd", InstName);
1700 verifyRegNotPc(Rm, "Rm", InstName);
1701 verifyRegNotPc(Rs, "Rs", InstName);
1702 emitType01(Cond, kInstTypeDataRegShift, ShiftOpcode, SetFlags, Rn, Rd,
1703 encodeShiftRotateReg(Rm, Shift, Rs), NoChecks, InstName);
1704 return;
1705 }
1706 }
1707 }
1708
asr(const Operand * OpRd,const Operand * OpRm,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1709 void AssemblerARM32::asr(const Operand *OpRd, const Operand *OpRm,
1710 const Operand *OpSrc1, bool SetFlags,
1711 CondARM32::Cond Cond) {
1712 constexpr const char *AsrName = "asr";
1713 emitShift(Cond, OperandARM32::ASR, OpRd, OpRm, OpSrc1, SetFlags, AsrName);
1714 }
1715
lsl(const Operand * OpRd,const Operand * OpRm,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1716 void AssemblerARM32::lsl(const Operand *OpRd, const Operand *OpRm,
1717 const Operand *OpSrc1, bool SetFlags,
1718 CondARM32::Cond Cond) {
1719 constexpr const char *LslName = "lsl";
1720 emitShift(Cond, OperandARM32::LSL, OpRd, OpRm, OpSrc1, SetFlags, LslName);
1721 }
1722
lsr(const Operand * OpRd,const Operand * OpRm,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1723 void AssemblerARM32::lsr(const Operand *OpRd, const Operand *OpRm,
1724 const Operand *OpSrc1, bool SetFlags,
1725 CondARM32::Cond Cond) {
1726 constexpr const char *LsrName = "lsr";
1727 emitShift(Cond, OperandARM32::LSR, OpRd, OpRm, OpSrc1, SetFlags, LsrName);
1728 }
1729
mov(const Operand * OpRd,const Operand * OpSrc,CondARM32::Cond Cond)1730 void AssemblerARM32::mov(const Operand *OpRd, const Operand *OpSrc,
1731 CondARM32::Cond Cond) {
1732 // MOV (register) - ARM section A8.8.104, encoding A1:
1733 // mov{S}<c> <Rd>, <Rn>
1734 //
1735 // cccc0001101s0000dddd00000000mmmm where cccc=Cond, s=SetFlags, dddd=Rd,
1736 // and nnnn=Rn.
1737 //
1738 // MOV (immediate) - ARM section A8.8.102, encoding A1:
1739 // mov{S}<c> <Rd>, #<RotatedImm8>
1740 //
1741 // cccc0011101s0000ddddiiiiiiiiiiii where cccc=Cond, s=SetFlags, dddd=Rd,
1742 // and iiiiiiiiiiii=RotatedImm8=Src. Note: We don't use movs in this
1743 // assembler.
1744 constexpr const char *MovName = "mov";
1745 IValueT Rd = encodeGPRegister(OpRd, "Rd", MovName);
1746 constexpr bool SetFlags = false;
1747 constexpr IValueT Rn = 0;
1748 constexpr IValueT MovOpcode = B3 | B2 | B0; // 1101.
1749 emitType01(Cond, MovOpcode, Rd, Rn, OpSrc, SetFlags, RdIsPcAndSetFlags,
1750 MovName);
1751 }
1752
emitMovwt(CondARM32::Cond Cond,bool IsMovW,const Operand * OpRd,const Operand * OpSrc,const char * MovName)1753 void AssemblerARM32::emitMovwt(CondARM32::Cond Cond, bool IsMovW,
1754 const Operand *OpRd, const Operand *OpSrc,
1755 const char *MovName) {
1756 IValueT Opcode = B25 | B24 | (IsMovW ? 0 : B22);
1757 IValueT Rd = encodeGPRegister(OpRd, "Rd", MovName);
1758 IValueT Imm16;
1759 if (const auto *Src = llvm::dyn_cast<ConstantRelocatable>(OpSrc)) {
1760 emitFixup(createMoveFixup(IsMovW, Src));
1761 // Use 0 for the lower 16 bits of the relocatable, and add a fixup to
1762 // install the correct bits.
1763 Imm16 = 0;
1764 } else if (encodeOperand(OpSrc, Imm16, WantGPRegs) != EncodedAsConstI32) {
1765 llvm::report_fatal_error(std::string(MovName) + ": Not i32 constant");
1766 }
1767 assert(CondARM32::isDefined(Cond));
1768 if (!Utils::IsAbsoluteUint(16, Imm16))
1769 llvm::report_fatal_error(std::string(MovName) + ": Constant not i16");
1770 const IValueT Encoding = encodeCondition(Cond) << kConditionShift | Opcode |
1771 ((Imm16 >> 12) << 16) | Rd << kRdShift |
1772 (Imm16 & 0xfff);
1773 emitInst(Encoding);
1774 }
1775
movw(const Operand * OpRd,const Operand * OpSrc,CondARM32::Cond Cond)1776 void AssemblerARM32::movw(const Operand *OpRd, const Operand *OpSrc,
1777 CondARM32::Cond Cond) {
1778 // MOV (immediate) - ARM section A8.8.102, encoding A2:
1779 // movw<c> <Rd>, #<imm16>
1780 //
1781 // cccc00110000iiiiddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, and
1782 // iiiiiiiiiiiiiiii=imm16.
1783 constexpr const char *MovwName = "movw";
1784 constexpr bool IsMovW = true;
1785 emitMovwt(Cond, IsMovW, OpRd, OpSrc, MovwName);
1786 }
1787
movt(const Operand * OpRd,const Operand * OpSrc,CondARM32::Cond Cond)1788 void AssemblerARM32::movt(const Operand *OpRd, const Operand *OpSrc,
1789 CondARM32::Cond Cond) {
1790 // MOVT - ARM section A8.8.106, encoding A1:
1791 // movt<c> <Rd>, #<imm16>
1792 //
1793 // cccc00110100iiiiddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, and
1794 // iiiiiiiiiiiiiiii=imm16.
1795 constexpr const char *MovtName = "movt";
1796 constexpr bool IsMovW = false;
1797 emitMovwt(Cond, IsMovW, OpRd, OpSrc, MovtName);
1798 }
1799
mvn(const Operand * OpRd,const Operand * OpSrc,CondARM32::Cond Cond)1800 void AssemblerARM32::mvn(const Operand *OpRd, const Operand *OpSrc,
1801 CondARM32::Cond Cond) {
1802 // MVN (immediate) - ARM section A8.8.115, encoding A1:
1803 // mvn{s}<c> <Rd>, #<const>
1804 //
1805 // cccc0011111s0000ddddiiiiiiiiiiii where cccc=Cond, s=SetFlags=0, dddd=Rd,
1806 // and iiiiiiiiiiii=const
1807 //
1808 // MVN (register) - ARM section A8.8.116, encoding A1:
1809 // mvn{s}<c> <Rd>, <Rm>{, <shift>
1810 //
1811 // cccc0001111s0000ddddiiiiitt0mmmm where cccc=Cond, s=SetFlags=0, dddd=Rd,
1812 // mmmm=Rm, iiii defines shift constant, and tt=ShiftKind.
1813 constexpr const char *MvnName = "mvn";
1814 IValueT Rd = encodeGPRegister(OpRd, "Rd", MvnName);
1815 constexpr IValueT MvnOpcode = B3 | B2 | B1 | B0; // i.e. 1111
1816 constexpr IValueT Rn = 0;
1817 constexpr bool SetFlags = false;
1818 emitType01(Cond, MvnOpcode, Rd, Rn, OpSrc, SetFlags, RdIsPcAndSetFlags,
1819 MvnName);
1820 }
1821
nop()1822 void AssemblerARM32::nop() {
1823 // NOP - Section A8.8.119, encoding A1:
1824 // nop<c>
1825 //
1826 // cccc0011001000001111000000000000 where cccc=Cond.
1827 constexpr CondARM32::Cond Cond = CondARM32::AL;
1828 const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B25 |
1829 B24 | B21 | B15 | B14 | B13 | B12;
1830 emitInst(Encoding);
1831 }
1832
sbc(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1833 void AssemblerARM32::sbc(const Operand *OpRd, const Operand *OpRn,
1834 const Operand *OpSrc1, bool SetFlags,
1835 CondARM32::Cond Cond) {
1836 // SBC (register) - ARM section 18.8.162, encoding A1:
1837 // sbc{s}<c> <Rd>, <Rn>, <Rm>{, <shift>}
1838 //
1839 // cccc0000110snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
1840 // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags.
1841 //
1842 // SBC (Immediate) - ARM section A8.8.161, encoding A1:
1843 // sbc{s}<c> <Rd>, <Rn>, #<RotatedImm8>
1844 //
1845 // cccc0010110snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1846 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1847 constexpr const char *SbcName = "sbc";
1848 constexpr IValueT SbcOpcode = B2 | B1; // 0110
1849 emitType01(Cond, SbcOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
1850 SbcName);
1851 }
1852
sdiv(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,CondARM32::Cond Cond)1853 void AssemblerARM32::sdiv(const Operand *OpRd, const Operand *OpRn,
1854 const Operand *OpSrc1, CondARM32::Cond Cond) {
1855 // SDIV - ARM section A8.8.165, encoding A1.
1856 // sdiv<c> <Rd>, <Rn>, <Rm>
1857 //
1858 // cccc01110001dddd1111mmmm0001nnnn where cccc=Cond, dddd=Rd, nnnn=Rn, and
1859 // mmmm=Rm.
1860 constexpr const char *SdivName = "sdiv";
1861 IValueT Rd = encodeGPRegister(OpRd, "Rd", SdivName);
1862 IValueT Rn = encodeGPRegister(OpRn, "Rn", SdivName);
1863 IValueT Rm = encodeGPRegister(OpSrc1, "Rm", SdivName);
1864 verifyRegNotPc(Rd, "Rd", SdivName);
1865 verifyRegNotPc(Rn, "Rn", SdivName);
1866 verifyRegNotPc(Rm, "Rm", SdivName);
1867 // Assembler registers rd, rn, rm are encoded as rn, rm, rs.
1868 constexpr IValueT SdivOpcode = 0;
1869 emitDivOp(Cond, SdivOpcode, Rd, Rn, Rm);
1870 }
1871
str(const Operand * OpRt,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)1872 void AssemblerARM32::str(const Operand *OpRt, const Operand *OpAddress,
1873 CondARM32::Cond Cond, const TargetInfo &TInfo) {
1874 constexpr const char *StrName = "str";
1875 constexpr bool IsLoad = false;
1876 IValueT Rt = encodeGPRegister(OpRt, "Rt", StrName);
1877 const Type Ty = OpRt->getType();
1878 switch (Ty) {
1879 case IceType_i64:
1880 // STRD is not implemented because target lowering handles i64 and double by
1881 // using two (32-bit) store instructions. Note: Intentionally drop to
1882 // default case.
1883 llvm::report_fatal_error(std::string(StrName) + ": Type " + typeString(Ty) +
1884 " not implemented");
1885 default:
1886 llvm::report_fatal_error(std::string(StrName) + ": Type " + typeString(Ty) +
1887 " not allowed");
1888 case IceType_i1:
1889 case IceType_i8: {
1890 // STRB (immediate) - ARM section A8.8.207, encoding A1:
1891 // strb<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0
1892 // strb<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1
1893 // strb<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1
1894 //
1895 // cccc010pu1w0nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn,
1896 // iiiiiiiiiiii=imm12, u=1 if +.
1897 constexpr bool IsByte = true;
1898 emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, StrName);
1899 return;
1900 }
1901 case IceType_i16: {
1902 // STRH (immediate) - ARM section A8.*.217, encoding A1:
1903 // strh<c> <Rt>, [<Rn>{, #+/-<Imm8>}]
1904 // strh<c> <Rt>, [<Rn>], #+/-<Imm8>
1905 // strh<c> <Rt>, [<Rn>, #+/-<Imm8>]!
1906 //
1907 // cccc000pu1w0nnnnttttiiii1011iiii where cccc=Cond, tttt=Rt, nnnn=Rn,
1908 // iiiiiiii=Imm8, u=1 if +, pu0w is a BlockAddr, and
1909 // pu0w0nnnn0000iiiiiiiiiiii=Address.
1910 constexpr const char *Strh = "strh";
1911 emitMemOpEnc3(Cond, B7 | B5 | B4, Rt, OpAddress, TInfo, Strh);
1912 return;
1913 }
1914 case IceType_i32: {
1915 // Note: Handles i32 and float stores. Target lowering handles i64 and
1916 // double by using two (32 bit) store instructions.
1917 //
1918 // STR (immediate) - ARM section A8.8.207, encoding A1:
1919 // str<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0
1920 // str<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1
1921 // str<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1
1922 //
1923 // cccc010pu1w0nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn,
1924 // iiiiiiiiiiii=imm12, u=1 if +.
1925 constexpr bool IsByte = false;
1926 emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, StrName);
1927 return;
1928 }
1929 }
1930 }
1931
strex(const Operand * OpRd,const Operand * OpRt,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)1932 void AssemblerARM32::strex(const Operand *OpRd, const Operand *OpRt,
1933 const Operand *OpAddress, CondARM32::Cond Cond,
1934 const TargetInfo &TInfo) {
1935 // STREXB - ARM section A8.8.213, encoding A1:
1936 // strexb<c> <Rd>, <Rt>, [<Rn>]
1937 //
1938 // cccc00011100nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and
1939 // nnnn=Rn.
1940 //
1941 // STREXH - ARM section A8.8.215, encoding A1:
1942 // strexh<c> <Rd>, <Rt>, [<Rn>]
1943 //
1944 // cccc00011110nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and
1945 // nnnn=Rn.
1946 //
1947 // STREX - ARM section A8.8.212, encoding A1:
1948 // strex<c> <Rd>, <Rt>, [<Rn>]
1949 //
1950 // cccc00011000nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and
1951 // nnnn=Rn.
1952 //
1953 // STREXD - ARM section A8.8.214, encoding A1:
1954 // strexd<c> <Rd>, <Rt>, [<Rn>]
1955 //
1956 // cccc00011010nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and
1957 // nnnn=Rn.
1958 constexpr const char *StrexName = "strex";
1959 // Note: Rt uses Rm shift in encoding.
1960 IValueT Rt = encodeGPRegister(OpRt, "Rt", StrexName);
1961 const Type Ty = OpRt->getType();
1962 constexpr bool IsLoad = true;
1963 emitMemExOp(Cond, Ty, !IsLoad, OpRd, Rt, OpAddress, TInfo, StrexName);
1964 }
1965
orr(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)1966 void AssemblerARM32::orr(const Operand *OpRd, const Operand *OpRn,
1967 const Operand *OpSrc1, bool SetFlags,
1968 CondARM32::Cond Cond) {
1969 // ORR (register) - ARM Section A8.8.123, encoding A1:
1970 // orr{s}<c> <Rd>, <Rn>, <Rm>
1971 //
1972 // cccc0001100snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
1973 // mmmm=Rm, iiiii=shift, tt=ShiftKind,, and s=SetFlags.
1974 //
1975 // ORR (register) - ARM Section A8.8.123, encoding A1:
1976 // orr{s}<c> <Rd>, <Rn>, #<RotatedImm8>
1977 //
1978 // cccc0001100snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
1979 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8.
1980 constexpr const char *OrrName = "orr";
1981 constexpr IValueT OrrOpcode = B3 | B2; // i.e. 1100
1982 emitType01(Cond, OrrOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
1983 OrrName);
1984 }
1985
pop(const Variable * OpRt,CondARM32::Cond Cond)1986 void AssemblerARM32::pop(const Variable *OpRt, CondARM32::Cond Cond) {
1987 // POP - ARM section A8.8.132, encoding A2:
1988 // pop<c> {Rt}
1989 //
1990 // cccc010010011101dddd000000000100 where dddd=Rt and cccc=Cond.
1991 constexpr const char *Pop = "pop";
1992 IValueT Rt = encodeGPRegister(OpRt, "Rt", Pop);
1993 verifyRegsNotEq(Rt, "Rt", RegARM32::Encoded_Reg_sp, "sp", Pop);
1994 // Same as load instruction.
1995 constexpr bool IsLoad = true;
1996 constexpr bool IsByte = false;
1997 constexpr IOffsetT MaxOffset = (1 << 8) - 1;
1998 constexpr IValueT NoShiftRight = 0;
1999 IValueT Address =
2000 encodeImmRegOffset(RegARM32::Encoded_Reg_sp, kWordSize,
2001 OperandARM32Mem::PostIndex, MaxOffset, NoShiftRight);
2002 emitMemOp(Cond, kInstTypeMemImmediate, IsLoad, IsByte, Rt, Address);
2003 }
2004
popList(const IValueT Registers,CondARM32::Cond Cond)2005 void AssemblerARM32::popList(const IValueT Registers, CondARM32::Cond Cond) {
2006 // POP - ARM section A8.*.131, encoding A1:
2007 // pop<c> <registers>
2008 //
2009 // cccc100010111101rrrrrrrrrrrrrrrr where cccc=Cond and
2010 // rrrrrrrrrrrrrrrr=Registers (one bit for each GP register).
2011 constexpr bool IsLoad = true;
2012 emitMultiMemOp(Cond, IA_W, IsLoad, RegARM32::Encoded_Reg_sp, Registers);
2013 }
2014
push(const Operand * OpRt,CondARM32::Cond Cond)2015 void AssemblerARM32::push(const Operand *OpRt, CondARM32::Cond Cond) {
2016 // PUSH - ARM section A8.8.133, encoding A2:
2017 // push<c> {Rt}
2018 //
2019 // cccc010100101101dddd000000000100 where dddd=Rt and cccc=Cond.
2020 constexpr const char *Push = "push";
2021 IValueT Rt = encodeGPRegister(OpRt, "Rt", Push);
2022 verifyRegsNotEq(Rt, "Rt", RegARM32::Encoded_Reg_sp, "sp", Push);
2023 // Same as store instruction.
2024 constexpr bool isLoad = false;
2025 constexpr bool isByte = false;
2026 constexpr IOffsetT MaxOffset = (1 << 8) - 1;
2027 constexpr IValueT NoShiftRight = 0;
2028 IValueT Address =
2029 encodeImmRegOffset(RegARM32::Encoded_Reg_sp, -kWordSize,
2030 OperandARM32Mem::PreIndex, MaxOffset, NoShiftRight);
2031 emitMemOp(Cond, kInstTypeMemImmediate, isLoad, isByte, Rt, Address);
2032 }
2033
pushList(const IValueT Registers,CondARM32::Cond Cond)2034 void AssemblerARM32::pushList(const IValueT Registers, CondARM32::Cond Cond) {
2035 // PUSH - ARM section A8.8.133, encoding A1:
2036 // push<c> <Registers>
2037 //
2038 // cccc100100101101rrrrrrrrrrrrrrrr where cccc=Cond and
2039 // rrrrrrrrrrrrrrrr=Registers (one bit for each GP register).
2040 constexpr bool IsLoad = false;
2041 emitMultiMemOp(Cond, DB_W, IsLoad, RegARM32::Encoded_Reg_sp, Registers);
2042 }
2043
mla(const Operand * OpRd,const Operand * OpRn,const Operand * OpRm,const Operand * OpRa,CondARM32::Cond Cond)2044 void AssemblerARM32::mla(const Operand *OpRd, const Operand *OpRn,
2045 const Operand *OpRm, const Operand *OpRa,
2046 CondARM32::Cond Cond) {
2047 // MLA - ARM section A8.8.114, encoding A1.
2048 // mla{s}<c> <Rd>, <Rn>, <Rm>, <Ra>
2049 //
2050 // cccc0000001sddddaaaammmm1001nnnn where cccc=Cond, s=SetFlags, dddd=Rd,
2051 // aaaa=Ra, mmmm=Rm, and nnnn=Rn.
2052 constexpr const char *MlaName = "mla";
2053 IValueT Rd = encodeGPRegister(OpRd, "Rd", MlaName);
2054 IValueT Rn = encodeGPRegister(OpRn, "Rn", MlaName);
2055 IValueT Rm = encodeGPRegister(OpRm, "Rm", MlaName);
2056 IValueT Ra = encodeGPRegister(OpRa, "Ra", MlaName);
2057 verifyRegNotPc(Rd, "Rd", MlaName);
2058 verifyRegNotPc(Rn, "Rn", MlaName);
2059 verifyRegNotPc(Rm, "Rm", MlaName);
2060 verifyRegNotPc(Ra, "Ra", MlaName);
2061 constexpr IValueT MlaOpcode = B21;
2062 constexpr bool SetFlags = true;
2063 // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
2064 emitMulOp(Cond, MlaOpcode, Ra, Rd, Rn, Rm, !SetFlags);
2065 }
2066
mls(const Operand * OpRd,const Operand * OpRn,const Operand * OpRm,const Operand * OpRa,CondARM32::Cond Cond)2067 void AssemblerARM32::mls(const Operand *OpRd, const Operand *OpRn,
2068 const Operand *OpRm, const Operand *OpRa,
2069 CondARM32::Cond Cond) {
2070 constexpr const char *MlsName = "mls";
2071 IValueT Rd = encodeGPRegister(OpRd, "Rd", MlsName);
2072 IValueT Rn = encodeGPRegister(OpRn, "Rn", MlsName);
2073 IValueT Rm = encodeGPRegister(OpRm, "Rm", MlsName);
2074 IValueT Ra = encodeGPRegister(OpRa, "Ra", MlsName);
2075 verifyRegNotPc(Rd, "Rd", MlsName);
2076 verifyRegNotPc(Rn, "Rn", MlsName);
2077 verifyRegNotPc(Rm, "Rm", MlsName);
2078 verifyRegNotPc(Ra, "Ra", MlsName);
2079 constexpr IValueT MlsOpcode = B22 | B21;
2080 constexpr bool SetFlags = true;
2081 // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
2082 emitMulOp(Cond, MlsOpcode, Ra, Rd, Rn, Rm, !SetFlags);
2083 }
2084
mul(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)2085 void AssemblerARM32::mul(const Operand *OpRd, const Operand *OpRn,
2086 const Operand *OpSrc1, bool SetFlags,
2087 CondARM32::Cond Cond) {
2088 // MUL - ARM section A8.8.114, encoding A1.
2089 // mul{s}<c> <Rd>, <Rn>, <Rm>
2090 //
2091 // cccc0000000sdddd0000mmmm1001nnnn where cccc=Cond, dddd=Rd, nnnn=Rn,
2092 // mmmm=Rm, and s=SetFlags.
2093 constexpr const char *MulName = "mul";
2094 IValueT Rd = encodeGPRegister(OpRd, "Rd", MulName);
2095 IValueT Rn = encodeGPRegister(OpRn, "Rn", MulName);
2096 IValueT Rm = encodeGPRegister(OpSrc1, "Rm", MulName);
2097 verifyRegNotPc(Rd, "Rd", MulName);
2098 verifyRegNotPc(Rn, "Rn", MulName);
2099 verifyRegNotPc(Rm, "Rm", MulName);
2100 // Assembler registers rd, rn, rm are encoded as rn, rm, rs.
2101 constexpr IValueT MulOpcode = 0;
2102 emitMulOp(Cond, MulOpcode, RegARM32::Encoded_Reg_r0, Rd, Rn, Rm, SetFlags);
2103 }
2104
emitRdRm(CondARM32::Cond Cond,IValueT Opcode,const Operand * OpRd,const Operand * OpRm,const char * InstName)2105 void AssemblerARM32::emitRdRm(CondARM32::Cond Cond, IValueT Opcode,
2106 const Operand *OpRd, const Operand *OpRm,
2107 const char *InstName) {
2108 IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName);
2109 IValueT Rm = encodeGPRegister(OpRm, "Rm", InstName);
2110 IValueT Encoding =
2111 (Cond << kConditionShift) | Opcode | (Rd << kRdShift) | (Rm << kRmShift);
2112 emitInst(Encoding);
2113 }
2114
rbit(const Operand * OpRd,const Operand * OpRm,CondARM32::Cond Cond)2115 void AssemblerARM32::rbit(const Operand *OpRd, const Operand *OpRm,
2116 CondARM32::Cond Cond) {
2117 // RBIT - ARM section A8.8.144, encoding A1:
2118 // rbit<c> <Rd>, <Rm>
2119 //
2120 // cccc011011111111dddd11110011mmmm where cccc=Cond, dddd=Rn, and mmmm=Rm.
2121 constexpr const char *RbitName = "rev";
2122 constexpr IValueT RbitOpcode = B26 | B25 | B23 | B22 | B21 | B20 | B19 | B18 |
2123 B17 | B16 | B11 | B10 | B9 | B8 | B5 | B4;
2124 emitRdRm(Cond, RbitOpcode, OpRd, OpRm, RbitName);
2125 }
2126
rev(const Operand * OpRd,const Operand * OpRm,CondARM32::Cond Cond)2127 void AssemblerARM32::rev(const Operand *OpRd, const Operand *OpRm,
2128 CondARM32::Cond Cond) {
2129 // REV - ARM section A8.8.145, encoding A1:
2130 // rev<c> <Rd>, <Rm>
2131 //
2132 // cccc011010111111dddd11110011mmmm where cccc=Cond, dddd=Rn, and mmmm=Rm.
2133 constexpr const char *RevName = "rev";
2134 constexpr IValueT RevOpcode = B26 | B25 | B23 | B21 | B20 | B19 | B18 | B17 |
2135 B16 | B11 | B10 | B9 | B8 | B5 | B4;
2136 emitRdRm(Cond, RevOpcode, OpRd, OpRm, RevName);
2137 }
2138
rsb(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)2139 void AssemblerARM32::rsb(const Operand *OpRd, const Operand *OpRn,
2140 const Operand *OpSrc1, bool SetFlags,
2141 CondARM32::Cond Cond) {
2142 // RSB (immediate) - ARM section A8.8.152, encoding A1.
2143 // rsb{s}<c> <Rd>, <Rn>, #<RotatedImm8>
2144 //
2145 // cccc0010011snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
2146 // s=setFlags and iiiiiiiiiiii defines the RotatedImm8 value.
2147 //
2148 // RSB (register) - ARM section A8.8.163, encoding A1.
2149 // rsb{s}<c> <Rd>, <Rn>, <Rm>{, <Shift>}
2150 //
2151 // cccc0000011snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
2152 // mmmm=Rm, iiiii=shift, tt==ShiftKind, and s=SetFlags.
2153 constexpr const char *RsbName = "rsb";
2154 constexpr IValueT RsbOpcode = B1 | B0; // 0011
2155 emitType01(Cond, RsbOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
2156 RsbName);
2157 }
2158
rsc(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)2159 void AssemblerARM32::rsc(const Operand *OpRd, const Operand *OpRn,
2160 const Operand *OpSrc1, bool SetFlags,
2161 CondARM32::Cond Cond) {
2162 // RSC (immediate) - ARM section A8.8.155, encoding A1:
2163 // rsc{s}<c> <Rd>, <Rn>, #<RotatedImm8>
2164 //
2165 // cccc0010111snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
2166 // mmmm=Rm, iiiii=shift, tt=ShiftKind, and s=SetFlags.
2167 //
2168 // RSC (register) - ARM section A8.8.156, encoding A1:
2169 // rsc{s}<c> <Rd>, <Rn>, <Rm>{, <shift>}
2170 //
2171 // cccc0000111snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
2172 // mmmm=Rm, iiiii=shift, tt=ShiftKind, and s=SetFlags.
2173 //
2174 // RSC (register-shifted register) - ARM section A8.8.157, encoding A1:
2175 // rsc{s}<c> <Rd>, <Rn>, <Rm>, <type> <Rs>
2176 //
2177 // cccc0000111fnnnnddddssss0tt1mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
2178 // mmmm=Rm, ssss=Rs, tt defined <type>, and f=SetFlags.
2179 constexpr const char *RscName = "rsc";
2180 constexpr IValueT RscOpcode = B2 | B1 | B0; // i.e. 0111.
2181 emitType01(Cond, RscOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
2182 RscName);
2183 }
2184
sxt(const Operand * OpRd,const Operand * OpSrc0,CondARM32::Cond Cond)2185 void AssemblerARM32::sxt(const Operand *OpRd, const Operand *OpSrc0,
2186 CondARM32::Cond Cond) {
2187 constexpr const char *SxtName = "sxt";
2188 constexpr IValueT SxtOpcode = B26 | B25 | B23 | B21;
2189 emitSignExtend(Cond, SxtOpcode, OpRd, OpSrc0, SxtName);
2190 }
2191
sub(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,bool SetFlags,CondARM32::Cond Cond)2192 void AssemblerARM32::sub(const Operand *OpRd, const Operand *OpRn,
2193 const Operand *OpSrc1, bool SetFlags,
2194 CondARM32::Cond Cond) {
2195 // SUB (register) - ARM section A8.8.223, encoding A1:
2196 // sub{s}<c> <Rd>, <Rn>, <Rm>{, <shift>}
2197 // SUB (SP minus register): See ARM section 8.8.226, encoding A1:
2198 // sub{s}<c> <Rd>, sp, <Rm>{, <Shift>}
2199 //
2200 // cccc0000010snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn,
2201 // mmmm=Rm, iiiii=shift, tt=ShiftKind, and s=SetFlags.
2202 //
2203 // Sub (Immediate) - ARM section A8.8.222, encoding A1:
2204 // sub{s}<c> <Rd>, <Rn>, #<RotatedImm8>
2205 // Sub (Sp minus immediate) - ARM section A8.8.225, encoding A1:
2206 // sub{s}<c> sp, <Rn>, #<RotatedImm8>
2207 //
2208 // cccc0010010snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn,
2209 // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8
2210 constexpr const char *SubName = "sub";
2211 constexpr IValueT SubOpcode = B1; // 0010
2212 emitType01(Cond, SubOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags,
2213 SubName);
2214 }
2215
2216 namespace {
2217
2218 // Use a particular UDF encoding -- TRAPNaCl in LLVM: 0xE7FEDEF0
2219 // http://llvm.org/viewvc/llvm-project?view=revision&revision=173943
2220 const uint8_t TrapBytesRaw[] = {0xE7, 0xFE, 0xDE, 0xF0};
2221
2222 const auto TrapBytes =
2223 llvm::ArrayRef<uint8_t>(TrapBytesRaw, llvm::array_lengthof(TrapBytesRaw));
2224
2225 } // end of anonymous namespace
2226
getNonExecBundlePadding() const2227 llvm::ArrayRef<uint8_t> AssemblerARM32::getNonExecBundlePadding() const {
2228 return TrapBytes;
2229 }
2230
trap()2231 void AssemblerARM32::trap() {
2232 AssemblerBuffer::EnsureCapacity ensured(&Buffer);
2233 for (const uint8_t &Byte : reverse_range(TrapBytes))
2234 Buffer.emit<uint8_t>(Byte);
2235 }
2236
tst(const Operand * OpRn,const Operand * OpSrc1,CondARM32::Cond Cond)2237 void AssemblerARM32::tst(const Operand *OpRn, const Operand *OpSrc1,
2238 CondARM32::Cond Cond) {
2239 // TST (register) - ARM section A8.8.241, encoding A1:
2240 // tst<c> <Rn>, <Rm>(, <shift>}
2241 //
2242 // cccc00010001nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm,
2243 // iiiii=Shift, and tt=ShiftKind.
2244 //
2245 // TST (immediate) - ARM section A8.8.240, encoding A1:
2246 // tst<c> <Rn>, #<RotatedImm8>
2247 //
2248 // cccc00110001nnnn0000iiiiiiiiiiii where cccc=Cond, nnnn=Rn, and
2249 // iiiiiiiiiiii defines RotatedImm8.
2250 constexpr const char *TstName = "tst";
2251 constexpr IValueT TstOpcode = B3; // ie. 1000
2252 emitCompareOp(Cond, TstOpcode, OpRn, OpSrc1, TstName);
2253 }
2254
udiv(const Operand * OpRd,const Operand * OpRn,const Operand * OpSrc1,CondARM32::Cond Cond)2255 void AssemblerARM32::udiv(const Operand *OpRd, const Operand *OpRn,
2256 const Operand *OpSrc1, CondARM32::Cond Cond) {
2257 // UDIV - ARM section A8.8.248, encoding A1.
2258 // udiv<c> <Rd>, <Rn>, <Rm>
2259 //
2260 // cccc01110011dddd1111mmmm0001nnnn where cccc=Cond, dddd=Rd, nnnn=Rn, and
2261 // mmmm=Rm.
2262 constexpr const char *UdivName = "udiv";
2263 IValueT Rd = encodeGPRegister(OpRd, "Rd", UdivName);
2264 IValueT Rn = encodeGPRegister(OpRn, "Rn", UdivName);
2265 IValueT Rm = encodeGPRegister(OpSrc1, "Rm", UdivName);
2266 verifyRegNotPc(Rd, "Rd", UdivName);
2267 verifyRegNotPc(Rn, "Rn", UdivName);
2268 verifyRegNotPc(Rm, "Rm", UdivName);
2269 // Assembler registers rd, rn, rm are encoded as rn, rm, rs.
2270 constexpr IValueT UdivOpcode = B21;
2271 emitDivOp(Cond, UdivOpcode, Rd, Rn, Rm);
2272 }
2273
umull(const Operand * OpRdLo,const Operand * OpRdHi,const Operand * OpRn,const Operand * OpRm,CondARM32::Cond Cond)2274 void AssemblerARM32::umull(const Operand *OpRdLo, const Operand *OpRdHi,
2275 const Operand *OpRn, const Operand *OpRm,
2276 CondARM32::Cond Cond) {
2277 // UMULL - ARM section A8.8.257, encoding A1:
2278 // umull<c> <RdLo>, <RdHi>, <Rn>, <Rm>
2279 //
2280 // cccc0000100shhhhllllmmmm1001nnnn where hhhh=RdHi, llll=RdLo, nnnn=Rn,
2281 // mmmm=Rm, and s=SetFlags
2282 constexpr const char *UmullName = "umull";
2283 IValueT RdLo = encodeGPRegister(OpRdLo, "RdLo", UmullName);
2284 IValueT RdHi = encodeGPRegister(OpRdHi, "RdHi", UmullName);
2285 IValueT Rn = encodeGPRegister(OpRn, "Rn", UmullName);
2286 IValueT Rm = encodeGPRegister(OpRm, "Rm", UmullName);
2287 verifyRegNotPc(RdLo, "RdLo", UmullName);
2288 verifyRegNotPc(RdHi, "RdHi", UmullName);
2289 verifyRegNotPc(Rn, "Rn", UmullName);
2290 verifyRegNotPc(Rm, "Rm", UmullName);
2291 verifyRegsNotEq(RdHi, "RdHi", RdLo, "RdLo", UmullName);
2292 constexpr IValueT UmullOpcode = B23;
2293 constexpr bool SetFlags = false;
2294 emitMulOp(Cond, UmullOpcode, RdLo, RdHi, Rn, Rm, SetFlags);
2295 }
2296
uxt(const Operand * OpRd,const Operand * OpSrc0,CondARM32::Cond Cond)2297 void AssemblerARM32::uxt(const Operand *OpRd, const Operand *OpSrc0,
2298 CondARM32::Cond Cond) {
2299 constexpr const char *UxtName = "uxt";
2300 constexpr IValueT UxtOpcode = B26 | B25 | B23 | B22 | B21;
2301 emitSignExtend(Cond, UxtOpcode, OpRd, OpSrc0, UxtName);
2302 }
2303
vabss(const Operand * OpSd,const Operand * OpSm,CondARM32::Cond Cond)2304 void AssemblerARM32::vabss(const Operand *OpSd, const Operand *OpSm,
2305 CondARM32::Cond Cond) {
2306 // VABS - ARM section A8.8.280, encoding A2:
2307 // vabs<c>.f32 <Sd>, <Sm>
2308 //
2309 // cccc11101D110000dddd101011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm.
2310 constexpr const char *Vabss = "vabss";
2311 IValueT Sd = encodeSRegister(OpSd, "Sd", Vabss);
2312 IValueT Sm = encodeSRegister(OpSm, "Sm", Vabss);
2313 constexpr IValueT S0 = 0;
2314 constexpr IValueT VabssOpcode = B23 | B21 | B20 | B7 | B6;
2315 emitVFPsss(Cond, VabssOpcode, Sd, S0, Sm);
2316 }
2317
vabsd(const Operand * OpDd,const Operand * OpDm,CondARM32::Cond Cond)2318 void AssemblerARM32::vabsd(const Operand *OpDd, const Operand *OpDm,
2319 CondARM32::Cond Cond) {
2320 // VABS - ARM section A8.8.280, encoding A2:
2321 // vabs<c>.f64 <Dd>, <Dm>
2322 //
2323 // cccc11101D110000dddd101111M0mmmm where cccc=Cond, Ddddd=Dd, and Mmmmm=Dm.
2324 constexpr const char *Vabsd = "vabsd";
2325 const IValueT Dd = encodeDRegister(OpDd, "Dd", Vabsd);
2326 const IValueT Dm = encodeDRegister(OpDm, "Dm", Vabsd);
2327 constexpr IValueT D0 = 0;
2328 constexpr IValueT VabsdOpcode = B23 | B21 | B20 | B7 | B6;
2329 emitVFPddd(Cond, VabsdOpcode, Dd, D0, Dm);
2330 }
2331
vabsq(const Operand * OpQd,const Operand * OpQm)2332 void AssemblerARM32::vabsq(const Operand *OpQd, const Operand *OpQm) {
2333 // VABS - ARM section A8.8.280, encoding A1:
2334 // vabs.<dt> <Qd>, <Qm>
2335 //
2336 // 111100111D11ss01ddd0f1101M0mmm0 where Dddd=OpQd, Mddd=OpQm, and
2337 // <dt> in {s8, s16, s32, f32} and ss is the encoding of <dt>.
2338 const Type ElmtTy = typeElementType(OpQd->getType());
2339 assert(ElmtTy != IceType_i64 && "vabsq doesn't allow i64!");
2340 constexpr const char *Vabsq = "vabsq";
2341 const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vabsq));
2342 const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vabsq));
2343 constexpr IValueT Dn = 0;
2344 const IValueT VabsqOpcode =
2345 B24 | B23 | B21 | B20 | B16 | B9 | B8 | (encodeElmtType(ElmtTy) << 18);
2346 constexpr bool UseQRegs = true;
2347 emitSIMDBase(VabsqOpcode, Dd, Dn, Dm, UseQRegs, isFloatingType(ElmtTy));
2348 }
2349
vadds(const Operand * OpSd,const Operand * OpSn,const Operand * OpSm,CondARM32::Cond Cond)2350 void AssemblerARM32::vadds(const Operand *OpSd, const Operand *OpSn,
2351 const Operand *OpSm, CondARM32::Cond Cond) {
2352 // VADD (floating-point) - ARM section A8.8.283, encoding A2:
2353 // vadd<c>.f32 <Sd>, <Sn>, <Sm>
2354 //
2355 // cccc11100D11nnnndddd101sN0M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn,
2356 // and mmmmM=Rm.
2357 constexpr const char *Vadds = "vadds";
2358 constexpr IValueT VaddsOpcode = B21 | B20;
2359 emitVFPsss(Cond, VaddsOpcode, OpSd, OpSn, OpSm, Vadds);
2360 }
2361
vaddqi(Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2362 void AssemblerARM32::vaddqi(Type ElmtTy, const Operand *OpQd,
2363 const Operand *OpQm, const Operand *OpQn) {
2364 // VADD (integer) - ARM section A8.8.282, encoding A1:
2365 // vadd.<dt> <Qd>, <Qn>, <Qm>
2366 //
2367 // 111100100Dssnnn0ddd01000N1M0mmm0 where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm,
2368 // and dt in [i8, i16, i32, i64] where ss is the index.
2369 assert(isScalarIntegerType(ElmtTy) &&
2370 "vaddqi expects vector with integer element type");
2371 constexpr const char *Vaddqi = "vaddqi";
2372 constexpr IValueT VaddqiOpcode = B11;
2373 emitSIMDqqq(VaddqiOpcode, ElmtTy, OpQd, OpQm, OpQn, Vaddqi);
2374 }
2375
vaddqf(const Operand * OpQd,const Operand * OpQn,const Operand * OpQm)2376 void AssemblerARM32::vaddqf(const Operand *OpQd, const Operand *OpQn,
2377 const Operand *OpQm) {
2378 // VADD (floating-point) - ARM section A8.8.283, Encoding A1:
2379 // vadd.f32 <Qd>, <Qn>, <Qm>
2380 //
2381 // 111100100D00nnn0ddd01101N1M0mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm.
2382 assert(OpQd->getType() == IceType_v4f32 && "vaddqf expects type <4 x float>");
2383 constexpr const char *Vaddqf = "vaddqf";
2384 constexpr IValueT VaddqfOpcode = B11 | B8;
2385 constexpr bool IsFloatTy = true;
2386 emitSIMDqqqBase(VaddqfOpcode, OpQd, OpQn, OpQm, IsFloatTy, Vaddqf);
2387 }
2388
vaddd(const Operand * OpDd,const Operand * OpDn,const Operand * OpDm,CondARM32::Cond Cond)2389 void AssemblerARM32::vaddd(const Operand *OpDd, const Operand *OpDn,
2390 const Operand *OpDm, CondARM32::Cond Cond) {
2391 // VADD (floating-point) - ARM section A8.8.283, encoding A2:
2392 // vadd<c>.f64 <Dd>, <Dn>, <Dm>
2393 //
2394 // cccc11100D11nnnndddd101sN0M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn,
2395 // and Mmmmm=Rm.
2396 constexpr const char *Vaddd = "vaddd";
2397 constexpr IValueT VadddOpcode = B21 | B20;
2398 emitVFPddd(Cond, VadddOpcode, OpDd, OpDn, OpDm, Vaddd);
2399 }
2400
vandq(const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2401 void AssemblerARM32::vandq(const Operand *OpQd, const Operand *OpQm,
2402 const Operand *OpQn) {
2403 // VAND (register) - ARM section A8.8.287, encoding A1:
2404 // vand <Qd>, <Qn>, <Qm>
2405 //
2406 // 111100100D00nnn0ddd00001N1M1mmm0 where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm.
2407 constexpr const char *Vandq = "vandq";
2408 constexpr IValueT VandqOpcode = B8 | B4;
2409 constexpr Type ElmtTy = IceType_i8;
2410 emitSIMDqqq(VandqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vandq);
2411 }
2412
vbslq(const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2413 void AssemblerARM32::vbslq(const Operand *OpQd, const Operand *OpQm,
2414 const Operand *OpQn) {
2415 // VBSL (register) - ARM section A8.8.290, encoding A1:
2416 // vbsl <Qd>, <Qn>, <Qm>
2417 //
2418 // 111100110D01nnn0ddd00001N1M1mmm0 where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm.
2419 constexpr const char *Vbslq = "vbslq";
2420 constexpr IValueT VbslqOpcode = B24 | B20 | B8 | B4;
2421 constexpr Type ElmtTy = IceType_i8; // emits sz=0
2422 emitSIMDqqq(VbslqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vbslq);
2423 }
2424
vceqqi(const Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2425 void AssemblerARM32::vceqqi(const Type ElmtTy, const Operand *OpQd,
2426 const Operand *OpQm, const Operand *OpQn) {
2427 // vceq (register) - ARM section A8.8.291, encoding A1:
2428 // vceq.<st> <Qd>, <Qn>, <Qm>
2429 //
2430 // 111100110Dssnnnndddd1000NQM1mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, and
2431 // st in [i8, i16, i32] where ss is the index.
2432 constexpr const char *Vceq = "vceq";
2433 constexpr IValueT VceqOpcode = B24 | B11 | B4;
2434 emitSIMDqqq(VceqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vceq);
2435 }
2436
vceqqs(const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2437 void AssemblerARM32::vceqqs(const Operand *OpQd, const Operand *OpQm,
2438 const Operand *OpQn) {
2439 // vceq (register) - ARM section A8.8.291, encoding A2:
2440 // vceq.f32 <Qd>, <Qn>, <Qm>
2441 //
2442 // 111100100D00nnnndddd1110NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm.
2443 constexpr const char *Vceq = "vceq";
2444 constexpr IValueT VceqOpcode = B11 | B10 | B9;
2445 constexpr Type ElmtTy = IceType_i8; // encoded as 0b00
2446 emitSIMDqqq(VceqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vceq);
2447 }
2448
vcgeqi(const Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2449 void AssemblerARM32::vcgeqi(const Type ElmtTy, const Operand *OpQd,
2450 const Operand *OpQm, const Operand *OpQn) {
2451 // vcge (register) - ARM section A8.8.293, encoding A1:
2452 // vcge.<st> <Qd>, <Qn>, <Qm>
2453 //
2454 // 1111001U0Dssnnnndddd0011NQM1mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm,
2455 // 0=U, and st in [s8, s16, s32] where ss is the index.
2456 constexpr const char *Vcge = "vcge";
2457 constexpr IValueT VcgeOpcode = B9 | B8 | B4;
2458 emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge);
2459 }
2460
vcugeqi(const Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2461 void AssemblerARM32::vcugeqi(const Type ElmtTy, const Operand *OpQd,
2462 const Operand *OpQm, const Operand *OpQn) {
2463 // vcge (register) - ARM section A8.8.293, encoding A1:
2464 // vcge.<st> <Qd>, <Qn>, <Qm>
2465 //
2466 // 1111001U0Dssnnnndddd0011NQM1mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm,
2467 // 1=U, and st in [u8, u16, u32] where ss is the index.
2468 constexpr const char *Vcge = "vcge";
2469 constexpr IValueT VcgeOpcode = B24 | B9 | B8 | B4;
2470 emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge);
2471 }
2472
vcgeqs(const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2473 void AssemblerARM32::vcgeqs(const Operand *OpQd, const Operand *OpQm,
2474 const Operand *OpQn) {
2475 // vcge (register) - ARM section A8.8.293, encoding A2:
2476 // vcge.f32 <Qd>, <Qn>, <Qm>
2477 //
2478 // 111100110D00nnnndddd1110NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm.
2479 constexpr const char *Vcge = "vcge";
2480 constexpr IValueT VcgeOpcode = B24 | B11 | B10 | B9;
2481 constexpr Type ElmtTy = IceType_i8; // encoded as 0b00.
2482 emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge);
2483 }
2484
vcgtqi(const Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2485 void AssemblerARM32::vcgtqi(const Type ElmtTy, const Operand *OpQd,
2486 const Operand *OpQm, const Operand *OpQn) {
2487 // vcgt (register) - ARM section A8.8.295, encoding A1:
2488 // vcgt.<st> <Qd>, <Qn>, <Qm>
2489 //
2490 // 1111001U0Dssnnnndddd0011NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm,
2491 // 0=U, and st in [s8, s16, s32] where ss is the index.
2492 constexpr const char *Vcge = "vcgt";
2493 constexpr IValueT VcgeOpcode = B9 | B8;
2494 emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge);
2495 }
2496
vcugtqi(const Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2497 void AssemblerARM32::vcugtqi(const Type ElmtTy, const Operand *OpQd,
2498 const Operand *OpQm, const Operand *OpQn) {
2499 // vcgt (register) - ARM section A8.8.295, encoding A1:
2500 // vcgt.<st> <Qd>, <Qn>, <Qm>
2501 //
2502 // 111100110Dssnnnndddd0011NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm,
2503 // 1=U, and st in [u8, u16, u32] where ss is the index.
2504 constexpr const char *Vcge = "vcgt";
2505 constexpr IValueT VcgeOpcode = B24 | B9 | B8;
2506 emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge);
2507 }
2508
vcgtqs(const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)2509 void AssemblerARM32::vcgtqs(const Operand *OpQd, const Operand *OpQm,
2510 const Operand *OpQn) {
2511 // vcgt (register) - ARM section A8.8.295, encoding A2:
2512 // vcgt.f32 <Qd>, <Qn>, <Qm>
2513 //
2514 // 111100110D10nnnndddd1110NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm.
2515 constexpr const char *Vcge = "vcgt";
2516 constexpr IValueT VcgeOpcode = B24 | B21 | B11 | B10 | B9;
2517 constexpr Type ElmtTy = IceType_i8; // encoded as 0b00.
2518 emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge);
2519 }
2520
vcmpd(const Operand * OpDd,const Operand * OpDm,CondARM32::Cond Cond)2521 void AssemblerARM32::vcmpd(const Operand *OpDd, const Operand *OpDm,
2522 CondARM32::Cond Cond) {
2523 constexpr const char *Vcmpd = "vcmpd";
2524 IValueT Dd = encodeDRegister(OpDd, "Dd", Vcmpd);
2525 IValueT Dm = encodeDRegister(OpDm, "Dm", Vcmpd);
2526 constexpr IValueT VcmpdOpcode = B23 | B21 | B20 | B18 | B6;
2527 constexpr IValueT Dn = 0;
2528 emitVFPddd(Cond, VcmpdOpcode, Dd, Dn, Dm);
2529 }
2530
vcmpdz(const Operand * OpDd,CondARM32::Cond Cond)2531 void AssemblerARM32::vcmpdz(const Operand *OpDd, CondARM32::Cond Cond) {
2532 constexpr const char *Vcmpdz = "vcmpdz";
2533 IValueT Dd = encodeDRegister(OpDd, "Dd", Vcmpdz);
2534 constexpr IValueT VcmpdzOpcode = B23 | B21 | B20 | B18 | B16 | B6;
2535 constexpr IValueT Dn = 0;
2536 constexpr IValueT Dm = 0;
2537 emitVFPddd(Cond, VcmpdzOpcode, Dd, Dn, Dm);
2538 }
2539
vcmps(const Operand * OpSd,const Operand * OpSm,CondARM32::Cond Cond)2540 void AssemblerARM32::vcmps(const Operand *OpSd, const Operand *OpSm,
2541 CondARM32::Cond Cond) {
2542 constexpr const char *Vcmps = "vcmps";
2543 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcmps);
2544 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcmps);
2545 constexpr IValueT VcmpsOpcode = B23 | B21 | B20 | B18 | B6;
2546 constexpr IValueT Sn = 0;
2547 emitVFPsss(Cond, VcmpsOpcode, Sd, Sn, Sm);
2548 }
2549
vcmpsz(const Operand * OpSd,CondARM32::Cond Cond)2550 void AssemblerARM32::vcmpsz(const Operand *OpSd, CondARM32::Cond Cond) {
2551 constexpr const char *Vcmpsz = "vcmps";
2552 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcmpsz);
2553 constexpr IValueT VcmpszOpcode = B23 | B21 | B20 | B18 | B16 | B6;
2554 constexpr IValueT Sn = 0;
2555 constexpr IValueT Sm = 0;
2556 emitVFPsss(Cond, VcmpszOpcode, Sd, Sn, Sm);
2557 }
2558
emitVFPsd(CondARM32::Cond Cond,IValueT Opcode,IValueT Sd,IValueT Dm)2559 void AssemblerARM32::emitVFPsd(CondARM32::Cond Cond, IValueT Opcode, IValueT Sd,
2560 IValueT Dm) {
2561 assert(Sd < RegARM32::getNumSRegs());
2562 assert(Dm < RegARM32::getNumDRegs());
2563 assert(CondARM32::isDefined(Cond));
2564 constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9;
2565 const IValueT Encoding =
2566 Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) |
2567 (getYInRegXXXXY(Sd) << 22) | (getXXXXInRegXXXXY(Sd) << 12) |
2568 (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm);
2569 emitInst(Encoding);
2570 }
2571
vcvtdi(const Operand * OpDd,const Operand * OpSm,CondARM32::Cond Cond)2572 void AssemblerARM32::vcvtdi(const Operand *OpDd, const Operand *OpSm,
2573 CondARM32::Cond Cond) {
2574 // VCVT (between floating-point and integer, Floating-point)
2575 // - ARM Section A8.8.306, encoding A1:
2576 // vcvt<c>.f64.s32 <Dd>, <Sm>
2577 //
2578 // cccc11101D111000dddd10111M0mmmm where cccc=Cond, Ddddd=Dd, and mmmmM=Sm.
2579 constexpr const char *Vcvtdi = "vcvtdi";
2580 IValueT Dd = encodeDRegister(OpDd, "Dd", Vcvtdi);
2581 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtdi);
2582 constexpr IValueT VcvtdiOpcode = B23 | B21 | B20 | B19 | B8 | B7 | B6;
2583 emitVFPds(Cond, VcvtdiOpcode, Dd, Sm);
2584 }
2585
vcvtdu(const Operand * OpDd,const Operand * OpSm,CondARM32::Cond Cond)2586 void AssemblerARM32::vcvtdu(const Operand *OpDd, const Operand *OpSm,
2587 CondARM32::Cond Cond) {
2588 // VCVT (between floating-point and integer, Floating-point)
2589 // - ARM Section A8.8.306, encoding A1:
2590 // vcvt<c>.f64.u32 <Dd>, <Sm>
2591 //
2592 // cccc11101D111000dddd10101M0mmmm where cccc=Cond, Ddddd=Dd, and mmmmM=Sm.
2593 constexpr const char *Vcvtdu = "vcvtdu";
2594 IValueT Dd = encodeDRegister(OpDd, "Dd", Vcvtdu);
2595 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtdu);
2596 constexpr IValueT VcvtduOpcode = B23 | B21 | B20 | B19 | B8 | B6;
2597 emitVFPds(Cond, VcvtduOpcode, Dd, Sm);
2598 }
2599
vcvtsd(const Operand * OpSd,const Operand * OpDm,CondARM32::Cond Cond)2600 void AssemblerARM32::vcvtsd(const Operand *OpSd, const Operand *OpDm,
2601 CondARM32::Cond Cond) {
2602 constexpr const char *Vcvtsd = "vcvtsd";
2603 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtsd);
2604 IValueT Dm = encodeDRegister(OpDm, "Dm", Vcvtsd);
2605 constexpr IValueT VcvtsdOpcode =
2606 B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6;
2607 emitVFPsd(Cond, VcvtsdOpcode, Sd, Dm);
2608 }
2609
vcvtis(const Operand * OpSd,const Operand * OpSm,CondARM32::Cond Cond)2610 void AssemblerARM32::vcvtis(const Operand *OpSd, const Operand *OpSm,
2611 CondARM32::Cond Cond) {
2612 // VCVT (between floating-point and integer, Floating-point)
2613 // - ARM Section A8.8.306, encoding A1:
2614 // vcvt<c>.s32.f32 <Sd>, <Sm>
2615 //
2616 // cccc11101D111101dddd10011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm.
2617 constexpr const char *Vcvtis = "vcvtis";
2618 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtis);
2619 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtis);
2620 constexpr IValueT VcvtisOpcode = B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6;
2621 constexpr IValueT S0 = 0;
2622 emitVFPsss(Cond, VcvtisOpcode, Sd, S0, Sm);
2623 }
2624
vcvtid(const Operand * OpSd,const Operand * OpDm,CondARM32::Cond Cond)2625 void AssemblerARM32::vcvtid(const Operand *OpSd, const Operand *OpDm,
2626 CondARM32::Cond Cond) {
2627 // VCVT (between floating-point and integer, Floating-point)
2628 // - ARM Section A8.8.306, encoding A1:
2629 // vcvt<c>.s32.f64 <Sd>, <Dm>
2630 //
2631 // cccc11101D111101dddd10111M0mmmm where cccc=Cond, ddddD=Sd, and Mmmmm=Dm.
2632 constexpr const char *Vcvtid = "vcvtid";
2633 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtid);
2634 IValueT Dm = encodeDRegister(OpDm, "Dm", Vcvtid);
2635 constexpr IValueT VcvtidOpcode =
2636 B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6;
2637 emitVFPsd(Cond, VcvtidOpcode, Sd, Dm);
2638 }
2639
vcvtsi(const Operand * OpSd,const Operand * OpSm,CondARM32::Cond Cond)2640 void AssemblerARM32::vcvtsi(const Operand *OpSd, const Operand *OpSm,
2641 CondARM32::Cond Cond) {
2642 // VCVT (between floating-point and integer, Floating-point)
2643 // - ARM Section A8.8.306, encoding A1:
2644 // vcvt<c>.f32.s32 <Sd>, <Sm>
2645 //
2646 // cccc11101D111000dddd10011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm.
2647 constexpr const char *Vcvtsi = "vcvtsi";
2648 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtsi);
2649 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtsi);
2650 constexpr IValueT VcvtsiOpcode = B23 | B21 | B20 | B19 | B7 | B6;
2651 constexpr IValueT S0 = 0;
2652 emitVFPsss(Cond, VcvtsiOpcode, Sd, S0, Sm);
2653 }
2654
vcvtsu(const Operand * OpSd,const Operand * OpSm,CondARM32::Cond Cond)2655 void AssemblerARM32::vcvtsu(const Operand *OpSd, const Operand *OpSm,
2656 CondARM32::Cond Cond) {
2657 // VCVT (between floating-point and integer, Floating-point)
2658 // - ARM Section A8.8.306, encoding A1:
2659 // vcvt<c>.f32.u32 <Sd>, <Sm>
2660 //
2661 // cccc11101D111000dddd10001M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm.
2662 constexpr const char *Vcvtsu = "vcvtsu";
2663 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtsu);
2664 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtsu);
2665 constexpr IValueT VcvtsuOpcode = B23 | B21 | B20 | B19 | B6;
2666 constexpr IValueT S0 = 0;
2667 emitVFPsss(Cond, VcvtsuOpcode, Sd, S0, Sm);
2668 }
2669
vcvtud(const Operand * OpSd,const Operand * OpDm,CondARM32::Cond Cond)2670 void AssemblerARM32::vcvtud(const Operand *OpSd, const Operand *OpDm,
2671 CondARM32::Cond Cond) {
2672 // VCVT (between floating-point and integer, Floating-point)
2673 // - ARM Section A8.8.306, encoding A1:
2674 // vcvt<c>.u32.f64 <Sd>, <Dm>
2675 //
2676 // cccc11101D111100dddd10111M0mmmm where cccc=Cond, ddddD=Sd, and Mmmmm=Dm.
2677 constexpr const char *Vcvtud = "vcvtud";
2678 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtud);
2679 IValueT Dm = encodeDRegister(OpDm, "Dm", Vcvtud);
2680 constexpr IValueT VcvtudOpcode = B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6;
2681 emitVFPsd(Cond, VcvtudOpcode, Sd, Dm);
2682 }
2683
vcvtus(const Operand * OpSd,const Operand * OpSm,CondARM32::Cond Cond)2684 void AssemblerARM32::vcvtus(const Operand *OpSd, const Operand *OpSm,
2685 CondARM32::Cond Cond) {
2686 // VCVT (between floating-point and integer, Floating-point)
2687 // - ARM Section A8.8.306, encoding A1:
2688 // vcvt<c>.u32.f32 <Sd>, <Sm>
2689 //
2690 // cccc11101D111100dddd10011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm.
2691 constexpr const char *Vcvtus = "vcvtus";
2692 IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtus);
2693 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtus);
2694 constexpr IValueT VcvtsiOpcode = B23 | B21 | B20 | B19 | B18 | B7 | B6;
2695 constexpr IValueT S0 = 0;
2696 emitVFPsss(Cond, VcvtsiOpcode, Sd, S0, Sm);
2697 }
2698
vcvtqsi(const Operand * OpQd,const Operand * OpQm)2699 void AssemblerARM32::vcvtqsi(const Operand *OpQd, const Operand *OpQm) {
2700 // VCVT (between floating-point and integer, Advanced SIMD)
2701 // - ARM Section A8.8.305, encoding A1:
2702 // vcvt<c>.f32.s32 <Qd>, <Qm>
2703 //
2704 // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 10=op.
2705 constexpr const char *Vcvtqsi = "vcvt.s32.f32";
2706 constexpr IValueT VcvtqsiOpcode = B8;
2707 emitSIMDCvtqq(VcvtqsiOpcode, OpQd, OpQm, Vcvtqsi);
2708 }
2709
vcvtqsu(const Operand * OpQd,const Operand * OpQm)2710 void AssemblerARM32::vcvtqsu(const Operand *OpQd, const Operand *OpQm) {
2711 // VCVT (between floating-point and integer, Advanced SIMD)
2712 // - ARM Section A8.8.305, encoding A1:
2713 // vcvt<c>.f32.u32 <Qd>, <Qm>
2714 //
2715 // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 11=op.
2716 constexpr const char *Vcvtqsu = "vcvt.u32.f32";
2717 constexpr IValueT VcvtqsuOpcode = B8 | B7;
2718 emitSIMDCvtqq(VcvtqsuOpcode, OpQd, OpQm, Vcvtqsu);
2719 }
2720
vcvtqis(const Operand * OpQd,const Operand * OpQm)2721 void AssemblerARM32::vcvtqis(const Operand *OpQd, const Operand *OpQm) {
2722 // VCVT (between floating-point and integer, Advanced SIMD)
2723 // - ARM Section A8.8.305, encoding A1:
2724 // vcvt<c>.f32.s32 <Qd>, <Qm>
2725 //
2726 // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 01=op.
2727 constexpr const char *Vcvtqis = "vcvt.f32.s32";
2728 constexpr IValueT VcvtqisOpcode = 0;
2729 emitSIMDCvtqq(VcvtqisOpcode, OpQd, OpQm, Vcvtqis);
2730 }
2731
vcvtqus(const Operand * OpQd,const Operand * OpQm)2732 void AssemblerARM32::vcvtqus(const Operand *OpQd, const Operand *OpQm) {
2733 // VCVT (between floating-point and integer, Advanced SIMD)
2734 // - ARM Section A8.8.305, encoding A1:
2735 // vcvt<c>.f32.u32 <Qd>, <Qm>
2736 //
2737 // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 01=op.
2738 constexpr const char *Vcvtqus = "vcvt.f32.u32";
2739 constexpr IValueT VcvtqusOpcode = B7;
2740 emitSIMDCvtqq(VcvtqusOpcode, OpQd, OpQm, Vcvtqus);
2741 }
2742
emitVFPds(CondARM32::Cond Cond,IValueT Opcode,IValueT Dd,IValueT Sm)2743 void AssemblerARM32::emitVFPds(CondARM32::Cond Cond, IValueT Opcode, IValueT Dd,
2744 IValueT Sm) {
2745 assert(Dd < RegARM32::getNumDRegs());
2746 assert(Sm < RegARM32::getNumSRegs());
2747 assert(CondARM32::isDefined(Cond));
2748 constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9;
2749 const IValueT Encoding =
2750 Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) |
2751 (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dd) << 12) |
2752 (getYInRegXXXXY(Sm) << 5) | getXXXXInRegXXXXY(Sm);
2753 emitInst(Encoding);
2754 }
2755
vcvtds(const Operand * OpDd,const Operand * OpSm,CondARM32::Cond Cond)2756 void AssemblerARM32::vcvtds(const Operand *OpDd, const Operand *OpSm,
2757 CondARM32::Cond Cond) {
2758 constexpr const char *Vcvtds = "Vctds";
2759 IValueT Dd = encodeDRegister(OpDd, "Dd", Vcvtds);
2760 IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtds);
2761 constexpr IValueT VcvtdsOpcode = B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6;
2762 emitVFPds(Cond, VcvtdsOpcode, Dd, Sm);
2763 }
2764
vdivs(const Operand * OpSd,const Operand * OpSn,const Operand * OpSm,CondARM32::Cond Cond)2765 void AssemblerARM32::vdivs(const Operand *OpSd, const Operand *OpSn,
2766 const Operand *OpSm, CondARM32::Cond Cond) {
2767 // VDIV (floating-point) - ARM section A8.8.283, encoding A2:
2768 // vdiv<c>.f32 <Sd>, <Sn>, <Sm>
2769 //
2770 // cccc11101D00nnnndddd101sN0M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn,
2771 // and mmmmM=Rm.
2772 constexpr const char *Vdivs = "vdivs";
2773 constexpr IValueT VdivsOpcode = B23;
2774 emitVFPsss(Cond, VdivsOpcode, OpSd, OpSn, OpSm, Vdivs);
2775 }
2776
vdivd(const Operand * OpDd,const Operand * OpDn,const Operand * OpDm,CondARM32::Cond Cond)2777 void AssemblerARM32::vdivd(const Operand *OpDd, const Operand *OpDn,
2778 const Operand *OpDm, CondARM32::Cond Cond) {
2779 // VDIV (floating-point) - ARM section A8.8.283, encoding A2:
2780 // vdiv<c>.f64 <Dd>, <Dn>, <Dm>
2781 //
2782 // cccc11101D00nnnndddd101sN0M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn,
2783 // and Mmmmm=Rm.
2784 constexpr const char *Vdivd = "vdivd";
2785 constexpr IValueT VdivdOpcode = B23;
2786 emitVFPddd(Cond, VdivdOpcode, OpDd, OpDn, OpDm, Vdivd);
2787 }
2788
veord(const Operand * OpDd,const Operand * OpDn,const Operand * OpDm)2789 void AssemblerARM32::veord(const Operand *OpDd, const Operand *OpDn,
2790 const Operand *OpDm) {
2791 // VEOR - ARM secdtion A8.8.315, encoding A1:
2792 // veor<c> <Dd>, <Dn>, <Dm>
2793 //
2794 // 111100110D00nnnndddd0001N0M1mmmm where Ddddd=Dd, Nnnnn=Dn, and Mmmmm=Dm.
2795 constexpr const char *Veord = "veord";
2796 IValueT Dd = encodeDRegister(OpDd, "Dd", Veord);
2797 IValueT Dn = encodeDRegister(OpDn, "Dn", Veord);
2798 IValueT Dm = encodeDRegister(OpDm, "Dm", Veord);
2799 const IValueT Encoding =
2800 B25 | B24 | B8 | B4 |
2801 (encodeCondition(CondARM32::Cond::kNone) << kConditionShift) |
2802 (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dn) << 16) |
2803 (getXXXXInRegYXXXX(Dd) << 12) | (getYInRegYXXXX(Dn) << 7) |
2804 (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm);
2805 emitInst(Encoding);
2806 }
2807
veorq(const Operand * OpQd,const Operand * OpQn,const Operand * OpQm)2808 void AssemblerARM32::veorq(const Operand *OpQd, const Operand *OpQn,
2809 const Operand *OpQm) {
2810 // VEOR - ARM section A8.8.316, encoding A1:
2811 // veor <Qd>, <Qn>, <Qm>
2812 //
2813 // 111100110D00nnn0ddd00001N1M1mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm.
2814 constexpr const char *Veorq = "veorq";
2815 constexpr IValueT VeorqOpcode = B24 | B8 | B4;
2816 emitSIMDqqq(VeorqOpcode, IceType_i8, OpQd, OpQn, OpQm, Veorq);
2817 }
2818
vldrd(const Operand * OpDd,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)2819 void AssemblerARM32::vldrd(const Operand *OpDd, const Operand *OpAddress,
2820 CondARM32::Cond Cond, const TargetInfo &TInfo) {
2821 // VLDR - ARM section A8.8.333, encoding A1.
2822 // vldr<c> <Dd>, [<Rn>{, #+/-<imm>}]
2823 //
2824 // cccc1101UD01nnnndddd1011iiiiiiii where cccc=Cond, nnnn=Rn, Ddddd=Rd,
2825 // iiiiiiii=abs(Imm >> 2), and U=1 if Opcode>=0.
2826 constexpr const char *Vldrd = "vldrd";
2827 IValueT Dd = encodeDRegister(OpDd, "Dd", Vldrd);
2828 assert(CondARM32::isDefined(Cond));
2829 IValueT Address;
2830 EncodedOperand AddressEncoding =
2831 encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address);
2832 (void)AddressEncoding;
2833 assert(AddressEncoding == EncodedAsImmRegOffset);
2834 IValueT Encoding = B27 | B26 | B24 | B20 | B11 | B9 | B8 |
2835 (encodeCondition(Cond) << kConditionShift) |
2836 (getYInRegYXXXX(Dd) << 22) |
2837 (getXXXXInRegYXXXX(Dd) << 12) | Address;
2838 emitInst(Encoding);
2839 }
2840
vldrs(const Operand * OpSd,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)2841 void AssemblerARM32::vldrs(const Operand *OpSd, const Operand *OpAddress,
2842 CondARM32::Cond Cond, const TargetInfo &TInfo) {
2843 // VDLR - ARM section A8.8.333, encoding A2.
2844 // vldr<c> <Sd>, [<Rn>{, #+/-<imm>]]
2845 //
2846 // cccc1101UD01nnnndddd1010iiiiiiii where cccc=Cond, nnnn=Rn, ddddD=Sd,
2847 // iiiiiiii=abs(Opcode), and U=1 if Opcode >= 0;
2848 constexpr const char *Vldrs = "vldrs";
2849 IValueT Sd = encodeSRegister(OpSd, "Sd", Vldrs);
2850 assert(CondARM32::isDefined(Cond));
2851 IValueT Address;
2852 EncodedOperand AddressEncoding =
2853 encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address);
2854 (void)AddressEncoding;
2855 assert(AddressEncoding == EncodedAsImmRegOffset);
2856 IValueT Encoding = B27 | B26 | B24 | B20 | B11 | B9 |
2857 (encodeCondition(Cond) << kConditionShift) |
2858 (getYInRegXXXXY(Sd) << 22) |
2859 (getXXXXInRegXXXXY(Sd) << 12) | Address;
2860 emitInst(Encoding);
2861 }
2862
emitVMem1Op(IValueT Opcode,IValueT Dd,IValueT Rn,IValueT Rm,DRegListSize NumDRegs,size_t ElmtSize,IValueT Align,const char * InstName)2863 void AssemblerARM32::emitVMem1Op(IValueT Opcode, IValueT Dd, IValueT Rn,
2864 IValueT Rm, DRegListSize NumDRegs,
2865 size_t ElmtSize, IValueT Align,
2866 const char *InstName) {
2867 assert(Utils::IsAbsoluteUint(2, Align));
2868 IValueT EncodedElmtSize;
2869 switch (ElmtSize) {
2870 default: {
2871 std::string Buffer;
2872 llvm::raw_string_ostream StrBuf(Buffer);
2873 StrBuf << InstName << ": found invalid vector element size " << ElmtSize;
2874 llvm::report_fatal_error(StrBuf.str());
2875 }
2876 case 8:
2877 EncodedElmtSize = 0;
2878 break;
2879 case 16:
2880 EncodedElmtSize = 1;
2881 break;
2882 case 32:
2883 EncodedElmtSize = 2;
2884 break;
2885 case 64:
2886 EncodedElmtSize = 3;
2887 }
2888 const IValueT Encoding =
2889 Opcode | (encodeCondition(CondARM32::kNone) << kConditionShift) |
2890 (getYInRegYXXXX(Dd) << 22) | (Rn << kRnShift) |
2891 (getXXXXInRegYXXXX(Dd) << kRdShift) | (NumDRegs << 8) |
2892 (EncodedElmtSize << 6) | (Align << 4) | Rm;
2893 emitInst(Encoding);
2894 }
2895
vld1qr(size_t ElmtSize,const Operand * OpQd,const Operand * OpAddress,const TargetInfo & TInfo)2896 void AssemblerARM32::vld1qr(size_t ElmtSize, const Operand *OpQd,
2897 const Operand *OpAddress, const TargetInfo &TInfo) {
2898 // VLD1 (multiple single elements) - ARM section A8.8.320, encoding A1:
2899 // vld1.<size> <Qd>, [<Rn>]
2900 //
2901 // 111101000D10nnnnddd0ttttssaammmm where tttt=DRegListSize2, Dddd=Qd,
2902 // nnnn=Rn, aa=0 (use default alignment), size=ElmtSize, and ss is the
2903 // encoding of ElmtSize.
2904 constexpr const char *Vld1qr = "vld1qr";
2905 const IValueT Qd = encodeQRegister(OpQd, "Qd", Vld1qr);
2906 const IValueT Dd = mapQRegToDReg(Qd);
2907 IValueT Address;
2908 if (encodeAddress(OpAddress, Address, TInfo, NoImmOffsetAddress) !=
2909 EncodedAsImmRegOffset)
2910 llvm::report_fatal_error(std::string(Vld1qr) + ": malform memory address");
2911 const IValueT Rn = mask(Address, kRnShift, 4);
2912 constexpr IValueT Rm = RegARM32::Reg_pc;
2913 constexpr IValueT Opcode = B26 | B21;
2914 constexpr IValueT Align = 0; // use default alignment.
2915 emitVMem1Op(Opcode, Dd, Rn, Rm, DRegListSize2, ElmtSize, Align, Vld1qr);
2916 }
2917
vmovqc(const Operand * OpQd,const ConstantInteger32 * Imm)2918 bool AssemblerARM32::vmovqc(const Operand *OpQd, const ConstantInteger32 *Imm) {
2919 // VMOV (immediate) - ARM section A8.8.320, encoding A1:
2920 // VMOV.<dt> <Qd>, #<Imm>
2921 // 1111001x1D000yyyddddcccc01p1zzzz where Qd=Ddddd, Imm=xyyyzzzz, cmode=cccc,
2922 // and Op=p.
2923 constexpr const char *Vmovc = "vmovc";
2924 const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vmovc));
2925 IValueT Value = Imm->getValue();
2926 const Type VecTy = OpQd->getType();
2927 if (!isVectorType(VecTy))
2928 return false;
2929
2930 IValueT Op;
2931 IValueT Cmode;
2932 IValueT Imm8;
2933 if (!encodeAdvSIMDExpandImm(Value, typeElementType(VecTy), Op, Cmode, Imm8))
2934 return false;
2935 if (Op == 0 && mask(Cmode, 0, 1) == 1)
2936 return false;
2937 if (Op == 1 && Cmode != 13)
2938 return false;
2939 const IValueT Encoding =
2940 (0xF << kConditionShift) | B25 | B23 | B6 | B4 |
2941 (mask(Imm8, 7, 1) << 24) | (getYInRegYXXXX(Dd) << 22) |
2942 (mask(Imm8, 4, 3) << 16) | (getXXXXInRegYXXXX(Dd) << 12) | (Cmode << 8) |
2943 (Op << 5) | mask(Imm8, 0, 4);
2944 emitInst(Encoding);
2945 return true;
2946 }
2947
vmovd(const Operand * OpDd,const OperandARM32FlexFpImm * OpFpImm,CondARM32::Cond Cond)2948 void AssemblerARM32::vmovd(const Operand *OpDd,
2949 const OperandARM32FlexFpImm *OpFpImm,
2950 CondARM32::Cond Cond) {
2951 // VMOV (immediate) - ARM section A8.8.339, encoding A2:
2952 // vmov<c>.f64 <Dd>, #<imm>
2953 //
2954 // cccc11101D11xxxxdddd10110000yyyy where cccc=Cond, ddddD=Sn, xxxxyyyy=imm.
2955 constexpr const char *Vmovd = "vmovd";
2956 IValueT Dd = encodeSRegister(OpDd, "Dd", Vmovd);
2957 IValueT Imm8 = OpFpImm->getModifiedImm();
2958 assert(Imm8 < (1 << 8));
2959 constexpr IValueT VmovsOpcode = B23 | B21 | B20 | B8;
2960 IValueT OpcodePlusImm8 = VmovsOpcode | ((Imm8 >> 4) << 16) | (Imm8 & 0xf);
2961 constexpr IValueT D0 = 0;
2962 emitVFPddd(Cond, OpcodePlusImm8, Dd, D0, D0);
2963 }
2964
vmovdd(const Operand * OpDd,const Variable * OpDm,CondARM32::Cond Cond)2965 void AssemblerARM32::vmovdd(const Operand *OpDd, const Variable *OpDm,
2966 CondARM32::Cond Cond) {
2967 // VMOV (register) - ARM section A8.8.340, encoding A2:
2968 // vmov<c>.f64 <Dd>, <Sm>
2969 //
2970 // cccc11101D110000dddd101101M0mmmm where cccc=Cond, Ddddd=Sd, and Mmmmm=Sm.
2971 constexpr const char *Vmovdd = "Vmovdd";
2972 IValueT Dd = encodeSRegister(OpDd, "Dd", Vmovdd);
2973 IValueT Dm = encodeSRegister(OpDm, "Dm", Vmovdd);
2974 constexpr IValueT VmovddOpcode = B23 | B21 | B20 | B6;
2975 constexpr IValueT D0 = 0;
2976 emitVFPddd(Cond, VmovddOpcode, Dd, D0, Dm);
2977 }
2978
vmovdrr(const Operand * OpDm,const Operand * OpRt,const Operand * OpRt2,CondARM32::Cond Cond)2979 void AssemblerARM32::vmovdrr(const Operand *OpDm, const Operand *OpRt,
2980 const Operand *OpRt2, CondARM32::Cond Cond) {
2981 // VMOV (between two ARM core registers and a doubleword extension register).
2982 // ARM section A8.8.345, encoding A1:
2983 // vmov<c> <Dm>, <Rt>, <Rt2>
2984 //
2985 // cccc11000100xxxxyyyy101100M1mmmm where cccc=Cond, xxxx=Rt, yyyy=Rt2, and
2986 // Mmmmm=Dm.
2987 constexpr const char *Vmovdrr = "vmovdrr";
2988 IValueT Dm = encodeDRegister(OpDm, "Dm", Vmovdrr);
2989 IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovdrr);
2990 IValueT Rt2 = encodeGPRegister(OpRt2, "Rt", Vmovdrr);
2991 assert(Rt != RegARM32::Encoded_Reg_sp);
2992 assert(Rt != RegARM32::Encoded_Reg_pc);
2993 assert(Rt2 != RegARM32::Encoded_Reg_sp);
2994 assert(Rt2 != RegARM32::Encoded_Reg_pc);
2995 assert(Rt != Rt2);
2996 assert(CondARM32::isDefined(Cond));
2997 IValueT Encoding = B27 | B26 | B22 | B11 | B9 | B8 | B4 |
2998 (encodeCondition(Cond) << kConditionShift) | (Rt2 << 16) |
2999 (Rt << 12) | (getYInRegYXXXX(Dm) << 5) |
3000 getXXXXInRegYXXXX(Dm);
3001 emitInst(Encoding);
3002 }
3003
vmovqir(const Operand * OpQn,uint32_t Index,const Operand * OpRt,CondARM32::Cond Cond)3004 void AssemblerARM32::vmovqir(const Operand *OpQn, uint32_t Index,
3005 const Operand *OpRt, CondARM32::Cond Cond) {
3006 // VMOV (ARM core register to scalar) - ARM section A8.8.341, encoding A1:
3007 // vmov<c>.<size> <Dn[x]>, <Rt>
3008 constexpr const char *Vmovdr = "vmovdr";
3009 constexpr bool IsExtract = true;
3010 emitInsertExtractInt(Cond, OpQn, Index, OpRt, !IsExtract, Vmovdr);
3011 }
3012
vmovqis(const Operand * OpQd,uint32_t Index,const Operand * OpSm,CondARM32::Cond Cond)3013 void AssemblerARM32::vmovqis(const Operand *OpQd, uint32_t Index,
3014 const Operand *OpSm, CondARM32::Cond Cond) {
3015 constexpr const char *Vmovqis = "vmovqis";
3016 assert(Index < 4);
3017 IValueT Sd = mapQRegToSReg(encodeQRegister(OpQd, "Qd", Vmovqis)) + Index;
3018 IValueT Sm = encodeSRegister(OpSm, "Sm", Vmovqis);
3019 emitMoveSS(Cond, Sd, Sm);
3020 }
3021
vmovrqi(const Operand * OpRt,const Operand * OpQn,uint32_t Index,CondARM32::Cond Cond)3022 void AssemblerARM32::vmovrqi(const Operand *OpRt, const Operand *OpQn,
3023 uint32_t Index, CondARM32::Cond Cond) {
3024 // VMOV (scalar to ARM core register) - ARM section A8.8.342, encoding A1:
3025 // vmov<c>.<dt> <Rt>, <Dn[x]>
3026 constexpr const char *Vmovrd = "vmovrd";
3027 constexpr bool IsExtract = true;
3028 emitInsertExtractInt(Cond, OpQn, Index, OpRt, IsExtract, Vmovrd);
3029 }
3030
vmovrrd(const Operand * OpRt,const Operand * OpRt2,const Operand * OpDm,CondARM32::Cond Cond)3031 void AssemblerARM32::vmovrrd(const Operand *OpRt, const Operand *OpRt2,
3032 const Operand *OpDm, CondARM32::Cond Cond) {
3033 // VMOV (between two ARM core registers and a doubleword extension register).
3034 // ARM section A8.8.345, encoding A1:
3035 // vmov<c> <Rt>, <Rt2>, <Dm>
3036 //
3037 // cccc11000101xxxxyyyy101100M1mmmm where cccc=Cond, xxxx=Rt, yyyy=Rt2, and
3038 // Mmmmm=Dm.
3039 constexpr const char *Vmovrrd = "vmovrrd";
3040 IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovrrd);
3041 IValueT Rt2 = encodeGPRegister(OpRt2, "Rt", Vmovrrd);
3042 IValueT Dm = encodeDRegister(OpDm, "Dm", Vmovrrd);
3043 assert(Rt != RegARM32::Encoded_Reg_sp);
3044 assert(Rt != RegARM32::Encoded_Reg_pc);
3045 assert(Rt2 != RegARM32::Encoded_Reg_sp);
3046 assert(Rt2 != RegARM32::Encoded_Reg_pc);
3047 assert(Rt != Rt2);
3048 assert(CondARM32::isDefined(Cond));
3049 IValueT Encoding = B27 | B26 | B22 | B20 | B11 | B9 | B8 | B4 |
3050 (encodeCondition(Cond) << kConditionShift) | (Rt2 << 16) |
3051 (Rt << 12) | (getYInRegYXXXX(Dm) << 5) |
3052 getXXXXInRegYXXXX(Dm);
3053 emitInst(Encoding);
3054 }
3055
vmovrs(const Operand * OpRt,const Operand * OpSn,CondARM32::Cond Cond)3056 void AssemblerARM32::vmovrs(const Operand *OpRt, const Operand *OpSn,
3057 CondARM32::Cond Cond) {
3058 // VMOV (between ARM core register and single-precision register)
3059 // ARM section A8.8.343, encoding A1.
3060 //
3061 // vmov<c> <Rt>, <Sn>
3062 //
3063 // cccc11100001nnnntttt1010N0010000 where cccc=Cond, nnnnN = Sn, and tttt=Rt.
3064 constexpr const char *Vmovrs = "vmovrs";
3065 IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovrs);
3066 IValueT Sn = encodeSRegister(OpSn, "Sn", Vmovrs);
3067 assert(CondARM32::isDefined(Cond));
3068 IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B27 | B26 |
3069 B25 | B20 | B11 | B9 | B4 | (getXXXXInRegXXXXY(Sn) << 16) |
3070 (Rt << kRdShift) | (getYInRegXXXXY(Sn) << 7);
3071 emitInst(Encoding);
3072 }
3073
vmovs(const Operand * OpSd,const OperandARM32FlexFpImm * OpFpImm,CondARM32::Cond Cond)3074 void AssemblerARM32::vmovs(const Operand *OpSd,
3075 const OperandARM32FlexFpImm *OpFpImm,
3076 CondARM32::Cond Cond) {
3077 // VMOV (immediate) - ARM section A8.8.339, encoding A2:
3078 // vmov<c>.f32 <Sd>, #<imm>
3079 //
3080 // cccc11101D11xxxxdddd10100000yyyy where cccc=Cond, ddddD=Sn, xxxxyyyy=imm.
3081 constexpr const char *Vmovs = "vmovs";
3082 IValueT Sd = encodeSRegister(OpSd, "Sd", Vmovs);
3083 IValueT Imm8 = OpFpImm->getModifiedImm();
3084 assert(Imm8 < (1 << 8));
3085 constexpr IValueT VmovsOpcode = B23 | B21 | B20;
3086 IValueT OpcodePlusImm8 = VmovsOpcode | ((Imm8 >> 4) << 16) | (Imm8 & 0xf);
3087 constexpr IValueT S0 = 0;
3088 emitVFPsss(Cond, OpcodePlusImm8, Sd, S0, S0);
3089 }
3090
vmovss(const Operand * OpSd,const Variable * OpSm,CondARM32::Cond Cond)3091 void AssemblerARM32::vmovss(const Operand *OpSd, const Variable *OpSm,
3092 CondARM32::Cond Cond) {
3093 constexpr const char *Vmovss = "Vmovss";
3094 IValueT Sd = encodeSRegister(OpSd, "Sd", Vmovss);
3095 IValueT Sm = encodeSRegister(OpSm, "Sm", Vmovss);
3096 emitMoveSS(Cond, Sd, Sm);
3097 }
3098
vmovsqi(const Operand * OpSd,const Operand * OpQm,uint32_t Index,CondARM32::Cond Cond)3099 void AssemblerARM32::vmovsqi(const Operand *OpSd, const Operand *OpQm,
3100 uint32_t Index, CondARM32::Cond Cond) {
3101 constexpr const char *Vmovsqi = "vmovsqi";
3102 const IValueT Sd = encodeSRegister(OpSd, "Sd", Vmovsqi);
3103 assert(Index < 4);
3104 const IValueT Sm =
3105 mapQRegToSReg(encodeQRegister(OpQm, "Qm", Vmovsqi)) + Index;
3106 emitMoveSS(Cond, Sd, Sm);
3107 }
3108
vmovsr(const Operand * OpSn,const Operand * OpRt,CondARM32::Cond Cond)3109 void AssemblerARM32::vmovsr(const Operand *OpSn, const Operand *OpRt,
3110 CondARM32::Cond Cond) {
3111 // VMOV (between ARM core register and single-precision register)
3112 // ARM section A8.8.343, encoding A1.
3113 //
3114 // vmov<c> <Sn>, <Rt>
3115 //
3116 // cccc11100000nnnntttt1010N0010000 where cccc=Cond, nnnnN = Sn, and tttt=Rt.
3117 constexpr const char *Vmovsr = "vmovsr";
3118 IValueT Sn = encodeSRegister(OpSn, "Sn", Vmovsr);
3119 IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovsr);
3120 assert(Sn < RegARM32::getNumSRegs());
3121 assert(Rt < RegARM32::getNumGPRegs());
3122 assert(CondARM32::isDefined(Cond));
3123 IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B27 | B26 |
3124 B25 | B11 | B9 | B4 | (getXXXXInRegXXXXY(Sn) << 16) |
3125 (Rt << kRdShift) | (getYInRegXXXXY(Sn) << 7);
3126 emitInst(Encoding);
3127 }
3128
vmlad(const Operand * OpDd,const Operand * OpDn,const Operand * OpDm,CondARM32::Cond Cond)3129 void AssemblerARM32::vmlad(const Operand *OpDd, const Operand *OpDn,
3130 const Operand *OpDm, CondARM32::Cond Cond) {
3131 // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2:
3132 // vmla<c>.f64 <Dd>, <Dn>, <Dm>
3133 //
3134 // cccc11100d00nnnndddd1011n0M0mmmm where cccc=Cond, Ddddd=Dd, Nnnnn=Dn, and
3135 // Mmmmm=Dm
3136 constexpr const char *Vmlad = "vmlad";
3137 constexpr IValueT VmladOpcode = 0;
3138 emitVFPddd(Cond, VmladOpcode, OpDd, OpDn, OpDm, Vmlad);
3139 }
3140
vmlas(const Operand * OpSd,const Operand * OpSn,const Operand * OpSm,CondARM32::Cond Cond)3141 void AssemblerARM32::vmlas(const Operand *OpSd, const Operand *OpSn,
3142 const Operand *OpSm, CondARM32::Cond Cond) {
3143 // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2:
3144 // vmla<c>.f32 <Sd>, <Sn>, <Sm>
3145 //
3146 // cccc11100d00nnnndddd1010n0M0mmmm where cccc=Cond, ddddD=Sd, nnnnN=Sn, and
3147 // mmmmM=Sm
3148 constexpr const char *Vmlas = "vmlas";
3149 constexpr IValueT VmlasOpcode = 0;
3150 emitVFPsss(Cond, VmlasOpcode, OpSd, OpSn, OpSm, Vmlas);
3151 }
3152
vmlsd(const Operand * OpDd,const Operand * OpDn,const Operand * OpDm,CondARM32::Cond Cond)3153 void AssemblerARM32::vmlsd(const Operand *OpDd, const Operand *OpDn,
3154 const Operand *OpDm, CondARM32::Cond Cond) {
3155 // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2:
3156 // vmls<c>.f64 <Dd>, <Dn>, <Dm>
3157 //
3158 // cccc11100d00nnnndddd1011n1M0mmmm where cccc=Cond, Ddddd=Dd, Nnnnn=Dn, and
3159 // Mmmmm=Dm
3160 constexpr const char *Vmlad = "vmlad";
3161 constexpr IValueT VmladOpcode = B6;
3162 emitVFPddd(Cond, VmladOpcode, OpDd, OpDn, OpDm, Vmlad);
3163 }
3164
vmlss(const Operand * OpSd,const Operand * OpSn,const Operand * OpSm,CondARM32::Cond Cond)3165 void AssemblerARM32::vmlss(const Operand *OpSd, const Operand *OpSn,
3166 const Operand *OpSm, CondARM32::Cond Cond) {
3167 // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2:
3168 // vmls<c>.f32 <Sd>, <Sn>, <Sm>
3169 //
3170 // cccc11100d00nnnndddd1010n1M0mmmm where cccc=Cond, ddddD=Sd, nnnnN=Sn, and
3171 // mmmmM=Sm
3172 constexpr const char *Vmlas = "vmlas";
3173 constexpr IValueT VmlasOpcode = B6;
3174 emitVFPsss(Cond, VmlasOpcode, OpSd, OpSn, OpSm, Vmlas);
3175 }
3176
vmrsAPSR_nzcv(CondARM32::Cond Cond)3177 void AssemblerARM32::vmrsAPSR_nzcv(CondARM32::Cond Cond) {
3178 // MVRS - ARM section A*.8.348, encoding A1:
3179 // vmrs<c> APSR_nzcv, FPSCR
3180 //
3181 // cccc111011110001tttt101000010000 where tttt=0x15 (i.e. when Rt=pc, use
3182 // APSR_nzcv instead).
3183 assert(CondARM32::isDefined(Cond));
3184 IValueT Encoding = B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 | B15 | B14 |
3185 B13 | B12 | B11 | B9 | B4 |
3186 (encodeCondition(Cond) << kConditionShift);
3187 emitInst(Encoding);
3188 }
3189
vmuls(const Operand * OpSd,const Operand * OpSn,const Operand * OpSm,CondARM32::Cond Cond)3190 void AssemblerARM32::vmuls(const Operand *OpSd, const Operand *OpSn,
3191 const Operand *OpSm, CondARM32::Cond Cond) {
3192 // VMUL (floating-point) - ARM section A8.8.351, encoding A2:
3193 // vmul<c>.f32 <Sd>, <Sn>, <Sm>
3194 //
3195 // cccc11100D10nnnndddd101sN0M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn,
3196 // and mmmmM=Rm.
3197 constexpr const char *Vmuls = "vmuls";
3198 constexpr IValueT VmulsOpcode = B21;
3199 emitVFPsss(Cond, VmulsOpcode, OpSd, OpSn, OpSm, Vmuls);
3200 }
3201
vmuld(const Operand * OpDd,const Operand * OpDn,const Operand * OpDm,CondARM32::Cond Cond)3202 void AssemblerARM32::vmuld(const Operand *OpDd, const Operand *OpDn,
3203 const Operand *OpDm, CondARM32::Cond Cond) {
3204 // VMUL (floating-point) - ARM section A8.8.351, encoding A2:
3205 // vmul<c>.f64 <Dd>, <Dn>, <Dm>
3206 //
3207 // cccc11100D10nnnndddd101sN0M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn,
3208 // and Mmmmm=Rm.
3209 constexpr const char *Vmuld = "vmuld";
3210 constexpr IValueT VmuldOpcode = B21;
3211 emitVFPddd(Cond, VmuldOpcode, OpDd, OpDn, OpDm, Vmuld);
3212 }
3213
vmulqi(Type ElmtTy,const Operand * OpQd,const Operand * OpQn,const Operand * OpQm)3214 void AssemblerARM32::vmulqi(Type ElmtTy, const Operand *OpQd,
3215 const Operand *OpQn, const Operand *OpQm) {
3216 // VMUL, VMULL (integer and polynomial) - ARM section A8.8.350, encoding A1:
3217 // vmul<c>.<dt> <Qd>, <Qn>, <Qm>
3218 //
3219 // 111100100Dssnnn0ddd01001NqM1mmm0 where Dddd=Qd, Nnnn=Qn, Mmmm=Qm, and
3220 // dt in [i8, i16, i32] where ss is the index.
3221 assert(isScalarIntegerType(ElmtTy) &&
3222 "vmulqi expects vector with integer element type");
3223 assert(ElmtTy != IceType_i64 && "vmulqi on i64 vector not allowed");
3224 constexpr const char *Vmulqi = "vmulqi";
3225 constexpr IValueT VmulqiOpcode = B11 | B8 | B4;
3226 emitSIMDqqq(VmulqiOpcode, ElmtTy, OpQd, OpQn, OpQm, Vmulqi);
3227 }
3228
vmulqf(const Operand * OpQd,const Operand * OpQn,const Operand * OpQm)3229 void AssemblerARM32::vmulqf(const Operand *OpQd, const Operand *OpQn,
3230 const Operand *OpQm) {
3231 // VMUL (floating-point) - ARM section A8.8.351, encoding A1:
3232 // vmul.f32 <Qd>, <Qn>, <Qm>
3233 //
3234 // 111100110D00nnn0ddd01101MqM1mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm.
3235 assert(OpQd->getType() == IceType_v4f32 && "vmulqf expects type <4 x float>");
3236 constexpr const char *Vmulqf = "vmulqf";
3237 constexpr IValueT VmulqfOpcode = B24 | B11 | B8 | B4;
3238 constexpr bool IsFloatTy = true;
3239 emitSIMDqqqBase(VmulqfOpcode, OpQd, OpQn, OpQm, IsFloatTy, Vmulqf);
3240 }
3241
vmvnq(const Operand * OpQd,const Operand * OpQm)3242 void AssemblerARM32::vmvnq(const Operand *OpQd, const Operand *OpQm) {
3243 // VMVN (integer) - ARM section A8.8.354, encoding A1:
3244 // vmvn <Qd>, <Qm>
3245 //
3246 // 111100111D110000dddd01011QM0mmmm where Dddd=Qd, Mmmm=Qm, and 1=Q.
3247 // TODO(jpp) xxx: unify
3248 constexpr const char *Vmvn = "vmvn";
3249 constexpr IValueT VmvnOpcode = B24 | B23 | B21 | B20 | B10 | B8 | B7;
3250 const IValueT Qd = encodeQRegister(OpQd, "Qd", Vmvn);
3251 constexpr IValueT Qn = 0;
3252 const IValueT Qm = encodeQRegister(OpQm, "Qm", Vmvn);
3253 constexpr bool UseQRegs = true;
3254 constexpr bool IsFloat = false;
3255 emitSIMDBase(VmvnOpcode, mapQRegToDReg(Qd), mapQRegToDReg(Qn),
3256 mapQRegToDReg(Qm), UseQRegs, IsFloat);
3257 }
3258
vnegqs(Type ElmtTy,const Operand * OpQd,const Operand * OpQm)3259 void AssemblerARM32::vnegqs(Type ElmtTy, const Operand *OpQd,
3260 const Operand *OpQm) {
3261 // VNEG - ARM section A8.8.355, encoding A1:
3262 // vneg.<dt> <Qd>, <Qm>
3263 //
3264 // 111111111D11ss01dddd0F111QM0mmmm where Dddd=Qd, and Mmmm=Qm, and:
3265 // * dt=s8 -> 00=ss, 0=F
3266 // * dt=s16 -> 01=ss, 0=F
3267 // * dt=s32 -> 10=ss, 0=F
3268 // * dt=s32 -> 10=ss, 1=F
3269 constexpr const char *Vneg = "vneg";
3270 constexpr IValueT VnegOpcode = B24 | B23 | B21 | B20 | B16 | B9 | B8 | B7;
3271 const IValueT Qd = encodeQRegister(OpQd, "Qd", Vneg);
3272 constexpr IValueT Qn = 0;
3273 const IValueT Qm = encodeQRegister(OpQm, "Qm", Vneg);
3274 constexpr bool UseQRegs = true;
3275 constexpr IValueT ElmtShift = 18;
3276 const IValueT ElmtSize = encodeElmtType(ElmtTy);
3277 assert(Utils::IsUint(2, ElmtSize));
3278 emitSIMDBase(VnegOpcode | (ElmtSize << ElmtShift), mapQRegToDReg(Qd),
3279 mapQRegToDReg(Qn), mapQRegToDReg(Qm), UseQRegs,
3280 isFloatingType(ElmtTy));
3281 }
3282
vorrq(const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)3283 void AssemblerARM32::vorrq(const Operand *OpQd, const Operand *OpQm,
3284 const Operand *OpQn) {
3285 // VORR (register) - ARM section A8.8.360, encoding A1:
3286 // vorr <Qd>, <Qn>, <Qm>
3287 //
3288 // 111100100D10nnn0ddd00001N1M1mmm0 where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm.
3289 constexpr const char *Vorrq = "vorrq";
3290 constexpr IValueT VorrqOpcode = B21 | B8 | B4;
3291 constexpr Type ElmtTy = IceType_i8;
3292 emitSIMDqqq(VorrqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vorrq);
3293 }
3294
vstrd(const Operand * OpDd,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)3295 void AssemblerARM32::vstrd(const Operand *OpDd, const Operand *OpAddress,
3296 CondARM32::Cond Cond, const TargetInfo &TInfo) {
3297 // VSTR - ARM section A8.8.413, encoding A1:
3298 // vstr<c> <Dd>, [<Rn>{, #+/-<Imm>}]
3299 //
3300 // cccc1101UD00nnnndddd1011iiiiiiii where cccc=Cond, nnnn=Rn, Ddddd=Rd,
3301 // iiiiiiii=abs(Imm >> 2), and U=1 if Imm>=0.
3302 constexpr const char *Vstrd = "vstrd";
3303 IValueT Dd = encodeDRegister(OpDd, "Dd", Vstrd);
3304 assert(CondARM32::isDefined(Cond));
3305 IValueT Address;
3306 IValueT AddressEncoding =
3307 encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address);
3308 (void)AddressEncoding;
3309 assert(AddressEncoding == EncodedAsImmRegOffset);
3310 IValueT Encoding = B27 | B26 | B24 | B11 | B9 | B8 |
3311 (encodeCondition(Cond) << kConditionShift) |
3312 (getYInRegYXXXX(Dd) << 22) |
3313 (getXXXXInRegYXXXX(Dd) << 12) | Address;
3314 emitInst(Encoding);
3315 }
3316
vstrs(const Operand * OpSd,const Operand * OpAddress,CondARM32::Cond Cond,const TargetInfo & TInfo)3317 void AssemblerARM32::vstrs(const Operand *OpSd, const Operand *OpAddress,
3318 CondARM32::Cond Cond, const TargetInfo &TInfo) {
3319 // VSTR - ARM section A8.8.413, encoding A2:
3320 // vstr<c> <Sd>, [<Rn>{, #+/-<imm>]]
3321 //
3322 // cccc1101UD01nnnndddd1010iiiiiiii where cccc=Cond, nnnn=Rn, ddddD=Sd,
3323 // iiiiiiii=abs(Opcode), and U=1 if Opcode >= 0;
3324 constexpr const char *Vstrs = "vstrs";
3325 IValueT Sd = encodeSRegister(OpSd, "Sd", Vstrs);
3326 assert(CondARM32::isDefined(Cond));
3327 IValueT Address;
3328 IValueT AddressEncoding =
3329 encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address);
3330 (void)AddressEncoding;
3331 assert(AddressEncoding == EncodedAsImmRegOffset);
3332 IValueT Encoding =
3333 B27 | B26 | B24 | B11 | B9 | (encodeCondition(Cond) << kConditionShift) |
3334 (getYInRegXXXXY(Sd) << 22) | (getXXXXInRegXXXXY(Sd) << 12) | Address;
3335 emitInst(Encoding);
3336 }
3337
vst1qr(size_t ElmtSize,const Operand * OpQd,const Operand * OpAddress,const TargetInfo & TInfo)3338 void AssemblerARM32::vst1qr(size_t ElmtSize, const Operand *OpQd,
3339 const Operand *OpAddress, const TargetInfo &TInfo) {
3340 // VST1 (multiple single elements) - ARM section A8.8.404, encoding A1:
3341 // vst1.<size> <Qd>, [<Rn>]
3342 //
3343 // 111101000D00nnnnddd0ttttssaammmm where tttt=DRegListSize2, Dddd=Qd,
3344 // nnnn=Rn, aa=0 (use default alignment), size=ElmtSize, and ss is the
3345 // encoding of ElmtSize.
3346 constexpr const char *Vst1qr = "vst1qr";
3347 const IValueT Qd = encodeQRegister(OpQd, "Qd", Vst1qr);
3348 const IValueT Dd = mapQRegToDReg(Qd);
3349 IValueT Address;
3350 if (encodeAddress(OpAddress, Address, TInfo, NoImmOffsetAddress) !=
3351 EncodedAsImmRegOffset)
3352 llvm::report_fatal_error(std::string(Vst1qr) + ": malform memory address");
3353 const IValueT Rn = mask(Address, kRnShift, 4);
3354 constexpr IValueT Rm = RegARM32::Reg_pc;
3355 constexpr IValueT Opcode = B26;
3356 constexpr IValueT Align = 0; // use default alignment.
3357 emitVMem1Op(Opcode, Dd, Rn, Rm, DRegListSize2, ElmtSize, Align, Vst1qr);
3358 }
3359
vsubs(const Operand * OpSd,const Operand * OpSn,const Operand * OpSm,CondARM32::Cond Cond)3360 void AssemblerARM32::vsubs(const Operand *OpSd, const Operand *OpSn,
3361 const Operand *OpSm, CondARM32::Cond Cond) {
3362 // VSUB (floating-point) - ARM section A8.8.415, encoding A2:
3363 // vsub<c>.f32 <Sd>, <Sn>, <Sm>
3364 //
3365 // cccc11100D11nnnndddd101sN1M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn,
3366 // and mmmmM=Rm.
3367 constexpr const char *Vsubs = "vsubs";
3368 constexpr IValueT VsubsOpcode = B21 | B20 | B6;
3369 emitVFPsss(Cond, VsubsOpcode, OpSd, OpSn, OpSm, Vsubs);
3370 }
3371
vsubd(const Operand * OpDd,const Operand * OpDn,const Operand * OpDm,CondARM32::Cond Cond)3372 void AssemblerARM32::vsubd(const Operand *OpDd, const Operand *OpDn,
3373 const Operand *OpDm, CondARM32::Cond Cond) {
3374 // VSUB (floating-point) - ARM section A8.8.415, encoding A2:
3375 // vsub<c>.f64 <Dd>, <Dn>, <Dm>
3376 //
3377 // cccc11100D11nnnndddd101sN1M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn,
3378 // and Mmmmm=Rm.
3379 constexpr const char *Vsubd = "vsubd";
3380 constexpr IValueT VsubdOpcode = B21 | B20 | B6;
3381 emitVFPddd(Cond, VsubdOpcode, OpDd, OpDn, OpDm, Vsubd);
3382 }
3383
vsubqi(Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)3384 void AssemblerARM32::vsubqi(Type ElmtTy, const Operand *OpQd,
3385 const Operand *OpQm, const Operand *OpQn) {
3386 // VSUB (integer) - ARM section A8.8.414, encoding A1:
3387 // vsub.<dt> <Qd>, <Qn>, <Qm>
3388 //
3389 // 111100110Dssnnn0ddd01000N1M0mmm0 where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm,
3390 // and dt in [i8, i16, i32, i64] where ss is the index.
3391 assert(isScalarIntegerType(ElmtTy) &&
3392 "vsubqi expects vector with integer element type");
3393 constexpr const char *Vsubqi = "vsubqi";
3394 constexpr IValueT VsubqiOpcode = B24 | B11;
3395 emitSIMDqqq(VsubqiOpcode, ElmtTy, OpQd, OpQm, OpQn, Vsubqi);
3396 }
3397
vsubqf(const Operand * OpQd,const Operand * OpQn,const Operand * OpQm)3398 void AssemblerARM32::vsubqf(const Operand *OpQd, const Operand *OpQn,
3399 const Operand *OpQm) {
3400 // VSUB (floating-point) - ARM section A8.8.415, Encoding A1:
3401 // vsub.f32 <Qd>, <Qn>, <Qm>
3402 //
3403 // 111100100D10nnn0ddd01101N1M0mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm.
3404 assert(OpQd->getType() == IceType_v4f32 && "vsubqf expects type <4 x float>");
3405 constexpr const char *Vsubqf = "vsubqf";
3406 constexpr IValueT VsubqfOpcode = B21 | B11 | B8;
3407 emitSIMDqqq(VsubqfOpcode, IceType_f32, OpQd, OpQn, OpQm, Vsubqf);
3408 }
3409
emitVStackOp(CondARM32::Cond Cond,IValueT Opcode,const Variable * OpBaseReg,SizeT NumConsecRegs)3410 void AssemblerARM32::emitVStackOp(CondARM32::Cond Cond, IValueT Opcode,
3411 const Variable *OpBaseReg,
3412 SizeT NumConsecRegs) {
3413 const IValueT BaseReg = getEncodedSRegNum(OpBaseReg);
3414 const IValueT DLastBit = mask(BaseReg, 0, 1); // Last bit of base register.
3415 const IValueT Rd = mask(BaseReg, 1, 4); // Top 4 bits of base register.
3416 assert(0 < NumConsecRegs);
3417 (void)VpushVpopMaxConsecRegs;
3418 assert(NumConsecRegs <= VpushVpopMaxConsecRegs);
3419 assert((BaseReg + NumConsecRegs) <= RegARM32::getNumSRegs());
3420 assert(CondARM32::isDefined(Cond));
3421 const IValueT Encoding = Opcode | (Cond << kConditionShift) | DLastBit |
3422 (Rd << kRdShift) | NumConsecRegs;
3423 emitInst(Encoding);
3424 }
3425
vpop(const Variable * OpBaseReg,SizeT NumConsecRegs,CondARM32::Cond Cond)3426 void AssemblerARM32::vpop(const Variable *OpBaseReg, SizeT NumConsecRegs,
3427 CondARM32::Cond Cond) {
3428 // Note: Current implementation assumes that OpBaseReg is defined using S
3429 // registers. It doesn't implement the D register form.
3430 //
3431 // VPOP - ARM section A8.8.367, encoding A2:
3432 // vpop<c> <RegList>
3433 //
3434 // cccc11001D111101dddd1010iiiiiiii where cccc=Cond, ddddD=BaseReg, and
3435 // iiiiiiii=NumConsecRegs.
3436 constexpr IValueT VpopOpcode =
3437 B27 | B26 | B23 | B21 | B20 | B19 | B18 | B16 | B11 | B9;
3438 emitVStackOp(Cond, VpopOpcode, OpBaseReg, NumConsecRegs);
3439 }
3440
vpush(const Variable * OpBaseReg,SizeT NumConsecRegs,CondARM32::Cond Cond)3441 void AssemblerARM32::vpush(const Variable *OpBaseReg, SizeT NumConsecRegs,
3442 CondARM32::Cond Cond) {
3443 // Note: Current implementation assumes that OpBaseReg is defined using S
3444 // registers. It doesn't implement the D register form.
3445 //
3446 // VPUSH - ARM section A8.8.368, encoding A2:
3447 // vpush<c> <RegList>
3448 //
3449 // cccc11010D101101dddd1010iiiiiiii where cccc=Cond, ddddD=BaseReg, and
3450 // iiiiiiii=NumConsecRegs.
3451 constexpr IValueT VpushOpcode =
3452 B27 | B26 | B24 | B21 | B19 | B18 | B16 | B11 | B9;
3453 emitVStackOp(Cond, VpushOpcode, OpBaseReg, NumConsecRegs);
3454 }
3455
vshlqi(Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)3456 void AssemblerARM32::vshlqi(Type ElmtTy, const Operand *OpQd,
3457 const Operand *OpQm, const Operand *OpQn) {
3458 // VSHL - ARM section A8.8.396, encoding A1:
3459 // vshl Qd, Qm, Qn
3460 //
3461 // 1111001U0Dssnnnndddd0100NQM0mmmm where Ddddd=Qd, Mmmmm=Qm, Nnnnn=Qn, 0=U,
3462 // 1=Q
3463 assert(isScalarIntegerType(ElmtTy) &&
3464 "vshl expects vector with integer element type");
3465 constexpr const char *Vshl = "vshl";
3466 constexpr IValueT VshlOpcode = B10 | B6;
3467 emitSIMDqqq(VshlOpcode, ElmtTy, OpQd, OpQn, OpQm, Vshl);
3468 }
3469
3470 namespace {
3471 enum SIMDShiftType { ST_Vshl, ST_Vshr };
encodeSIMDShiftImm6(SIMDShiftType Shift,Type ElmtTy,const ConstantInteger32 * Imm6)3472 IValueT encodeSIMDShiftImm6(SIMDShiftType Shift, Type ElmtTy,
3473 const ConstantInteger32 *Imm6) {
3474 const IValueT Imm = Imm6->getValue();
3475 assert(Imm > 0);
3476 const SizeT MaxShift = getScalarIntBitWidth(ElmtTy);
3477 assert(Imm < MaxShift);
3478 assert(ElmtTy == IceType_i8 || ElmtTy == IceType_i16 ||
3479 ElmtTy == IceType_i32);
3480 const IValueT VshlImm = Imm - MaxShift;
3481 const IValueT VshrImm = 2 * MaxShift - Imm;
3482 return ((Shift == ST_Vshl) ? VshlImm : VshrImm) & (2 * MaxShift - 1);
3483 }
3484 } // end of anonymous namespace
3485
vshlqc(Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const ConstantInteger32 * Imm6)3486 void AssemblerARM32::vshlqc(Type ElmtTy, const Operand *OpQd,
3487 const Operand *OpQm,
3488 const ConstantInteger32 *Imm6) {
3489 // VSHL - ARM section A8.8.395, encoding A1:
3490 // vshl Qd, Qm, #Imm
3491 //
3492 // 1111001U1Diiiiiidddd0101LQM1mmmm where Ddddd=Qd, Mmmmm=Qm, iiiiii=Imm6,
3493 // 0=U, 1=Q, 0=L.
3494 assert(isScalarIntegerType(ElmtTy) &&
3495 "vshl expects vector with integer element type");
3496 constexpr const char *Vshl = "vshl";
3497 constexpr IValueT VshlOpcode = B23 | B10 | B8 | B4;
3498 emitSIMDShiftqqc(VshlOpcode, OpQd, OpQm,
3499 encodeSIMDShiftImm6(ST_Vshl, ElmtTy, Imm6), Vshl);
3500 }
3501
vshrqic(Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const ConstantInteger32 * Imm6)3502 void AssemblerARM32::vshrqic(Type ElmtTy, const Operand *OpQd,
3503 const Operand *OpQm,
3504 const ConstantInteger32 *Imm6) {
3505 // VSHR - ARM section A8.8.398, encoding A1:
3506 // vshr Qd, Qm, #Imm
3507 //
3508 // 1111001U1Diiiiiidddd0101LQM1mmmm where Ddddd=Qd, Mmmmm=Qm, iiiiii=Imm6,
3509 // 0=U, 1=Q, 0=L.
3510 assert(isScalarIntegerType(ElmtTy) &&
3511 "vshr expects vector with integer element type");
3512 constexpr const char *Vshr = "vshr";
3513 constexpr IValueT VshrOpcode = B23 | B4;
3514 emitSIMDShiftqqc(VshrOpcode, OpQd, OpQm,
3515 encodeSIMDShiftImm6(ST_Vshr, ElmtTy, Imm6), Vshr);
3516 }
3517
vshrquc(Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const ConstantInteger32 * Imm6)3518 void AssemblerARM32::vshrquc(Type ElmtTy, const Operand *OpQd,
3519 const Operand *OpQm,
3520 const ConstantInteger32 *Imm6) {
3521 // VSHR - ARM section A8.8.398, encoding A1:
3522 // vshr Qd, Qm, #Imm
3523 //
3524 // 1111001U1Diiiiiidddd0101LQM1mmmm where Ddddd=Qd, Mmmmm=Qm, iiiiii=Imm6,
3525 // 0=U, 1=Q, 0=L.
3526 assert(isScalarIntegerType(ElmtTy) &&
3527 "vshr expects vector with integer element type");
3528 constexpr const char *Vshr = "vshr";
3529 constexpr IValueT VshrOpcode = B23 | B4;
3530 emitSIMDShiftqqc(VshrOpcode, OpQd, OpQm,
3531 encodeSIMDShiftImm6(ST_Vshr, ElmtTy, Imm6), Vshr);
3532 }
3533
vshlqu(Type ElmtTy,const Operand * OpQd,const Operand * OpQm,const Operand * OpQn)3534 void AssemblerARM32::vshlqu(Type ElmtTy, const Operand *OpQd,
3535 const Operand *OpQm, const Operand *OpQn) {
3536 // VSHL - ARM section A8.8.396, encoding A1:
3537 // vshl Qd, Qm, Qn
3538 //
3539 // 1111001U0Dssnnnndddd0100NQM0mmmm where Ddddd=Qd, Mmmmm=Qm, Nnnnn=Qn, 1=U,
3540 // 1=Q
3541 assert(isScalarIntegerType(ElmtTy) &&
3542 "vshl expects vector with integer element type");
3543 constexpr const char *Vshl = "vshl";
3544 constexpr IValueT VshlOpcode = B24 | B10 | B6;
3545 emitSIMDqqq(VshlOpcode, ElmtTy, OpQd, OpQn, OpQm, Vshl);
3546 }
3547
vsqrtd(const Operand * OpDd,const Operand * OpDm,CondARM32::Cond Cond)3548 void AssemblerARM32::vsqrtd(const Operand *OpDd, const Operand *OpDm,
3549 CondARM32::Cond Cond) {
3550 // VSQRT - ARM section A8.8.401, encoding A1:
3551 // vsqrt<c>.f64 <Dd>, <Dm>
3552 //
3553 // cccc11101D110001dddd101111M0mmmm where cccc=Cond, Ddddd=Sd, and Mmmmm=Sm.
3554 constexpr const char *Vsqrtd = "vsqrtd";
3555 IValueT Dd = encodeDRegister(OpDd, "Dd", Vsqrtd);
3556 IValueT Dm = encodeDRegister(OpDm, "Dm", Vsqrtd);
3557 constexpr IValueT VsqrtdOpcode = B23 | B21 | B20 | B16 | B7 | B6;
3558 constexpr IValueT D0 = 0;
3559 emitVFPddd(Cond, VsqrtdOpcode, Dd, D0, Dm);
3560 }
3561
vsqrts(const Operand * OpSd,const Operand * OpSm,CondARM32::Cond Cond)3562 void AssemblerARM32::vsqrts(const Operand *OpSd, const Operand *OpSm,
3563 CondARM32::Cond Cond) {
3564 // VSQRT - ARM section A8.8.401, encoding A1:
3565 // vsqrt<c>.f32 <Sd>, <Sm>
3566 //
3567 // cccc11101D110001dddd101011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm.
3568 constexpr const char *Vsqrts = "vsqrts";
3569 IValueT Sd = encodeSRegister(OpSd, "Sd", Vsqrts);
3570 IValueT Sm = encodeSRegister(OpSm, "Sm", Vsqrts);
3571 constexpr IValueT VsqrtsOpcode = B23 | B21 | B20 | B16 | B7 | B6;
3572 constexpr IValueT S0 = 0;
3573 emitVFPsss(Cond, VsqrtsOpcode, Sd, S0, Sm);
3574 }
3575
3576 } // end of namespace ARM32
3577 } // end of namespace Ice
3578