1 /*
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12
13 #include "denoising.h"
14
15 #include "vp8/common/reconinter.h"
16 #include "vpx/vpx_integer.h"
17 #include "vpx_mem/vpx_mem.h"
18 #include "vp8_rtcd.h"
19
20 static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
21 /* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming
22 * var(noise) ~= 100.
23 */
24 static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
25 static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
26 static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 80;
27
28 /*
29 * The filter function was modified to reduce the computational complexity.
30 * Step 1:
31 * Instead of applying tap coefficients for each pixel, we calculated the
32 * pixel adjustments vs. pixel diff value ahead of time.
33 * adjustment = filtered_value - current_raw
34 * = (filter_coefficient * diff + 128) >> 8
35 * where
36 * filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
37 * filter_coefficient += filter_coefficient /
38 * (3 + motion_magnitude_adjustment);
39 * filter_coefficient is clamped to 0 ~ 255.
40 *
41 * Step 2:
42 * The adjustment vs. diff curve becomes flat very quick when diff increases.
43 * This allowed us to use only several levels to approximate the curve without
44 * changing the filtering algorithm too much.
45 * The adjustments were further corrected by checking the motion magnitude.
46 * The levels used are:
47 * diff adjustment w/o motion correction adjustment w/ motion correction
48 * [-255, -16] -6 -7
49 * [-15, -8] -4 -5
50 * [-7, -4] -3 -4
51 * [-3, 3] diff diff
52 * [4, 7] 3 4
53 * [8, 15] 4 5
54 * [16, 255] 6 7
55 */
56
vp8_denoiser_filter_c(unsigned char * mc_running_avg_y,int mc_avg_y_stride,unsigned char * running_avg_y,int avg_y_stride,unsigned char * sig,int sig_stride,unsigned int motion_magnitude,int increase_denoising)57 int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
58 unsigned char *running_avg_y, int avg_y_stride,
59 unsigned char *sig, int sig_stride,
60 unsigned int motion_magnitude,
61 int increase_denoising) {
62 unsigned char *running_avg_y_start = running_avg_y;
63 unsigned char *sig_start = sig;
64 int sum_diff_thresh;
65 int r, c;
66 int sum_diff = 0;
67 int adj_val[3] = { 3, 4, 6 };
68 int shift_inc1 = 0;
69 int shift_inc2 = 1;
70 int col_sum[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
71 /* If motion_magnitude is small, making the denoiser more aggressive by
72 * increasing the adjustment for each level. Add another increment for
73 * blocks that are labeled for increase denoising. */
74 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
75 if (increase_denoising) {
76 shift_inc1 = 1;
77 shift_inc2 = 2;
78 }
79 adj_val[0] += shift_inc2;
80 adj_val[1] += shift_inc2;
81 adj_val[2] += shift_inc2;
82 }
83
84 for (r = 0; r < 16; ++r) {
85 for (c = 0; c < 16; ++c) {
86 int diff = 0;
87 int adjustment = 0;
88 int absdiff = 0;
89
90 diff = mc_running_avg_y[c] - sig[c];
91 absdiff = abs(diff);
92
93 // When |diff| <= |3 + shift_inc1|, use pixel value from
94 // last denoised raw.
95 if (absdiff <= 3 + shift_inc1) {
96 running_avg_y[c] = mc_running_avg_y[c];
97 col_sum[c] += diff;
98 } else {
99 if (absdiff >= 4 + shift_inc1 && absdiff <= 7) {
100 adjustment = adj_val[0];
101 } else if (absdiff >= 8 && absdiff <= 15) {
102 adjustment = adj_val[1];
103 } else {
104 adjustment = adj_val[2];
105 }
106
107 if (diff > 0) {
108 if ((sig[c] + adjustment) > 255) {
109 running_avg_y[c] = 255;
110 } else {
111 running_avg_y[c] = sig[c] + adjustment;
112 }
113
114 col_sum[c] += adjustment;
115 } else {
116 if ((sig[c] - adjustment) < 0) {
117 running_avg_y[c] = 0;
118 } else {
119 running_avg_y[c] = sig[c] - adjustment;
120 }
121
122 col_sum[c] -= adjustment;
123 }
124 }
125 }
126
127 /* Update pointers for next iteration. */
128 sig += sig_stride;
129 mc_running_avg_y += mc_avg_y_stride;
130 running_avg_y += avg_y_stride;
131 }
132
133 for (c = 0; c < 16; ++c) {
134 // Below we clip the value in the same way which SSE code use.
135 // When adopting aggressive denoiser, the adj_val for each pixel
136 // could be at most 8 (this is current max adjustment of the map).
137 // In SSE code, we calculate the sum of adj_val for
138 // the columns, so the sum could be upto 128(16 rows). However,
139 // the range of the value is -128 ~ 127 in SSE code, that's why
140 // we do this change in C code.
141 // We don't do this for UV denoiser, since there are only 8 rows,
142 // and max adjustments <= 8, so the sum of the columns will not
143 // exceed 64.
144 if (col_sum[c] >= 128) {
145 col_sum[c] = 127;
146 }
147 sum_diff += col_sum[c];
148 }
149
150 sum_diff_thresh = SUM_DIFF_THRESHOLD;
151 if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
152 if (abs(sum_diff) > sum_diff_thresh) {
153 // Before returning to copy the block (i.e., apply no denoising), check
154 // if we can still apply some (weaker) temporal filtering to this block,
155 // that would otherwise not be denoised at all. Simplest is to apply
156 // an additional adjustment to running_avg_y to bring it closer to sig.
157 // The adjustment is capped by a maximum delta, and chosen such that
158 // in most cases the resulting sum_diff will be within the
159 // accceptable range given by sum_diff_thresh.
160
161 // The delta is set by the excess of absolute pixel diff over threshold.
162 int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
163 // Only apply the adjustment for max delta up to 3.
164 if (delta < 4) {
165 sig -= sig_stride * 16;
166 mc_running_avg_y -= mc_avg_y_stride * 16;
167 running_avg_y -= avg_y_stride * 16;
168 for (r = 0; r < 16; ++r) {
169 for (c = 0; c < 16; ++c) {
170 int diff = mc_running_avg_y[c] - sig[c];
171 int adjustment = abs(diff);
172 if (adjustment > delta) adjustment = delta;
173 if (diff > 0) {
174 // Bring denoised signal down.
175 if (running_avg_y[c] - adjustment < 0) {
176 running_avg_y[c] = 0;
177 } else {
178 running_avg_y[c] = running_avg_y[c] - adjustment;
179 }
180 col_sum[c] -= adjustment;
181 } else if (diff < 0) {
182 // Bring denoised signal up.
183 if (running_avg_y[c] + adjustment > 255) {
184 running_avg_y[c] = 255;
185 } else {
186 running_avg_y[c] = running_avg_y[c] + adjustment;
187 }
188 col_sum[c] += adjustment;
189 }
190 }
191 // TODO(marpan): Check here if abs(sum_diff) has gone below the
192 // threshold sum_diff_thresh, and if so, we can exit the row loop.
193 sig += sig_stride;
194 mc_running_avg_y += mc_avg_y_stride;
195 running_avg_y += avg_y_stride;
196 }
197
198 sum_diff = 0;
199 for (c = 0; c < 16; ++c) {
200 if (col_sum[c] >= 128) {
201 col_sum[c] = 127;
202 }
203 sum_diff += col_sum[c];
204 }
205
206 if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK;
207 } else {
208 return COPY_BLOCK;
209 }
210 }
211
212 vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
213 return FILTER_BLOCK;
214 }
215
vp8_denoiser_filter_uv_c(unsigned char * mc_running_avg_uv,int mc_avg_uv_stride,unsigned char * running_avg_uv,int avg_uv_stride,unsigned char * sig,int sig_stride,unsigned int motion_magnitude,int increase_denoising)216 int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv,
217 int mc_avg_uv_stride,
218 unsigned char *running_avg_uv, int avg_uv_stride,
219 unsigned char *sig, int sig_stride,
220 unsigned int motion_magnitude,
221 int increase_denoising) {
222 unsigned char *running_avg_uv_start = running_avg_uv;
223 unsigned char *sig_start = sig;
224 int sum_diff_thresh;
225 int r, c;
226 int sum_diff = 0;
227 int sum_block = 0;
228 int adj_val[3] = { 3, 4, 6 };
229 int shift_inc1 = 0;
230 int shift_inc2 = 1;
231 /* If motion_magnitude is small, making the denoiser more aggressive by
232 * increasing the adjustment for each level. Add another increment for
233 * blocks that are labeled for increase denoising. */
234 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) {
235 if (increase_denoising) {
236 shift_inc1 = 1;
237 shift_inc2 = 2;
238 }
239 adj_val[0] += shift_inc2;
240 adj_val[1] += shift_inc2;
241 adj_val[2] += shift_inc2;
242 }
243
244 // Avoid denoising color signal if its close to average level.
245 for (r = 0; r < 8; ++r) {
246 for (c = 0; c < 8; ++c) {
247 sum_block += sig[c];
248 }
249 sig += sig_stride;
250 }
251 if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
252 return COPY_BLOCK;
253 }
254
255 sig -= sig_stride * 8;
256 for (r = 0; r < 8; ++r) {
257 for (c = 0; c < 8; ++c) {
258 int diff = 0;
259 int adjustment = 0;
260 int absdiff = 0;
261
262 diff = mc_running_avg_uv[c] - sig[c];
263 absdiff = abs(diff);
264
265 // When |diff| <= |3 + shift_inc1|, use pixel value from
266 // last denoised raw.
267 if (absdiff <= 3 + shift_inc1) {
268 running_avg_uv[c] = mc_running_avg_uv[c];
269 sum_diff += diff;
270 } else {
271 if (absdiff >= 4 && absdiff <= 7) {
272 adjustment = adj_val[0];
273 } else if (absdiff >= 8 && absdiff <= 15) {
274 adjustment = adj_val[1];
275 } else {
276 adjustment = adj_val[2];
277 }
278 if (diff > 0) {
279 if ((sig[c] + adjustment) > 255) {
280 running_avg_uv[c] = 255;
281 } else {
282 running_avg_uv[c] = sig[c] + adjustment;
283 }
284 sum_diff += adjustment;
285 } else {
286 if ((sig[c] - adjustment) < 0) {
287 running_avg_uv[c] = 0;
288 } else {
289 running_avg_uv[c] = sig[c] - adjustment;
290 }
291 sum_diff -= adjustment;
292 }
293 }
294 }
295 /* Update pointers for next iteration. */
296 sig += sig_stride;
297 mc_running_avg_uv += mc_avg_uv_stride;
298 running_avg_uv += avg_uv_stride;
299 }
300
301 sum_diff_thresh = SUM_DIFF_THRESHOLD_UV;
302 if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
303 if (abs(sum_diff) > sum_diff_thresh) {
304 // Before returning to copy the block (i.e., apply no denoising), check
305 // if we can still apply some (weaker) temporal filtering to this block,
306 // that would otherwise not be denoised at all. Simplest is to apply
307 // an additional adjustment to running_avg_y to bring it closer to sig.
308 // The adjustment is capped by a maximum delta, and chosen such that
309 // in most cases the resulting sum_diff will be within the
310 // accceptable range given by sum_diff_thresh.
311
312 // The delta is set by the excess of absolute pixel diff over threshold.
313 int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
314 // Only apply the adjustment for max delta up to 3.
315 if (delta < 4) {
316 sig -= sig_stride * 8;
317 mc_running_avg_uv -= mc_avg_uv_stride * 8;
318 running_avg_uv -= avg_uv_stride * 8;
319 for (r = 0; r < 8; ++r) {
320 for (c = 0; c < 8; ++c) {
321 int diff = mc_running_avg_uv[c] - sig[c];
322 int adjustment = abs(diff);
323 if (adjustment > delta) adjustment = delta;
324 if (diff > 0) {
325 // Bring denoised signal down.
326 if (running_avg_uv[c] - adjustment < 0) {
327 running_avg_uv[c] = 0;
328 } else {
329 running_avg_uv[c] = running_avg_uv[c] - adjustment;
330 }
331 sum_diff -= adjustment;
332 } else if (diff < 0) {
333 // Bring denoised signal up.
334 if (running_avg_uv[c] + adjustment > 255) {
335 running_avg_uv[c] = 255;
336 } else {
337 running_avg_uv[c] = running_avg_uv[c] + adjustment;
338 }
339 sum_diff += adjustment;
340 }
341 }
342 // TODO(marpan): Check here if abs(sum_diff) has gone below the
343 // threshold sum_diff_thresh, and if so, we can exit the row loop.
344 sig += sig_stride;
345 mc_running_avg_uv += mc_avg_uv_stride;
346 running_avg_uv += avg_uv_stride;
347 }
348 if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK;
349 } else {
350 return COPY_BLOCK;
351 }
352 }
353
354 vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start, sig_stride);
355 return FILTER_BLOCK;
356 }
357
vp8_denoiser_set_parameters(VP8_DENOISER * denoiser,int mode)358 void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) {
359 assert(mode > 0); // Denoiser is allocated only if mode > 0.
360 if (mode == 1) {
361 denoiser->denoiser_mode = kDenoiserOnYOnly;
362 } else if (mode == 2) {
363 denoiser->denoiser_mode = kDenoiserOnYUV;
364 } else if (mode == 3) {
365 denoiser->denoiser_mode = kDenoiserOnYUVAggressive;
366 } else {
367 denoiser->denoiser_mode = kDenoiserOnYUV;
368 }
369 if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) {
370 denoiser->denoise_pars.scale_sse_thresh = 1;
371 denoiser->denoise_pars.scale_motion_thresh = 8;
372 denoiser->denoise_pars.scale_increase_filter = 0;
373 denoiser->denoise_pars.denoise_mv_bias = 95;
374 denoiser->denoise_pars.pickmode_mv_bias = 100;
375 denoiser->denoise_pars.qp_thresh = 0;
376 denoiser->denoise_pars.consec_zerolast = UINT_MAX;
377 denoiser->denoise_pars.spatial_blur = 0;
378 } else {
379 denoiser->denoise_pars.scale_sse_thresh = 2;
380 denoiser->denoise_pars.scale_motion_thresh = 16;
381 denoiser->denoise_pars.scale_increase_filter = 1;
382 denoiser->denoise_pars.denoise_mv_bias = 60;
383 denoiser->denoise_pars.pickmode_mv_bias = 75;
384 denoiser->denoise_pars.qp_thresh = 80;
385 denoiser->denoise_pars.consec_zerolast = 15;
386 denoiser->denoise_pars.spatial_blur = 0;
387 }
388 }
389
vp8_denoiser_allocate(VP8_DENOISER * denoiser,int width,int height,int num_mb_rows,int num_mb_cols,int mode)390 int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
391 int num_mb_rows, int num_mb_cols, int mode) {
392 int i;
393 assert(denoiser);
394 denoiser->num_mb_cols = num_mb_cols;
395
396 for (i = 0; i < MAX_REF_FRAMES; ++i) {
397 denoiser->yv12_running_avg[i].flags = 0;
398
399 if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
400 height, VP8BORDERINPIXELS) < 0) {
401 vp8_denoiser_free(denoiser);
402 return 1;
403 }
404 memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
405 denoiser->yv12_running_avg[i].frame_size);
406 }
407 denoiser->yv12_mc_running_avg.flags = 0;
408
409 if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
410 height, VP8BORDERINPIXELS) < 0) {
411 vp8_denoiser_free(denoiser);
412 return 1;
413 }
414
415 memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
416 denoiser->yv12_mc_running_avg.frame_size);
417
418 if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width, height,
419 VP8BORDERINPIXELS) < 0) {
420 vp8_denoiser_free(denoiser);
421 return 1;
422 }
423 memset(denoiser->yv12_last_source.buffer_alloc, 0,
424 denoiser->yv12_last_source.frame_size);
425
426 denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
427 if (!denoiser->denoise_state) {
428 vp8_denoiser_free(denoiser);
429 return 1;
430 }
431 memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
432 vp8_denoiser_set_parameters(denoiser, mode);
433 denoiser->nmse_source_diff = 0;
434 denoiser->nmse_source_diff_count = 0;
435 denoiser->qp_avg = 0;
436 // QP threshold below which we can go up to aggressive mode.
437 denoiser->qp_threshold_up = 80;
438 // QP threshold above which we can go back down to normal mode.
439 // For now keep this second threshold high, so not used currently.
440 denoiser->qp_threshold_down = 128;
441 // Bitrate thresholds and noise metric (nmse) thresholds for switching to
442 // aggressive mode.
443 // TODO(marpan): Adjust thresholds, including effect on resolution.
444 denoiser->bitrate_threshold = 400000; // (bits/sec).
445 denoiser->threshold_aggressive_mode = 80;
446 if (width * height > 1280 * 720) {
447 denoiser->bitrate_threshold = 3000000;
448 denoiser->threshold_aggressive_mode = 200;
449 } else if (width * height > 960 * 540) {
450 denoiser->bitrate_threshold = 1200000;
451 denoiser->threshold_aggressive_mode = 120;
452 } else if (width * height > 640 * 480) {
453 denoiser->bitrate_threshold = 600000;
454 denoiser->threshold_aggressive_mode = 100;
455 }
456 return 0;
457 }
458
vp8_denoiser_free(VP8_DENOISER * denoiser)459 void vp8_denoiser_free(VP8_DENOISER *denoiser) {
460 int i;
461 assert(denoiser);
462
463 for (i = 0; i < MAX_REF_FRAMES; ++i) {
464 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
465 }
466 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
467 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source);
468 vpx_free(denoiser->denoise_state);
469 }
470
vp8_denoiser_denoise_mb(VP8_DENOISER * denoiser,MACROBLOCK * x,unsigned int best_sse,unsigned int zero_mv_sse,int recon_yoffset,int recon_uvoffset,loop_filter_info_n * lfi_n,int mb_row,int mb_col,int block_index,int consec_zero_last)471 void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser, MACROBLOCK *x,
472 unsigned int best_sse, unsigned int zero_mv_sse,
473 int recon_yoffset, int recon_uvoffset,
474 loop_filter_info_n *lfi_n, int mb_row, int mb_col,
475 int block_index, int consec_zero_last)
476
477 {
478 int mv_row;
479 int mv_col;
480 unsigned int motion_threshold;
481 unsigned int motion_magnitude2;
482 unsigned int sse_thresh;
483 int sse_diff_thresh = 0;
484 // Spatial loop filter: only applied selectively based on
485 // temporal filter state of block relative to top/left neighbors.
486 int apply_spatial_loop_filter = 1;
487 MV_REFERENCE_FRAME frame = x->best_reference_frame;
488 MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
489
490 enum vp8_denoiser_decision decision = FILTER_BLOCK;
491 enum vp8_denoiser_decision decision_u = COPY_BLOCK;
492 enum vp8_denoiser_decision decision_v = COPY_BLOCK;
493
494 if (zero_frame) {
495 YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
496 YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
497 YV12_BUFFER_CONFIG saved_pre, saved_dst;
498 MB_MODE_INFO saved_mbmi;
499 MACROBLOCKD *filter_xd = &x->e_mbd;
500 MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
501 int sse_diff = 0;
502 // Bias on zero motion vector sse.
503 const int zero_bias = denoiser->denoise_pars.denoise_mv_bias;
504 zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
505 sse_diff = (int)zero_mv_sse - (int)best_sse;
506
507 saved_mbmi = *mbmi;
508
509 /* Use the best MV for the compensation. */
510 mbmi->ref_frame = x->best_reference_frame;
511 mbmi->mode = x->best_sse_inter_mode;
512 mbmi->mv = x->best_sse_mv;
513 mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
514 mv_col = x->best_sse_mv.as_mv.col;
515 mv_row = x->best_sse_mv.as_mv.row;
516 // Bias to zero_mv if small amount of motion.
517 // Note sse_diff_thresh is intialized to zero, so this ensures
518 // we will always choose zero_mv for denoising if
519 // zero_mv_see <= best_sse (i.e., sse_diff <= 0).
520 if ((unsigned int)(mv_row * mv_row + mv_col * mv_col) <=
521 NOISE_MOTION_THRESHOLD) {
522 sse_diff_thresh = (int)SSE_DIFF_THRESHOLD;
523 }
524
525 if (frame == INTRA_FRAME || sse_diff <= sse_diff_thresh) {
526 /*
527 * Handle intra blocks as referring to last frame with zero motion
528 * and let the absolute pixel difference affect the filter factor.
529 * Also consider small amount of motion as being random walk due
530 * to noise, if it doesn't mean that we get a much bigger error.
531 * Note that any changes to the mode info only affects the
532 * denoising.
533 */
534 x->denoise_zeromv = 1;
535 mbmi->ref_frame = x->best_zeromv_reference_frame;
536
537 src = &denoiser->yv12_running_avg[zero_frame];
538
539 mbmi->mode = ZEROMV;
540 mbmi->mv.as_int = 0;
541 x->best_sse_inter_mode = ZEROMV;
542 x->best_sse_mv.as_int = 0;
543 best_sse = zero_mv_sse;
544 }
545
546 mv_row = x->best_sse_mv.as_mv.row;
547 mv_col = x->best_sse_mv.as_mv.col;
548 motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
549 motion_threshold =
550 denoiser->denoise_pars.scale_motion_thresh * NOISE_MOTION_THRESHOLD;
551
552 if (motion_magnitude2 <
553 denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD) {
554 x->increase_denoising = 1;
555 }
556
557 sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD;
558 if (x->increase_denoising) {
559 sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH;
560 }
561
562 if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold) {
563 decision = COPY_BLOCK;
564 }
565
566 // If block is considered skin, don't denoise if the block
567 // (1) is selected as non-zero motion for current frame, or
568 // (2) has not been selected as ZERO_LAST mode at least x past frames
569 // in a row.
570 // TODO(marpan): Parameter "x" should be varied with framerate.
571 // In particualar, should be reduced for layers (base layer/LAST).
572 if (x->is_skin && (consec_zero_last < 2 || motion_magnitude2 > 0)) {
573 decision = COPY_BLOCK;
574 }
575
576 if (decision == FILTER_BLOCK) {
577 saved_pre = filter_xd->pre;
578 saved_dst = filter_xd->dst;
579
580 /* Compensate the running average. */
581 filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
582 filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
583 filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
584 /* Write the compensated running average to the destination buffer. */
585 filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
586 filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
587 filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;
588
589 if (!x->skip) {
590 vp8_build_inter_predictors_mb(filter_xd);
591 } else {
592 vp8_build_inter16x16_predictors_mb(
593 filter_xd, filter_xd->dst.y_buffer, filter_xd->dst.u_buffer,
594 filter_xd->dst.v_buffer, filter_xd->dst.y_stride,
595 filter_xd->dst.uv_stride);
596 }
597 filter_xd->pre = saved_pre;
598 filter_xd->dst = saved_dst;
599 *mbmi = saved_mbmi;
600 }
601 } else {
602 // zero_frame should always be 1 for real-time mode, as the
603 // ZEROMV mode is always checked, so we should never go into this branch.
604 // If case ZEROMV is not checked, then we will force no denoise (COPY).
605 decision = COPY_BLOCK;
606 }
607
608 if (decision == FILTER_BLOCK) {
609 unsigned char *mc_running_avg_y =
610 denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset;
611 int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride;
612 unsigned char *running_avg_y =
613 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset;
614 int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
615
616 /* Filter. */
617 decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride,
618 running_avg_y, avg_y_stride, x->thismb, 16,
619 motion_magnitude2, x->increase_denoising);
620 denoiser->denoise_state[block_index] =
621 motion_magnitude2 > 0 ? kFilterNonZeroMV : kFilterZeroMV;
622 // Only denoise UV for zero motion, and if y channel was denoised.
623 if (denoiser->denoiser_mode != kDenoiserOnYOnly && motion_magnitude2 == 0 &&
624 decision == FILTER_BLOCK) {
625 unsigned char *mc_running_avg_u =
626 denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset;
627 unsigned char *running_avg_u =
628 denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset;
629 unsigned char *mc_running_avg_v =
630 denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset;
631 unsigned char *running_avg_v =
632 denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset;
633 int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride;
634 int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
635 int signal_stride = x->block[16].src_stride;
636 decision_u = vp8_denoiser_filter_uv(
637 mc_running_avg_u, mc_avg_uv_stride, running_avg_u, avg_uv_stride,
638 x->block[16].src + *x->block[16].base_src, signal_stride,
639 motion_magnitude2, 0);
640 decision_v = vp8_denoiser_filter_uv(
641 mc_running_avg_v, mc_avg_uv_stride, running_avg_v, avg_uv_stride,
642 x->block[20].src + *x->block[20].base_src, signal_stride,
643 motion_magnitude2, 0);
644 }
645 }
646 if (decision == COPY_BLOCK) {
647 /* No filtering of this block; it differs too much from the predictor,
648 * or the motion vector magnitude is considered too big.
649 */
650 x->denoise_zeromv = 0;
651 vp8_copy_mem16x16(
652 x->thismb, 16,
653 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
654 denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
655 denoiser->denoise_state[block_index] = kNoFilter;
656 }
657 if (denoiser->denoiser_mode != kDenoiserOnYOnly) {
658 if (decision_u == COPY_BLOCK) {
659 vp8_copy_mem8x8(
660 x->block[16].src + *x->block[16].base_src, x->block[16].src_stride,
661 denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset,
662 denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
663 }
664 if (decision_v == COPY_BLOCK) {
665 vp8_copy_mem8x8(
666 x->block[20].src + *x->block[20].base_src, x->block[16].src_stride,
667 denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset,
668 denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
669 }
670 }
671 // Option to selectively deblock the denoised signal, for y channel only.
672 if (apply_spatial_loop_filter) {
673 loop_filter_info lfi;
674 int apply_filter_col = 0;
675 int apply_filter_row = 0;
676 int apply_filter = 0;
677 int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
678 int uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
679
680 // Fix filter level to some nominal value for now.
681 int filter_level = 48;
682
683 int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
684 lfi.mblim = lfi_n->mblim[filter_level];
685 lfi.blim = lfi_n->blim[filter_level];
686 lfi.lim = lfi_n->lim[filter_level];
687 lfi.hev_thr = lfi_n->hev_thr[hev_index];
688
689 // Apply filter if there is a difference in the denoiser filter state
690 // between the current and left/top block, or if non-zero motion vector
691 // is used for the motion-compensated filtering.
692 if (mb_col > 0) {
693 apply_filter_col =
694 !((denoiser->denoise_state[block_index] ==
695 denoiser->denoise_state[block_index - 1]) &&
696 denoiser->denoise_state[block_index] != kFilterNonZeroMV);
697 if (apply_filter_col) {
698 // Filter left vertical edge.
699 apply_filter = 1;
700 vp8_loop_filter_mbv(
701 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
702 NULL, NULL, y_stride, uv_stride, &lfi);
703 }
704 }
705 if (mb_row > 0) {
706 apply_filter_row =
707 !((denoiser->denoise_state[block_index] ==
708 denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
709 denoiser->denoise_state[block_index] != kFilterNonZeroMV);
710 if (apply_filter_row) {
711 // Filter top horizontal edge.
712 apply_filter = 1;
713 vp8_loop_filter_mbh(
714 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
715 NULL, NULL, y_stride, uv_stride, &lfi);
716 }
717 }
718 if (apply_filter) {
719 // Update the signal block |x|. Pixel changes are only to top and/or
720 // left boundary pixels: can we avoid full block copy here.
721 vp8_copy_mem16x16(
722 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
723 y_stride, x->thismb, 16);
724 }
725 }
726 }
727