1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15
16 #include "./vp9_rtcd.h"
17 #include "./vpx_dsp_rtcd.h"
18
19 #include "vpx/vpx_codec.h"
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vpx_ports/mem.h"
23
24 #include "vp9/common/vp9_blockd.h"
25 #include "vp9/common/vp9_common.h"
26 #include "vp9/common/vp9_mvref_common.h"
27 #include "vp9/common/vp9_pred_common.h"
28 #include "vp9/common/vp9_reconinter.h"
29 #include "vp9/common/vp9_reconintra.h"
30 #include "vp9/common/vp9_scan.h"
31
32 #include "vp9/encoder/vp9_cost.h"
33 #include "vp9/encoder/vp9_encoder.h"
34 #include "vp9/encoder/vp9_pickmode.h"
35 #include "vp9/encoder/vp9_ratectrl.h"
36 #include "vp9/encoder/vp9_rd.h"
37
38 typedef struct {
39 uint8_t *data;
40 int stride;
41 int in_use;
42 } PRED_BUFFER;
43
44 static const int pos_shift_16x16[4][4] = {
45 { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
46 };
47
mv_refs_rt(VP9_COMP * cpi,const VP9_COMMON * cm,const MACROBLOCK * x,const MACROBLOCKD * xd,const TileInfo * const tile,MODE_INFO * mi,MV_REFERENCE_FRAME ref_frame,int_mv * mv_ref_list,int_mv * base_mv,int mi_row,int mi_col,int use_base_mv)48 static int mv_refs_rt(VP9_COMP *cpi, const VP9_COMMON *cm, const MACROBLOCK *x,
49 const MACROBLOCKD *xd, const TileInfo *const tile,
50 MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
51 int_mv *mv_ref_list, int_mv *base_mv, int mi_row,
52 int mi_col, int use_base_mv) {
53 const int *ref_sign_bias = cm->ref_frame_sign_bias;
54 int i, refmv_count = 0;
55
56 const POSITION *const mv_ref_search = mv_ref_blocks[mi->sb_type];
57
58 int different_ref_found = 0;
59 int context_counter = 0;
60 int const_motion = 0;
61
62 // Blank the reference vector list
63 memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
64
65 // The nearest 2 blocks are treated differently
66 // if the size < 8x8 we get the mv from the bmi substructure,
67 // and we also need to keep a mode count.
68 for (i = 0; i < 2; ++i) {
69 const POSITION *const mv_ref = &mv_ref_search[i];
70 if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
71 const MODE_INFO *const candidate_mi =
72 xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
73 // Keep counts for entropy encoding.
74 context_counter += mode_2_counter[candidate_mi->mode];
75 different_ref_found = 1;
76
77 if (candidate_mi->ref_frame[0] == ref_frame)
78 ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1),
79 refmv_count, mv_ref_list, Done);
80 }
81 }
82
83 const_motion = 1;
84
85 // Check the rest of the neighbors in much the same way
86 // as before except we don't need to keep track of sub blocks or
87 // mode counts.
88 for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
89 const POSITION *const mv_ref = &mv_ref_search[i];
90 if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
91 const MODE_INFO *const candidate_mi =
92 xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
93 different_ref_found = 1;
94
95 if (candidate_mi->ref_frame[0] == ref_frame)
96 ADD_MV_REF_LIST(candidate_mi->mv[0], refmv_count, mv_ref_list, Done);
97 }
98 }
99
100 // Since we couldn't find 2 mvs from the same reference frame
101 // go back through the neighbors and find motion vectors from
102 // different reference frames.
103 if (different_ref_found && !refmv_count) {
104 for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
105 const POSITION *mv_ref = &mv_ref_search[i];
106 if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
107 const MODE_INFO *const candidate_mi =
108 xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride];
109
110 // If the candidate is INTRA we don't want to consider its mv.
111 IF_DIFF_REF_FRAME_ADD_MV(candidate_mi, ref_frame, ref_sign_bias,
112 refmv_count, mv_ref_list, Done);
113 }
114 }
115 }
116 if (use_base_mv &&
117 !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
118 ref_frame == LAST_FRAME) {
119 // Get base layer mv.
120 MV_REF *candidate =
121 &cm->prev_frame
122 ->mvs[(mi_col >> 1) + (mi_row >> 1) * (cm->mi_cols >> 1)];
123 if (candidate->mv[0].as_int != INVALID_MV) {
124 base_mv->as_mv.row = (candidate->mv[0].as_mv.row * 2);
125 base_mv->as_mv.col = (candidate->mv[0].as_mv.col * 2);
126 clamp_mv_ref(&base_mv->as_mv, xd);
127 } else {
128 base_mv->as_int = INVALID_MV;
129 }
130 }
131
132 Done:
133
134 x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter];
135
136 // Clamp vectors
137 for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
138 clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
139
140 return const_motion;
141 }
142
combined_motion_search(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,int_mv * tmp_mv,int * rate_mv,int64_t best_rd_sofar,int use_base_mv)143 static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
144 BLOCK_SIZE bsize, int mi_row, int mi_col,
145 int_mv *tmp_mv, int *rate_mv,
146 int64_t best_rd_sofar, int use_base_mv) {
147 MACROBLOCKD *xd = &x->e_mbd;
148 MODE_INFO *mi = xd->mi[0];
149 struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } };
150 const int step_param = cpi->sf.mv.fullpel_search_step_param;
151 const int sadpb = x->sadperbit16;
152 MV mvp_full;
153 const int ref = mi->ref_frame[0];
154 const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
155 MV center_mv;
156 uint32_t dis;
157 int rate_mode;
158 const MvLimits tmp_mv_limits = x->mv_limits;
159 int rv = 0;
160 int cost_list[5];
161 const YV12_BUFFER_CONFIG *scaled_ref_frame =
162 vp9_get_scaled_ref_frame(cpi, ref);
163 if (scaled_ref_frame) {
164 int i;
165 // Swap out the reference frame for a version that's been scaled to
166 // match the resolution of the current frame, allowing the existing
167 // motion search code to be used without additional modifications.
168 for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
169 vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
170 }
171 vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
172
173 // Limit motion vector for large lightning change.
174 if (cpi->oxcf.speed > 5 && x->lowvar_highsumdiff) {
175 x->mv_limits.col_min = VPXMAX(x->mv_limits.col_min, -10);
176 x->mv_limits.row_min = VPXMAX(x->mv_limits.row_min, -10);
177 x->mv_limits.col_max = VPXMIN(x->mv_limits.col_max, 10);
178 x->mv_limits.row_max = VPXMIN(x->mv_limits.row_max, 10);
179 }
180
181 assert(x->mv_best_ref_index[ref] <= 2);
182 if (x->mv_best_ref_index[ref] < 2)
183 mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
184 else
185 mvp_full = x->pred_mv[ref];
186
187 mvp_full.col >>= 3;
188 mvp_full.row >>= 3;
189
190 if (!use_base_mv)
191 center_mv = ref_mv;
192 else
193 center_mv = tmp_mv->as_mv;
194
195 vp9_full_pixel_search(
196 cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb,
197 cond_cost_list(cpi, cost_list), ¢er_mv, &tmp_mv->as_mv, INT_MAX, 0);
198
199 x->mv_limits = tmp_mv_limits;
200
201 // calculate the bit cost on motion vector
202 mvp_full.row = tmp_mv->as_mv.row * 8;
203 mvp_full.col = tmp_mv->as_mv.col * 8;
204
205 *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv, x->nmvjointcost, x->mvcost,
206 MV_COST_WEIGHT);
207
208 rate_mode =
209 cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]][INTER_OFFSET(NEWMV)];
210 rv =
211 !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) > best_rd_sofar);
212
213 if (rv) {
214 const int subpel_force_stop = cpi->sf.mv.subpel_force_stop;
215 cpi->find_fractional_mv_step(
216 x, &tmp_mv->as_mv, &ref_mv, cpi->common.allow_high_precision_mv,
217 x->errorperbit, &cpi->fn_ptr[bsize], subpel_force_stop,
218 cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
219 x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0);
220 *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost,
221 x->mvcost, MV_COST_WEIGHT);
222 }
223
224 if (scaled_ref_frame) {
225 int i;
226 for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
227 }
228 return rv;
229 }
230
block_variance(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int w,int h,unsigned int * sse,int * sum,int block_size,int use_highbitdepth,vpx_bit_depth_t bd,uint32_t * sse8x8,int * sum8x8,uint32_t * var8x8)231 static void block_variance(const uint8_t *src, int src_stride,
232 const uint8_t *ref, int ref_stride, int w, int h,
233 unsigned int *sse, int *sum, int block_size,
234 #if CONFIG_VP9_HIGHBITDEPTH
235 int use_highbitdepth, vpx_bit_depth_t bd,
236 #endif
237 uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
238 int i, j, k = 0;
239
240 *sse = 0;
241 *sum = 0;
242
243 for (i = 0; i < h; i += block_size) {
244 for (j = 0; j < w; j += block_size) {
245 #if CONFIG_VP9_HIGHBITDEPTH
246 if (use_highbitdepth) {
247 switch (bd) {
248 case VPX_BITS_8:
249 vpx_highbd_8_get8x8var(src + src_stride * i + j, src_stride,
250 ref + ref_stride * i + j, ref_stride,
251 &sse8x8[k], &sum8x8[k]);
252 break;
253 case VPX_BITS_10:
254 vpx_highbd_10_get8x8var(src + src_stride * i + j, src_stride,
255 ref + ref_stride * i + j, ref_stride,
256 &sse8x8[k], &sum8x8[k]);
257 break;
258 case VPX_BITS_12:
259 vpx_highbd_12_get8x8var(src + src_stride * i + j, src_stride,
260 ref + ref_stride * i + j, ref_stride,
261 &sse8x8[k], &sum8x8[k]);
262 break;
263 }
264 } else {
265 vpx_get8x8var(src + src_stride * i + j, src_stride,
266 ref + ref_stride * i + j, ref_stride, &sse8x8[k],
267 &sum8x8[k]);
268 }
269 #else
270 vpx_get8x8var(src + src_stride * i + j, src_stride,
271 ref + ref_stride * i + j, ref_stride, &sse8x8[k],
272 &sum8x8[k]);
273 #endif
274 *sse += sse8x8[k];
275 *sum += sum8x8[k];
276 var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6);
277 k++;
278 }
279 }
280 }
281
calculate_variance(int bw,int bh,TX_SIZE tx_size,unsigned int * sse_i,int * sum_i,unsigned int * var_o,unsigned int * sse_o,int * sum_o)282 static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
283 unsigned int *sse_i, int *sum_i,
284 unsigned int *var_o, unsigned int *sse_o,
285 int *sum_o) {
286 const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
287 const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
288 const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
289 int i, j, k = 0;
290
291 for (i = 0; i < nh; i += 2) {
292 for (j = 0; j < nw; j += 2) {
293 sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
294 sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
295 sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
296 sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
297 var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
298 (b_width_log2_lookup[unit_size] +
299 b_height_log2_lookup[unit_size] + 6));
300 k++;
301 }
302 }
303 }
304
305 // Adjust the ac_thr according to speed, width, height and normalized sum
ac_thr_factor(const int speed,const int width,const int height,const int norm_sum)306 static int ac_thr_factor(const int speed, const int width, const int height,
307 const int norm_sum) {
308 if (speed >= 8 && norm_sum < 5) {
309 if (width <= 640 && height <= 480)
310 return 4;
311 else
312 return 2;
313 }
314 return 1;
315 }
316
model_rd_for_sb_y_large(VP9_COMP * cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,int * out_rate_sum,int64_t * out_dist_sum,unsigned int * var_y,unsigned int * sse_y,int mi_row,int mi_col,int * early_term)317 static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
318 MACROBLOCK *x, MACROBLOCKD *xd,
319 int *out_rate_sum, int64_t *out_dist_sum,
320 unsigned int *var_y, unsigned int *sse_y,
321 int mi_row, int mi_col, int *early_term) {
322 // Note our transform coeffs are 8 times an orthogonal transform.
323 // Hence quantizer step is also 8 times. To get effective quantizer
324 // we need to divide by 8 before sending to modeling function.
325 unsigned int sse;
326 int rate;
327 int64_t dist;
328 struct macroblock_plane *const p = &x->plane[0];
329 struct macroblockd_plane *const pd = &xd->plane[0];
330 const uint32_t dc_quant = pd->dequant[0];
331 const uint32_t ac_quant = pd->dequant[1];
332 const int64_t dc_thr = dc_quant * dc_quant >> 6;
333 int64_t ac_thr = ac_quant * ac_quant >> 6;
334 unsigned int var;
335 int sum;
336 int skip_dc = 0;
337
338 const int bw = b_width_log2_lookup[bsize];
339 const int bh = b_height_log2_lookup[bsize];
340 const int num8x8 = 1 << (bw + bh - 2);
341 unsigned int sse8x8[64] = { 0 };
342 int sum8x8[64] = { 0 };
343 unsigned int var8x8[64] = { 0 };
344 TX_SIZE tx_size;
345 int i, k;
346 #if CONFIG_VP9_HIGHBITDEPTH
347 const vpx_bit_depth_t bd = cpi->common.bit_depth;
348 #endif
349 // Calculate variance for whole partition, and also save 8x8 blocks' variance
350 // to be used in following transform skipping test.
351 block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
352 4 << bw, 4 << bh, &sse, &sum, 8,
353 #if CONFIG_VP9_HIGHBITDEPTH
354 cpi->common.use_highbitdepth, bd,
355 #endif
356 sse8x8, sum8x8, var8x8);
357 var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
358
359 *var_y = var;
360 *sse_y = sse;
361
362 #if CONFIG_VP9_TEMPORAL_DENOISING
363 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
364 cpi->oxcf.speed > 5)
365 ac_thr = vp9_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level,
366 (abs(sum) >> (bw + bh)),
367 cpi->svc.temporal_layer_id);
368 else
369 ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
370 cpi->common.height, abs(sum) >> (bw + bh));
371 #else
372 ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
373 cpi->common.height, abs(sum) >> (bw + bh));
374 #endif
375
376 if (cpi->common.tx_mode == TX_MODE_SELECT) {
377 if (sse > (var << 2))
378 tx_size = VPXMIN(max_txsize_lookup[bsize],
379 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
380 else
381 tx_size = TX_8X8;
382
383 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
384 cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
385 tx_size = TX_8X8;
386 else if (tx_size > TX_16X16)
387 tx_size = TX_16X16;
388 } else {
389 tx_size = VPXMIN(max_txsize_lookup[bsize],
390 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
391 }
392
393 assert(tx_size >= TX_8X8);
394 xd->mi[0]->tx_size = tx_size;
395
396 // Evaluate if the partition block is a skippable block in Y plane.
397 {
398 unsigned int sse16x16[16] = { 0 };
399 int sum16x16[16] = { 0 };
400 unsigned int var16x16[16] = { 0 };
401 const int num16x16 = num8x8 >> 2;
402
403 unsigned int sse32x32[4] = { 0 };
404 int sum32x32[4] = { 0 };
405 unsigned int var32x32[4] = { 0 };
406 const int num32x32 = num8x8 >> 4;
407
408 int ac_test = 1;
409 int dc_test = 1;
410 const int num = (tx_size == TX_8X8)
411 ? num8x8
412 : ((tx_size == TX_16X16) ? num16x16 : num32x32);
413 const unsigned int *sse_tx =
414 (tx_size == TX_8X8) ? sse8x8
415 : ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
416 const unsigned int *var_tx =
417 (tx_size == TX_8X8) ? var8x8
418 : ((tx_size == TX_16X16) ? var16x16 : var32x32);
419
420 // Calculate variance if tx_size > TX_8X8
421 if (tx_size >= TX_16X16)
422 calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
423 sum16x16);
424 if (tx_size == TX_32X32)
425 calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
426 sse32x32, sum32x32);
427
428 // Skipping test
429 x->skip_txfm[0] = SKIP_TXFM_NONE;
430 for (k = 0; k < num; k++)
431 // Check if all ac coefficients can be quantized to zero.
432 if (!(var_tx[k] < ac_thr || var == 0)) {
433 ac_test = 0;
434 break;
435 }
436
437 for (k = 0; k < num; k++)
438 // Check if dc coefficient can be quantized to zero.
439 if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
440 dc_test = 0;
441 break;
442 }
443
444 if (ac_test) {
445 x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
446
447 if (dc_test) x->skip_txfm[0] = SKIP_TXFM_AC_DC;
448 } else if (dc_test) {
449 skip_dc = 1;
450 }
451 }
452
453 if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
454 int skip_uv[2] = { 0 };
455 unsigned int var_uv[2];
456 unsigned int sse_uv[2];
457
458 *out_rate_sum = 0;
459 *out_dist_sum = sse << 4;
460
461 // Transform skipping test in UV planes.
462 for (i = 1; i <= 2; i++) {
463 if (cpi->oxcf.speed < 8 || x->color_sensitivity[i - 1]) {
464 struct macroblock_plane *const p = &x->plane[i];
465 struct macroblockd_plane *const pd = &xd->plane[i];
466 const TX_SIZE uv_tx_size = get_uv_tx_size(xd->mi[0], pd);
467 const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size];
468 const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd);
469 const int uv_bw = b_width_log2_lookup[uv_bsize];
470 const int uv_bh = b_height_log2_lookup[uv_bsize];
471 const int sf = (uv_bw - b_width_log2_lookup[unit_size]) +
472 (uv_bh - b_height_log2_lookup[unit_size]);
473 const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf);
474 const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf);
475 int j = i - 1;
476
477 vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i);
478 var_uv[j] = cpi->fn_ptr[uv_bsize].vf(
479 p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse_uv[j]);
480
481 if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
482 (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
483 skip_uv[j] = 1;
484 else
485 break;
486 } else {
487 skip_uv[i - 1] = 1;
488 }
489 }
490
491 // If the transform in YUV planes are skippable, the mode search checks
492 // fewer inter modes and doesn't check intra modes.
493 if (skip_uv[0] & skip_uv[1]) {
494 *early_term = 1;
495 }
496 return;
497 }
498
499 if (!skip_dc) {
500 #if CONFIG_VP9_HIGHBITDEPTH
501 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
502 dc_quant >> (xd->bd - 5), &rate, &dist);
503 #else
504 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
505 dc_quant >> 3, &rate, &dist);
506 #endif // CONFIG_VP9_HIGHBITDEPTH
507 }
508
509 if (!skip_dc) {
510 *out_rate_sum = rate >> 1;
511 *out_dist_sum = dist << 3;
512 } else {
513 *out_rate_sum = 0;
514 *out_dist_sum = (sse - var) << 4;
515 }
516
517 #if CONFIG_VP9_HIGHBITDEPTH
518 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
519 ac_quant >> (xd->bd - 5), &rate, &dist);
520 #else
521 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3,
522 &rate, &dist);
523 #endif // CONFIG_VP9_HIGHBITDEPTH
524
525 *out_rate_sum += rate;
526 *out_dist_sum += dist << 4;
527 }
528
model_rd_for_sb_y(VP9_COMP * cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,int * out_rate_sum,int64_t * out_dist_sum,unsigned int * var_y,unsigned int * sse_y)529 static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
530 MACROBLOCKD *xd, int *out_rate_sum,
531 int64_t *out_dist_sum, unsigned int *var_y,
532 unsigned int *sse_y) {
533 // Note our transform coeffs are 8 times an orthogonal transform.
534 // Hence quantizer step is also 8 times. To get effective quantizer
535 // we need to divide by 8 before sending to modeling function.
536 unsigned int sse;
537 int rate;
538 int64_t dist;
539 struct macroblock_plane *const p = &x->plane[0];
540 struct macroblockd_plane *const pd = &xd->plane[0];
541 const int64_t dc_thr = p->quant_thred[0] >> 6;
542 const int64_t ac_thr = p->quant_thred[1] >> 6;
543 const uint32_t dc_quant = pd->dequant[0];
544 const uint32_t ac_quant = pd->dequant[1];
545 unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
546 pd->dst.buf, pd->dst.stride, &sse);
547 int skip_dc = 0;
548
549 *var_y = var;
550 *sse_y = sse;
551
552 if (cpi->common.tx_mode == TX_MODE_SELECT) {
553 if (sse > (var << 2))
554 xd->mi[0]->tx_size =
555 VPXMIN(max_txsize_lookup[bsize],
556 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
557 else
558 xd->mi[0]->tx_size = TX_8X8;
559
560 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
561 cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
562 xd->mi[0]->tx_size = TX_8X8;
563 else if (xd->mi[0]->tx_size > TX_16X16)
564 xd->mi[0]->tx_size = TX_16X16;
565 } else {
566 xd->mi[0]->tx_size =
567 VPXMIN(max_txsize_lookup[bsize],
568 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
569 }
570
571 // Evaluate if the partition block is a skippable block in Y plane.
572 {
573 const BLOCK_SIZE unit_size = txsize_to_bsize[xd->mi[0]->tx_size];
574 const unsigned int num_blk_log2 =
575 (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) +
576 (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]);
577 const unsigned int sse_tx = sse >> num_blk_log2;
578 const unsigned int var_tx = var >> num_blk_log2;
579
580 x->skip_txfm[0] = SKIP_TXFM_NONE;
581 // Check if all ac coefficients can be quantized to zero.
582 if (var_tx < ac_thr || var == 0) {
583 x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
584 // Check if dc coefficient can be quantized to zero.
585 if (sse_tx - var_tx < dc_thr || sse == var)
586 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
587 } else {
588 if (sse_tx - var_tx < dc_thr || sse == var) skip_dc = 1;
589 }
590 }
591
592 if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
593 *out_rate_sum = 0;
594 *out_dist_sum = sse << 4;
595 return;
596 }
597
598 if (!skip_dc) {
599 #if CONFIG_VP9_HIGHBITDEPTH
600 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
601 dc_quant >> (xd->bd - 5), &rate, &dist);
602 #else
603 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
604 dc_quant >> 3, &rate, &dist);
605 #endif // CONFIG_VP9_HIGHBITDEPTH
606 }
607
608 if (!skip_dc) {
609 *out_rate_sum = rate >> 1;
610 *out_dist_sum = dist << 3;
611 } else {
612 *out_rate_sum = 0;
613 *out_dist_sum = (sse - var) << 4;
614 }
615
616 #if CONFIG_VP9_HIGHBITDEPTH
617 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
618 ac_quant >> (xd->bd - 5), &rate, &dist);
619 #else
620 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3,
621 &rate, &dist);
622 #endif // CONFIG_VP9_HIGHBITDEPTH
623
624 *out_rate_sum += rate;
625 *out_dist_sum += dist << 4;
626 }
627
block_yrd(VP9_COMP * cpi,MACROBLOCK * x,RD_COST * this_rdc,int * skippable,int64_t * sse,BLOCK_SIZE bsize,TX_SIZE tx_size,int rd_computed)628 static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc,
629 int *skippable, int64_t *sse, BLOCK_SIZE bsize,
630 TX_SIZE tx_size, int rd_computed) {
631 MACROBLOCKD *xd = &x->e_mbd;
632 const struct macroblockd_plane *pd = &xd->plane[0];
633 struct macroblock_plane *const p = &x->plane[0];
634 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
635 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
636 const int step = 1 << (tx_size << 1);
637 const int block_step = (1 << tx_size);
638 int block = 0, r, c;
639 const int max_blocks_wide =
640 num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
641 const int max_blocks_high =
642 num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
643 int eob_cost = 0;
644 const int bw = 4 * num_4x4_w;
645 const int bh = 4 * num_4x4_h;
646
647 #if CONFIG_VP9_HIGHBITDEPTH
648 // TODO(jingning): Implement the high bit-depth Hadamard transforms and
649 // remove this check condition.
650 // TODO(marpan): Use this path (model_rd) for 8bit under certain conditions
651 // for now, as the vp9_quantize_fp below for highbitdepth build is slow.
652 if (xd->bd != 8 ||
653 (cpi->oxcf.speed > 5 && cpi->common.frame_type != KEY_FRAME &&
654 bsize < BLOCK_32X32)) {
655 unsigned int var_y, sse_y;
656 (void)tx_size;
657 if (!rd_computed)
658 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc->rate, &this_rdc->dist,
659 &var_y, &sse_y);
660 *sse = INT_MAX;
661 *skippable = 0;
662 return;
663 }
664 #endif
665
666 if (cpi->sf.use_simple_block_yrd && cpi->common.frame_type != KEY_FRAME &&
667 bsize < BLOCK_32X32) {
668 unsigned int var_y, sse_y;
669 (void)tx_size;
670 if (!rd_computed)
671 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc->rate, &this_rdc->dist,
672 &var_y, &sse_y);
673 *sse = INT_MAX;
674 *skippable = 0;
675 return;
676 }
677
678 (void)cpi;
679
680 // The max tx_size passed in is TX_16X16.
681 assert(tx_size != TX_32X32);
682
683 vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
684 pd->dst.buf, pd->dst.stride);
685 *skippable = 1;
686 // Keep track of the row and column of the blocks we use so that we know
687 // if we are in the unrestricted motion border.
688 for (r = 0; r < max_blocks_high; r += block_step) {
689 for (c = 0; c < num_4x4_w; c += block_step) {
690 if (c < max_blocks_wide) {
691 const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
692 tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
693 tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
694 tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
695 uint16_t *const eob = &p->eobs[block];
696 const int diff_stride = bw;
697 const int16_t *src_diff;
698 src_diff = &p->src_diff[(r * diff_stride + c) << 2];
699
700 switch (tx_size) {
701 case TX_16X16:
702 vpx_hadamard_16x16(src_diff, diff_stride, coeff);
703 vp9_quantize_fp(coeff, 256, x->skip_block, p->round_fp, p->quant_fp,
704 qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
705 scan_order->iscan);
706 break;
707 case TX_8X8:
708 vpx_hadamard_8x8(src_diff, diff_stride, coeff);
709 vp9_quantize_fp(coeff, 64, x->skip_block, p->round_fp, p->quant_fp,
710 qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
711 scan_order->iscan);
712 break;
713 case TX_4X4:
714 x->fwd_txm4x4(src_diff, coeff, diff_stride);
715 vp9_quantize_fp(coeff, 16, x->skip_block, p->round_fp, p->quant_fp,
716 qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
717 scan_order->iscan);
718 break;
719 default: assert(0); break;
720 }
721 *skippable &= (*eob == 0);
722 eob_cost += 1;
723 }
724 block += step;
725 }
726 }
727
728 this_rdc->rate = 0;
729 if (*sse < INT64_MAX) {
730 *sse = (*sse << 6) >> 2;
731 if (*skippable) {
732 this_rdc->dist = *sse;
733 return;
734 }
735 }
736
737 block = 0;
738 this_rdc->dist = 0;
739 for (r = 0; r < max_blocks_high; r += block_step) {
740 for (c = 0; c < num_4x4_w; c += block_step) {
741 if (c < max_blocks_wide) {
742 tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
743 tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
744 tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
745 uint16_t *const eob = &p->eobs[block];
746
747 if (*eob == 1)
748 this_rdc->rate += (int)abs(qcoeff[0]);
749 else if (*eob > 1)
750 this_rdc->rate += vpx_satd(qcoeff, step << 4);
751
752 this_rdc->dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> 2;
753 }
754 block += step;
755 }
756 }
757
758 // If skippable is set, rate gets clobbered later.
759 this_rdc->rate <<= (2 + VP9_PROB_COST_SHIFT);
760 this_rdc->rate += (eob_cost << VP9_PROB_COST_SHIFT);
761 }
762
model_rd_for_sb_uv(VP9_COMP * cpi,BLOCK_SIZE plane_bsize,MACROBLOCK * x,MACROBLOCKD * xd,RD_COST * this_rdc,unsigned int * var_y,unsigned int * sse_y,int start_plane,int stop_plane)763 static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE plane_bsize,
764 MACROBLOCK *x, MACROBLOCKD *xd,
765 RD_COST *this_rdc, unsigned int *var_y,
766 unsigned int *sse_y, int start_plane,
767 int stop_plane) {
768 // Note our transform coeffs are 8 times an orthogonal transform.
769 // Hence quantizer step is also 8 times. To get effective quantizer
770 // we need to divide by 8 before sending to modeling function.
771 unsigned int sse;
772 int rate;
773 int64_t dist;
774 int i;
775 #if CONFIG_VP9_HIGHBITDEPTH
776 uint64_t tot_var = *var_y;
777 uint64_t tot_sse = *sse_y;
778 #else
779 uint32_t tot_var = *var_y;
780 uint32_t tot_sse = *sse_y;
781 #endif
782
783 this_rdc->rate = 0;
784 this_rdc->dist = 0;
785
786 for (i = start_plane; i <= stop_plane; ++i) {
787 struct macroblock_plane *const p = &x->plane[i];
788 struct macroblockd_plane *const pd = &xd->plane[i];
789 const uint32_t dc_quant = pd->dequant[0];
790 const uint32_t ac_quant = pd->dequant[1];
791 const BLOCK_SIZE bs = plane_bsize;
792 unsigned int var;
793 if (!x->color_sensitivity[i - 1]) continue;
794
795 var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
796 pd->dst.stride, &sse);
797 assert(sse >= var);
798 tot_var += var;
799 tot_sse += sse;
800
801 #if CONFIG_VP9_HIGHBITDEPTH
802 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
803 dc_quant >> (xd->bd - 5), &rate, &dist);
804 #else
805 vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
806 dc_quant >> 3, &rate, &dist);
807 #endif // CONFIG_VP9_HIGHBITDEPTH
808
809 this_rdc->rate += rate >> 1;
810 this_rdc->dist += dist << 3;
811
812 #if CONFIG_VP9_HIGHBITDEPTH
813 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
814 ac_quant >> (xd->bd - 5), &rate, &dist);
815 #else
816 vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
817 &rate, &dist);
818 #endif // CONFIG_VP9_HIGHBITDEPTH
819
820 this_rdc->rate += rate;
821 this_rdc->dist += dist << 4;
822 }
823
824 #if CONFIG_VP9_HIGHBITDEPTH
825 *var_y = tot_var > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_var;
826 *sse_y = tot_sse > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_sse;
827 #else
828 *var_y = tot_var;
829 *sse_y = tot_sse;
830 #endif
831 }
832
get_pred_buffer(PRED_BUFFER * p,int len)833 static int get_pred_buffer(PRED_BUFFER *p, int len) {
834 int i;
835
836 for (i = 0; i < len; i++) {
837 if (!p[i].in_use) {
838 p[i].in_use = 1;
839 return i;
840 }
841 }
842 return -1;
843 }
844
free_pred_buffer(PRED_BUFFER * p)845 static void free_pred_buffer(PRED_BUFFER *p) {
846 if (p != NULL) p->in_use = 0;
847 }
848
encode_breakout_test(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,MV_REFERENCE_FRAME ref_frame,PREDICTION_MODE this_mode,unsigned int var_y,unsigned int sse_y,struct buf_2d yv12_mb[][MAX_MB_PLANE],int * rate,int64_t * dist)849 static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
850 int mi_row, int mi_col,
851 MV_REFERENCE_FRAME ref_frame,
852 PREDICTION_MODE this_mode, unsigned int var_y,
853 unsigned int sse_y,
854 struct buf_2d yv12_mb[][MAX_MB_PLANE],
855 int *rate, int64_t *dist) {
856 MACROBLOCKD *xd = &x->e_mbd;
857 MODE_INFO *const mi = xd->mi[0];
858 const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
859 unsigned int var = var_y, sse = sse_y;
860 // Skipping threshold for ac.
861 unsigned int thresh_ac;
862 // Skipping threshold for dc.
863 unsigned int thresh_dc;
864 int motion_low = 1;
865 if (mi->mv[0].as_mv.row > 64 || mi->mv[0].as_mv.row < -64 ||
866 mi->mv[0].as_mv.col > 64 || mi->mv[0].as_mv.col < -64)
867 motion_low = 0;
868 if (x->encode_breakout > 0 && motion_low == 1) {
869 // Set a maximum for threshold to avoid big PSNR loss in low bit rate
870 // case. Use extreme low threshold for static frames to limit
871 // skipping.
872 const unsigned int max_thresh = 36000;
873 // The encode_breakout input
874 const unsigned int min_thresh =
875 VPXMIN(((unsigned int)x->encode_breakout << 4), max_thresh);
876 #if CONFIG_VP9_HIGHBITDEPTH
877 const int shift = (xd->bd << 1) - 16;
878 #endif
879
880 // Calculate threshold according to dequant value.
881 thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3;
882 #if CONFIG_VP9_HIGHBITDEPTH
883 if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
884 thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
885 }
886 #endif // CONFIG_VP9_HIGHBITDEPTH
887 thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
888
889 // Adjust ac threshold according to partition size.
890 thresh_ac >>=
891 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
892
893 thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
894 #if CONFIG_VP9_HIGHBITDEPTH
895 if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
896 thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
897 }
898 #endif // CONFIG_VP9_HIGHBITDEPTH
899 } else {
900 thresh_ac = 0;
901 thresh_dc = 0;
902 }
903
904 // Y skipping condition checking for ac and dc.
905 if (var <= thresh_ac && (sse - var) <= thresh_dc) {
906 unsigned int sse_u, sse_v;
907 unsigned int var_u, var_v;
908 unsigned int thresh_ac_uv = thresh_ac;
909 unsigned int thresh_dc_uv = thresh_dc;
910 if (x->sb_is_skin) {
911 thresh_ac_uv = 0;
912 thresh_dc_uv = 0;
913 }
914
915 // Skip UV prediction unless breakout is zero (lossless) to save
916 // computation with low impact on the result
917 if (x->encode_breakout == 0) {
918 xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
919 xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
920 vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
921 }
922
923 var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, x->plane[1].src.stride,
924 xd->plane[1].dst.buf,
925 xd->plane[1].dst.stride, &sse_u);
926
927 // U skipping condition checking
928 if (((var_u << 2) <= thresh_ac_uv) && (sse_u - var_u <= thresh_dc_uv)) {
929 var_v = cpi->fn_ptr[uv_size].vf(
930 x->plane[2].src.buf, x->plane[2].src.stride, xd->plane[2].dst.buf,
931 xd->plane[2].dst.stride, &sse_v);
932
933 // V skipping condition checking
934 if (((var_v << 2) <= thresh_ac_uv) && (sse_v - var_v <= thresh_dc_uv)) {
935 x->skip = 1;
936
937 // The cost of skip bit needs to be added.
938 *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
939 [INTER_OFFSET(this_mode)];
940
941 // More on this part of rate
942 // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
943
944 // Scaling factor for SSE from spatial domain to frequency
945 // domain is 16. Adjust distortion accordingly.
946 // TODO(yunqingwang): In this function, only y-plane dist is
947 // calculated.
948 *dist = (sse << 4); // + ((sse_u + sse_v) << 4);
949
950 // *disable_skip = 1;
951 }
952 }
953 }
954 }
955
956 struct estimate_block_intra_args {
957 VP9_COMP *cpi;
958 MACROBLOCK *x;
959 PREDICTION_MODE mode;
960 int skippable;
961 RD_COST *rdc;
962 };
963
estimate_block_intra(int plane,int block,int row,int col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)964 static void estimate_block_intra(int plane, int block, int row, int col,
965 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
966 void *arg) {
967 struct estimate_block_intra_args *const args = arg;
968 VP9_COMP *const cpi = args->cpi;
969 MACROBLOCK *const x = args->x;
970 MACROBLOCKD *const xd = &x->e_mbd;
971 struct macroblock_plane *const p = &x->plane[0];
972 struct macroblockd_plane *const pd = &xd->plane[0];
973 const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
974 uint8_t *const src_buf_base = p->src.buf;
975 uint8_t *const dst_buf_base = pd->dst.buf;
976 const int src_stride = p->src.stride;
977 const int dst_stride = pd->dst.stride;
978 RD_COST this_rdc;
979
980 (void)block;
981
982 p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
983 pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
984 // Use source buffer as an approximation for the fully reconstructed buffer.
985 vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize], tx_size,
986 args->mode, x->skip_encode ? p->src.buf : pd->dst.buf,
987 x->skip_encode ? src_stride : dst_stride, pd->dst.buf,
988 dst_stride, col, row, plane);
989
990 if (plane == 0) {
991 int64_t this_sse = INT64_MAX;
992 // TODO(jingning): This needs further refactoring.
993 block_yrd(cpi, x, &this_rdc, &args->skippable, &this_sse, bsize_tx,
994 VPXMIN(tx_size, TX_16X16), 0);
995 } else {
996 unsigned int var = 0;
997 unsigned int sse = 0;
998 model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &var, &sse, plane,
999 plane);
1000 }
1001
1002 p->src.buf = src_buf_base;
1003 pd->dst.buf = dst_buf_base;
1004 args->rdc->rate += this_rdc.rate;
1005 args->rdc->dist += this_rdc.dist;
1006 }
1007
1008 static const THR_MODES mode_idx[MAX_REF_FRAMES][4] = {
1009 { THR_DC, THR_V_PRED, THR_H_PRED, THR_TM },
1010 { THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV },
1011 { THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG },
1012 { THR_NEARESTA, THR_NEARA, THR_ZEROA, THR_NEWA },
1013 };
1014
1015 static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED,
1016 TM_PRED };
1017
mode_offset(const PREDICTION_MODE mode)1018 static int mode_offset(const PREDICTION_MODE mode) {
1019 if (mode >= NEARESTMV) {
1020 return INTER_OFFSET(mode);
1021 } else {
1022 switch (mode) {
1023 case DC_PRED: return 0;
1024 case V_PRED: return 1;
1025 case H_PRED: return 2;
1026 case TM_PRED: return 3;
1027 default: return -1;
1028 }
1029 }
1030 }
1031
rd_less_than_thresh_row_mt(int64_t best_rd,int thresh,const int * const thresh_fact)1032 static INLINE int rd_less_than_thresh_row_mt(int64_t best_rd, int thresh,
1033 const int *const thresh_fact) {
1034 int is_rd_less_than_thresh;
1035 is_rd_less_than_thresh =
1036 best_rd < ((int64_t)thresh * (*thresh_fact) >> 5) || thresh == INT_MAX;
1037 return is_rd_less_than_thresh;
1038 }
1039
update_thresh_freq_fact_row_mt(VP9_COMP * cpi,TileDataEnc * tile_data,int source_variance,int thresh_freq_fact_idx,MV_REFERENCE_FRAME ref_frame,THR_MODES best_mode_idx,PREDICTION_MODE mode)1040 static INLINE void update_thresh_freq_fact_row_mt(
1041 VP9_COMP *cpi, TileDataEnc *tile_data, int source_variance,
1042 int thresh_freq_fact_idx, MV_REFERENCE_FRAME ref_frame,
1043 THR_MODES best_mode_idx, PREDICTION_MODE mode) {
1044 THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
1045 int freq_fact_idx = thresh_freq_fact_idx + thr_mode_idx;
1046 int *freq_fact = &tile_data->row_base_thresh_freq_fact[freq_fact_idx];
1047 if (thr_mode_idx == best_mode_idx)
1048 *freq_fact -= (*freq_fact >> 4);
1049 else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV &&
1050 ref_frame == LAST_FRAME && source_variance < 5) {
1051 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32);
1052 } else {
1053 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC,
1054 cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
1055 }
1056 }
1057
update_thresh_freq_fact(VP9_COMP * cpi,TileDataEnc * tile_data,int source_variance,BLOCK_SIZE bsize,MV_REFERENCE_FRAME ref_frame,THR_MODES best_mode_idx,PREDICTION_MODE mode)1058 static INLINE void update_thresh_freq_fact(
1059 VP9_COMP *cpi, TileDataEnc *tile_data, int source_variance,
1060 BLOCK_SIZE bsize, MV_REFERENCE_FRAME ref_frame, THR_MODES best_mode_idx,
1061 PREDICTION_MODE mode) {
1062 THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
1063 int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx];
1064 if (thr_mode_idx == best_mode_idx)
1065 *freq_fact -= (*freq_fact >> 4);
1066 else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV &&
1067 ref_frame == LAST_FRAME && source_variance < 5) {
1068 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32);
1069 } else {
1070 *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC,
1071 cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
1072 }
1073 }
1074
vp9_pick_intra_mode(VP9_COMP * cpi,MACROBLOCK * x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1075 void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
1076 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1077 MACROBLOCKD *const xd = &x->e_mbd;
1078 MODE_INFO *const mi = xd->mi[0];
1079 RD_COST this_rdc, best_rdc;
1080 PREDICTION_MODE this_mode;
1081 struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
1082 const TX_SIZE intra_tx_size =
1083 VPXMIN(max_txsize_lookup[bsize],
1084 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
1085 MODE_INFO *const mic = xd->mi[0];
1086 int *bmode_costs;
1087 const MODE_INFO *above_mi = xd->above_mi;
1088 const MODE_INFO *left_mi = xd->left_mi;
1089 const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
1090 const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
1091 bmode_costs = cpi->y_mode_costs[A][L];
1092
1093 (void)ctx;
1094 vp9_rd_cost_reset(&best_rdc);
1095 vp9_rd_cost_reset(&this_rdc);
1096
1097 mi->ref_frame[0] = INTRA_FRAME;
1098 // Initialize interp_filter here so we do not have to check for inter block
1099 // modes in get_pred_context_switchable_interp()
1100 mi->interp_filter = SWITCHABLE_FILTERS;
1101
1102 mi->mv[0].as_int = INVALID_MV;
1103 mi->uv_mode = DC_PRED;
1104 memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
1105
1106 // Change the limit of this loop to add other intra prediction
1107 // mode tests.
1108 for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) {
1109 this_rdc.dist = this_rdc.rate = 0;
1110 args.mode = this_mode;
1111 args.skippable = 1;
1112 args.rdc = &this_rdc;
1113 mi->tx_size = intra_tx_size;
1114 vp9_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
1115 &args);
1116 if (args.skippable) {
1117 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
1118 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1);
1119 } else {
1120 x->skip_txfm[0] = SKIP_TXFM_NONE;
1121 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0);
1122 }
1123 this_rdc.rate += bmode_costs[this_mode];
1124 this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
1125
1126 if (this_rdc.rdcost < best_rdc.rdcost) {
1127 best_rdc = this_rdc;
1128 mi->mode = this_mode;
1129 }
1130 }
1131
1132 *rd_cost = best_rdc;
1133 }
1134
init_ref_frame_cost(VP9_COMMON * const cm,MACROBLOCKD * const xd,int ref_frame_cost[MAX_REF_FRAMES])1135 static void init_ref_frame_cost(VP9_COMMON *const cm, MACROBLOCKD *const xd,
1136 int ref_frame_cost[MAX_REF_FRAMES]) {
1137 vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
1138 vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
1139 vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
1140
1141 ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
1142 ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] =
1143 ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1);
1144
1145 ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
1146 ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
1147 ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
1148 ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
1149 ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
1150 }
1151
1152 typedef struct {
1153 MV_REFERENCE_FRAME ref_frame;
1154 PREDICTION_MODE pred_mode;
1155 } REF_MODE;
1156
1157 #define RT_INTER_MODES 12
1158 static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
1159 { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV },
1160 { GOLDEN_FRAME, ZEROMV }, { LAST_FRAME, NEARMV },
1161 { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
1162 { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV },
1163 { ALTREF_FRAME, ZEROMV }, { ALTREF_FRAME, NEARESTMV },
1164 { ALTREF_FRAME, NEARMV }, { ALTREF_FRAME, NEWMV }
1165 };
1166 static const REF_MODE ref_mode_set_svc[RT_INTER_MODES] = {
1167 { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV },
1168 { LAST_FRAME, NEARMV }, { GOLDEN_FRAME, ZEROMV },
1169 { GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV },
1170 { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEWMV }
1171 };
1172
set_intra_cost_penalty(const VP9_COMP * const cpi,BLOCK_SIZE bsize)1173 static int set_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize) {
1174 const VP9_COMMON *const cm = &cpi->common;
1175 // Reduce the intra cost penalty for small blocks (<=16x16).
1176 int reduction_fac =
1177 (bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
1178 if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh)
1179 // Don't reduce intra cost penalty if estimated noise level is high.
1180 reduction_fac = 0;
1181 return vp9_get_intra_cost_penalty(cm->base_qindex, cm->y_dc_delta_q,
1182 cm->bit_depth) >>
1183 reduction_fac;
1184 }
1185
find_predictors(VP9_COMP * cpi,MACROBLOCK * x,MV_REFERENCE_FRAME ref_frame,int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],int const_motion[MAX_REF_FRAMES],int * ref_frame_skip_mask,const int flag_list[4],TileDataEnc * tile_data,int mi_row,int mi_col,struct buf_2d yv12_mb[4][MAX_MB_PLANE],BLOCK_SIZE bsize,int force_skip_low_temp_var)1186 static INLINE void find_predictors(
1187 VP9_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
1188 int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
1189 int const_motion[MAX_REF_FRAMES], int *ref_frame_skip_mask,
1190 const int flag_list[4], TileDataEnc *tile_data, int mi_row, int mi_col,
1191 struct buf_2d yv12_mb[4][MAX_MB_PLANE], BLOCK_SIZE bsize,
1192 int force_skip_low_temp_var) {
1193 VP9_COMMON *const cm = &cpi->common;
1194 MACROBLOCKD *const xd = &x->e_mbd;
1195 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
1196 TileInfo *const tile_info = &tile_data->tile_info;
1197 // TODO(jingning) placeholder for inter-frame non-RD mode decision.
1198 x->pred_mv_sad[ref_frame] = INT_MAX;
1199 frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
1200 frame_mv[ZEROMV][ref_frame].as_int = 0;
1201 // this needs various further optimizations. to be continued..
1202 if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
1203 int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
1204 const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
1205 vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
1206 if (cm->use_prev_frame_mvs) {
1207 vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col,
1208 x->mbmi_ext->mode_context);
1209 } else {
1210 const_motion[ref_frame] =
1211 mv_refs_rt(cpi, cm, x, xd, tile_info, xd->mi[0], ref_frame,
1212 candidates, &frame_mv[NEWMV][ref_frame], mi_row, mi_col,
1213 (int)(cpi->svc.use_base_mv && cpi->svc.spatial_layer_id));
1214 }
1215 vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
1216 &frame_mv[NEARESTMV][ref_frame],
1217 &frame_mv[NEARMV][ref_frame]);
1218 // Early exit for golden frame if force_skip_low_temp_var is set.
1219 if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8 &&
1220 !(force_skip_low_temp_var && ref_frame == GOLDEN_FRAME)) {
1221 vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
1222 bsize);
1223 }
1224 } else {
1225 *ref_frame_skip_mask |= (1 << ref_frame);
1226 }
1227 }
1228
vp9_NEWMV_diff_bias(const NOISE_ESTIMATE * ne,MACROBLOCKD * xd,PREDICTION_MODE this_mode,RD_COST * this_rdc,BLOCK_SIZE bsize,int mv_row,int mv_col,int is_last_frame,int lowvar_highsumdiff,int is_skin)1229 static void vp9_NEWMV_diff_bias(const NOISE_ESTIMATE *ne, MACROBLOCKD *xd,
1230 PREDICTION_MODE this_mode, RD_COST *this_rdc,
1231 BLOCK_SIZE bsize, int mv_row, int mv_col,
1232 int is_last_frame, int lowvar_highsumdiff,
1233 int is_skin) {
1234 // Bias against MVs associated with NEWMV mode that are very different from
1235 // top/left neighbors.
1236 if (this_mode == NEWMV) {
1237 int al_mv_average_row;
1238 int al_mv_average_col;
1239 int left_row, left_col;
1240 int row_diff, col_diff;
1241 int above_mv_valid = 0;
1242 int left_mv_valid = 0;
1243 int above_row = 0;
1244 int above_col = 0;
1245
1246 if (xd->above_mi) {
1247 above_mv_valid = xd->above_mi->mv[0].as_int != INVALID_MV;
1248 above_row = xd->above_mi->mv[0].as_mv.row;
1249 above_col = xd->above_mi->mv[0].as_mv.col;
1250 }
1251 if (xd->left_mi) {
1252 left_mv_valid = xd->left_mi->mv[0].as_int != INVALID_MV;
1253 left_row = xd->left_mi->mv[0].as_mv.row;
1254 left_col = xd->left_mi->mv[0].as_mv.col;
1255 }
1256 if (above_mv_valid && left_mv_valid) {
1257 al_mv_average_row = (above_row + left_row + 1) >> 1;
1258 al_mv_average_col = (above_col + left_col + 1) >> 1;
1259 } else if (above_mv_valid) {
1260 al_mv_average_row = above_row;
1261 al_mv_average_col = above_col;
1262 } else if (left_mv_valid) {
1263 al_mv_average_row = left_row;
1264 al_mv_average_col = left_col;
1265 } else {
1266 al_mv_average_row = al_mv_average_col = 0;
1267 }
1268 row_diff = (al_mv_average_row - mv_row);
1269 col_diff = (al_mv_average_col - mv_col);
1270 if (row_diff > 48 || row_diff < -48 || col_diff > 48 || col_diff < -48) {
1271 if (bsize > BLOCK_32X32)
1272 this_rdc->rdcost = this_rdc->rdcost << 1;
1273 else
1274 this_rdc->rdcost = 3 * this_rdc->rdcost >> 1;
1275 }
1276 }
1277 // If noise estimation is enabled, and estimated level is above threshold,
1278 // add a bias to LAST reference with small motion, for large blocks.
1279 if (ne->enabled && ne->level >= kMedium && bsize >= BLOCK_32X32 &&
1280 is_last_frame && mv_row < 8 && mv_row > -8 && mv_col < 8 && mv_col > -8)
1281 this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3);
1282 else if (lowvar_highsumdiff && !is_skin && bsize >= BLOCK_16X16 &&
1283 is_last_frame && mv_row < 16 && mv_row > -16 && mv_col < 16 &&
1284 mv_col > -16)
1285 this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3);
1286 }
1287
1288 #if CONFIG_VP9_TEMPORAL_DENOISING
vp9_pickmode_ctx_den_update(VP9_PICKMODE_CTX_DEN * ctx_den,int64_t zero_last_cost_orig,int ref_frame_cost[MAX_REF_FRAMES],int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],int reuse_inter_pred,TX_SIZE best_tx_size,PREDICTION_MODE best_mode,MV_REFERENCE_FRAME best_ref_frame,INTERP_FILTER best_pred_filter,uint8_t best_mode_skip_txfm)1289 static void vp9_pickmode_ctx_den_update(
1290 VP9_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig,
1291 int ref_frame_cost[MAX_REF_FRAMES],
1292 int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int reuse_inter_pred,
1293 TX_SIZE best_tx_size, PREDICTION_MODE best_mode,
1294 MV_REFERENCE_FRAME best_ref_frame, INTERP_FILTER best_pred_filter,
1295 uint8_t best_mode_skip_txfm) {
1296 ctx_den->zero_last_cost_orig = zero_last_cost_orig;
1297 ctx_den->ref_frame_cost = ref_frame_cost;
1298 ctx_den->frame_mv = frame_mv;
1299 ctx_den->reuse_inter_pred = reuse_inter_pred;
1300 ctx_den->best_tx_size = best_tx_size;
1301 ctx_den->best_mode = best_mode;
1302 ctx_den->best_ref_frame = best_ref_frame;
1303 ctx_den->best_pred_filter = best_pred_filter;
1304 ctx_den->best_mode_skip_txfm = best_mode_skip_txfm;
1305 }
1306
recheck_zeromv_after_denoising(VP9_COMP * cpi,MODE_INFO * const mi,MACROBLOCK * x,MACROBLOCKD * const xd,VP9_DENOISER_DECISION decision,VP9_PICKMODE_CTX_DEN * ctx_den,struct buf_2d yv12_mb[4][MAX_MB_PLANE],RD_COST * best_rdc,BLOCK_SIZE bsize,int mi_row,int mi_col)1307 static void recheck_zeromv_after_denoising(
1308 VP9_COMP *cpi, MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd,
1309 VP9_DENOISER_DECISION decision, VP9_PICKMODE_CTX_DEN *ctx_den,
1310 struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_COST *best_rdc, BLOCK_SIZE bsize,
1311 int mi_row, int mi_col) {
1312 // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on
1313 // denoised result. Only do this under noise conditions, and if rdcost of
1314 // ZEROMV onoriginal source is not significantly higher than rdcost of best
1315 // mode.
1316 if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow &&
1317 ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) &&
1318 ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) ||
1319 (ctx_den->best_ref_frame == GOLDEN_FRAME &&
1320 cpi->svc.number_spatial_layers == 1 &&
1321 decision == FILTER_ZEROMV_BLOCK))) {
1322 // Check if we should pick ZEROMV on denoised signal.
1323 int rate = 0;
1324 int64_t dist = 0;
1325 uint32_t var_y = UINT_MAX;
1326 uint32_t sse_y = UINT_MAX;
1327 RD_COST this_rdc;
1328 mi->mode = ZEROMV;
1329 mi->ref_frame[0] = LAST_FRAME;
1330 mi->ref_frame[1] = NONE;
1331 mi->mv[0].as_int = 0;
1332 mi->interp_filter = EIGHTTAP;
1333 xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0];
1334 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1335 model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y);
1336 this_rdc.rate = rate + ctx_den->ref_frame_cost[LAST_FRAME] +
1337 cpi->inter_mode_cost[x->mbmi_ext->mode_context[LAST_FRAME]]
1338 [INTER_OFFSET(ZEROMV)];
1339 this_rdc.dist = dist;
1340 this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, rate, dist);
1341 // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source
1342 // is higher than best_ref mode (on original source).
1343 if (this_rdc.rdcost > best_rdc->rdcost) {
1344 this_rdc = *best_rdc;
1345 mi->mode = ctx_den->best_mode;
1346 mi->ref_frame[0] = ctx_den->best_ref_frame;
1347 mi->interp_filter = ctx_den->best_pred_filter;
1348 if (ctx_den->best_ref_frame == INTRA_FRAME) {
1349 mi->mv[0].as_int = INVALID_MV;
1350 mi->interp_filter = SWITCHABLE_FILTERS;
1351 } else if (ctx_den->best_ref_frame == GOLDEN_FRAME) {
1352 mi->mv[0].as_int =
1353 ctx_den->frame_mv[ctx_den->best_mode][ctx_den->best_ref_frame]
1354 .as_int;
1355 if (ctx_den->reuse_inter_pred) {
1356 xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0];
1357 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1358 }
1359 }
1360 mi->tx_size = ctx_den->best_tx_size;
1361 x->skip_txfm[0] = ctx_den->best_mode_skip_txfm;
1362 } else {
1363 ctx_den->best_ref_frame = LAST_FRAME;
1364 *best_rdc = this_rdc;
1365 }
1366 }
1367 }
1368 #endif // CONFIG_VP9_TEMPORAL_DENOISING
1369
get_force_skip_low_temp_var(uint8_t * variance_low,int mi_row,int mi_col,BLOCK_SIZE bsize)1370 static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row,
1371 int mi_col, BLOCK_SIZE bsize) {
1372 const int i = (mi_row & 0x7) >> 1;
1373 const int j = (mi_col & 0x7) >> 1;
1374 int force_skip_low_temp_var = 0;
1375 // Set force_skip_low_temp_var based on the block size and block offset.
1376 if (bsize == BLOCK_64X64) {
1377 force_skip_low_temp_var = variance_low[0];
1378 } else if (bsize == BLOCK_64X32) {
1379 if (!(mi_col & 0x7) && !(mi_row & 0x7)) {
1380 force_skip_low_temp_var = variance_low[1];
1381 } else if (!(mi_col & 0x7) && (mi_row & 0x7)) {
1382 force_skip_low_temp_var = variance_low[2];
1383 }
1384 } else if (bsize == BLOCK_32X64) {
1385 if (!(mi_col & 0x7) && !(mi_row & 0x7)) {
1386 force_skip_low_temp_var = variance_low[3];
1387 } else if ((mi_col & 0x7) && !(mi_row & 0x7)) {
1388 force_skip_low_temp_var = variance_low[4];
1389 }
1390 } else if (bsize == BLOCK_32X32) {
1391 if (!(mi_col & 0x7) && !(mi_row & 0x7)) {
1392 force_skip_low_temp_var = variance_low[5];
1393 } else if ((mi_col & 0x7) && !(mi_row & 0x7)) {
1394 force_skip_low_temp_var = variance_low[6];
1395 } else if (!(mi_col & 0x7) && (mi_row & 0x7)) {
1396 force_skip_low_temp_var = variance_low[7];
1397 } else if ((mi_col & 0x7) && (mi_row & 0x7)) {
1398 force_skip_low_temp_var = variance_low[8];
1399 }
1400 } else if (bsize == BLOCK_16X16) {
1401 force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
1402 } else if (bsize == BLOCK_32X16) {
1403 // The col shift index for the second 16x16 block.
1404 const int j2 = ((mi_col + 2) & 0x7) >> 1;
1405 // Only if each 16x16 block inside has low temporal variance.
1406 force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] &&
1407 variance_low[pos_shift_16x16[i][j2]];
1408 } else if (bsize == BLOCK_16X32) {
1409 // The row shift index for the second 16x16 block.
1410 const int i2 = ((mi_row + 2) & 0x7) >> 1;
1411 force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] &&
1412 variance_low[pos_shift_16x16[i2][j]];
1413 }
1414 return force_skip_low_temp_var;
1415 }
1416
vp9_pick_inter_mode(VP9_COMP * cpi,MACROBLOCK * x,TileDataEnc * tile_data,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1417 void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
1418 int mi_row, int mi_col, RD_COST *rd_cost,
1419 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1420 VP9_COMMON *const cm = &cpi->common;
1421 SPEED_FEATURES *const sf = &cpi->sf;
1422 const SVC *const svc = &cpi->svc;
1423 MACROBLOCKD *const xd = &x->e_mbd;
1424 MODE_INFO *const mi = xd->mi[0];
1425 struct macroblockd_plane *const pd = &xd->plane[0];
1426 PREDICTION_MODE best_mode = ZEROMV;
1427 MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
1428 MV_REFERENCE_FRAME usable_ref_frame;
1429 TX_SIZE best_tx_size = TX_SIZES;
1430 INTERP_FILTER best_pred_filter = EIGHTTAP;
1431 int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
1432 struct buf_2d yv12_mb[4][MAX_MB_PLANE];
1433 static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
1434 VP9_ALT_FLAG };
1435 RD_COST this_rdc, best_rdc;
1436 uint8_t skip_txfm = SKIP_TXFM_NONE, best_mode_skip_txfm = SKIP_TXFM_NONE;
1437 // var_y and sse_y are saved to be used in skipping checking
1438 unsigned int var_y = UINT_MAX;
1439 unsigned int sse_y = UINT_MAX;
1440 const int intra_cost_penalty = set_intra_cost_penalty(cpi, bsize);
1441 int64_t inter_mode_thresh =
1442 RDCOST(x->rdmult, x->rddiv, intra_cost_penalty, 0);
1443 const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize];
1444 const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
1445 int thresh_freq_fact_idx = (sb_row * BLOCK_SIZES + bsize) * MAX_MODES;
1446 const int *const rd_thresh_freq_fact =
1447 (cpi->sf.adaptive_rd_thresh_row_mt)
1448 ? &(tile_data->row_base_thresh_freq_fact[thresh_freq_fact_idx])
1449 : tile_data->thresh_freq_fact[bsize];
1450
1451 INTERP_FILTER filter_ref;
1452 const int bsl = mi_width_log2_lookup[bsize];
1453 const int pred_filter_search =
1454 cm->interp_filter == SWITCHABLE
1455 ? (((mi_row + mi_col) >> bsl) +
1456 get_chessboard_index(cm->current_video_frame)) &
1457 0x1
1458 : 0;
1459 int const_motion[MAX_REF_FRAMES] = { 0 };
1460 const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
1461 const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
1462 // For speed 6, the result of interp filter is reused later in actual encoding
1463 // process.
1464 // tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
1465 PRED_BUFFER tmp[4];
1466 DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]);
1467 #if CONFIG_VP9_HIGHBITDEPTH
1468 DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]);
1469 #endif
1470 struct buf_2d orig_dst = pd->dst;
1471 PRED_BUFFER *best_pred = NULL;
1472 PRED_BUFFER *this_mode_pred = NULL;
1473 const int pixels_in_block = bh * bw;
1474 int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready;
1475 int ref_frame_skip_mask = 0;
1476 int idx;
1477 int best_pred_sad = INT_MAX;
1478 int best_early_term = 0;
1479 int ref_frame_cost[MAX_REF_FRAMES];
1480 int svc_force_zero_mode[3] = { 0 };
1481 int perform_intra_pred = 1;
1482 int use_golden_nonzeromv = 1;
1483 int force_skip_low_temp_var = 0;
1484 int skip_ref_find_pred[4] = { 0 };
1485 unsigned int sse_zeromv_normalized = UINT_MAX;
1486 unsigned int thresh_svc_skip_golden = 500;
1487 #if CONFIG_VP9_TEMPORAL_DENOISING
1488 VP9_PICKMODE_CTX_DEN ctx_den;
1489 int64_t zero_last_cost_orig = INT64_MAX;
1490 int denoise_svc_pickmode = 1;
1491 #endif
1492 INTERP_FILTER filter_gf_svc = EIGHTTAP;
1493
1494 init_ref_frame_cost(cm, xd, ref_frame_cost);
1495
1496 if (reuse_inter_pred) {
1497 int i;
1498 for (i = 0; i < 3; i++) {
1499 #if CONFIG_VP9_HIGHBITDEPTH
1500 if (cm->use_highbitdepth)
1501 tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
1502 else
1503 tmp[i].data = &pred_buf[pixels_in_block * i];
1504 #else
1505 tmp[i].data = &pred_buf[pixels_in_block * i];
1506 #endif // CONFIG_VP9_HIGHBITDEPTH
1507 tmp[i].stride = bw;
1508 tmp[i].in_use = 0;
1509 }
1510 tmp[3].data = pd->dst.buf;
1511 tmp[3].stride = pd->dst.stride;
1512 tmp[3].in_use = 0;
1513 }
1514
1515 x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
1516 x->skip = 0;
1517
1518 // Instead of using vp9_get_pred_context_switchable_interp(xd) to assign
1519 // filter_ref, we use a less strict condition on assigning filter_ref.
1520 // This is to reduce the probabily of entering the flow of not assigning
1521 // filter_ref and then skip filter search.
1522 if (xd->above_mi && is_inter_block(xd->above_mi))
1523 filter_ref = xd->above_mi->interp_filter;
1524 else if (xd->left_mi && is_inter_block(xd->left_mi))
1525 filter_ref = xd->left_mi->interp_filter;
1526 else
1527 filter_ref = cm->interp_filter;
1528
1529 // initialize mode decisions
1530 vp9_rd_cost_reset(&best_rdc);
1531 vp9_rd_cost_reset(rd_cost);
1532 mi->sb_type = bsize;
1533 mi->ref_frame[0] = NONE;
1534 mi->ref_frame[1] = NONE;
1535
1536 mi->tx_size =
1537 VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cm->tx_mode]);
1538
1539 if (sf->short_circuit_flat_blocks || sf->limit_newmv_early_exit) {
1540 #if CONFIG_VP9_HIGHBITDEPTH
1541 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
1542 x->source_variance = vp9_high_get_sby_perpixel_variance(
1543 cpi, &x->plane[0].src, bsize, xd->bd);
1544 else
1545 #endif // CONFIG_VP9_HIGHBITDEPTH
1546 x->source_variance =
1547 vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
1548 }
1549
1550 #if CONFIG_VP9_TEMPORAL_DENOISING
1551 if (cpi->oxcf.noise_sensitivity > 0) {
1552 if (cpi->use_svc) {
1553 int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
1554 cpi->svc.temporal_layer_id,
1555 cpi->svc.number_temporal_layers);
1556 LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
1557 denoise_svc_pickmode = denoise_svc(cpi) && !lc->is_key_frame;
1558 }
1559 if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode)
1560 vp9_denoiser_reset_frame_stats(ctx);
1561 }
1562 #endif
1563
1564 if (cpi->rc.frames_since_golden == 0 && !cpi->use_svc) {
1565 usable_ref_frame = LAST_FRAME;
1566 } else {
1567 usable_ref_frame = GOLDEN_FRAME;
1568 }
1569
1570 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) {
1571 if (cpi->rc.alt_ref_gf_group || cpi->rc.is_src_frame_alt_ref)
1572 usable_ref_frame = ALTREF_FRAME;
1573
1574 if (cpi->rc.is_src_frame_alt_ref) {
1575 skip_ref_find_pred[LAST_FRAME] = 1;
1576 skip_ref_find_pred[GOLDEN_FRAME] = 1;
1577 }
1578 }
1579
1580 // For svc mode, on spatial_layer_id > 0: if the reference has different scale
1581 // constrain the inter mode to only test zero motion.
1582 if (cpi->use_svc && svc->force_zero_mode_spatial_ref &&
1583 cpi->svc.spatial_layer_id > 0) {
1584 if (cpi->ref_frame_flags & flag_list[LAST_FRAME]) {
1585 struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf;
1586 if (vp9_is_scaled(sf)) svc_force_zero_mode[LAST_FRAME - 1] = 1;
1587 }
1588 if (cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) {
1589 struct scale_factors *const sf = &cm->frame_refs[GOLDEN_FRAME - 1].sf;
1590 if (vp9_is_scaled(sf)) svc_force_zero_mode[GOLDEN_FRAME - 1] = 1;
1591 }
1592 }
1593
1594 if (cpi->sf.short_circuit_low_temp_var) {
1595 force_skip_low_temp_var =
1596 get_force_skip_low_temp_var(&x->variance_low[0], mi_row, mi_col, bsize);
1597 // If force_skip_low_temp_var is set, and for short circuit mode = 1 and 3,
1598 // skip golden reference.
1599 if ((cpi->sf.short_circuit_low_temp_var == 1 ||
1600 cpi->sf.short_circuit_low_temp_var == 3) &&
1601 force_skip_low_temp_var) {
1602 usable_ref_frame = LAST_FRAME;
1603 }
1604 }
1605
1606 if (!((cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) &&
1607 !svc_force_zero_mode[GOLDEN_FRAME - 1] && !force_skip_low_temp_var))
1608 use_golden_nonzeromv = 0;
1609
1610 if (cpi->oxcf.speed >= 8 && !cpi->use_svc &&
1611 ((cpi->rc.frames_since_golden + 1) < x->last_sb_high_content ||
1612 x->last_sb_high_content > 40))
1613 usable_ref_frame = LAST_FRAME;
1614
1615 for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) {
1616 if (!skip_ref_find_pred[ref_frame]) {
1617 find_predictors(cpi, x, ref_frame, frame_mv, const_motion,
1618 &ref_frame_skip_mask, flag_list, tile_data, mi_row,
1619 mi_col, yv12_mb, bsize, force_skip_low_temp_var);
1620 }
1621 }
1622
1623 for (idx = 0; idx < RT_INTER_MODES; ++idx) {
1624 int rate_mv = 0;
1625 int mode_rd_thresh;
1626 int mode_index;
1627 int i;
1628 int64_t this_sse;
1629 int is_skippable;
1630 int this_early_term = 0;
1631 int rd_computed = 0;
1632
1633 PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode;
1634
1635 ref_frame = ref_mode_set[idx].ref_frame;
1636
1637 if (cpi->use_svc) {
1638 this_mode = ref_mode_set_svc[idx].pred_mode;
1639 ref_frame = ref_mode_set_svc[idx].ref_frame;
1640 }
1641 if (ref_frame > usable_ref_frame) continue;
1642 if (skip_ref_find_pred[ref_frame]) continue;
1643
1644 // For SVC, skip the golden (spatial) reference search if sse of zeromv_last
1645 // is below threshold.
1646 if (cpi->use_svc && ref_frame == GOLDEN_FRAME &&
1647 sse_zeromv_normalized < thresh_svc_skip_golden)
1648 continue;
1649
1650 if (sf->short_circuit_flat_blocks && x->source_variance == 0 &&
1651 this_mode != NEARESTMV) {
1652 continue;
1653 }
1654
1655 if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode))) continue;
1656
1657 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) {
1658 if (cpi->rc.is_src_frame_alt_ref &&
1659 (ref_frame != ALTREF_FRAME ||
1660 frame_mv[this_mode][ref_frame].as_int != 0))
1661 continue;
1662
1663 if (cpi->rc.alt_ref_gf_group &&
1664 cpi->rc.frames_since_golden > (cpi->rc.baseline_gf_interval >> 1) &&
1665 ref_frame == GOLDEN_FRAME &&
1666 frame_mv[this_mode][ref_frame].as_int != 0)
1667 continue;
1668
1669 if (cpi->rc.alt_ref_gf_group &&
1670 cpi->rc.frames_since_golden < (cpi->rc.baseline_gf_interval >> 1) &&
1671 ref_frame == ALTREF_FRAME &&
1672 frame_mv[this_mode][ref_frame].as_int != 0)
1673 continue;
1674 }
1675
1676 if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue;
1677
1678 if (const_motion[ref_frame] && this_mode == NEARMV) continue;
1679
1680 // Skip non-zeromv mode search for golden frame if force_skip_low_temp_var
1681 // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
1682 // later.
1683 if (force_skip_low_temp_var && ref_frame == GOLDEN_FRAME &&
1684 frame_mv[this_mode][ref_frame].as_int != 0) {
1685 continue;
1686 }
1687
1688 if ((cpi->sf.short_circuit_low_temp_var >= 2 ||
1689 (cpi->sf.short_circuit_low_temp_var == 1 && bsize == BLOCK_64X64)) &&
1690 force_skip_low_temp_var && ref_frame == LAST_FRAME &&
1691 this_mode == NEWMV) {
1692 continue;
1693 }
1694
1695 if (cpi->use_svc) {
1696 if (svc_force_zero_mode[ref_frame - 1] &&
1697 frame_mv[this_mode][ref_frame].as_int != 0)
1698 continue;
1699 }
1700
1701 if (sf->reference_masking &&
1702 !(frame_mv[this_mode][ref_frame].as_int == 0 &&
1703 ref_frame == LAST_FRAME)) {
1704 if (usable_ref_frame < ALTREF_FRAME) {
1705 if (!force_skip_low_temp_var && usable_ref_frame > LAST_FRAME) {
1706 i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
1707 if ((cpi->ref_frame_flags & flag_list[i]))
1708 if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
1709 ref_frame_skip_mask |= (1 << ref_frame);
1710 }
1711 } else if (!cpi->rc.is_src_frame_alt_ref &&
1712 !(frame_mv[this_mode][ref_frame].as_int == 0 &&
1713 ref_frame == ALTREF_FRAME)) {
1714 int ref1 = (ref_frame == GOLDEN_FRAME) ? LAST_FRAME : GOLDEN_FRAME;
1715 int ref2 = (ref_frame == ALTREF_FRAME) ? LAST_FRAME : ALTREF_FRAME;
1716 if (((cpi->ref_frame_flags & flag_list[ref1]) &&
1717 (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref1] << 1))) ||
1718 ((cpi->ref_frame_flags & flag_list[ref2]) &&
1719 (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref2] << 1))))
1720 ref_frame_skip_mask |= (1 << ref_frame);
1721 }
1722 }
1723 if (ref_frame_skip_mask & (1 << ref_frame)) continue;
1724
1725 // Select prediction reference frames.
1726 for (i = 0; i < MAX_MB_PLANE; i++)
1727 xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
1728
1729 mi->ref_frame[0] = ref_frame;
1730 set_ref_ptrs(cm, xd, ref_frame, NONE);
1731
1732 mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
1733 mode_rd_thresh = best_mode_skip_txfm ? rd_threshes[mode_index] << 1
1734 : rd_threshes[mode_index];
1735
1736 // Increase mode_rd_thresh value for GOLDEN_FRAME for improved encoding
1737 // speed with little/no subjective quality loss.
1738 if (cpi->sf.bias_golden && ref_frame == GOLDEN_FRAME &&
1739 cpi->rc.frames_since_golden > 4)
1740 mode_rd_thresh = mode_rd_thresh << 3;
1741
1742 if ((cpi->sf.adaptive_rd_thresh_row_mt &&
1743 rd_less_than_thresh_row_mt(best_rdc.rdcost, mode_rd_thresh,
1744 &rd_thresh_freq_fact[mode_index])) ||
1745 (!cpi->sf.adaptive_rd_thresh_row_mt &&
1746 rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
1747 &rd_thresh_freq_fact[mode_index])))
1748 continue;
1749
1750 if (this_mode == NEWMV) {
1751 if (ref_frame > LAST_FRAME && !cpi->use_svc &&
1752 cpi->oxcf.rc_mode == VPX_CBR) {
1753 int tmp_sad;
1754 uint32_t dis;
1755 int cost_list[5];
1756
1757 if (bsize < BLOCK_16X16) continue;
1758
1759 tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
1760
1761 if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) continue;
1762 if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad)
1763 continue;
1764
1765 frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
1766 rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv,
1767 &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1768 x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
1769 frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
1770 frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
1771
1772 cpi->find_fractional_mv_step(
1773 x, &frame_mv[NEWMV][ref_frame].as_mv,
1774 &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1775 cpi->common.allow_high_precision_mv, x->errorperbit,
1776 &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
1777 cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
1778 x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref_frame], NULL, 0,
1779 0);
1780 } else if (svc->use_base_mv && svc->spatial_layer_id) {
1781 if (frame_mv[NEWMV][ref_frame].as_int != INVALID_MV) {
1782 const int pre_stride = xd->plane[0].pre[0].stride;
1783 int base_mv_sad = INT_MAX;
1784 const float base_mv_bias = sf->base_mv_aggressive ? 1.5f : 1.0f;
1785 const uint8_t *const pre_buf =
1786 xd->plane[0].pre[0].buf +
1787 (frame_mv[NEWMV][ref_frame].as_mv.row >> 3) * pre_stride +
1788 (frame_mv[NEWMV][ref_frame].as_mv.col >> 3);
1789 base_mv_sad = cpi->fn_ptr[bsize].sdf(
1790 x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride);
1791
1792 if (base_mv_sad < (int)(base_mv_bias * x->pred_mv_sad[ref_frame])) {
1793 // Base layer mv is good.
1794 if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1795 &frame_mv[NEWMV][ref_frame], &rate_mv,
1796 best_rdc.rdcost, 1)) {
1797 continue;
1798 }
1799 } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1800 &frame_mv[NEWMV][ref_frame],
1801 &rate_mv, best_rdc.rdcost, 0)) {
1802 continue;
1803 }
1804 } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1805 &frame_mv[NEWMV][ref_frame],
1806 &rate_mv, best_rdc.rdcost, 0)) {
1807 continue;
1808 }
1809 } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1810 &frame_mv[NEWMV][ref_frame], &rate_mv,
1811 best_rdc.rdcost, 0)) {
1812 continue;
1813 }
1814 }
1815
1816 // If use_golden_nonzeromv is false, NEWMV mode is skipped for golden, no
1817 // need to compute best_pred_sad which is only used to skip golden NEWMV.
1818 if (use_golden_nonzeromv && this_mode == NEWMV && ref_frame == LAST_FRAME &&
1819 frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) {
1820 const int pre_stride = xd->plane[0].pre[0].stride;
1821 const uint8_t *const pre_buf =
1822 xd->plane[0].pre[0].buf +
1823 (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride +
1824 (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3);
1825 best_pred_sad = cpi->fn_ptr[bsize].sdf(
1826 x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride);
1827 x->pred_mv_sad[LAST_FRAME] = best_pred_sad;
1828 }
1829
1830 if (this_mode != NEARESTMV &&
1831 frame_mv[this_mode][ref_frame].as_int ==
1832 frame_mv[NEARESTMV][ref_frame].as_int)
1833 continue;
1834
1835 mi->mode = this_mode;
1836 mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
1837
1838 // Search for the best prediction filter type, when the resulting
1839 // motion vector is at sub-pixel accuracy level for luma component, i.e.,
1840 // the last three bits are all zeros.
1841 if (reuse_inter_pred) {
1842 if (!this_mode_pred) {
1843 this_mode_pred = &tmp[3];
1844 } else {
1845 this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
1846 pd->dst.buf = this_mode_pred->data;
1847 pd->dst.stride = bw;
1848 }
1849 }
1850
1851 if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
1852 pred_filter_search &&
1853 (ref_frame == LAST_FRAME ||
1854 (ref_frame == GOLDEN_FRAME &&
1855 (cpi->use_svc || cpi->oxcf.rc_mode == VPX_VBR))) &&
1856 (((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) != 0)) {
1857 int pf_rate[3];
1858 int64_t pf_dist[3];
1859 int curr_rate[3];
1860 unsigned int pf_var[3];
1861 unsigned int pf_sse[3];
1862 TX_SIZE pf_tx_size[3];
1863 int64_t best_cost = INT64_MAX;
1864 INTERP_FILTER best_filter = SWITCHABLE, filter;
1865 PRED_BUFFER *current_pred = this_mode_pred;
1866 rd_computed = 1;
1867
1868 for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) {
1869 int64_t cost;
1870 mi->interp_filter = filter;
1871 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1872 model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter],
1873 &pf_var[filter], &pf_sse[filter]);
1874 curr_rate[filter] = pf_rate[filter];
1875 pf_rate[filter] += vp9_get_switchable_rate(cpi, xd);
1876 cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]);
1877 pf_tx_size[filter] = mi->tx_size;
1878 if (cost < best_cost) {
1879 best_filter = filter;
1880 best_cost = cost;
1881 skip_txfm = x->skip_txfm[0];
1882
1883 if (reuse_inter_pred) {
1884 if (this_mode_pred != current_pred) {
1885 free_pred_buffer(this_mode_pred);
1886 this_mode_pred = current_pred;
1887 }
1888 current_pred = &tmp[get_pred_buffer(tmp, 3)];
1889 pd->dst.buf = current_pred->data;
1890 pd->dst.stride = bw;
1891 }
1892 }
1893 }
1894
1895 if (reuse_inter_pred && this_mode_pred != current_pred)
1896 free_pred_buffer(current_pred);
1897
1898 mi->interp_filter = best_filter;
1899 mi->tx_size = pf_tx_size[best_filter];
1900 this_rdc.rate = curr_rate[best_filter];
1901 this_rdc.dist = pf_dist[best_filter];
1902 var_y = pf_var[best_filter];
1903 sse_y = pf_sse[best_filter];
1904 x->skip_txfm[0] = skip_txfm;
1905 if (reuse_inter_pred) {
1906 pd->dst.buf = this_mode_pred->data;
1907 pd->dst.stride = this_mode_pred->stride;
1908 }
1909 } else {
1910 const int large_block = (x->sb_is_skin || cpi->oxcf.speed < 7)
1911 ? bsize > BLOCK_32X32
1912 : bsize >= BLOCK_32X32;
1913 mi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref;
1914
1915 if (cpi->use_svc && ref_frame == GOLDEN_FRAME &&
1916 svc_force_zero_mode[ref_frame - 1])
1917 mi->interp_filter = filter_gf_svc;
1918
1919 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1920
1921 // For large partition blocks, extra testing is done.
1922 if (cpi->oxcf.rc_mode == VPX_CBR && large_block &&
1923 !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) &&
1924 cm->base_qindex) {
1925 model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate,
1926 &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col,
1927 &this_early_term);
1928 } else {
1929 rd_computed = 1;
1930 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
1931 &var_y, &sse_y);
1932 }
1933 // Save normalized sse (between current and last frame) for (0, 0) motion.
1934 if (cpi->use_svc && ref_frame == LAST_FRAME &&
1935 frame_mv[this_mode][ref_frame].as_int == 0) {
1936 sse_zeromv_normalized =
1937 sse_y >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
1938 }
1939 }
1940
1941 if (!this_early_term) {
1942 this_sse = (int64_t)sse_y;
1943 block_yrd(cpi, x, &this_rdc, &is_skippable, &this_sse, bsize,
1944 VPXMIN(mi->tx_size, TX_16X16), rd_computed);
1945
1946 x->skip_txfm[0] = is_skippable;
1947 if (is_skippable) {
1948 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
1949 } else {
1950 if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) <
1951 RDCOST(x->rdmult, x->rddiv, 0, this_sse)) {
1952 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
1953 } else {
1954 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
1955 this_rdc.dist = this_sse;
1956 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
1957 }
1958 }
1959
1960 if (cm->interp_filter == SWITCHABLE) {
1961 if ((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07)
1962 this_rdc.rate += vp9_get_switchable_rate(cpi, xd);
1963 }
1964 } else {
1965 this_rdc.rate += cm->interp_filter == SWITCHABLE
1966 ? vp9_get_switchable_rate(cpi, xd)
1967 : 0;
1968 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
1969 }
1970
1971 if (x->color_sensitivity[0] || x->color_sensitivity[1]) {
1972 RD_COST rdc_uv;
1973 const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, &xd->plane[1]);
1974 if (x->color_sensitivity[0])
1975 vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1);
1976 if (x->color_sensitivity[1])
1977 vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2);
1978 model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &var_y, &sse_y, 1, 2);
1979 this_rdc.rate += rdc_uv.rate;
1980 this_rdc.dist += rdc_uv.dist;
1981 }
1982
1983 this_rdc.rate += rate_mv;
1984 this_rdc.rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
1985 [INTER_OFFSET(this_mode)];
1986 this_rdc.rate += ref_frame_cost[ref_frame];
1987 this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
1988
1989 // Bias against NEWMV that is very different from its neighbors, and bias
1990 // to small motion-lastref for noisy input.
1991 if (cpi->oxcf.rc_mode == VPX_CBR && cpi->oxcf.speed >= 5 &&
1992 cpi->oxcf.content != VP9E_CONTENT_SCREEN) {
1993 vp9_NEWMV_diff_bias(&cpi->noise_estimate, xd, this_mode, &this_rdc, bsize,
1994 frame_mv[this_mode][ref_frame].as_mv.row,
1995 frame_mv[this_mode][ref_frame].as_mv.col,
1996 ref_frame == LAST_FRAME, x->lowvar_highsumdiff,
1997 x->sb_is_skin);
1998 }
1999
2000 // Skipping checking: test to see if this block can be reconstructed by
2001 // prediction only.
2002 if (cpi->allow_encode_breakout) {
2003 encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode,
2004 var_y, sse_y, yv12_mb, &this_rdc.rate,
2005 &this_rdc.dist);
2006 if (x->skip) {
2007 this_rdc.rate += rate_mv;
2008 this_rdc.rdcost =
2009 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
2010 }
2011 }
2012
2013 #if CONFIG_VP9_TEMPORAL_DENOISING
2014 if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode &&
2015 cpi->denoiser.denoising_level > kDenLowLow) {
2016 vp9_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx);
2017 // Keep track of zero_last cost.
2018 if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0)
2019 zero_last_cost_orig = this_rdc.rdcost;
2020 }
2021 #else
2022 (void)ctx;
2023 #endif
2024
2025 if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
2026 best_rdc = this_rdc;
2027 best_mode = this_mode;
2028 best_pred_filter = mi->interp_filter;
2029 best_tx_size = mi->tx_size;
2030 best_ref_frame = ref_frame;
2031 best_mode_skip_txfm = x->skip_txfm[0];
2032 best_early_term = this_early_term;
2033
2034 if (reuse_inter_pred) {
2035 free_pred_buffer(best_pred);
2036 best_pred = this_mode_pred;
2037 }
2038 } else {
2039 if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
2040 }
2041
2042 if (x->skip) break;
2043
2044 // If early termination flag is 1 and at least 2 modes are checked,
2045 // the mode search is terminated.
2046 if (best_early_term && idx > 0) {
2047 x->skip = 1;
2048 break;
2049 }
2050 }
2051
2052 mi->mode = best_mode;
2053 mi->interp_filter = best_pred_filter;
2054 mi->tx_size = best_tx_size;
2055 mi->ref_frame[0] = best_ref_frame;
2056 mi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
2057 xd->mi[0]->bmi[0].as_mv[0].as_int = mi->mv[0].as_int;
2058 x->skip_txfm[0] = best_mode_skip_txfm;
2059
2060 // For spatial enhancemanent layer: perform intra prediction only if base
2061 // layer is chosen as the reference. Always perform intra prediction if
2062 // LAST is the only reference or is_key_frame is set.
2063 if (cpi->svc.spatial_layer_id) {
2064 perform_intra_pred =
2065 cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame ||
2066 !(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) ||
2067 (!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
2068 svc_force_zero_mode[best_ref_frame - 1]);
2069 inter_mode_thresh = (inter_mode_thresh << 1) + inter_mode_thresh;
2070 }
2071 if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
2072 cpi->rc.is_src_frame_alt_ref)
2073 perform_intra_pred = 0;
2074 // Perform intra prediction search, if the best SAD is above a certain
2075 // threshold.
2076 if (best_rdc.rdcost == INT64_MAX ||
2077 ((!force_skip_low_temp_var || bsize < BLOCK_32X32) &&
2078 perform_intra_pred && !x->skip && best_rdc.rdcost > inter_mode_thresh &&
2079 bsize <= cpi->sf.max_intra_bsize && !x->skip_low_source_sad &&
2080 !x->lowvar_highsumdiff)) {
2081 struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
2082 int i;
2083 TX_SIZE best_intra_tx_size = TX_SIZES;
2084 TX_SIZE intra_tx_size =
2085 VPXMIN(max_txsize_lookup[bsize],
2086 tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
2087 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN && intra_tx_size > TX_16X16)
2088 intra_tx_size = TX_16X16;
2089
2090 if (reuse_inter_pred && best_pred != NULL) {
2091 if (best_pred->data == orig_dst.buf) {
2092 this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
2093 #if CONFIG_VP9_HIGHBITDEPTH
2094 if (cm->use_highbitdepth)
2095 vpx_highbd_convolve_copy(
2096 CONVERT_TO_SHORTPTR(best_pred->data), best_pred->stride,
2097 CONVERT_TO_SHORTPTR(this_mode_pred->data), this_mode_pred->stride,
2098 NULL, 0, NULL, 0, bw, bh, xd->bd);
2099 else
2100 vpx_convolve_copy(best_pred->data, best_pred->stride,
2101 this_mode_pred->data, this_mode_pred->stride, NULL,
2102 0, NULL, 0, bw, bh);
2103 #else
2104 vpx_convolve_copy(best_pred->data, best_pred->stride,
2105 this_mode_pred->data, this_mode_pred->stride, NULL, 0,
2106 NULL, 0, bw, bh);
2107 #endif // CONFIG_VP9_HIGHBITDEPTH
2108 best_pred = this_mode_pred;
2109 }
2110 }
2111 pd->dst = orig_dst;
2112
2113 for (i = 0; i < 4; ++i) {
2114 const PREDICTION_MODE this_mode = intra_mode_list[i];
2115 THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
2116 int mode_rd_thresh = rd_threshes[mode_index];
2117 if (sf->short_circuit_flat_blocks && x->source_variance == 0 &&
2118 this_mode != DC_PRED) {
2119 continue;
2120 }
2121
2122 if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize]))
2123 continue;
2124
2125 if ((cpi->sf.adaptive_rd_thresh_row_mt &&
2126 rd_less_than_thresh_row_mt(best_rdc.rdcost, mode_rd_thresh,
2127 &rd_thresh_freq_fact[mode_index])) ||
2128 (!cpi->sf.adaptive_rd_thresh_row_mt &&
2129 rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
2130 &rd_thresh_freq_fact[mode_index])))
2131 continue;
2132
2133 mi->mode = this_mode;
2134 mi->ref_frame[0] = INTRA_FRAME;
2135 this_rdc.dist = this_rdc.rate = 0;
2136 args.mode = this_mode;
2137 args.skippable = 1;
2138 args.rdc = &this_rdc;
2139 mi->tx_size = intra_tx_size;
2140 vp9_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
2141 &args);
2142 // Check skip cost here since skippable is not set for for uv, this
2143 // mirrors the behavior used by inter
2144 if (args.skippable) {
2145 x->skip_txfm[0] = SKIP_TXFM_AC_DC;
2146 this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1);
2147 } else {
2148 x->skip_txfm[0] = SKIP_TXFM_NONE;
2149 this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0);
2150 }
2151 // Inter and intra RD will mismatch in scale for non-screen content.
2152 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) {
2153 if (x->color_sensitivity[0])
2154 vp9_foreach_transformed_block_in_plane(xd, bsize, 1,
2155 estimate_block_intra, &args);
2156 if (x->color_sensitivity[1])
2157 vp9_foreach_transformed_block_in_plane(xd, bsize, 2,
2158 estimate_block_intra, &args);
2159 }
2160 this_rdc.rate += cpi->mbmode_cost[this_mode];
2161 this_rdc.rate += ref_frame_cost[INTRA_FRAME];
2162 this_rdc.rate += intra_cost_penalty;
2163 this_rdc.rdcost =
2164 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
2165
2166 if (this_rdc.rdcost < best_rdc.rdcost) {
2167 best_rdc = this_rdc;
2168 best_mode = this_mode;
2169 best_intra_tx_size = mi->tx_size;
2170 best_ref_frame = INTRA_FRAME;
2171 mi->uv_mode = this_mode;
2172 mi->mv[0].as_int = INVALID_MV;
2173 best_mode_skip_txfm = x->skip_txfm[0];
2174 }
2175 }
2176
2177 // Reset mb_mode_info to the best inter mode.
2178 if (best_ref_frame != INTRA_FRAME) {
2179 mi->tx_size = best_tx_size;
2180 } else {
2181 mi->tx_size = best_intra_tx_size;
2182 }
2183 }
2184
2185 pd->dst = orig_dst;
2186 mi->mode = best_mode;
2187 mi->ref_frame[0] = best_ref_frame;
2188 x->skip_txfm[0] = best_mode_skip_txfm;
2189
2190 if (!is_inter_block(mi)) {
2191 mi->interp_filter = SWITCHABLE_FILTERS;
2192 }
2193
2194 if (reuse_inter_pred && best_pred != NULL) {
2195 if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
2196 #if CONFIG_VP9_HIGHBITDEPTH
2197 if (cm->use_highbitdepth)
2198 vpx_highbd_convolve_copy(
2199 CONVERT_TO_SHORTPTR(best_pred->data), best_pred->stride,
2200 CONVERT_TO_SHORTPTR(pd->dst.buf), pd->dst.stride, NULL, 0, NULL, 0,
2201 bw, bh, xd->bd);
2202 else
2203 vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
2204 pd->dst.stride, NULL, 0, NULL, 0, bw, bh);
2205 #else
2206 vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
2207 pd->dst.stride, NULL, 0, NULL, 0, bw, bh);
2208 #endif // CONFIG_VP9_HIGHBITDEPTH
2209 }
2210 }
2211
2212 #if CONFIG_VP9_TEMPORAL_DENOISING
2213 if (cpi->oxcf.noise_sensitivity > 0 && cpi->resize_pending == 0 &&
2214 denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow &&
2215 cpi->denoiser.reset == 0) {
2216 VP9_DENOISER_DECISION decision = COPY_BLOCK;
2217 vp9_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_frame_cost,
2218 frame_mv, reuse_inter_pred, best_tx_size,
2219 best_mode, best_ref_frame, best_pred_filter,
2220 best_mode_skip_txfm);
2221 vp9_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision);
2222 recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den, yv12_mb,
2223 &best_rdc, bsize, mi_row, mi_col);
2224 best_ref_frame = ctx_den.best_ref_frame;
2225 }
2226 #endif
2227
2228 if (cpi->sf.adaptive_rd_thresh) {
2229 THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mi->mode)];
2230
2231 if (best_ref_frame == INTRA_FRAME) {
2232 // Only consider the modes that are included in the intra_mode_list.
2233 int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
2234 int i;
2235
2236 // TODO(yunqingwang): Check intra mode mask and only update freq_fact
2237 // for those valid modes.
2238 for (i = 0; i < intra_modes; i++) {
2239 if (cpi->sf.adaptive_rd_thresh_row_mt)
2240 update_thresh_freq_fact_row_mt(cpi, tile_data, x->source_variance,
2241 thresh_freq_fact_idx, INTRA_FRAME,
2242 best_mode_idx, intra_mode_list[i]);
2243 else
2244 update_thresh_freq_fact(cpi, tile_data, x->source_variance, bsize,
2245 INTRA_FRAME, best_mode_idx,
2246 intra_mode_list[i]);
2247 }
2248 } else {
2249 for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
2250 PREDICTION_MODE this_mode;
2251 if (best_ref_frame != ref_frame) continue;
2252 for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
2253 if (cpi->sf.adaptive_rd_thresh_row_mt)
2254 update_thresh_freq_fact_row_mt(cpi, tile_data, x->source_variance,
2255 thresh_freq_fact_idx, ref_frame,
2256 best_mode_idx, this_mode);
2257 else
2258 update_thresh_freq_fact(cpi, tile_data, x->source_variance, bsize,
2259 ref_frame, best_mode_idx, this_mode);
2260 }
2261 }
2262 }
2263 }
2264
2265 *rd_cost = best_rdc;
2266 }
2267
vp9_pick_inter_mode_sub8x8(VP9_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2268 void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x, int mi_row,
2269 int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize,
2270 PICK_MODE_CONTEXT *ctx) {
2271 VP9_COMMON *const cm = &cpi->common;
2272 SPEED_FEATURES *const sf = &cpi->sf;
2273 MACROBLOCKD *const xd = &x->e_mbd;
2274 MODE_INFO *const mi = xd->mi[0];
2275 MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
2276 const struct segmentation *const seg = &cm->seg;
2277 MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE;
2278 MV_REFERENCE_FRAME best_ref_frame = NONE;
2279 unsigned char segment_id = mi->segment_id;
2280 struct buf_2d yv12_mb[4][MAX_MB_PLANE];
2281 static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
2282 VP9_ALT_FLAG };
2283 int64_t best_rd = INT64_MAX;
2284 b_mode_info bsi[MAX_REF_FRAMES][4];
2285 int ref_frame_skip_mask = 0;
2286 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2287 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2288 int idx, idy;
2289
2290 x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
2291 ctx->pred_pixel_ready = 0;
2292
2293 for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
2294 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
2295 int_mv dummy_mv[2];
2296 x->pred_mv_sad[ref_frame] = INT_MAX;
2297
2298 if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
2299 int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame];
2300 const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
2301 vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf,
2302 sf);
2303 vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col,
2304 mbmi_ext->mode_context);
2305
2306 vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
2307 &dummy_mv[0], &dummy_mv[1]);
2308 } else {
2309 ref_frame_skip_mask |= (1 << ref_frame);
2310 }
2311 }
2312
2313 mi->sb_type = bsize;
2314 mi->tx_size = TX_4X4;
2315 mi->uv_mode = DC_PRED;
2316 mi->ref_frame[0] = LAST_FRAME;
2317 mi->ref_frame[1] = NONE;
2318 mi->interp_filter =
2319 cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter;
2320
2321 for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
2322 int64_t this_rd = 0;
2323 int plane;
2324
2325 if (ref_frame_skip_mask & (1 << ref_frame)) continue;
2326
2327 #if CONFIG_BETTER_HW_COMPATIBILITY
2328 if ((bsize == BLOCK_8X4 || bsize == BLOCK_4X8) && ref_frame > INTRA_FRAME &&
2329 vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
2330 continue;
2331 #endif
2332
2333 // TODO(jingning, agrange): Scaling reference frame not supported for
2334 // sub8x8 blocks. Is this supported now?
2335 if (ref_frame > INTRA_FRAME &&
2336 vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
2337 continue;
2338
2339 // If the segment reference frame feature is enabled....
2340 // then do nothing if the current ref frame is not allowed..
2341 if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
2342 get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
2343 continue;
2344
2345 mi->ref_frame[0] = ref_frame;
2346 x->skip = 0;
2347 set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
2348
2349 // Select prediction reference frames.
2350 for (plane = 0; plane < MAX_MB_PLANE; plane++)
2351 xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane];
2352
2353 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
2354 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
2355 int_mv b_mv[MB_MODE_COUNT];
2356 int64_t b_best_rd = INT64_MAX;
2357 const int i = idy * 2 + idx;
2358 PREDICTION_MODE this_mode;
2359 RD_COST this_rdc;
2360 unsigned int var_y, sse_y;
2361
2362 struct macroblock_plane *p = &x->plane[0];
2363 struct macroblockd_plane *pd = &xd->plane[0];
2364
2365 const struct buf_2d orig_src = p->src;
2366 const struct buf_2d orig_dst = pd->dst;
2367 struct buf_2d orig_pre[2];
2368 memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre));
2369
2370 // set buffer pointers for sub8x8 motion search.
2371 p->src.buf =
2372 &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
2373 pd->dst.buf =
2374 &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
2375 pd->pre[0].buf =
2376 &pd->pre[0]
2377 .buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)];
2378
2379 b_mv[ZEROMV].as_int = 0;
2380 b_mv[NEWMV].as_int = INVALID_MV;
2381 vp9_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col,
2382 &b_mv[NEARESTMV], &b_mv[NEARMV],
2383 mbmi_ext->mode_context);
2384
2385 for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
2386 int b_rate = 0;
2387 xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int;
2388
2389 if (this_mode == NEWMV) {
2390 const int step_param = cpi->sf.mv.fullpel_search_step_param;
2391 MV mvp_full;
2392 MV tmp_mv;
2393 int cost_list[5];
2394 const MvLimits tmp_mv_limits = x->mv_limits;
2395 uint32_t dummy_dist;
2396
2397 if (i == 0) {
2398 mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3;
2399 mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3;
2400 } else {
2401 mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3;
2402 mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3;
2403 }
2404
2405 vp9_set_mv_search_range(&x->mv_limits,
2406 &mbmi_ext->ref_mvs[ref_frame][0].as_mv);
2407
2408 vp9_full_pixel_search(
2409 cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method,
2410 x->sadperbit4, cond_cost_list(cpi, cost_list),
2411 &mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv, INT_MAX, 0);
2412
2413 x->mv_limits = tmp_mv_limits;
2414
2415 // calculate the bit cost on motion vector
2416 mvp_full.row = tmp_mv.row * 8;
2417 mvp_full.col = tmp_mv.col * 8;
2418
2419 b_rate += vp9_mv_bit_cost(
2420 &mvp_full, &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
2421 x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
2422
2423 b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
2424 [INTER_OFFSET(NEWMV)];
2425 if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd) continue;
2426
2427 cpi->find_fractional_mv_step(
2428 x, &tmp_mv, &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
2429 cpi->common.allow_high_precision_mv, x->errorperbit,
2430 &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
2431 cpi->sf.mv.subpel_iters_per_step,
2432 cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
2433 &dummy_dist, &x->pred_sse[ref_frame], NULL, 0, 0);
2434
2435 xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv;
2436 } else {
2437 b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
2438 [INTER_OFFSET(this_mode)];
2439 }
2440
2441 #if CONFIG_VP9_HIGHBITDEPTH
2442 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
2443 vp9_highbd_build_inter_predictor(
2444 CONVERT_TO_SHORTPTR(pd->pre[0].buf), pd->pre[0].stride,
2445 CONVERT_TO_SHORTPTR(pd->dst.buf), pd->dst.stride,
2446 &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf,
2447 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0,
2448 vp9_filter_kernels[mi->interp_filter], MV_PRECISION_Q3,
2449 mi_col * MI_SIZE + 4 * (i & 0x01),
2450 mi_row * MI_SIZE + 4 * (i >> 1), xd->bd);
2451 } else {
2452 #endif
2453 vp9_build_inter_predictor(
2454 pd->pre[0].buf, pd->pre[0].stride, pd->dst.buf, pd->dst.stride,
2455 &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf,
2456 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0,
2457 vp9_filter_kernels[mi->interp_filter], MV_PRECISION_Q3,
2458 mi_col * MI_SIZE + 4 * (i & 0x01),
2459 mi_row * MI_SIZE + 4 * (i >> 1));
2460
2461 #if CONFIG_VP9_HIGHBITDEPTH
2462 }
2463 #endif
2464
2465 model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
2466 &var_y, &sse_y);
2467
2468 this_rdc.rate += b_rate;
2469 this_rdc.rdcost =
2470 RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
2471 if (this_rdc.rdcost < b_best_rd) {
2472 b_best_rd = this_rdc.rdcost;
2473 bsi[ref_frame][i].as_mode = this_mode;
2474 bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv;
2475 }
2476 } // mode search
2477
2478 // restore source and prediction buffer pointers.
2479 p->src = orig_src;
2480 pd->pre[0] = orig_pre[0];
2481 pd->dst = orig_dst;
2482 this_rd += b_best_rd;
2483
2484 xd->mi[0]->bmi[i] = bsi[ref_frame][i];
2485 if (num_4x4_blocks_wide > 1) xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i];
2486 if (num_4x4_blocks_high > 1) xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i];
2487 }
2488 } // loop through sub8x8 blocks
2489
2490 if (this_rd < best_rd) {
2491 best_rd = this_rd;
2492 best_ref_frame = ref_frame;
2493 }
2494 } // reference frames
2495
2496 mi->tx_size = TX_4X4;
2497 mi->ref_frame[0] = best_ref_frame;
2498 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
2499 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
2500 const int block = idy * 2 + idx;
2501 xd->mi[0]->bmi[block] = bsi[best_ref_frame][block];
2502 if (num_4x4_blocks_wide > 1)
2503 xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block];
2504 if (num_4x4_blocks_high > 1)
2505 xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block];
2506 }
2507 }
2508 mi->mode = xd->mi[0]->bmi[3].as_mode;
2509 ctx->mic = *(xd->mi[0]);
2510 ctx->mbmi_ext = *x->mbmi_ext;
2511 ctx->skip_txfm[0] = SKIP_TXFM_NONE;
2512 ctx->skip = 0;
2513 // Dummy assignment for speed -5. No effect in speed -6.
2514 rd_cost->rdcost = best_rd;
2515 }
2516